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Consumer products like foods contain numerous polymeric and particulate additives that play critical

roles in maintaining their stability, quality and function. The resulting materials exhibit complex bulk

and interfacial rheological responses, and often display a distinctive power-law response under stan-

dard rheometric deformations. These power-laws are not conveniently described using conventional

rheological models, without the introduction of a large number of relaxation modes. We present a con-

stitutive framework utilizing fractional derivatives to model the power-law responses often observed

experimentally. We first revisit the concept of quasi-properties and their connection to the fractional

Maxwell model (FMM). Using Scott-Blair’s original data, we demonstrate the ability of the FMM to

capture the power-law response of ’highly anomalous’ materials. We extend the FMM to describe the

viscoelastic interfaces formed by bovine serum albumin and solutions of a common food stabilizer,

Acacia gum. Fractional calculus allows us to model and compactly describe the measured frequency

response of these interfaces in terms of their quasi-properties. Finally, we demonstrate the predic-

tive ability of the FMM to quantitatively capture the behaviour of complex viscoelastic interfaces by

combining the measured quasi-properties with the equation of motion for a complex fluid interface to

describe the damped inertio-elastic oscillations that are observed experimentally.
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1 Introduction

A multitude of consumer products, especially foods, owe their structure, stability and func-
tion to the presence of interfaces. Common examples include foams and emulsions such as
milk, soups, salad dressings, mayonnaise, ice cream and butter (see McClements (2005) and
the references therein). Although many of these foams and emulsions are thermodynamically
unstable, the kinetics of phase separation can be controlled with the addition of various pro-
teins, surfactants, gums and other stabilizing agents, which have very important implications
for the shelf-life of foods (Murray (2002)). However, the presence of these additives often
leads to complex rheological properties and give rise to distinctive power-laws in the creep
response (i.e. the strain varies as γ(t) ∼ tα) and also in the corresponding frequency response
(i.e. the elastic modulus varies with frequency as G′(ω) ∼ ωα). Such power-law responses are
not well described by canonical rheological models such as the Maxwell or Kelvin-Voigt mod-
els (Tschoegl (1989)). The sensory perception of foods in terms of textural parameters plays
an important role in the assessment of food quality, and is strongly related to the viscoelastic
properties of the interfacial layers present (Fischer and Windhab (2011)). New rheological tools
such as the double wall ring (DWR) interfacial rheometer (Vandebril et al. (2010); Jaishankar
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et al. (2011)) enable us to experimentally quantify such responses with unprecedented accuracy
over a wide range of frequency and time scales. We now seek a framework for modeling these
power-law responses in a simple yet robust constitutive theory that can then be used to predict
the material response in other, more complex, flows.

Constitutive modeling in rheology often involves constructing models that can be viewed
conceptually as an arrangement of elastic Hookean springs and viscous Newtonian dashpots.
Tschoegl (1989) compiles many such arrangements along with their response to various applied
deformations. The canonical example is the linear viscoelastic Maxwell model, which consists
of a spring and a dashpot in series. When a step strain deformation is imposed, the stress in the
material responds exponentially, and this fundamental mode of response is commonly referred
to as the Maxwell-Debye Response (Metzler and Klafter (2002)). Some model complex fluids
(for example entangled worm-like micellar solutions in the fast-breaking chain limit) are well
described by this simple model (Rehage and Hoffmann (1988)). However, there are many classes
of materials in which stress relaxation following a step strain is not close to exponential, but
is in fact best represented as a power-law in time, i.e. G(t) ∼ t−β. Examples of such materials
include physically crosslinked polymers (Winter and Mours (1997)), microgel dispersions (Ketz
et al. (1988)), foams (Khan et al. (1988)), colloidal hard sphere suspensions (Mason and Weitz
(1995)), soft glassy materials (Sollich (1998)) and hydrogels (Larson (1999)). Non-exponential
stress relaxation in the time domain also implies power-law behaviour in the viscoelastic storage
modulus, G′(ω), and loss modulus, G′′(ω), measured in the frequency domain using small
amplitude oscillatory shear deformations. This broad spectral response is indicative of the wide
range of distinct relaxation processes available to the microstructural elements that compose
the material, and there is no single characteristic relaxation time (Metzler and Klafter (2002)).
The irregular nature of relaxation events in complex fluids such as foods and consumer products
is also often manifested in micro-rheological experiments as anomalous sub-diffusion or sticky
diffusion, in which the mean square displacement of Brownian tracer particles is found to scale
as 〈x2〉 ∼ tα, 0 < α < 1 (Metzler and Klafter (2000); Rich et al. (2011)).

To describe these so-called power-law materials, one may add progressively more mechanical
elements in series or parallel to the initial Maxwell element or Voigt element (Tschoegl (1989)),
and in the process provide additional modes of relaxation. We thus obtain a broad spectrum
of discrete relaxation times that characterize the material response. Most real systems can
thus be described in an ad-hoc way using a sum of exponentials Winter (1986). However
for power-law materials to be modeled accurately, it is often found that a very large number
of corresponding mechanical elements are required. For many complex fluids, this approach
is frequently impractical from a modeling point of view. Moreover, the values of the fitted
parameters in any model with a finite array of relaxation modes depend on the timescale of the
experiment over which the fit is performed. Consequently the model parameters obtained lack
physical meaning (Kollmannsberger and Fabry (2011)).

Scott-Blair (1947) pioneered a framework that enabled the power-law equation proposed by
Nutting (1921) to be made more general through the use of fractional calculus. With analogy
to the classical ideas of (i) the Hookean spring, in which the stress in the spring is proportional
to the zero-th derivative of the strain and (ii) the Newtonian dashpot, in which the stress in the
dashpot is proportional to the first derivative of the strain, he proposed a constitutive equation
in terms of a fractional derivative

σ(t) = ❱
dαγ(t)

dtα
(1.1)

where 0 < α < 1, effectively creating an element that interpolates between the constitutive
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responses of a spring and a dashpot. Here the material property ❱ is a quasi-property, and
dα/dtα is the fractional derivative operator (Miller and Ross (1993)), both of which are dis-
cussed in further detail below. Scott-Blair and co-workers used equation (1.1) as a constitutive
equation in itself; Koeller (1984) later equated this canonical modal response to a mechani-
cal element called the spring-pot (sometimes known as the Scott-Blair element (Mainardi and
Gorenflo (2008))) and identified it as the fundamental building block from which more complex
constitutive models could be constructed.

One of the consequences of Scott-Blair and coworkers’ detailed study into these so-called
fractional models is the emergence of the concept of material quasi-properties, denoted in equa-
tion (1.1) by the quantity ❱ (with SI units of Pa sα). Quasi-properties differ from material to
material in the dimensions of mass M, length L and time T, depending on the power α. It may
thus be argued that they are not true material properties because they contain non-integer pow-
ers of the fundamental dimensions of space and time. However, such quasi-properties appear
to compactly describe textural parameters such as the “firmness” of a material (Scott-Blair
and Coppen (1942)). They are numerical measures of a dynamical process such as creep in
a material rather than of an equilibrium state. In the present paper we show how we can
compactly represent the wide range of microstructural relaxation processes in the material in
terms of these so-called quasi-properties and the associated fractional derivatives with only a
few parameters.

Bagley and Torvik (1983b) were able to demonstrate that, for long chain molecules with
many submolecules per chain, the Rouse molecular theory (Rouse (1953)) is equivalent to a
fractional constitutive equation, and compactly represented the polymer contribution to the
total stress in terms of the fractional half-derivative of the strain. The Fractional Maxwell
Model (FMM) and other fractional constitutive models have been considered in detail in the
literature (Koeller (1984); Nonnenmacher (1991); Schiessel and Blumen (1993); Schiessel et al.
(1995); Friedrich et al. (1999)).

We demonstrate in this paper that fractional stress-strain relationships are also applicable
to viscoelastic interfaces, and result in simple constitutive models that may be used to quan-
titatively describe the power-law rheological behaviour exhibited by such interfaces. We first
briefly outline the basic definitions of fractional calculus in a form most useful for applica-
tions in rheology. We then connect the framework to the studies of Scott-Blair and coworkers
(Scott-Blair and Coppen (1942); Scott-Blair et al. (1947)) and show, using Scott-Blair et al.’s
(1947) original data on ‘highly anomalous butyl rubber’, how the use of the fractional Maxwell
model to extract the quasi-properties of this material is superior to the use of conventional
spring-dashpot models that characterize creep and stress-relaxation. Next, we emphasize the
utility of fractional constitutive models, and highlight the shortcomings of linear constitutive
models for describing complex fluid interfaces using of interfacial rheology data obtained from
highly viscoelastic bovine serum albumin and Acacia gum interfaces. Finally, we present a
discriminating comparison of linear and fractional viscoelastic constitutive models using the
phenomenon of creep ringing that arises from the coupling between surface elasticity and in-
strument inertia. We show that combining fractional constitutive models with the concept
of material quasi-properties enables the quantitative description of complex time-dependent
interfacial phenomena.
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2 Mathematical preliminaries

(a) Definitions

In this paper, we use the Caputo derivative for fractional differentiation, which is defined
as Podlubny (1999); Surguladze (2002))

C
a D

α
t f(t) =

1

Γ(n− α)

t
∫

a

(t− t′)n−α−1f (n)(t′)dt′ (2.1)

where n−1 < α ≤ n, n is an integer and f (n)(t) indicates an integer order differentiation of the
function f(t) to order n. The Caputo derivative operator C

a D
α
t f(t) is itself a linear operator, so

that C
a D

α
t [bf(t)+g(t)] = b C

a D
α
t f(t)+

C
a D

α
t g(t) where b is any scalar and f and g are appropriate

functions (Miller and Ross (1993)). In what follows, we choose the lower limit of integration
a = 0, which us enables to reformulate the Caputo definition as a Laplace convolution (Schiessel
et al. (1995)). In essence, we restrict our attention to the domain t > 0, because f(t) = 0 for
t ≤ 0. Consequently, we henceforth use the more compact notation for the Caputo derivative:

C
0 D

α
t f(t) ≡

dα

dtα
f(t) (2.2)

The Laplace transform of the Caputo derivative is given by (Podlubny (1999))

L

{

dα

dtα
f(t); s

}

= sαf̃(s)−
n−1
∑

k=0

sα−k−1f (k)(0), n− 1 < α ≤ n (2.3)

where f̃(s) = L{f(t); s}. The Fourier transform of the Caputo derivative is given by (Schiessel
et al. (1995))

F

{

dα

dtα
f(t);ω

}

= (iω)αf̃(ω) (2.4)

where f̃(ω) = F{f(t);ω}. Using these definitions, we can now formulate the FMM for a com-
plex fluid, which is the simplest general rheological model involving spring-pots, and contains
only four constitutive parameters.

(b) The fractional Maxwell model - FMM

The spring-pot, whose constitutive equation is given in equation (1.1), bridges the gap be-
tween a purely viscous and a purely elastic material response by interpolating between a spring
and a dashpot. For dimensional consistency, the constant ❱ must have the units (Pa sα) where
0 ≤ α ≤ 1, and can be equated to Scott-Blair’s concept of a quasi-property (Scott-Blair et al.
(1947)). The formulation of fractional constitutive equations in terms of quasi-properties has
fallen out of use in the recent rheological literature. It is often preferred to write the constitutive
equation of a spring-pot (equation (1.1)) as σspring−pot = G0λ

α
0
dαγ
dtα

, where the modulus G0 has
units of [Pa] and λ0 has units of [s] (see for example Friedrich and Braun (1992)). While this
initially seems simply to be a matter of notational convenience, the latter formulation draws
attention away from the fact that the fundamental material property that characterizes the
behaviour of power-law–like materials is the unique quasi-property ❱ = G0λ

α
0 , which charac-

terizes the magnitude of the material response in terms of a single material parameter. In fact
it can be shown that it is not possible from simple rheological tests to isolate the individual
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(a) (b)

Figure 1: (a) The schematic representation of a spring-pot as an element that interpolates between a spring
(α = 0) and a dashpot (α = 1). (b) The Fractional Maxwell Model (FMM).

components (G0, λ0, α), but only the product G0λ
α
0 .

The two parameters ❱ and α are the only parameters required to characterize a spring-pot.
It is evident that the spring-pot—schematically shown in figure 1a—reduces to a spring when
α = 0 and a dashpot when α = 1. The quasi-property ❱ also reduces respectively to the
limits of a modulus G (units: Pa) or a viscosity η (units: [Pa s]) in these limiting cases. The
preferred term proposed by Scott-Blair et al. (1947) for a constitutive law exhibiting spring-pot
like behaviour was “the principle of intermediacy”. We present a vectorial graphical represen-
tation of the spring-pot in the electronic supplementary material to aid in understanding this
intermediate nature of the spring-pot.

We may now use these spring-pot elements to construct more complex constitutive models.
This approach has been discussed in some detail in the literature, notably by Bagley and Torvik
(1983a), Torvik and Bagley (1984), Koeller (1984), Nonnenmacher (1991), Friedrich (1991a),
Schiessel and Blumen (1993) and Heymans and Bauwens (1994); we therefore summarize the
primary result without derivation. The FMM consists of two spring-pots in series characterized
by the parameters (❱, α) and (●, β) respectively (figure 1b). The constitutive equation for the
FMM can be obtained from assuming equality of the stress (σ = σ1 = σ2) in the spring-pots,
and additivity of the strains (γ = γ1 + γ2) to give

σ(t) +
❱

●

dα−βσ(t)

dtα−β
= ❱

dαγ(t)

dtα
(2.5)

where we take α > β without loss of generality (Schiessel et al. (1995)). The ratio (❱/●)1/(α−β)

with units of [s] represents the fractional generalization of a characteristic relaxation time for
the model.

Friedrich (1991b) has shown that this model results in a nonnegative internal work and a
nonnegative rate of energy dissipation, and is hence consistent with the laws of thermodynamics.
Lion (1997) has argued more generally that a constitutive model containing fractional elements
is thermodynamically admissible only if the resulting constitutive equation represents some
physically realizable combination of springs, dashpots and spring-pots. In other words, models
that do not have mechanical analogues are thermodynamically inadmissible.

In a stress relaxation experiment, a step strain of the form γ = γ0H(t) is imposed (where
H(t) is the Heaviside step function) and the stress is measured as a function of time. The
solution of equation (2.5) following the imposition of such a step strain can be solved analytically
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and the relaxation modulus is expressed as (Schiessel et al. (1995))

G(t) ≡
σ(t)

γ0
= ●t−βEα−β,1−β

(

−
●

❱
tα−β

)

(2.6)

where Ea,b(z) is the two parameter Mittag-Leffler function defined as (Podlubny (1999))

Ea,b(z) =
∞
∑

k=0

zk

Γ(ak + b)
, (a > 0, b > 0) (2.7)

Note that in equation (2.6) we have written the expression for G(t) in terms of the quasi-
properties ● and ❱ of the two spring-pot elements, and the power-law exponents α, β.

We may also analytically solve for the compliance J(t) in a creep experiment in where a
step stress of the form σ(t) = σ0H(t) is imposed, where σ0. Substituting this equation into the
fractional Maxwell constitutive equation (equation (2.5)), we can now solve for the evolution of
the strain in the Laplace domain. We note that the necessary initial conditions are determined
from the fact that the sample is initially at rest, and we have γ̇(0) = 0. Moreover, the state
of zero strain may be fixed arbitrarily, and we set the material strain to be γ(0) = 0 at t = 0.
Hence, upon inverting the Laplace transformed strain γ̃(s) we arrive at

J(t) ≡
γ(t)

σ0

=

(

1

❱

tα

Γ(1 + α)
+

1

●

tβ

Γ(1 + β)

)

(2.8)

where Γ(z) is the Gamma function. It is evident that setting α = 1 and β = 0 retrieves the

creep response of the linear viscoelastic Maxwell model given by J(t) =
(

t
η
+ 1

G

)

.

In this paper, we are interested in the properties of complex interfaces. Because interfacial
stresses correspond to a line force, they have units of [Pa m] or [N/m]. This additional length
dimension also influences the units of the corresponding interfacial quasi-properties ❱s, ●s that
characterize complex interfaces, and they now have units of Pa m sα and Pa m sβ respectively,
which remain quasi-properties in time. To construct a constitutive equation for complex fluid
interfaces, we write the interfacial counterpart of equation (2.5) as

σs(t) +
❱s

●s

dα−βσs(t)

dtα−β
= ❱s

dαγ(t)

dtα
(2.9)

in which σs(t) is the interfacial stress (Any symbol in this paper with the subscript ‘s’ is to
be interpreted as an interfacial quantity unless otherwise specified). This model is confronted
with experimental data in §4 of the present paper.

3 Techniques and materials

To demonstrate the ability of the fractional models discussed above to describe viscoelastic
interfaces, we performed interfacial rheological experiments on bovine serum albumin (BSA)
and Acacia gum solutions. Interfacial rheological experiments were performed with a TA In-
struments ARG2 stress-controlled rheometer using the double wall ring (DWR) fixture. The
construction and operation of the DWR has been described in detail by Vandebril et al. (2010).
The test fixture consists of a Platinum-Iridium ring that is placed at the air-liquid or liquid-
liquid interface of interest. The ring has a square cross-section angled at 45◦ to pin the location
of the interface and minimize the effects of meniscus curvature. Steady or oscillatory shear
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deformations may be applied to the fluid interface using the DWR and the resulting torque is
measured.

In any interfacial shear rheological experiment, torque contributions from the flow induced
in the subphase are present in addition to the interfacial torque contribution. For accurate
measurements, it is important to identify these subphase contributions and ensure that they do
not dominate over the interfacial torque measurements. The selective sensitivity of a specific
test geometry to interfacial effects, in comparison to the induced subphase flow, is characterized
by the Boussinesq number Bos (Edwards et al. (1991)). For Bos ≫ 1, interfacial effects domi-
nate, and the length scale ls = AB/Ps is thus crucial in determining the relative sensitivity of
a particular fixture to interfacial viscous effects as compared to subphase effects from the bulk.
In all our experiments, we ensured that this requirement is satisfied. The relatively small value
of the length scale ls for the DWR fixture as compared to other available rheometer fixtures
leads to a higher value of the Boussinesq number. Additional details regarding the importance
of the Boussinesq number in interfacial measurements are discussed elsewhere (Edwards et al.
(1991); Sharma et al. (2011); Vandebril et al. (2010)).

Bovine serum albumin, extracted by agarose gel electrophoresis, was obtained from Sigma-
Aldrich Corp (St. Louis, MO USA) in the form of a lypophilized powder. 0.01 M phosphate
buffered saline (PBS) solution (NaCl 0.138 M; KCl 0.0027 M; pH 7.4, at 25 ◦C.) was prepared
by dissolving dry PBS powder obtained from Sigma-Aldrich Corp. A precisely weighed quantity
of BSA was dissolved in the PBS and the solution was brought up to the required volume in
a volumetric flask to finally obtain solutions with a BSA concentration of 50 mg ml−1. The
uncertainty in composition from solution preparation was determined to be only 0.002%. The
prepared solutions were stored under refrigeration at 4 ◦C and were allowed to slowly warm up
to room temperature before being used for experiments. All BSA solutions used in this study
had a concentration of 50 mg ml−1 unless otherwise specified.

Acacia gum in powdered form was also obtained from Sigma-Aldrich Corp (SKU:G9752).
Using the same weighing technique described above, a known quantity of Acacia gum was
dissolved in deionized water by slow stirring for approximately 6 hours to make solutions at a
concentration of 3 wt.%. The solutions were then double-filtered using Whatman filter paper
grade #595 (pore-size: 4−7 µm) to remove any residual insoluble material. Prior to rheological
testing, all solutions were stored at 4◦C for 24 hours to ensure biopolymer hydration (Sanchez
et al. (2002)).

4 Results

(a) Stress relaxation and creep without inertia

We first consider the stress relaxation in a complex material after the imposition of a step
strain. The broad spectrum of relaxation times exhibited by power-law materials often present
challenges in modeling such experiments (Ng et al. (2011)). It has already been noted that the
inclusion of additional relaxation modes, which is equivalent to including additional Maxwell
or Voigt units in parallel, gives improved fits to experimental data. The resulting expression for
linear viscoelastic stress relaxation is a Prony series (Larson (1999); Baumgartel and Winter
(1992))

G(t) ≡
σ(t)

γ0
=

Nm
∑

k=1

ηk
λk

e
−

t
λk (4.1)

where ηk and λk are fitting constants. The number of modes Nm required to fit experimental
data varies depending on the time scale over which the relaxation modulus is measured and the
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degree to which the experimental data deviates from the exponential Maxwell-Debye response.
Although describing data in this manner is a well-posed exercise, it is often cumbersome because
of the large number of fitting parameters required. Tschoegl (1989) remarks presciently “If the
number of Maxwell of Voigt units is increased to the minimum number required for a series-
parallel model to represent such a [power-law] distribution at all adequately, the simplicity of
the standard models is lost and, in addition, arbitrary decisions must be made in assigning
suitable values to the model elements.”

Another empirical approach often used to describe experimental observations of power-
law–like relaxation is a stretched exponential response, known as the Kohlrausch-Williams-
Watts expression (KWW) (Larson (1999)), given by σ(t) = Gγ0e

−(t/τ)β where the characteristic
relaxation time τ , the exponent β and the modulus scale G are the fitting constants. The
KWW expression works well in practice for describing the step strain excitation; However it is
in general not possible using standard procedures to find the underlying form of the constitutive
model that could subsequently be used to predict the response of the material to another mode
of excitation (Tschoegl (1989)). Scott-Blair et al. (1947) attempted to model measurements of
anomalous stress relaxation in a range of materials using a higher-order Nutting equation of
the form

γ = σβ(Atk
′

+Btk
′
−1 + Ctk

′
−2 . . . ) (4.2)

with A ≫ B,C, . . . . However, we show in the electronic supplementary information that this
equation is not thermodynamically admissible.

To demonstrate the ability of properly-formulated fractional constitutive models and the
resulting quasi-properties to compactly describe the complex time-dependent properties of real
viscoelastic materials, we revisit Scott-Blair et al.’s original stress relaxation data and fit the
measurements with the FMM discussed in §2(b). In figure 2 we re-plot representative data
reported for the original stress relaxation and creep experiments performed by Scott-Blair
et al. (1947). We to plot the relaxation modulus G(t) and the corresponding creep compliance
J(t) for compactness, instead of the original stress and strain values respectively. It can be seen
that the data collapse onto a rheological master-curve as expected for experiments performed
in the limit of linear deformations. We now fit equation (2.6) to the measured G(t) values
shown in figure 2a. We set one of the elements in the FMM to be a spring, (i.e. β = 0); this
accounts for the instantaneous elastic response in the stress at the start of the experiment.
The FMM fit (solid line) describes the material response extremely well over a wide range of
timescales (10 s ≤ t ≤ 400 s) in terms of just three material parameters α = 0.60 ± 0.04,
❱ = 2.7 ± 0.7 × 107 Pa s0.60 and ● = 2.3 ± 0.2 × 106 Pa, (with β = 0). The error bars in
the figure and the error estimates of the individual parameters α,❱ and ● correspond to 95%
confidence intervals for the nonlinear least square parameter fits. A satisfactory fit using a sum
of relaxation modes (equation (4.1)) is obtained only if three relaxation modes are used, leading
to the use of six fitting parameters, instead of the three required in the fractional Maxwell case.

If the values of the quasi-properties found above truly characterize the material, then we
should be able to predict the constitutive response of the material to other deformations us-
ing the same rheological equation of state. To demonstrate this, we next consider the creep
data for the same ‘highly anomalous’ rubber presented by Scott-Blair et al. (1947) which has
been plotted as the creep compliance J(t) in figure 2b. We can use equation (2.8) to pre-
dict the creep response of the ‘highly anomalous’ rubber based on the power-law exponent
and quasi-properties found from fits to the relaxation modulus. Substituting these values into
equation (2.8) leads to the solid curve shown in figure 2b. It can be seen that the prediction of
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(a) Stress Relaxation (b) Creep Compliance

Figure 2: Rheological data for ‘highly anomalous’ butyl rubber taken from Scott-Blair et al. (1947). (a)
Representative data of stress relaxation experiments performed at two different strain amplitudes. The solid
line depicts the FMM fit (equation (2.6)), with one of the elements set to be a spring (β = 0). For comparison,
the fit obtained from a linear Maxwell model is shown as a dashed line. (b) Creep data at two different
stresses for the same ‘highly anomalous’ butyl rubber. The solid line represents the prediction of the FMM
(equation (2.8)) based on the quasi-properties determined from the stress relaxation fit.

the model again agrees very well with measured data, indicating that the FMM quantitatively
describes the power-law–like behaviour observed by Scott-Blair in these ‘anomalous’ materials.

From this analysis of some previously-published data, the superiority of fractional models in
compactly describing the broad power-law like response of real materials is apparent. Similar
power-law creep responses are commonly observed in both microrheological experiments (Mal-
oney et al. (2010); Rich et al. (2011)) and macroscopic experiments (Cameron et al. (2011);
Erni et al. (2007)). Scott-Blair’s concept of quasi-properties is intimately connected to the
framework of fractional calculus models and provides a physical material interpretation of the
predictive power of these apparently abstract constitutive models.

(b) Interfacial dynamics

Interfacial rheology or ‘2D rheology’ studies the dynamics and structure of interfacial vis-
coelastic thin films or skins formed by solutions containing surface active molecules (Edwards
et al. (1991)). Understanding the mechanics of viscoelastic interfaces is critical to a number
of applications including the use of food additives and stabilizers (Murray (2002)), medicine,
physiology and pharmaceuticals (Zasadzinski et al. (2001); Leiske et al. (2010)). Although
static surface tension measurements are sufficient to characterize the interfacial properties of
surfactant-free solutions with clean interfaces, accurate descriptions of solutions or dispersions
containing surface active molecules with dynamically evolving interfaces necessitate correct
accounting of the mass and momentum transport processes occurring at the interface (Erni
(2011)). In this paper, we will only concern ourselves with the interfacial response of surface-
active solutions to shearing deformations, although dilatational interfacial phenomena can also
be important in other modes of deformation (Cascão Pereira et al. (2003)).

Two common examples of surface active materials are Acacia gum solutions and BSA solu-
tions, which form the focus of the present study. The surface characteristics of BSA solutions
at the air-water interface have been studied extensively using multiple techniques and it is well
established that these solutions form rigid viscoelastic interfaces (Biswas and Haydon (1963);
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(a) (b)

Figure 3: Interfacial small amplitude oscillatory shear data of 3 wt.% Acacia gum solutions carried out using
the DWR. (a) Strain amplitude sweep performed at ω = 1 rad s−1. (b) Frequency sweep performed at a strain
amplitude γ0 = 1%, which lies in the linear regime. The viscoelastic interface shows weak power-law behaviour
with G′′

s (ω) remaining nearly flat over the tested frequency range.

Graham and Phillips (1980); Cascão Pereira et al. (2003); Sharma et al. (2011)). On the
other hand, although some interfacial studies have been performed on Acacia gum solutions
(Dickinson et al. (1988); Erni et al. (2007); Elmanan et al. (2008)), there is comparatively
less literature available for these solutions. Furthermore, there is significant variability present
between Acacia gums extracted from different sources.

For each sample, we first performed interfacial time sweep experiments at a fixed frequency
of ω = 1 rad s−1 and a fixed strain amplitude of γ0 = 1 % to monitor the time evolution
of interfacial viscoelasticity at the interface. We find that the interfacial viscoelastic storage
and loss moduli, G′

s(ω) and G′′

s(ω) respectively, reach equilibrium about 2.5 hours after sample
loading, indicating that the interfacial structure has reached steady-state. It is observed that
G′

s(ω) > G′′

s(ω) indicating that the interfacial microstructures formed is predominantly elastic.
The solid-like nature of the microstructures formed at the interface can also be observed in the
strain sweep performed at an angular frequency of ω = 1 rad s−1 shown in figure 3a. In the linear
regime, we measure G′

s ≈ 0.025 Pa m > G′′

s ≈ 5×10−3 Pa m. The interfacial structure yields at
a strain amplitude of about γ0 ≈ 3%. In figure 3b we show the values of the interfacial moduli
as a function of excitation frequency for the 3 wt.% Acacia gum solution. Throughout the
frequency range tested, G′

s(ω) > G′′

s(ω) signifying that viscoelastic solid-like behaviour persists
even at lower frequencies. Testing at frequencies lower than ω = 10−2 rad s−1 was avoided to
prevent evaporation effects from interfering with the measurements. Erni et al. (2007) have
reported that the values of G′

s and G′′

s measured in a frequency sweep are unchanged upon
changing the concentration of Acacia gum in the subphase from 10 wt.% to 20 wt.%, which
has been attributed to the saturation of the interface by Acacia gum molecules.

The viscoelastic data obtained from the frequency sweep exhibits a weak power-law be-
haviour, which is typical of many physical and chemical gels (Winter and Mours (1997)) as well
as soft glassy materials (Sollich (1998)). Numerous recent reports of bulk rheology in soft solids
have shown examples of such power-law behaviour in small amplitude oscillatory shear defor-
mations (for example Holten-Andersen et al. (2011); Cameron et al. (2011); Kollmannsberger
and Fabry (2011)). We have already demonstrated the utility of fractional models in describing
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G′

s( Pa m) G′′

s( Pa m)

limω→0

❱sω
α cos

(

π
2
α
)

, if α 6= 1
❱2

s

●s
ω2−β cos

(

π
2
β
)

, if α = 1

❱sω
α sin

(

π
2
α
)

, if α 6= 0
0 (∀ω) , if α = 0

limω→∞

●sω
β cos

(

π
2
β
)

, if β 6= 1
0 (∀ω) , if β = 1

●sω
β sin

(

π
2
β
)

, if β 6= 0
●2

s

❱s
ω−α sin

(

π
2
α
)

, if β = 0

Table 1: Asymptotic behaviour of G′

s(ω) and G′′

s (ω) in the FMM. Because 0 < β < α < 1, G′

s and G′′

s reduce
identically to 0 for the cases β = 1 and α = 0 respectively, and the result holds for all frequencies.

bulk creep and stress relaxation experiments in §4(a). We next examine the ability of the FMM
to describe the power-law responses observed in interfacial oscillatory deformations.

(c) The FMM in small amplitude oscillatory shear (SAOS) deformations

The complex fluid examples discussed above, including the Acacia gum and bovine serum
albumin interfaces tested in this study exhibit broad power-law responses when subjected to
small amplitude oscillatory shear experiments. Winter and Mours (1997) have presented a
model for critical gels in which the storage and loss moduli in the bulk are described by the power
laws G′(ω) = SΓ(1−n) cos(nπ/2)ωn and G′′(ω) = SΓ(1−n) sin(nπ/2)ωn respectively, where S
is the gel strength parameter (units of Pa sn). It may be shown by inverse Fourier transforming
the complex modulus G∗(ω) = G′(ω) + iG′′(ω) and finding the resulting constitutive equation
that this is equivalent to a constitutive model consisting of a single spring-pot and the gel
strength parameter is closely related to the quasi-property of the spring-pot ❱ = SΓ(1− n).

One may achieve a more versatile constitutive model for describing foods and other gels and
soft glasses that show power-law–like rheology by considering the FMM depicted schematically
in figure 1b. For a viscoelastic interface the corresponding interfacial constitutive equation
is equation (2.9). Following the procedure outlined by Friedrich (1991a), and Schiessel et al.
(1995), we evaluate the complex modulus of the interface by Fourier transforming equation (2.9)
using equation (2.4) to obtain

G∗

s(ω) =
❱s(iω)

α ·●s(iω)
β

●s(iω)α +❱s(iω)β
(4.3)

By evaluating the real and imaginary parts of the right-hand side of equation (4.3), we find
that the storage and loss moduli are given, respectively, by

G′

s(ω) =
(●sω

β)2 ·❱sω
α cos

(

π
2
α
)

+ (❱sω
α)2 ·●sω

β cos
(

π
2
β
)

(❱sωα)2 + (●sωβ)2 + 2❱sωα ·●sωβ cos
(

π
2
(α− β)

) (4.4)

G′′

s(ω) =
(●sω

β)2 ·❱sω
α sin

(

π
2
α
)

+ (❱sω
α)2 ·●sω

β sin
(

π
2
β
)

(❱sωα)2 + (●sωβ)2 + 2❱sωα ·●sωβ cos
(

π
2
(α− β)

) (4.5)

The asymptotic behaviours of equations (4.4) and (4.5) in the limit of low and high frequencies
are given in table 1. Several different limits can be distinguished in the special cases corre-
sponding to β = 0, 1 and α = 0, 1 respectively. These limits reduce correctly to those of the
linear Maxwell model when α = 1 and β = 0. When multiple Maxwell modes are used to
generate a satisfactory description of the behaviour of power-law materials, we often require a
very large number of discrete relaxation times (Tschoegl (1989)), something that can be readily
circumvented with the use of a fractional model such as equation (2.9). The fractional calculus
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description captures the dynamics of the broad spectrum of relaxation times very succinctly,
by collapsing them into a single spring-pot (Schiessel and Blumen (1993)).

One limitation of the critical gel model is that the elastic and viscous moduli remain parallel
to each other over all frequencies, and the loss tangent tan δ = Γ(1 − n) is independent of
frequency. In contrast, many experiments show broad power-law signatures over some frequency
range but ultimately a cross-over at low enough frequencies to a limiting viscous-like material
response. The existence of a characteristic relaxation time in the FMM (see equation (2.9))
enables such a material response to be described. The crossover frequency ωc at which G′

s = G′′

s

for the FMM is found by equating equations (4.4) and (4.5) and we then find

ωc =

(

●s

❱s

[

sin π
2
α− cos π

2
α

cos π
2
β − sin π

2
β

])
1

α−β

(4.6)

Equation (4.6) makes it evident that the characteristic relaxation timescale in this model is

τ ≃ ω−1
c ∼ (❱s/●s)

1

α−β , provided the argument in square brackets is positive. However there
is no crossover predicted by the model if 0 < β < α < 0.5 or if 0.5 < β < α < 1 (the total
model response is then predominantly elastic or viscous, respectively, at all frequencies). For
such materials no clear characteristic timescale exists.

In figure 4 we show SAOS measurements of the interfacial viscoelasticity for 3 wt. % Acacia
gum solutions and 50 mg/ml BSA solutions. The black solid lines in figures 4a and 4c show
the fit of the FMM for the elastic interfacial modulus G′

s(ω) (equation (4.4)) for the 3 wt.%
Acacia gum solutions and 50 mg/ml BSA solutions respectively. The dashed lines show the
predicted values of the interfacial loss modulus G′′

s(ω) (equation (4.5)). From these fits, the
power-law exponents that characterize the Acacia gum solution are determined to be α = 0.8±
0.2, β = 0.124± 0.003, and the corresponding quasi-properties are ❱s = 3± 2 Pa m s0.8,●s =
0.027 ± 0.003 Pa m s0.124. The material parameters of the 50 mg/ml BSA solution are α =
0.80 ± 0.07, β = 0.11 ± 0.02,❱s = 0.048 ± 0.008 Pa m s0.80,●s = 0.017 ± 0.001 Pa m s0.11.
When the loss modulus is plotted against the storage modulus in a Cole-Cole representation,
we do not observe the simple semicircular response expected from a linear Maxwell material but
instead power-law materials produce Cole-Cole plots with more complicated elliptical shapes
(Friedrich and Braun (1992)). It can be seen from the figures that the FMM captures the
frequency dependence of the interfacial material functions accurately. On the other hand, the
single-mode linear Maxwell model (indicated by broken lines in figures 4b and 4d) is unable to
capture the power-law behaviour of these viscoelastic interfaces.

It is possible to estimate the crossover point and hence the relaxation time of the viscoelastic
interface from the FMM fit. Calculating the value of ωc using equation (4.6), we find that for
the Acacia gum solution ωc = 7.0×10−4 rad s−1 corresponding to a characteristic time constant
of tc ≈ 1430 s. As we have noted previously, it is challenging to measure linear viscoelastic
properties at such low frequencies and at room temperature due to the long times it takes for
test completion, which can result in solvent evaporation. In the case of the BSA solutions the
interfacial relaxation time is shorter and the crossover point can be measured directly using the
DWR fixture giving ωc = 0.16 rad s−1 (tc ≈ 6.4 s). This crossover to a viscously dominated
response is also captured accurately by the FMM. Acacia gum clearly produces a predominantly
elastic interface with a very long relaxation time.

The values of the interfacial quasi-properties of the Acacia gum and BSA solutions we have
found here fully characterize the linear viscoelastic interfacial properties of the two solutions,
and these parameters may now be used to predict the response of these rheologically complex
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(a) (b)

(c) (d)

Figure 4: The FMM fitted (lines) to interfacial storage G′

s(ω) and loss G′′

s (ω) moduli data (symbols) obtained
from (a),(b) 3 wt.% Acacia gum solutions and (c),(d) 50 mg/ml BSA solutions. G′

s(ω). The FMM fits are given
by equation (4.4) and equation (4.5) respectively. Cole-Cole plot of (b) the same Acacia gum solution and (d)
BSA solution showing the fractional Maxwell fit as a solid line with a linear Maxwell fit shown for comparison
by the dashed line. The values of the exponents and quasi-properties extracted from the fit are given in the
main text.

materials to other modes of excitation. In the next subsection we discuss the transient response
of the materials in creep experiments when inertial effects in the flow cannot be neglected.

(d) Creep ringing and power-law responses

In stress controlled bulk rheometry, the effects of inertia can be coupled with material
elasticity which leads to damped periodic oscillations in a step-stress experiment at early times
(Baravian and Quemada (1998); Ewoldt and McKinley (2007)). We have shown in a previous
study that this inertio-elastic phenomenon can be observed not just in the bulk but at interfaces
as well (Jaishankar et al. (2011)). These periodic oscillations decay exponentially with time
due to viscous dissipation, and this phenomenon is often termed creep-ringing. Although the
presence of these oscillations is generally regarded as an intrusion, these transients can, in
fact, be exploited to extract useful information about the linear viscoelasticity of soft materials
(Baravian and Quemada (1998); Ewoldt and McKinley (2007)). In previous work using BSA
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Figure 5: Interfacial creep data obtained with a 50 mg/ml BSA solution. A viscously damped inertio-elastic
ringing is present at early times and a power-law behaviour is exhibited at long times. The solid line shows the
linear Maxwell fit to the entire time range of the experiment, and the dashed line shows the linear Maxwell fit
only to the ringing regime. Neither fit performs adequately at capturing both the ringing phenomenon as well
as the long-time power-law behaviour.

solutions exhibiting interfacial viscoelasticity (Jaishankar et al. (2011)), we have shown that
this technique of extracting interfacial properties even presents certain advantages over the
conventional technique of conducting frequency sweep measurements to high frequencies. In
this earlier study we also noted that solutions of BSA exhibit a power-law creep response at long
times, which could not be adequately captured with the linear Maxwell-Jeffreys model that was
considered analytically. In figure 5 we show a creep experiment performed on 50 mg/ml BSA
solutions with significant inertial effects as well as the best fit prediction of the Maxwell-Jeffreys
model (Tschoegl (1989)) with an added inertial mass. The damped oscillatory ringing arising
from the interaction of the fluid viscoelasticity with instrument inertial effects can be observed
at short times, and power-law creep behaviour is seen in the experimental data at long times.
The solid black line shows the best fit to a linear Jeffreys model performed on the full temporal
span of the creep data (0.02 ≤ t ≤ 60 s). Although the long time (t ≥ 1 s) fit is acceptable, the
fit to the inertio-elastic ringing regime is poor. Moreover, the best fit increasingly deviates at
longer times. On the other hand, a fit performed only to the creep-ringing regime (0 ≤ t ≤ 1
s), shown by the black dashed line, predicts the material response poorly at long times. In
the current work, we extend the creep ringing analysis to fractional viscoelastic constitutive
models for the interface; we aim to predict the power-law creep behaviour over the entire time
range of the experiment using the material power exponents and quasi-properties determined
previously in frequency sweep experiments (figure 4).

In figure 6 we show measurements of the interfacial creep compliance Js(t) (with units of
[Pa−1 m−1]) of 3 wt. % Acacia gum solutions for different values of the imposed interfacial
stress σ0

s . We observe that the interfacial compliance Js(t) ≡ γ(t)/σ0
s measured at different

stresses collapse onto a single curve indicating the measurements are in the linear viscoelastic
regime. The inset plot shows the creep compliance response at long times on logarithmic axes,
which exhibits a power-law scaling in time with Js(t) ∼ t0.13, instead of the slope of unity or
zero expected from, respectively, a purely viscous or purely elastic material response.
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Figure 6: Creep compliance for 3 wt.% Acacia gum solutions performed at various values of imposed interfacial
stress σ0

s . All experiments collapse onto a single curve as expected for a linear viscoelastic response. The
interfacial viscoelasticity is coupled with instrument inertia giving rise to creep ringing at early times. The
inset plot shows that at long times the creep compliance at exhibits power-law behaviour with Js(t) ∼ t0.13.
(Online version in colour).

To overcome the poor predictions achieved from single mode linear viscoelastic models, and
without resorting to the ad-hoc introduction of a large number of superposed relaxation modes,
we instead use the FMM (equation (2.9)) coupled with the inertia of the test fixture to describe
both the ringing observed in the creep experiment at short times, as well as the power-law
behaviour seen at long times. We begin with the equation of the motion of the spindle of the
stress-controlled rheometer, (Baravian and Quemada (1998); Ewoldt and McKinley (2007))

I

bs

d2γ

dt2
= H(t)σ0

s − σs(t) (4.7)

where I is the total moment of inertia of the spindle of the rheometer and the attached test
geometry (i.e. the DWR fixture), σs(t) is the retarding interfacial stress applied by the sample
on the spindle and γ(t) is the resulting strain. The factor bs = Fγ/Fσ (units of m2) is a
geometric factor determined by the specific instrument and geometry used. The quantities
Fγ = γ̇/Ω (dimensionless) and Fσ = σs/T (units: m−2) convert the measured quantities of
torque T and angular velocity Ω into the rheologically-relevant quantities of interfacial stress
σs and strain rate γ̇ respectively. Equation (4.7) can now be coupled with equation (2.5) to
yield the fractional differential equation

❱s
dαγ

dtα
+ A

❱s

●s

d2+α−βγ

dt2+α−β
= H(t)σ0

s +
❱s

●s

dα−β

dtα−β
H(t)σ0

s (4.8)

where we introduce A = I/bs for compactness. In the above equation we have used the

composition rule for fractional derivatives, which states that dq

dtq
dpf
dtp

= dp+qf
dtp+q provided f (k)(0) = 0

where k = 0, 1, . . . ,m − 1; m < p < m + 1 (Podlubny (1999)). The fractional differential
equation (4.8) is of order 2 + α − β, and Heymans and Podlubny (2006) have shown that a
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fractional differential equation of arbitrary real order k requires k∗ initial conditions, where k∗

is the lowest integer greater than k. Because we have 0 ≤ β ≤ α ≤ 1, we find that we need
three initial conditions. The spindle is initially at rest and hence γ(0) = γ̇(0) = 0. However the
step in stress causes an instantaneous acceleration and the third initial condition is σs(0) = 0
which is equivalent to γ̈(0) = σ0

s/A from equation (4.7).
Before we solve equation (4.3) for γ(t), we first seek to determine its asymptotic behaviour

in the limits of early times and long times. Evaluating the Laplace transform of equation (4.8)
using equation (2.3) and employing the three initial conditions given above, we find that

γ̃(s) =
σ0
s

s

(

1 + ❱s

●s
sα−β

❱ssα + As2 + A❱s

●s
s2+(α−β)

)

(4.9)

It may be shown (see the electronic supplementary material) that at short times equa-
tion (4.9) yields

γ(t)
∣

∣

t→0
≈

1

2

σ0
s

A
t2 + · · · (4.10)

This quadratic response is independent of the fractional orders of the spring-pots α and β as
expected, because the short time response in the equation of motion (4.7) is dictated solely
by the inertial response of the fixture; at very early times the interface has not had time to
build-up any stress and hence σs(t) ≈ 0. The solution of equation (4.7) under the condition
σs(t) = 0 yields the quadratic expression in equation (4.10). Similarly, at long times we obtain
(see the electronic supplementary material for details)

γ(t)
∣

∣

t→∞
≈ σ0

s

(

tα

❱sΓ(α + 1)
+

tβ

●sΓ(β + 1)

)

+ · · · (4.11)

which is, to the leading order, the same as the inertia-free creep response derived in equa-
tion (2.8). This means that the effects of inertia become unimportant at long times, as observed
in the experimental measurements shown in figure 6.

The value of A = I/bs can be calibrated once the rheometer fixture is selected and in our
case was found to be A = 1.72× 10−4 kg. Figure 7 shows the asymptotic short time response
(line) given by equation (4.10) plotted against the measured interfacial creep compliance of a
3 wt. % Acacia gum solution (filled symbols). It can be seen that the short time asymptotic
response agrees very well with the measured data. The inset plot also shows the value of the
long time asymptote derived in equation (4.11). From the fractional Maxwell Cole-Cole fits
shown in figure 4, the fit values that characterize the Acacia gum solutions are found to be
α = 0.8 ± 0.2, β = 0.124 ± 0.003,❱s = 3 ± 2 Pa s0.8,●s = 0.027 ± 0.003 Pa s0.124. Because
tβ

●s
≈ 6 tα

❱s
at t = 60 s, we find that the first term in equation (4.11) is smaller than the second.

Therefore, to a first approximation, at long times γ(t) ≈ σ0
s

●s

tβ

Γ(1+β)
. Calculating the value of

the coefficient 1
●sΓ(1+β)

, we find it equals 39.3 Pa−1 m−1 s−0.124. When we fit a power-law of

the form γ(t) = atb directly to the measured data, where a and b are fitting constants, we find
that the measured data at long times is described by Js(t) ≈ 40.4t0.130 Pa−1 m−1, which is in
excellent agreement with the analytically derived asymptotic predictions for long times. This
asymptotic power-law creep behaviour, shown as the solid line in the inset plot in figure 7,
cannot be conveniently captured using conventional spring-dashpot models.

We now proceed to predict the interfacial creep response of the Acacia gum solutions based
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Figure 7: Experimentally measured values of the interfacial compliance response (symbols), and the short and
long time asymptote in the FMM coupled with instrument inertia. At early times, we retrieve the expected

quadratic response of Js(t) ∼
1

2

t2

I/bs
which is in accordance with the equation of motion at very early times. At

long times, the effect of inertia only appears as a higher order correction (equation (4.11)). (Online version in
colour).

on the FMM fit parameters and quasi-properties found in §4(c). To this end, we solve equa-
tion (4.8) for the strain γ(t) with the values of ❱s,●s, α and β determined from the fits of the
FMM to the small amplitude oscillatory shear data. Equation (4.8) is amenable to an analytical
solution and can be found by calculating the inverse Laplace transform of equation (4.9), in
terms of the Mittag-Leffler function defined in equation (2.7). However the resulting expression
is cumbersome to evaluate because it contains a double infinite sum. Instead, we circumvent
this difficulty by solving equation (4.8) numerically using the procedure outlined by Podlubny
et al. (2009) and a modified version of a MATLAB code freely available from the same group.
We refer the reader to the paper by Podlubny et al. (2009) for details of the numerical scheme
used.

The resulting numerical solution of equation (4.8) obtained using the quasi-properties found
from SAOS is plotted in figure 8 as a solid line overlaid onto the experimentally measured
compliance data. It is observed that the prediction of Js(t) based on the previously fitted quasi-
property values is in very good agreement with the measured temporal response over the entire
range of the creep experiment, indicating that the quasi-properties of the FMM characterize the
rheological response of the material over a wide range of timescales. This fractional constitutive
model can predict the response to other excitations once the quasi-properties have been found
from SAOS fits. This would not be possible using empirical laws such as the KWW expression,
or the critical gel equation, although these laws are able to capture power-law behaviour. It
is noteworthy that the FMM contains only two additional parameters (α, β) beyond a simple
Kelvin or Maxwell response and yet enables excellent predictions accounting for the damped
inertio-elastic effects at short times as well as the long time power-law response.
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Figure 8: The predicted interfacial creep compliance from solving equation (4.8) numerically using the exponents
and quasi-properties found from the SAOS experiments that characterize the Acacia gum solutions. The
prediction made by the model is in excellent agreement with the measured data, and it captures both the creep
ringing at early times as well as the power-law behaviour observed at long times. (Online version in colour).

5 Conclusions

We have revisited the concept of quasi-properties for describing the rheology of complex
microstructured materials and interfaces, and demonstrated how their inclusion in fractional
constitutive models containing spring-pot mechanical elements leads to the natural and quanti-
tative description–using only a few constitutive parameters–of power-law behaviour frequently
observed experimentally. Not only is this fractional constitutive approach more compact than
the traditional approach of using a multi-mode Prony series, it is also more physical; in the
latter approach, the number of fitted parameters as well as their magnitudes depend on the
timescale of the experiment used for model fitting.

In the spring-pot constitutive equation, the elastic modulus, G′(ω), and the loss modulus,
G′′(ω), increase as a function of frequency while maintaining a constant ratio between them.
This is reminiscent of the behaviour observed in critical gels and soft glassy materials (Sollich
(1998)). In fact it can be shown that the soft glassy rheology (SGR) model under certain
conditions yields exactly the same constitutive relationship as a single spring-pot defined in
the Caputo sense, and the ‘effective noise temperature’ x in the SGR model is intimately
related to the fractional exponent α (or β). Both these aspects are discussed in the electronic
supplementary information.

Not only can fractional models accurately model the complex relaxation behaviour exhibited
by bulk materials (as demonstrated here using Scott-Blair’s (1947) original data on ‘highly
anomalous’ butyl rubber), they can also be extended to describe complex viscoelastic interfaces
as well. Using small amplitude oscillatory shear experiments, we measured the power-law linear
viscoelastic behaviour exhibited by interfaces formed from adsorbed films of bovine serum
albumin and Acacia gum. By fitting the data to the FMM, we could extract the quasi-properties
❱s, ●s and exponents α, β that characterize these rheologically-complex interfaces. We then
considered the transient flow generated by an interfacial creep experiment in which inertial
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contributions are significant. We were able to predict a priori the inertio-elastic creep ringing
observed at short times as well as the long-time power-law response using the values of the quasi-
properties determined previously. There is excellent agreement between the model predictions
and the experimental data across a wide range of timescales. These measurements demonstrate
that once the quasi-properties of a material have been determined from one particular excitation
they characterize this rheologically-complex interface and help determine the material response
to other modes of deformation.

Finally we note that all of the models presented here describe the linear viscoelastic limit
and cannot describe non-linear viscoelastic behaviour (for example the onset of shear thinning
or strain softening) exhibited by many complex fluids and interfaces at large strains. Extend-
ing the capability of fractional constitutive models into the non-linear regime remains an open
research problem for future investigation.
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