
1302 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 6, NOVEMBER 1990 

Power-Law Shot Noise 

STEVEN B. LOWEN, STUDENT MEMBER, IEEE, AND MALVIN C. TEICH, FELLOW, IEEE 

Abstract -The behavior of power-law shot noise, for which the associ- 

ated impulse response functions assume a decaying power-law form, is 

explored. Expressions are obtained for the moments, moment generating 

functions, amplitude probability density functions, autoCorrelation func- 

tions, and power spectral densities for a variety of parameters of the 

process. For certain parameters the power spectral density exhibits 

l/f-type behavior over a substantial range of frequencies, so that the 

process serves as a source of l/f* shot noise for LY in the range 

0 < (Y < 2. For other parameters the amplitude probability density func- 

tion is a L&y-stable random variable with dimension less than hnity. 

This process then behaves as a fractal shot noise that does not converge 

to a Gaussian amplitude distribution as the driving rate increases 

without limit. Fractal shot noise is a stationary continuous-time process 

that is fundamentally different from fractional Brownian motion. We 

consider several physical processes that are well described by power-law 

shot noise in certain domains: l/f shot noise, Cherenkov radiation 

from a random stream of charged particles, diffusion of randomly 

injected concentration packets, the electric field at the growing edge of a 

quantum wire, and the mass distribution of solid-particle aggregates. 

Index Terms -fractal process, L&y-stable process, l/f noise, power- 

law shot noise. 

I. INTRODUCTION AND SUMMARY OF RESULTS 

I N 1918 SCHOTTKY defined and extensively studied 
the shdt-noise process and named it the shot effect [l]. 

In fact, certain aspects of this process had been studied 
since the beginning of the century; Campbell obtained 
values for the mean and variance of the process in 1909 
[2], [3]. As schematically indicated in Fig. 1, shot noise 
results from the excitation of a memoryless, linear filter 
by a train of impulses derived from a homogeneous Pois- 
son point process [4]-[7]. The former is characterized by 
its impulse response function h(t), while the latter is 
characterized by its constant rate of production of events, 
p. The shot effect is particularly visible in electrical 
devices at low currents, or indeed in any system where 
events occur with an average spacing greater than the 
characteristic time duration of each event. Under certain 
weak conditions, the central limit theorem shows that the 
amplitude distribution of shot noise approaches a Gauss- 
ian distribution as the rate of the driving Poisson process 

Manuscript received November 16, 1989; revised March 19, 1990. This 
work was supported by the National Science Foundation through the 
Columbia Center for Telecommunications Research and by the Joint 
Services Electronics Program through the Columbia Radiation Labora- 
tory. 

The authors are with the Columbia Radiation Laboratory and the 
Center for Telecommunications Research, Department of Electrical 
Engineering, Columbia University, New York, NY 10027. 

IEEE Log Number 9036817. 

RATE P 

GENERATOR 

LINEAR FILTER 

POISSON POINT PROCESS 

t 

utt 

SHOT NOISE I(t) 

Fig. 1. Linearly filtered Poisson point process gives rise to shot noise. 
Rate of Poisson point process is p, h(t) represents impulse response 
function of linear filter, and I(t) is shot-noise amplitude. Power-law 
shot noise results when h(t) decays in power-law fashion. 

increases [4], [8]. Generally, if the rate p is substantially 
greater than the reciprocal of the characteristic time 
duration of the impulse response function l/~~, then the 
amplitude distribution will closely approximate a Gauss- 
ian form. The characteristic time TV is often defined as 
the square of the integral of the impulse response func- 
tion divided by the integral of its square. Most common 
impulse response functions, such as triangles, rectangles, 
and decaying exponentials are well behaved, having a 
finite, nonzero characteristic time. Shot noises con- 
structed from these impulse response functions will in- 
deed approach a Gaussian distribution as the driving rate 
p increases. 

When the impulse response function is a decaying 
power law, however, its characteristic time can become 
arbitrarily large or small. Power-law shot noise can there- 
fore violate the conditions of the central limit theorem, 
and yield an amplitude distribution that does not ap- 
proach the Gaussian distribution for any value of the 
Poisson driving rate. Many physical situations exist in 
which power-law shot noise arises. A representative 
power-law impulse response function is shown in Fig. 2. 
For this particular illustration the onset time A of the 
impulse response function is unity, the termination time 
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Fig. 2. Linear plot of particular power-law impulse response function 
h(t) vs. time t (p = l/2, A = 1, B = 100, K, = 1). 

B = 100, the power-law exponent /3 is l/2, and the ampli- 

tude K, is unity. 
We proceed to derive the statistical properties of 

power-law shot noise, including its moments, moment 
generating functions, amplitude probability density func- 
tions, autocorrelation functions, and power spectral den- 
sities. Power-law shot noise in the regime 0 < /3 < 1 [9] 
differs markedly from power-law shot noise for /3 > 1 [lo], 
and thus two types of novel behavior emerge. 

For linear-filter parameters in the range 0 < /3 < 1 and 
B <co, the resulting power spectral density varies as l/f” 
over a substantial range of frequencies f. The exponent 
a~ = 2(1- p> can assume values between 0 and 2 [ll], [12], 
so that the process behaves as a source of l/f-type shot 
noise. For CY = 1, the power spectral density varies pre- 
cisely as l/f, 

For linear-filter parameters in the range p > 1 and 
A = 0, the resulting shot-noise amplitude distribution as- 
sumes the form of a Levy-stable random variable [8], [13], 
[14] of extreme asymmetry and dimension D < 1. In this 
case, the amplitude distribution does not converge to a 
Gaussian form, and in particular the associated mean and 
variance are infinite. This fractal shot-noise process should 
be contrasted with fractional Brownian motion (FBM), 
developed by Mandelbrot and Van Ness [15], [16]. Frac- 
tional Brownian motion usually has a Gaussian amplitude 
distribution, but the times between zero crossings have a 
Levy-stable time-interval distribution. Our L&y-stable 
process, in contrast, has a L&y-stable amplitude distribu- 
tion and no zero crossings. In addition, the fractal nature 
of our L&y-stable shot-noise process differs from that of 
FBM, which is self-affine and nonstationary; our Levy-sta- 
ble process is strict-sense stationary. 

In Fig. 3, we present a summary of the forms assumed 
by the amplitude probability density function and power 
spectral density of power-law shot noise for various ranges 
of its parameters. Novel results are indicated by regions 
of the figure delineated by thick boxes. Depending on the 
values of p [or equivalently, the values of CY = 20 - p> for 
0 < /3 < 1 and D = l/p for p > 11, A, and B, there are six 
possibilities for the amplitude probability distribution of 
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1) Pr {I = m] = 1: The amplitude Z is infinite with prob- 

2) 

3) 

4) 

5) 

6) 

ability one, and therefore the mean, autocorrelation 
function, and variance are also infinite. 
Z = Levy-stable: The amplitude Z is a one-sided 
Levy-stable random variable with dimension D = 
l//3 for all values of ZJ, and therefore the mean, 
autocorrelation function, and variance are infinite. 
I+ L&y-stable: The amplitude Z approaches a 
one-sided Levy-stable random variable with dimen- 
sion D = l/p as ,u --)a. The mean, autocorrelation 
function, and variance are infinite for all values 
of /J. 
I.M./I.V.: The mean, autocorrelation function, and 
variance of the process are infinite, but Pr {Z = a} < 1, 
and the probability density function is not Levy-sta- 
ble. 
F.M./I.V.: The mean and the autocorrelation func- 
tion (for all T > 0) of the process are finite for all 
finite values of ,u, but the variance is infinite. 
Z -+ Gaussian: The mean, autocorrelation function, 
and variance are all finite. Therefore the amplitude 
approaches a Gaussian random variable as ZJ --)m. 

Depending on the values of p [or equivalently, the values 
of (Y = 20 - p> for 0 < p < 1 and D = l/p for p > 11, A, 
and B, there are five possibilities for the power spectral 
density of the shot-noise process 1. 

1) 

2) 

3) 

no H(f): The impulse response function does not 
have a well-defined Fourier transform. The power 
spectral density, S,(f), cannot exist in this case 
either. 
IH(f >I2 not l/f*: The impulse response function 
has a well-defined Fourier transform, but the square 
of its magnitude does not vary as an inverse power 
of the frequency. The power spectral density does 
not exist. 
I H( f >I2 N l/f a: The impulse response function has 
a well-defined Fourier transform, and the square of 
its magnitude varies as l/f” over a range of fre- 
quencies f. If A > 0, then l/f-type behavior is 
exhibited only for f -K l/A; if B <w, then only for 
f > l/B. The power spectral density does not exist. 

4) 

5) 

S,(f > not l/f": The shot-noise process Z(t) has a 
well-defined power spectral density, but it does not 
vary as an inverse power of the frequency. 
S,(f)-l/f”: Th e shot-noise process Z(t) has a 
well-defined power spectral density, which varies as 
l/f Ly over a range of frequencies f. If A > 0, then 
l/f-type behavior is exhibited only for f -=K l/A; if 
B < ~0, then only for f B- l/B. 

We refer to the process at hand as power-law shot 
noise because, aside from the impulse response function 
itself, three of its properties can be characterized by 
power-law functions: the amplitude probability density, 
the autocorrelation function, and the power spectral den- 
sity. Furthermore, the autocorrelation function and the 
impulse response function share the same exponent. 
Power-law dependencies indicate the presence of all time the shot-noise process I. 
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A>O&B=oo A=O&B=co A=O&B<ca A>O&B<cc 

0 < B < l/2 Pr{l= co} = 1 Pr{l= OX} = 1 I- Gaussian I -+ Gaussian 

(2 > or > 1) W(f)12 - l/f" Iff(fV - l/f" SI(f) - l/f” SI(f) - l/f” 

112 5 p< 1 Pr{l = IXJ} = 1 Pr{l = cO} = 1 F.MJ1.V. I + Gaussian 

(1 2 cy > 0) W(f)? - l/f” W(fV - l/f” SI(f) - l/f” S,(f) - l/f” 

Pr{l = OX} = 1 Pr{l = M} = 1 1.MJI.V. I + Gaussian 
fl=l 

lm(fv not l/f” 

P>l I - Gaussian I = L&y-stable I - Gaussian 

(0 < D < 1) SI(f) not l/f” 

Fig. 3. Summary of forms assumed by the amplitude probability distribution function and power spectral density of 
power-law shot noise for various ranges of its parameters f, A, B (see text). Novel results are delineated by thick boxes. 

scales, and therefore fractal behavior. The properties of shot noise become more difficult to 
obtain if the component impulse response functions are 
stochastic rather than deterministic. However, it is possi- 
ble to find an equivalent impulse response function that is 
indeed deterministic. This equivalent function will not 
necessarily lead to correct results when it is used in 
calculating second- or higher-order statistics, such as the 
autocorrelation function or the power spectral density, 
but for first-order properties of the shot-noise process, 
this function is truly equivalent to the ensemble of 
stochastic impulse response functions. Gilbert and Pollak 
[17] have shown that such an ensemble of stochastic 
impulse response functions {h(K, t>} has an equivalent 
deterministic impulse response function satisfying 

In the final section of the paper, we consider several 
applications of power-law shot noise, illustrating its 
widespread applicability. Power-law behavior is common 
in nature: electromagnetic forces vary as the inverse 
square of the distance, diffusion processes often exhibit 
power-law tails, and l/f noise is power law by definition. 
Our applications are chosen from among these naturally 
occurring power-law dependencies. 

II. SHOT NOISE 

A. General Shot Noise 

Shot noise may be expressed as an infinite sum of 
impulse response functions, which may be either stochas- 
tic or deterministic (see Fig. 1). If deterministic, then the 
definition of the shot noise amplitude Z(t) is 

‘w 
Z(t)- c h(t-t,). 

j= -m 

The times tj are random events from a homogeneous 
Poisson point process of rate p, and the impulse response 
function h(* ) is fixed and deterministic (the linear system 
is time-invariant). If the impulse response functions are 
stochastic, then the definition of the shot noise becomes 

m 

Z(t)- c h(K,,t-tj). 
j= --a 

Here the times tj are as before, and {Kj} is a random 
sequence over which the impulse response functions 
h(K, t) are indexed. The elements of the random se- 
quence {KJ are taken to be identically distributed, and 
independent of each other and of the Poisson process. 
The impulse response function h(. , . > is itself determinis- 
tic. 

(d’{t:h(K,t)>x})=mk’(t:h(t)>x}, (3) 

for all X, where .J denotes the Lebesgue set measure, 
and (. ) represents expectation taken over the distribu- 
tion of K. In particular, any impulse response function of 
the form h( K, t) = h(t/K) is equivalent to an impulse 
response function of the form h(t/( IKI)). An equivalent 
impulse response function may always be found for any 
ensemble of stochastic impulse response functions, but in 
general the equivalent impulse response function will not 
resemble the component impulse response functions of 
the ensemble. Finally, we reiterate that equivalent im- 
pulse response functions are only equivalent for the first- 
order statistics of the shot-noise process; equivalent de- 
terministic impulse response functions may not be used 
for higher-order statistics. 

All properties are valid after the shot-noise process has 
reached steady-state, when the time t is finite. For com- 
pleteness we note that for the impulse response functions 
considered in Section IV-C, the resulting shot-noise pro- 
cess never reaches steady-state. For these degenerate 
processes, the results derived in this paper do not apply 
for any time t. 
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B. Power-Law Shot Noise 

The general form of the power-law impulse response 
function that we choose is 

(4) 

an example of which is shown in Fig. 2. The parameters 
A, B, and /3, are deterministic and fixed. In general, the 
range of the function may extend down to A = 0 or up to 
B = ~0, and /I may range between 0’ and ~0 exclusive. The 
amplitude parameter may be either random (denoted by 
K) or deterministic (denoted by K,). All parameters are 
assumed to be nonnegative. Thus power-law impulse re- 
sponse functions as previously defined are either deter- 
ministic, in which case all component impulse response 
functions are identical, or have random amplitudes, in 
which case the component impulse response functions 
have the same shape and duration, differing only in their 
amplitudes K. 

Although we choose to consider power-law impulse 
response functions such that those from the same shot- 
noise process can differ only in their amplitudes, our 
results may be extended in some cases to generalized 
power-law impulse response functions. As shown in Sec- 
tion II-A, an equivalent, deterministic impulse response 
function may be found for any ensemble of stochastic 
impulse response functions of the form h(K, t> [171. If the 
resulting equivalent impulse response function is of the 
form shown in (4), then the equivalent impulse response 
function may be substituted for calculations of first-order 
amplitude statistics of the original, stochastic shot-noise 
process. Substituting (4) into (3) we show that any impulse 
response function satisfying 

(l{t: h(K,t) > x}) 

Co, x < 0; 

B-A, 0 IX I K,B-P; 

and B = cc, we find 

(J{t: h(K,t) >x}) 

=( d{t: Kt-p> x}) =( Y{t: t < K1’px-l’p}) 

=( Kl/P)x-‘/P, (7) 

for all positive amplitudes x. For the deterministic power- 
law impulse response function 

d{t: h(t) > x} 

= J{t: K,t-P > x} =ef{t: t < K;‘px-“p} 

= K;/P,-l/P, (8) 

again for all positive amplitudes x. Thus the stochastic 
ensemble of impulse response functions in (7) is equiva- 
lent to the deterministic impulse response function in (8) 
for all first-order amplitude statistics with 

(Kl/P) zz K;/P, (9) 
so that 

K, = ( K”p)p. (10) 

For A > 0 or B <co, (7) and (8) no longer agree for all x, 
and therefore the equivalent impulse response function 
does not have the form of (8). In that case, the stochastic 
amplitudes must be accounted for explicitly. 

III. MOMENTS AND CUMULANTS 

We consider the case of power-law shot noise when K 
is stochastic. The nth cumulant (semiinvariant) C, of Z(t) 

is given by [Ml 

=p(Kn) jABt-‘@dt, (11) 

so that 

C,=pL(Kn)x 

i 

Al-“0 _ Bl-“p 

np-1 ’ P i+ l/n; (12) 

ln(B/A), p = l/n; 

=\(x/K,,)-~~~-A, K,B-P<x< 

0, x 2 K&O; 

for some /3, A, B, and K,, is equivalent to 
istic impulse response function 

Ast<B; 
otherwise. 

K&P; (5) where QJs> is the first-order moment generating func- 
tion of the shot-noise process I. The nth cumulant will be 
infinite if (K”) is infinite, if A = 0 and p 2 l/n, or if 

the determin- 
B =co and /? I l/n. All moments of Z may be given in 
terms of the cumulants. The first three moments and the 
variance are 

E[ z] = Cl E[z2]=C2+C: 

(6) E[ z3] = c, + 3c,c, + cf var(Z) = C,, (13) 
where E[ .] denotes expectation taken over the distribu- 

Thus first-order amplitude results derived for a shot-noise tion of Z. 
process constructed from the deterministic impulse re- 
sponse function in (6) will also apply to a process con- IV. MOMENT GENERATING FUNCTIONS 
strutted from the generalized stochastic form in (5). In A Detemzinistic K 
general, it is difficult to find a nontrivial ensemble of ’ 0 

impulse response functions for which the equivalent im- We first consider the case for deterministic and fixed 
pulse response function is of the form in (6). However, K,; therefore all impulse response functions are identical. 
returning to (4) and considering the particular case A = 0 The first-order moment generating function QI(s) of the 
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shot-noise process Z is given by [4], [7], [19], [20] 

Q,(,s)=E[e-“‘]=exp {l-exp[-Sh(t) 

IEEE TRANSACTIONS ON 1NFORMATION THEORY, VOL. 36, NO. 6, NOVEMBER 1990 

IPj. 

(14) 
For a decaying power-law impulse response function 

Q,(s) =exp( -pjAB[l-exp(-sK,t-“)] dt) (15) 

PL(%J’~ 
= exp - 

i P / 
sK,A-~ l- e? 

___ du s,J&B-P u’+“’ (16) 

= exp -p(B-A)- 
P.(SK”Y 

P 

.[r(-l/p,s~,A-“)-r(-l/a,sK,B-P)] ) 
I 

(17) 
where I(. , . > is the incomplete gamma function defined 

by 

r( a, x) = jme-‘t”-l dt. (18) 
x 

Equivalently, after integrating (16) by parts,’ 

Q,(s)=exp{pA[l-exp(-sK,A-P)] 

-pB[l-exp(-SK&P)] 

+ P(&) “PT(l-l/p,sKoA-P) 

- ,u( sK$” T(l-l/P,sK,BpP)}. (19) 

Equations (17) and (19) may be used for numerically 
computing Q,(s) for all values of p, A, B, K,, and @ > 0. 

B. L&y-Stable Fomzs (p > 1) 

For p> 1, if we let A=0 and B=co, then a much 
simpler form for Q,(s) results. After evaluating limits 
using 1’Hopital’s rule, we obtain 

Qh)=exp[ -d%)l’Py(l-W)]. (20) 

Defining D = l/p for p > 1, we have 0 < D < 1. Further- 
more, for A = 0 and B = ~0, we can consider stochastic K 
by using the equivalent deterministic impulse response 
function method of Gilbert and Pollak [17], which leads to 

Q,(s)=exp[-p(KD)T(l-D)sD]. (21) 

Note that Kf = (K 1/p) = ( KD). This moment generat- 
ing function is of the form 

Q(s) =exp[ -(csl”], (22) 

where c is a constant, so that for all p the shot noise Z is 
a Levy-stable random variable 181, [131, [141, [211 with 
extreme asymmetry of dimension D: 0 < D < 1. The 
L&y-stable and Gaussian distributions share the property 
that two random variables taken from the same distribu- 
tion and added together will result in a new random 

‘Equation (6) in [lo] contains typographical errors. Equation (19) in 
this paper provides the correct result. 

variable whose distribution differs from the original one 
only by a scaling constant. Thus, by definition, increasing 
p, which is equivalent to adding two such processes 
together, will not change the L&y-stable form of the 
resulting distribution. Therefore an infinite area impulse 
response function may be used to construct a shot-noise 
process which is nontrivial and non-Gaussian for all driv- 
ing rates p, even in the limits F -+ 0 and p + ~0. The 
conditions of the Gaussian central limit theorem are 
violated, and in particular all moments of the shot-noise 
process are infinite. 

C. Other Znfnite-Area Impulse Response Functions 

However, for other infinite-area impulse response func- 
tions the resulting shot noise can have trivial amplitude 
properties. For 0 < p 5 1 and B = ~0, the shot-noise pro- 
cess Z will be infinite with probability one (see Appendix 
A). To show this, we derive the moment generating func- 
tion Q,(s) for this case 

(23) 

so that 

Pr(Z<x} =O, for all x <co. (24) 

This may be appreciated intuitively by examining the 
time evolution of the shot-noise process. Consider the 
system at time t = -co, when Z(t) = 0, before any events 
from the driving Poisson process have occurred, and 
therefore before any of the component impulse response 
functions have begun. Since each impulse response func- 
tion contains infinite area in its tail, the power-law shot- 
noise process Z(t) will tend to increase with time. In 
particular, Pr{Z(t) < x} is a monotone decreasing function 
of t for any fixed amplitude x. Thus for p I 1 and B =co, 
Z(t) is nonstationary, never reaching steady-state, and for 
finite times t will be infinite with probability one. 

The difference between trivial and nontrivial amplitude 
properties appears to lie in the nature of the infinity in 
the impulse response function. For p > 1, the infinite area 
is contained in the infinitesimal neighborhood, of t = 0, 
and therefore only manifests itself at the times t = tj, 
corresponding to the events of the driving homogeneous 
Poisson process. The remainder of the time the process is 
finite. However, for p I 1, the tail, which lasts for infinite 
time, contains infinite area. Since the tails of previous 
impulse response functions are always present, the pro- 
cess is always infinite. The case p = 1 is particularly 
unrewarding, since both the infinitesimal neighborhood of 
t = 0 and the tail contain infinite area. 

D. Moment Generating Functions with Finite Moments 

If the cumulants of Z(t) obey C, < ~0 for all n, then for 
either stochastic K or deterministic K,, the moment 
generating function Q,(s) may be expressed in terms of 
the cumulants of the random variable I. By definition, 
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m ( - l)“C,s” 
lnQ,(s) = c 

n! (25) 
It=1 

so that 

(26) 

For the particular case p # l/n for all integers IZ, we 
obtain 

m (-1)” Al-@ - B’-“P 
Q,(s) =exp P c --+W s” . 

n=l np-1 1 
(27) 

Equations (17) and (19) admit A = 0, B =m, and arbitrary 
/3, whereas (26) does not allow B = 00 for p 5 1, nor A = 0 
for any p. In addition, (27) is not valid for p = l/n. 
However, (26) and (27) are valid for stochastic K as well 
as deterministic K,. 

V. AMPLITUDE PROBABILITY DENSTY FUNCTIONS 

A. L&y-Stable Forms (p > 1) 

Values of the amplitude probability density function 
P(Z) may be obtained from the moment generating func- 
tion by several methods. If A = 0 and B = ~0, for p > 1, 
and for either deterministic or stochastic K, the ampli- 
tude probability density function is L&y stable with di- 
mension D = l/p. P(Z) may be calculated either by the 
Fourier integral [8], [14], [18] 

+I(l- D)( - jo)D] dw, (28) 

or the infinite sum [B], [21], [22] 

m (-l)“+llY(l+nD)sin(rnD) 

n! 

.[ 

,ul?(l- D)(KD) n 

ID I* (29) 

For large values of Z the sum converges quickly; for small 
values of Z the integral is more readily implemented by 
numerical integration techniques [23]. 

For the particular case D = l/2 the amplitude proba- 
bility density function assumes the well-known closed 
form Bl, [131, [141 

Fig. 4 displays L&y-stable amplitude probability density 
functions for three values of the dimension D. 

Furthermore, if A = 0 and /3 > 1, but B <co, then the 
amplitude probability density function will approach a 
L&y-stable form as p + ~0. This is readily understood 
since the resulting impulse response function is the same 
as in the B = CC case except for the missing tail. Since the 
missing area is finite, and the total area is infinite, the 
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Amplitude / 

Fig. 4. Double logarithmic plot of L&y-stable amplitude probability 
density P(I) vs. I given in (28)-(30) for three values of fractal 
dimension D: 0.3, 0.5, and 0.7 (A = 0, B =m, K, = 1, p= 1). Note 
long power-law tails for all values of D. 

difference is negligible for large p (see Appendix B). The 
limiting distribution will therefore be a L&y-stable ran- 
dom variable with extreme asymmetry, associated dimen- 
sion D = l/p, and scaling factor [plY(l- D>]l/DK,, as 
for B =m as shown in Section IV-B. Finally, if A > 0 and 
p > 1, P(Z) converges to the Gaussian density for arbi- 
trary B since the area under the impulse response func- 
tion and under its square are both finite. 

The L&y-stable shot-noise process developed here is 
fundamentally different from fractional Brownian motion 
(FBM), developed by Mandelbrot and Van Ness [15], [16]. 
FBM has an amplitude distribution determined by the 
increments in its definition, and may have any amplitude 
distribution, although FBM is usually Gaussian. For 
Gaussian FBM the times between level crossings exhibit a 
Levy-stable time distribution with dimension between 0 
and 1. Our L&y-stable shot-noise process, however, has a 
Levy-stable amplitude distribution. The L&y-stable qual- 
ity derives from the shape of the impulse response func- 
tions and the nature of the shot-noise process itself, and 
is not dependent on a Levy-stable process in its defini- 
tion. The level crossings for our Levy-stable shot-noise 
process are nonexistent for levels I 0, whereas for suffi- 
ciently high levels they approach the driving Poisson pro- 
cess, yielding exponential times between crossings. The 
distribution of times between the level crossings of our 
L&y-stable shot-noise process is never L&y-stable; only 
the amplitude of the process is. 

Furthermore, the fractal nature of our Levy-stable 
shot-noise process differs from that of FBM, which is 
self-affine and nonstationary. Scaling both the time and 
amplitude axes of a FBM process by related amounts 
yields a new FBM process that is statistically identical to 
the original one, so that c -DBD(ct> N B,(t), where B,(.) 
is a FBM with dimension D, and c is some constant [15]. 
However, our L&y-stable process has identical first-order 
statistics for all time, so Z(ct) - Z(t). Thus FBM is nonsta- 
tionary, having moments that increase with time, while 
our L&y-stable process is strict-sense stationary for all 
finite times t. 
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B. Power-Law Tails 

All of the Levy-stable probability densities have long 
power-law tails (see Fig. 4). Indeed, for A = 0, B =m, 
p > 1, and D = l/p, P(Z) approaches a simple asymp- 
totic form in the limit Z + co. Examining (29) it is clear 
that all terms are of the form anZ-(l+nD), so that for 
Z + CC the n = 1 term dominates 

1 (-l)‘I(l+D)sin(rD) pr(l-D)(KD) 
pu)+~ l! [ ID 1 

= 41+ D)W- D> sinb-D)(KD) z-(l+D) 
37 

(31) 

Using well-known properties of the gamma function [24], 
we obtain 

P(Z) = ,uD( KD)Z-(l+D), Z-w. (32) 
This is indeed expected, since the tail of a Levy-stable 
density function of dimension D is known to be power-law 
with exponent - (1 + 0). 

C. General Expressions 

In all cases with deterministic h(t), that is, for any 
p > 0, the amplitude probability density function of 
power-law shot noise may be found by evaluating the 
Fourier integral [8], [18] 

(33) 

which is, unfortunately, often difficult. However, the am- 
plitude probability density function may alternatively be 
obtained for positive Z from an integral equation [17] (see 
Appendix C). We note that if B < ~0, then Pr{Z = O} = 
e--CL(B-A) > 0, so the density will have a delta function at 
Z = 0. The amplitude probability density function is given 

by 
P(Z) = 

/ 

0, I< 0; 
eCw(BpA)G(Z), z= 0; 

0, O<ZsK,B-p; 

r 
I-&/~ I 

/ 
P(Z-u)u-"P&L, 

PI K&P 
K&f'<Z<K,A-0; 

P K:'$ 
/ 

K,A -P 
KB-BP(Z-~)~-l'~d~, Z>KoA-P. 

PZ 0 

(34) 
If B =CQ, (34) simplifies to 

/.l K,“P 
P(Z) = ~ 

/ PZ 0 
min(‘~K~A-~~~(Z~U)u-~/~dU, (35) 

and the integral-equation solution must be multiplied by a 
scaling constant, determined by requiring /,“P(Z) dZ = 1. 
The results obtained from the integral equation for p > 1 
are then identical to those given for the Levy-stable case 

Amplitude / 

Fig. 5. Double logarithmic plot of amplitude probability density P(Z) 
vs. Z in (35) for three values of parameter A shown in Fig. 2: A = 1.0, 
0.5, and 0.0 (L&y stable) [/3 = 2 (D=1/2), B=m, K,=l, p=l]. 
Solid curve is same as solid curve in Fig. 4. For small values of Z 
amplitude probability density functions differ only by scaling parame- 
ter. 

for small values of I, except for a scaling constant to 
normalize the amplitude probability density function to 
unit area. In that case, the values for the Levy-stable 
amplitude probability density function, which are more 
easily calculated, may be used. for values of Z between 
zero and K,App. Fig. 5 shows the amplitude probability 
density functions approaching a L&y-stable form as the 
starting time A decreases towards zero. 

D. Convergence to Gaussian Form 

If C, <co for all n, then the amplitude probability 
density function P(Z) satisfies the conditions of the cen- 
tral limit theorem, and therefore approaches a Gaussian 
density [N( ->I as p -+m. This is always the case for A > 0 
and B < CQ [see (12)], as shown in the right-most column of 
Fig. 3. The mean and variance of the resulting amplitude 
density will be given by the first and second cumulants, 
respectively [see (13)], so the limiting form will be 

P(Z) --+ N(Z: C,,C,) = (2rrC2)-1’2exp - 
(Z-C,>” i 1 2c . 

2 

For finite Z.L., and for values of Z close to the mean of 
the process (C,), the amplitude probability density func- 
tion may be expanded as an infinite sum of polynomials in 
Z multiplied by the limiting amplitude density [18] 

P(Z) = N(Z: C,,C,)- $w(Z: C,,C,) 

+ p(z: C,,C,)- $vyz: C,,C,) + . . .) 
[ I 

where 

(37) 

and 
N’O’(Z: C,,C,) = N(Z: C,,C,), (38) 

N’“‘(Z: C,,C,) = -$(I: C,,C,), n>O. (39) 
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The first term on the right-hand side of (37) varies as 

P -112, the second as p -l, the third (in square brackets) 
as j.-‘12, and subsequent terms as higher powers of 

P . -‘I2 For Z near C,, and p large, the second term in 
(37) (first correction term) represents the convergence of 
the density function to Gaussian form 

P(Z) = N(Z: C,,C,)- ;N(yz: C,,C,) 

-c(i:i’.(-‘)(l-~~(~)-(~~I~ 

=N(Z:C,,C,) l-&I-c,)+&(z-C,)” . 
[ I 

(40) 
2 2 

Fig. 6 illustrates the approach of the amplitude probabil- 

I 10-10 
-6 -4 -2 0 2 4 6 

Standardized Amplitude Z 
Fig. 6. Semilogarithmic plot of amplitude probability density P(z) vs. 

z in (35) for two values of driving rate CL: p = 1 and 5 (p = 2, A = 1, 
B = m, K, = 1). Nonzero value of A causes P(z) to approach Gauss- 
ian form, which is shown for comparison. Probability density is given 
in terms of standardized amplitude variable z, obtained from ampli- 
tude I by subtracting mean and dividing by standard deviation. 

For /3 = l/2 

1309 

ity density functions to Gaussian form as the driving rate 
p increases. To make comparison easier, the amplitude 
probability density is given in terms of the standardized 
amplitude z, defined by z = (I - E[Z])/(var Z)1/2 = 
(I - Cl>/ C;‘2. N ote that z has zero mean and unity 
variance by construction. 

VI. AUTOCORRELATION FUNCTIONS 

The autocorrelation function is given by 

R,(T)=EE[z(t)z(t+7)]=E[z]2+pRh(T) (41) 

where the autocorrelation function of h(K,t) itself is 

Rh(7)’ ~mh(K,t)h(K,t+ITI)dt 
( -cc ) 

= 
s 

E--/7’(K2)t--B(t+l~l)-Pdt 
A 

= (K’)/AH-ll~(t2+ 17lt)-%. (42) 

Note that when 1~12 B - A, Rh(7) = 0 so that RI(r) = 
E[Z12. Under the following conditions the integral in (42) 
is infinite and therefore RI(~) does not exist: 

p21 and A=O; 

p 2 i, A = 0, and T = 0. (43) 

Furthermore, this integral is not solvable analytically ex- 
cept for the case where 2p is a positive integer. 

We solve for RJ7) in the three cases p = l/2 (B <*, 
and 7 # 0 for A = 01, p = 1 (A # O), and p = 2 (A f 0) 
(see Appendix D>. 

B1’2 + (B - 171y2 
R,(d = 1 Al’* +(A + 1~1)~‘~ ’ 

OS)T]<B-A; 

1712 B-A. 

For p = 1 

For p=2 

E[Z]2+p(K2)[A-1-B-1], 7 = 0; 

~ln[(l-,7l/B)(1+171/A)], O<M<B-A; (45) 

ITI> B-A. 

i 
E[Z]2+IL(K2)[~-3-~-3], 7 = 0; 

2B-1T1 +Lln[(l-\d/B)(l+Id/A)] 
l&4( A + Id) - b12B( B - H) 1~1~ 

, O<ITI<B-A; 

\ E[Z12, b(kB-A. 

(46) 
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For A > 0, B = co, and /3 > 1, it is shown in Appendix D 
that the autocorrelation function RI(r) approaches a 
simpler form in the limit ITI--+ CC 

R,(T) +E[z]2+p(K2)- 

= E[112+ E[I] 171 +w, (47) 

illustrating that it exhibits power-law behavior with the 
same power-law exponent as the impulse response func- 
tion. Fig. 7 displays the autocorrelation functions RI(r) 
for power-law shot-noise with the three values of the 
power-law exponent /3 calculated previously: l/2, 1, and 
2. The curves assume an approximately power-law form 
with exponent - /3 for much of their range, and decrease 
to E[112 for r 2 B - A. 

VII. POWER SPECTRAL DENSITIES 

All properties of a shot-noise process are determined 
by the rate Al. of the driving Poisson point process and the 
impulse response function h(t) of the associated linear 
filter. In particular, Carson’s theorem [18] gives the power 
spectral density S,(f) [4], 1191 of the power-law shot-noise 
process I in terms of p and the Fourier transform Y of a 
normalized version of the impulse response function in 
(4). We denote this transform by H(f), and obtain, 

H(f) = 9-(h(t)/K} = j”pe-Q%it 

= [lY(l-p, j2rfA) -I(l-p, j2rfB)]( j2rf)‘-‘. 

(48) 

When the autocorrelation function has a finite integral 
(see Appendix E), Carson’s theorem may be applied, 

IO-12 1 ~ L-~I1 . . 

10-l 100 101 102 103 

Time Lag T 

Fig. 7. Double logarithmic plot of autocorrelation functions RI(r) vs. 
r given in (44)-(46) for three values of power-law exponent p: l/2, 1, 
and 2 (A = 1, B = 501, K, = 1, p = 10e6). Autocorrelation functions 
exhibit approximate power-law behavior with exponent p for good 
portion of their range. Note decrease of RI(~) near r = B - A = 500. 

yielding 

S,(f) = E[Z12@f) + /4K2)1Jf(f) I2 

=E[Z12s(f)+~(K2)lr(l--,j2~fA) 

- I(l- p, j2rr@) 12(2rf)2p-2. (49) 

For the case 0 < p < 1, it is useful to define (Y = 2(1- p). 
If A = 0 and B is finite, then (49) reduces to 

W-) = E[Z12@f) + dK2> 

.1r(01/2)-r(ru/2,j2p~)12(2~f)-*. (50) 

From (48), the power spectral density2 can be seen to 
approach a constant value in the limit f -+ 0 

whereas in the limit f-fm, the incomplete gamma func- 
tion in (50) approaches zero, so 

s,(f) -+ ~wVQbm2~f)-a, f- (52) 

If B were increased, we would obtain the same behav- 
ior for high frequencies, but different and nontrivial be- 
havior for low frequencies. In the limit B --f M, with A = 0 
and 0 < (Y < 2, mechanical calculation of the power spec- 
tral density provides 

w) = m2w) + wW%mw-n~ (53) 

indicating l/f* behavior for all frequencies. In this limit, 
however, the process never reaches a steady state, as 
shown in Section IV-C. In power-law shots noise, as in 
other processes, stationarity and l/f behavior over all 
frequencies are mutually exclusive. Indeed, for p I 1 and 
B =m, the process is degenerate, being infinite with prob- 
ability one as shown in Appendix Ai so the concept of 
power spectral density has limited applicability. Because 
the impulse response functions have Fourier transforms, a 
power spectral density can be constructed by the blind 
application of Carson’s theorem. However, this is not the 
Fourier transform of an autocorrelation function since 
the autocorrelation function and all the moments, includ- 
ing the mean, are infinite. 

As summarized in Fig. 3, novel l/f-type behavior of 
the power spectral density is observed in the regime 
0 < p < 1. In contrast, novel (L&y-stable) behavior of the 
amplitude probability density function is observed only in 
the regime p > 1. 

VIII. APPLICATIONS 

Power-law shot noise has widespread applicability in 
engineering and physics since both Poisson events and 
power-law behavior are ubiquitous. We consider several 
applications: l/f shot noise, Cherenkov radiation for a 
random stream of charged particles, diffusion of ran- 
domly injected concentration packets, quantum-wire elec- 

2Equation (5) in [9] contains a typographical error. Equation (51) in 
this paper provides the correct result. 
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tric fields, and the mass distribution of solid-particle 
aggregates. 

A. 1 /f Shot Noise 

Noise which has a power spectral density inversely 
proportional to frequency is called l/f noise [12], 
[25]-[28]. This noise appears in many diverse environ- 
ments, including resistors and semiconductors [29]-[31], 
vacuum tubes [32], and mechanical [33], chemical [341, 
biological [35], and optical (photon-counting) systems [36]. 
One widely used theoretical approach to this problem 
makes use of a superposition of relaxation processes of 
different time constants [28], [37], [38]. An alternative 
approach recognizes that integration in the time domain 
corresponds to a factor of l/f2 in the frequency domain, 
and offers fractional integration of white noise as a source 
of l/f noise [39]. Still another approach, suggested by 
Schonfeld [ 111 and considered further by van der Zeil 
[12], concerns shot noise with an impulse response func- 
tion that decays as tm112. 

More generally, power-law shot noise provides a useful 
model for l/f* noise, when 0 <a <2 (0 <p ~1). As 
shown in Section VII, when A + 0 and B * ~0 the power 
spectral density varies over all frequencies as f-“; it is 
precisely l/f for (Y = 1 (p = l/2) ill]. 

In this limit however, the power spectral density has 
infinite energy. This poses a problem that can be solved in 
one of three ways. First, the outer cutoff of the impulse 
response function B may be decreased from infinity to a 
finite value [12], in which case (50) provides 

S,(f) = E[Z126(f) + /-G2> 

.(r(a/2)-r((Y/2,j2~~)12(2~f)-CL. (54) 

For low frequencies f, the second gamma function will 
approximately cancel with the first, thereby reducing the 
energy to a finite value. For high frequencies, the second 
gamma function will vanish, yielding the same result as 
for B + ~0. The second method is to make the area of the 
impulse response function finite by multiplying it by an 
exponentially decaying function [25], [26] 

h*( K, t) = Kt-Pe-@, (55) 

which yields 

V(f) = E[Z12%f) 

+p(K2)I-2(a/2)[w;+(2rf)2]-a'2. (56) 

Again the power spectral density has finite energy in the 
neighborhood of f = 0 and behaves as l/f cy for high 
frequencies. Finally the physical limitations of any real 
experiment used to measure the power spectral density 
may be imposed on the system. Since the experiment 
must be conducted in finite time, those components of 
the power spectral density with frequencies lower than 
the reciprocal of the duration of the experiment will be 

excluded. Similarly, since any measuring apparatus has a 
finite frequency response, those components of the power 
spectral density at high frequencies will also be excluded. 
Since the power spectral density is effectively truncated at 
both low and high frequency limits, the total energy will 
be finite for any value of (Y in the range 0 < a < 2 and any 
possible experimental measurement [12], [25]. 

Fig. 8 shows the shot-noise power spectral densities 
obtained with (Y = 1 (/3 = l/2) for two types of power-law 
impulse response functions as given in (4): no cutoff 
(A = 0 and B = co>, and abrupt cutoff (A = 0 and B = 

1000). Also shown is the exponential decay result ob- 
tained by using (55) and (56) with w0 = r/4000. The 
power spectral densities all take the form l/f” with 
a = 1 for high frequencies. Note that the abrupt cutoff in 
the time domain gives rise to oscillations in the frequency 
domain. 

B. Cherenkov Radiation from a Random Stream 
of Charged Particles 

Charged particles traveling faster than the group veloc- 
ity of light c/n in a transparent medium will radiate 
electromagnetic fields, often in the visible range. This 
phenomenon was first examined systematically in a series 
of experiments by Cherenkov beginning in 1934. In this 
section we use classical electromagnetic theory to show 
that the fields produced by Cherenkov radiation arising 
from a random stream of charged particles may be mod- 
eled by the power-law shot-noise process. 

Consider a charged particle traveling along the positive 
x-axis through a transparent, nonferromagnetic medium 
of refractive index IZ, at a speed u > c/n (see Fig. 9). We 
define J = [(nv/cj2 - 111j2, a measure of the amount by 
which the particle velocity exceeds the Cherenkov limit 
v = c/n, and of the total energy production per unit time. 
The electric and magnetic fields are calculated at a dis- 
tance d from the x-axis, where the arbitrary point in the 

10-6 1 o-4 10-2 100 

Frequency f 

Fig. 8. Power spectral densities for l/f shot noise with different 
cutoffs: A = 0 and B =m (no cutoff): A = 0 and B = 1000 (abrupt 
cutoff); and exponential cutoff with ;a = r/4000. Note that power 
spectral densities exhibit l/f” behavior with exponent 01= 1 for high 
frequencies, and that abrupt cutoff in impulse response function gives 
rise to oscillations in frequency domain. 
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Fig. 9. Charged particle moving faster than speed of light in medium 
emits Cherenkov radiation. Detector placed at { - Jd,O,d} will mea- 
sure electric and magnetic fields that decay as inverse power-law 
functions of time. Wavefronts are shown for particle traveling along 
X-axis at t < 0, t = 0, and t > 0. 

x-z plane { - J&O, d) is chosen for algebraic simplicity. 
We assume that the particle does not experience substan- 
tial deceleration while it is significantly close to this point. 
Following Jelley [40] and Zrelov [41], we obtain scalar and 
vector potentials satisfying the Lorenz gauge condition 

4 = 2yn-‘[(x - z+ J2(y2+ z”)] -r’2, (57) 

2 

A = “u+, (58) 
C 

respectively, where 4 is the charge of the particle. 
The corresponding fields are 

1 dA 
E=-VCP-,~ 

2qP 
= -~[(x-vt)2-J*(y2+r2)]-3’2{X-vt:Y,Z} 

2qJ2 
=-[(vt)2+2Jdvt]-3’2{(vt+Jd),0,-d} 

n2 

2qJ* 
= 3221/2 [ t2 +2t,t] -3’2{t + tl,O, -d/v}, 

where t, = Jd/ u = d(n2ce2 - u-2)112. Since the medium 
is nonferromagnetic, 

H=B 
=VxA 

=~[(x-vt)2-Jyy*+z2)]-3'2{o,J2z,-J2y} 

2qdvJ2 
= ~ [( vt)2+2Jdvt] -3’2(0,1,0} 

C 

2qdP 
=-[t2+2t1t] 

CV2 
-3’2{o, 1,O). (60) 

The foregoing is valid for times when the quantity in the 
square brackets in (59) and (60) is positive, namely for 
t > 0; for t < 0, the shock wave generated by the particle 
has not yet reached the detector and all fields are zero. 
All components of the electric and magnetic fields show 
power-law decay with a power-law exponent that in- 
creases at the crossover time t = t,. No real system will 
pass frequency components of arbitrarily high frequency, 
and indeed all systems have practical limits to the fre- 
quency components that may be observed at the output. 
The difference between the upper and lower frequency 
limits is called the system bandwidth, Av. Similarly, the 
onset time of the light pulse will be limited to a value 
roughly equal to the inverse of the bandwidth; we define 
t, = ~/AK In addition, the nonzero size of the charged 
particle rmposes a limit on the onset time [41], although 
this limit will be relatively unimportant since we assume 
that the particle is smaller than the wavelength of the 
generated electromagnetic radiation. 

For times larger than the onset time t, but still less 
than t,, the fields will decay approximately as a simple 
power law with exponent 3/2: 

E, a tp3i2 E, a tp312 H, a tp3j2. (61) 

For t > t,, the fields decay more rapidly 

E, a t-* E, a tM3 H, a tp3. (62) 

Even for relatively narrow bandwidths, the onset time t, 
will often be several orders of magnitude smaller than t,, 

ensuring a large range of times for which tp3/* behavior 
is observed. In the wavelength range 536-556 nm as 
studied by Cherenkov in 1938, for example, the onset time 
is calculated to be t, = 50 fs. Particles traveling close to 
the speed of light through materials with a refractive 
index as low as 1.2, with d as small as 1 cm to the 
detector yield a crossover time t, = 22 ps. For such parti- 
cles we can make the approximation that h(t) = 0 for 
t < t,, and similarly h(t) = 0 for t > t,, since the power-law 
decay exponent increases at t = t,. The electric and mag- 
netic field time response functions due to a single charged 
particle emitting Cherenkov radiation may then be closely 
approximated by 

h(t) = 
K,t-3’2, A<t<B; 

0, otherwise, 
(63) 

where we identify A = t, and B = t,. 

In media whose index of refraction differs only slightly 
from unity, the power-law crossover time t, of the im- 
puIse response function h(t) will be very small, often 
smaller than the onset time t,. In that case the field time 
response functions will lack the tp3i2 portions. However, 
since the field strength is proportional to J*, if the index 
of refraction differs only slightly from unity, then J will 
be small, and the field strength will be small. 
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Thus a single particle gives rise to electric and magnetic 
fields whose strength follows a decaying power-law time 
function. If a number of particles travel along the x-axis, 
they will stimulate independent fields. Radioactive 
sources, such as alpha- and beta-emitters, and particle 
accelerators operated at low current levels generate Pois- 
son time sequences ‘of energetic charged particles with 
essentially identical positions and velocities. When these 
particles pass through a transparent medium under the 
conditions previously specified, the superposition fields 
emanating from the medium will obey the power-law 
shot-noise process. 

C. Diffusion of Randomly Injected Concentration Packets 

Diffusion provides a broad area of applicability for the 
power-law shot-noise model. In classical diffusion, parti- 
cle concentrations decrease in a power-law fashion. Con- 
sider a concentration of infinitesimal particles U,, all 
initially at some point x = x,, of a d-dimensional space 
(d < 41, at starting time t = 0. Then the concentration at 
x = 0 at some later time t will be represented by a 
Gaussian density with a variance that increases with time 
in a power-law fashion [42] 

U(t) = U,,(4rAt)-d’2 exp 

= Koe-fo/ft-d/2 > (64) 

where K, = U,,(~TA)-~/~, t, = lxL]‘/4A, and A is the 
diffusion constant. Except for a rapidly decaying transient 
near t = 0, negligible when t > 5t,, the concentration U(t) 
varies as tpd12, and thus decays as a power-law function. 
If we assume that the particles have some lifetime t,, 
resulting in U(t) = 0 for t > t,, the local concentration of 
the particles may be described in terms of our impulse 
response function 

h(t) = 
K,tpd’* , A<t<B, 

0, otherwise, 
(65) 

where we identify A = t, and B = t,. 
Finally, if new packets of concentration are deposited 

at x0 at Poisson times, the overall concentration will be 
accurately modeled by the power-law shot-noise process. 
In general, the packets may arrive at points x # x0 for 
some processes, and they need not all have the same 
initial concentration U,. The power-law shot-noise model 
is readily applied to this general case by using the equiva- 
lent impulse response function determined by the method 
of Gilbert and Pollak [171. Thus diffusion yields a rich 
area of applicability for power-law shot noise, particularly 
with exponents /3 = l/2, 1, and 3/2, corresponding to 
diffusion in one, two, and three dimensions, respectively. 
In particular, for the case p = l/2, the power spectral 
density will be precisely l/f; thus diffusion in one dimen- 
sion can give rise to a l/f-type spectrum. Other values of 
/3 may also be applicable if the particles are constrained 

to remain on a fractal set, or are of two species that 
combine in pairs of opposite type. 

1) Synaptic Vesicles: 
The communication of information between cells in 

biological systems involves diffusion and provides an im- 
portant application for power-law shot noise. One cell 
communicates with another by releasing packets of neuro- 
transmitter (for example, acetylcholine) into the spaces 
(synaptic clefts) between itself and neighboring cells [43]. 
Each packet contains many neurotransmitter molecules 
concentrated into a small volume, which diffuse across 
the synaptic cleft when released into it. The cells on 
either side of the cleft are typically close to each other 
compared to the square root of the active surface areas 
presented to the cleft, and the cell receiving the neuro- 
transmitter (postsynaptic cell) effectively integrates the 
concentration of neurotransmitter over its surface as an 
indication of the strength of the signal. Thus the process 
may be represented by one-dimensional diffusion. After 
an effective lifetime t,, the neurotransmitter molecules 
are removed by an enzyme (for example, acetyl- 
cholinesterase). Thus each packet will result in a concen- 
tration over the area of the receiving cell of the form of 
(651, with d = 1. We again identify A = t, = xi/A and 
B = t,, and set K (or K,) equal to the random (or 
deterministic) number of neurotransmitter molecules per 
packet. For a cell under constant stimulation, neurotrans- 
mitter packets will often be released into the synaptic 
cleft in Poisson fashion [43], and the total concentration 
will therefore be well modeled by power-law shot noise. 
Finally, we reiterate that since the impulse response func- 
tions have a power-law exponent p = l/2, the corre- 
sponding power spectral density of the process will vary as 
l/f’. Thus diffusion of neurotransmitter represents a 
possible source of l/f-noise in biological systems. 

2) Semiconductor High-Energy Particle Detectors: 
Diffusion and power-law shot noise are also important 

in describing the behavior of semiconductor high-energy 
particle detectors. A typical detector consists of a lightly 
doped p-n junction across which a large reverse bias is 
applied [44]. Energetic charged particles enter the detec- 
tor, usually along the p-n axis, and create electron-hole 
pairs within a large part of the semiconductor depletion 
region. The higher the energy of the particle, the greater 
the number of electron-hole pairs produced. These carri- 
ers are then swept out of the depletion region of the 
diode by the high reverse-bias field, electrons towards the 
n region and holes towards the p region. This occurs 
before many of the electrons and holes recombine. How- 
ever, some of the carriers do recombine, reducing the 
detected charge created by the original energetic charged 
particle, so a description of the recombination process is 
useful. Consider a single energetic particle entering the 
detector at a time t = 0. We assume that the electron-hole 
pairs are created instantaneously throughout the semicon- 
ductor depletion region, distributed in a three-dimen- 
sional Poisson fashion, and that they begin diffusing as 
soon as they are created. Whenever an electron and a 
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hole approach within some critical radius, the two carriers 
either annihilate each other immediately or first form an 
exciton and later recombine. In either case they no longer 
carry current and may be considered to be annihilated. 
For now we ignore the drift current; later we will consider 
the case where drift current is important. 

The solution to this semiconductor recombination prob- 
lem may be adapted from a similar problem that has 
already been solved: molecular reactions involving two 
species which combine in pairs [45], [46]. A cursory analy- 
sis for a diffusion process would suggest that the concen- 
tration of electrons and holes would decay in time as 
tpd/*, and indeed if the distributions of the two types of 
carriers were highly correlated, then the concentration 
would follow this form with d = 3 for three-dimensional 
diffusion. However, often the carrier distributions are 
independent, at least over short distances. Consider a 
sub-volume of the depletion region which, due to the 
variance of the Poisson distribution, has an excess of 
electrons at t = 0. The holes in this section will be annihi- 
lated at some later time, but the remaining excess elec- 
trons will have to diffuse out of this region before encoun- 
tering any additional holes, which will require more time, 
slowing the annihilation process. This effect is seen on all 
time and length scales, and results in a concentration that 
decays as tedi rather than tedi2. If the particle concen- 
trations are dependent over distances longer than some 
dependence length I,, then the concentration will decay 
as tpd/* for time t > t, = Zi/A [47], [48]. When electron- 
hole pairs are created, the electron and hole are initially 
displaced by a finite length, so the concentrations of 
electrons and holes will be highly correlated over regions 
larger than that average length. 

Including the effects of drift yields still other expo- 
nents. Here the distance traveled by a carrier along the 
direction of drift increases from - t’/* (diffusion alone) 
to -t’ (with drift). Since there are d dimensions, the 
total volume swept out increases as N td/2 with diffusion 
alone; with drift there are d - 1 dimensions varying as 
N t1j2 each, and one varying as N t’, for a total volume 
increasing as N t (d+1)/2. Since the particle concentration 
decays as the inverse square root of the volume encoun- 
tered, it varies as t -(d+ ‘)I4 for independent electron and 
hole distributions, and as t -(d-t ‘I/* for dependent distri- 
butions [49]. In the presence of drift and diffusion, the 
concentration of particles is therefore given by 

h(t) = ;t-(d+1)/4 
i 

t<A; 

~t-‘“+lw”’ 
A<t<B; (66) 

, t>B; 

where we identify A = xi/A and B = x:/A, x0 being a 
minimum separation for created electron-hole pairs, x, 
being the maximum separation corresponding to a corre- 
lation length, and A being a combined effective diffusion 
constant. 

If energetic particles impinge on the detector at dis- 
crete times corresponding to a one-dimensional Poisson 

time process, then the resulting electron and hole concen- 
trations will be well described by the power-law shot-noise 
process. Thus power-law shot noise should prove impor- 
tant in understanding the statistics of carrier recombina- 
tion within the depletion region of the semiconductor. 

3) Diffusion on Fractals: 
Finally we turn to diffusion on fractals and percolation 

structures. In this case, the power-law exponent is given 
by p = d, /2, where d, is the spectral dimension of the 
fractal set, defined by 

d, = 2df/(2+ dd), (67) 

where d, is the standard (Hausdorf) fractal dimension,, 
and d, is the exponent describing the power-law variation 
of the diffusion constant with distance [.50], [51]. For 
percolation clusters at threshold, the spectral dimension 
lies between 1 and 2, and approaches a limit of 4/3 for an 
infinite-dimensional embedding space [51]. 

D. Quantum- Wire Electric Fields 

The magnitude of the electric field at the growing edge 
of a doped semiconductor whisker or quantum wire is 
precisely described by the power-law shot-noise process 
developed here. As growth proceeds, dopant atoms are 
introduced into the growing edge of the wire in a Poisson 
fashion. Each ionized donor (or acceptor) atom produces 
an inverse-square electric field that decays as xp2, where 
x is the distance from the ionized donor to the edge of the 
quantum wire. The mobile carriers are uniformly dis- 
tributed throughout the material so that they do not 
contribute a spatially varying field. Thus the variation of 
the electric field at the growing edge of the quantum wire 
is isomorphic to the power-law shot-noise process with 

(68) 

where A represents some intrinsic cutoff distance associ- 
ated with the nonzero size of the impurity atoms. Our 
approach is readily generalized by considering stochastic 
impulse response functions h(K, t). 

Although our general results apply for random pro- 
cesses, for some problems it is sufficient to consider the 
resulting distributions associated with this process. At the 
edge of a quantum wire of fixed length [52], for example, 
the first-order electric-field statistics arising from the ion- 
ized impurity atoms (ignoring the constant field con- 
tributed by the free carriers) are given by (34). This is 
plotted in Fig. 10 for a Te-doped n-type GaAs quantum 
wire, for which A = .211 nm as provided by the ionic 
radius of tellurium; B -+co for a sufficiently long wire; the 
Coulomb constant K, = q/4z-e = 1.32~ lo6 V/cm-nm*, 
where q is the electronic charge and the permittivity E of 
GaAs is 9.65 X lo-l3 F/cm; p = 2; and p = ah’, = 0.004 
nm-’ for a wire of cross-sectional area a = 400 nm2 and 
dopant concentration N’ = 1016 cmp3. This density is 
proportional to, and essentially coincident with, the 
Levy-stable density given in (30) for fields as high as 
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Fig. 10. Double logarithmic’plot of electric-field magnitude probability 
density P(g) vs. 6’ at edge of a Te-doped GaAs quantum wire with 
dopant ionic radius A = 0.211 nm, area a= 400 nm’, and dopant 
concentration No = 10” cmm3. 

2.97 X lo7 V/cm. An analogous application is the magni- 
tude of the gravitational field provided by a random 
distribution of masses [53]. An infinite number of these 
corresponds to a noncausal power-law form for h(t) and 
leads to a symmetric L&y-stable probability density of 
dimension D = l/2. 

E. Mass Distribution of Solid-Particle Aggregates 

A useful example of our analysis lies in the domain of 
solid-particle aggregates, including diffusion-limited ag- 
gregates, cluster-cluster aggregates, and aerosols. The 
mass distribution of the aggregated particles often obeys a 
power law over some range of masses m in these systems, 
such that [541-1561 

Pr{Mr m} = cmpD, (69) 

where c is a normalizing constant and the power-law 
exponent D typically falls in the range 0 < D < 1. The 
probability distribution for the individual masses is iso- 
morphic to sampling the time function M(t) = Ktwp uni- 
formly over some range of times, where again /? = l/D. 
The total mass enclosed within a specified region is then 
isomorphic to the fractal shot-noise amplitude distribu- 
tion. In particular the enclosed mass has a moment gener- 
ating function given by (17) and (19), and in the limit by 
cm. 

IX. CONCLUSION 

In this paper we examined the properties of power-law 
shot noise, which has a number of unique characteristics. 
We derived some of its statistical properties, including its 
moments, moment generating functions, amplitude proba- 
bility density functions, autocorrelation functions, and 
power spectral densities. Some of these results are sum- 
marized in Fig. 3. We showed that for an impulse re- 
sponse function of the form of (4), with p > 1, A = 0, 
B =CQ, and stochastic or deterministic K, the resulting 
shot-noise amplitude distribution is a L&y-stable random 
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variable with extreme asymmetry and associated dimen- 
sion D = l/p for all values p of the driving Poisson 
process. If B <co, then the shot-noise amplitude distribu- 
tion converges to such a L&y-stable random variable in 
the limit p +m. We also showed that for 0 < p < 1 the 
resulting power spectral density varies as f-“, where the 
exponent (Y is defined by CY = 2(1- p) and varies between 
0 and 2. For the particular case (Y = 1, the power spectral 
density varies precisely as l/f, so that power-law shot 
noise can serve as a form of l/f shot noise. We note that 
in power-law shot noise the amplitude probability density, 
autocorrelation function, and power spectral density, as 
well as the impulse response function itself, all assume 
power-law behavior, indicating its fractal nature. A num- 
ber of physical processes that power-law shot noise may 
describe were considered. Finally, we note that a fractal 
doubly stochastic Poisson point process (DSPP) can be 
constructed from power-law shot noise, just as an ordi- 
nary DSPP is constructed from ordinary shot noise [7]. 

APPENDIX A 
AMPLITUDE PROBABILITY DISTRIBUTION 

FOR 0 </3 ~1 AND INFINITE TAIL 

For O<fi<l and B=m, the shot-noise process Z will be 

infinite with probability one. To show this, we consider the 

moment generating function QJs) in (16) 

(AlI 
If s = 0, then Q,(O) = 1 follows directly from the definition. 

Otherwise, for 0 < p s 1, 

/ 

sKoA-P l- c” 

/ 

cl-e-’ 
du2 1-e-c c u ---dduz ~ - 

0 .1+1/p o ul+l/P c / 
-ddu o ul+l/P 

l-e-’ c 
= - 

J 
u-‘/Pdu = +m, (W 

C 0 

where c is any finite real number satisfying 0 < c < sK,AeP. 
Therefore, 

C),II)-exp[-‘(‘~)“‘.~]=exp(-n)=o. (A3) 

Thus QJs) is given by 

so that 

Pr{Z < x} = 0, forall x<m. (A-5) 

APPENDIX B 
AMPLITUDE MOMENT GENERATING 

FUNCIION FOR p> 1 AND p+co 

For /3 > 1, A = 0, and B < 00, the amplitude probability den- 
sity function of the shot-noise process Z will approach a Levy- 

stable distribution of extreme asymmetry and dimension D = 
l/p as the rate p of the driving Poisson process approaches 
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infinity. To show this, we evaluate the form of the moment 

generating function Q,(S) given in (19) for A = 0 using 1’Hopital’s 

rule 

Q,(s)=exp{-pB[l-exp(-sK,B-l/D)] 

-~(sK,)Dr(l-D,SKOB~l’D)}. WI 

We now define 

so that 

p = K,[ /X(1 - D)]l’DS, WI 

SKoB~l’“=p[~cLBr(l-D)]-“D~pC(~), (B3) 

where C(p) is used to simplify the notation. As ZJ + ~0, C(p) -+ 0. 

The moment generating function becomes 

The limits of u in (C2) are found by requiring that P(Z - U) > 0 

and that the value of u be attained by the function h(t) for 

some value of t. 

APPENDIX D 
CLOSED FORM EXPRESSIONS FOR Rh(7) 

For ~3 = l/2 and 0 I IT/< B - A, 

B1’2 + (B - 1~1)~‘~ 

Al/Z + (A + (T()w (Dl) 

which is finite if B <co and either A > 0 or r # 0. 

For /? = 1 and r = 0, 

Rh(T) = (K2)jAR(tydt = (Ky-pdt 

\ 

/ 

pC(+tt-Ddt 

I 

= (K2)[A-’ - B-l], (D-4 

+pD O which is finite if A > 0. 
r(i-D) . 034) 

For/3=1andO<lrl<B-A, 

It now remains to consider the limiting values of the three terms B - 1~1 

inside the exponential function shown previously. The first term 
remains constant at - pD; using l’H8pital’s rule on the second 

R,(r)=IK’)~-‘i(t2+171t~-ldr=~ln[~] 
A 

term shows that it approaches zero as p increases towards 

infinity; and the third term vanishes as its upper limit ap- 

proaches zero as Z.L increases towards infinity. Thus the only 
= G In [(I - M/B)(l+ M/A)], 0’3) 

term remaining in the limit is the first, and 

lim Q,(p)=exp( -pD). 
IL+m 

which is finite if A > 0. 

(‘35) For p = 2 and 7 = 0, 

In terms of the original variable, s, the moment generating 

function is written as 
R,,(T) = ( K2)f(t2)-’ dt = ( K2)LBt-4dt 

Q,(s) - exp [ - pKRr(l- D)s~], p+~. (~6) 

Thus, as p +a, the moment generating function QJs) ap- 

proaches the Levy-stable form in (21), and therefore the ampli- 

=+-3-B-3], 

tude probability density function converges in distribution to which is finite if A > 0. 
Levy-stable form as Z.L --)m. For /? = 2 and 0 < ITI < B - A, 

APPENDIX C 
INTEGRAL EQUATION FOR THE AMPLITUDE 

Rh(7) = (K’)f -I”( t2 + 1T1t)-‘dt 

PROBABILITY DENSITY FUNCTION 

For finite area impulse response functions and arbitrary p, 

the amplitude probabilitv density function may be obtained for 

= -(K2) 
2t + 171 2 t B - 1~1 

+-ln- 1 lT12t(t + ITI) 1Tl3 t +T A 

(D4) 

positive Z from an integral equation [17] - 

ZZ’(Z)=/L/~ P[Z-h(K,,t)]h(K,,t)dt = (K2) 
2A + IT) 2B - 171 

--m ld2A( A + ITI) - 1712B( B - ITI) 

=,/P(Z- K,tcfl)K,t-Pdt. (Cl) 
+ j$ In [(I- bl/B)(l+ WA)] , 

Substituting u = h(K,, t) = K,t-O we obtain (34), which is 
7 I 

which is finite if A > 0. The value at 7 = 0 may also be deter- 
mined by taking the limit of the expression for T # 0, and using 

p K,l@ 
=- P(Z-u)u-“Pdu. 

/ PZ 

1’HBpital’s rule twice. 

cc21 
For general /3 > 1, A > 0, and B = 00, a simple form for Rh(7) 

can be found in the limit ITI +m. We first find an upper bound 

(W 
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for the integral 

/( m t2+/T~t)-pdt=/at-p(t+~T1)-8dt 
A A 

< jmtCp([Tl) -‘dt = s,T\-‘. (D6) 
A 

For the lower bound we truncate the integral at some value T 

/( m t2+i7k-Pdt=/mt-~(t+1+8dt 
A A 

> 
/ 

‘t+(T+ lT1)-Pdt 
A 

Al-6 - Tl-0 
= 

P-1 
(T + lTl)-p. (D7) 

This is valid for any T > A. We choose T = (Al~l)l/~, so that 

/( m t2+ IT/t)-% 
A 

> 
&P+j(Tl)(1-P)/2 

P-1 
[(&l)1’2+ ITI] -’ 

Combining limits, we obtain 

/( 
m t2 + lT)t)pPdt 

<A 
I~l-p~l-P/(p _ 1) < l (D9) 

for all T: ITI > A. In the limit 1~1 +M, the lower bound ap- 
proaches 1, so 

/( m t2 + lT)t)-P dt + ]TI-‘A~-~/(P -I), (D 10) 
A 

and 

CD111 

APPENDIX E 
POWER SPECTRAL DENSITY FOR 0 < p < 1 AND B <a 

For 0 < p < 1 and B <M, the autocorrelation function and its 
Fourier transform exist, and the power spectral density is there- 

fore well defined. To show this we proceed from the definitions. 
Forf#O 

=2(K2)l,n_;A~Da;(t2+Tt)-PcOS(2~fT)dtd~, (El) 
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so that 

= (K2)B2-‘fi 

(l- P>” 

<m. W) 
Thus IS,( f )I < ~0 for all frequencies f # 0, and the power spec- 

tral density is therefore well defined for 0 < p < 1 and B <m. 
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