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Abstract 

 

The rapidly developing theory of complex networks indicates that real networks are not 

random, but have a highly robust large-scale architecture, governed by strict 

organizational principles. Here, we focus on the properties of biological networks, 

discussing their scale-free and hierarchical features. We illustrate the major network 

characteristics using examples from the metabolic network of the bacterium Escherichia 

coli. We also discuss the principles of network utilization, acknowledging that the 

interactions in a real network have unequal strengths. We study the interplay between 

topology and reaction fluxes provided by flux-balance analysis. We find that the cellular 

utilization of the metabolic network is both globally and locally highly inhomogeneous, 

dominated by "hot-spots", representing connected high-flux pathways. 
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Introduction 

The tremendous progress in the natural sciences we witnessed in the last century was 

based on the reductionist approach, allowing us to predict the behavior of a system from 

the understanding of its (often identical) elementary constituents and their individual 

interactions. However, our ability to understand simple fundamental laws governing 

individual “building blocks” is a far cry from being able to predict the overall behavior of 

a complex system (Anderson, 1972). Additionally, the building blocks of most complex 

systems, and hence the nature of their interactions, vary dramatically, rendering the 

traditional approaches obsolete. During the last few years, network approaches have 

shown great promise as a new tool to analyze and understand complex systems (Strogatz, 

2001; Albert, 2002; Dorogovtsev, 2003; Bornholdt, 2003). For example, technological 

information systems like the internet and the world-wide web are naturally modeled as 

networks, where the nodes are routers (Faloutsos, 1999; Vázquez, 2002) or web-pages 

(Albert, 1999; Lawrence, 1999; Broder, 2000) and the links are physical wires or URL’s 

respectively. The analysis of societies also lends itself naturally to a network description, 

with people as nodes and the connections between the nodes as friendships (Milgram, 

1967), collaborations (Kochen, 1989; Wasserman, 1994),  sexual contacts (Liljeros, 

2001) or co-authorship of scientific papers (Redner, 1998; Newman, 2001) to name a few 

possibilities. It seems that the closer we look at the world surrounding us, the more we 

realize that we are hopelessly entangled in myriads of interacting webs, and to describe 

them we need to understand the architecture of the various networks nature and 

technology offers us. 

 

In biology, networks appear in many disparate systems, ranging from food webs in 

ecology to biochemical interactions in molecular biology. In particular in the cell the 

variety of interactions between genes, proteins and metabolites are well captured by 

networks. During the last decade, genomics has unleashed a downright flood of 

molecular interaction data. The nascent field of transcriptomics and proteomics have 

followed suit with analysis of protein levels under various conditions and genome wide 

analysis of gene expression at the mRNA level (Pandey, 2000; Caron, 2001; Burge, 

2001). Thus, protein-protein interaction maps have been generated for a variety of 
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organisms including viruses (Flajolet, 2000), prokaryotes like H. pylori (Rain, 2001) and 

eukaryotes like S.  cerevisiae (Ito, 2000; Ito 2001; Schwikowski 2000; Uetz 2000; Gavin 

2002, Ho, 2002, Jeong, 2001) and C. elegans (Walhout, 2000).  In this chapter we will 

discuss recent results and developments in the study and characterization of naturally 

occurring networks, with focus on cellular ones.  

 

 

Power laws in network topology 

 

The complex network representation of different systems as networks has revealed 

surprising similarities, many of which are intimately tied to power laws. The simplest 

network measure is the average number of nearest neighbors of a node, or the average 

degree k . However, this is a rather crude property, and to gain further insight into the 

topological organization of real networks, we need to determine the variation in the 

nearest neighbors, given by the degree distribution )(kP . For a surprisingly large number 

of networks, this degree distribution is best characterized by the power law functional 

form (Barabási, 1999) (Fig.1a), 

 α−kkP ~)(  . (1) 

Important examples include the metabolic network of 43 organisms (Jeong, 2000), the 

protein interaction network of S. cerevisiae (Jeong, 2001) and various food webs 

(Montoya, 2002). If the degree distribution instead was single-peaked (e.g. Poisson or 

Gaussian) as in Fig. 1b, the majority of the nodes would be well described by the average 

degree, and hence the notion of a “typical” node. In contrast for networks with a power-

law degree distribution, the majority of the nodes have only one or two neighbors while 

coexisting with many nodes with hundreds and some even with thousands of neighbors. 

For these networks there exists no typical node, and they are therefore often referred to as 

“scale-free”. 
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The clustering of a node, the degree to which the neighborhood of a node resembles a 

complete subgraph, is another measure which sheds light on the structural organization of 

a network (Watts, 1998).  For a node i with degree ik  the clustering is defined as 

 
)1(

2
−

=
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i
i kk

n
C ,  (2) 

representing the ratio of the number of actual connections between the neighbors of node 

i to the number of possible connections. For a node which is part of a fully interlinked 

cluster 1=iC , while 0=iC  for a node which acts as a bridge between different clusters.  

Accordingly, the overall clustering coefficient of a network with N nodes is given 

by ∑= NCC i / , and represents a measure of a network’s potential modularity. By 

studying the clustering of nodes with a given degree k, information about the actual 

modular organization of a network can be gleaned (Ravasz 2002; Ravasz 2003; 

Dorogovtsev, 2002; Vázquez, 2002):  For all metabolic networks available, this behaves 

like the power law 

 δ−kkC ~)( , (3) 

suggesting the existence of a hierarchy of nodes with different degrees of modularity (as 

measured by the clustering coefficient) overlapping in an iterative manner (Ravasz, 

2002). In Fig. 2, we show the degree distribution (Fig. 2a) and the clustering as function 

of k (Fig. 2b) for the bacterium Escherichia coli. They both clearly adhere to a power-law 

behavior, suggesting that biological networks are both scale-free and hierarchical. Panel 

2c is a three dimensional representation of a cleaned up version of the metabolic network 

(Ravasz, 2002), demonstrating that modules are not clearly separated. Furthermore, the 

likelihood that a node appears in the shortest paths between other nodes on the network, 

the so-called betweenness-centrality g (Freeman, 1977; Girvan, 2002), is also 

characterized by a power law distribution following β−ggP ~)(  for both biological and 

non-biological networks (Goh, 2002b), suggesting that a few nodes act as bridges or 

linkers between the different parts of the network . In summary, we have seen strong 

evidence that biological networks are both scale-free (Jeong, 2000; Jeong, 2001) and 

hierarchical (Ravasz, 2002). 
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Network models 

 

An important question now arises – we can characterize networks using the above 

mentioned quantities, but why is the power law behavior so pervasive? Several models 

building on very different principles are able to explain these observed features.  

 

Random network  models 

While graph theory initially focused on regular graphs, since the 1950's large networks 

with no apparent design principles were described as random graphs (Bollobas, 1985), 

proposed as the simplest and most straightforward realization of a complex network. 

According to the Erdos-Renyi (ER) model of random networks (Erdos, 1960), we start 

with N nodes and connect every pair of nodes with probability p, creating a graph with 

approximately pN(N-1)/2 randomly distributed edges (Fig. 3a,d). For this model the 

degrees follow a Poisson distribution (Fig. 4a), and as a consequence, the average degree 

k of the network describes the typical node.  Furthermore, for this “democratic” 

network model, the clustering is independent of the node degree k (Fig. 4d). As we have 

just seen in Fig. 2, the ER model does not capture the properties of biological networks. 

 

Scale-free network model 

In the network model of Barabási and Albert (BA), two crucial mechanisms, which both 

are absent from the classical random network model, are responsible for the emergence of 

a power-law degree distribution (Barabási, 1999). First, networks grow through the 

addition of new nodes linking to nodes already present in the system. Second, there is a 

higher probability to link to a node with a large number of connections in most real 

networks, a property called preferential attachment. These two principles are 

implemented as follows: starting from a small core graph consisting of m0 nodes, a new 

node with m links is added at each time step and connected to the already existing nodes 

(Fig. 3b,e). Each of the m new links are then preferentially attached to a node i (with ki 

neighbors) which is chosen according to the probability 
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j

jii kk / . (4) 

The simultaneous combination of these two network growth rules gives rise to the 

observed power-law degree distribution (Fig. 4b). In panel 3b, we illustrate the growth 

process of the scale-free model by displaying a network at time t (green links) and then at 

time )1( +t , when we have added a new node (red links) using the preferential attachment 

probability. Compared to random networks, the probability that a node is highly 

connected is statistically significant in scale-free networks. Consequently, many network 

properties are determined by a relatively small number of highly connected nodes, often 

called “hubs”. To make the effect of the hubs on the network structure visible, we have 

colored the five nodes with largest degrees red in Fig. 3d and 3e and their nearest 

neighbors green. While in the ER network only 27% of the nodes are reached by the five 

most connected ones, we reach more than 60% of the nodes in the scale-free network, 

demonstrating the key role played by the hubs. Another consequence of the hub’s 

dominance of the network topology is that scale-free networks are highly tolerant of 

random failures (perturbations) while being extremely sensitive to targeted attacks 

(Albert, 2000). Comparing the properties of the BA network model with those of the ER 

model, we note that the clustering of the BA network is larger, however )(kC is 

approximately constant (Fig. 4e), indicating the absence of a hierarchical structure.  

 

Hierarchical network model 

Many real networks are expected to be fundamentally modular, meaning that the network 

can be seamlessly partitioned into a collection of modules where each module performs 

an identifiable task, separable from the function(s) of other modules (Hartwell, 1999; 

Lauffenburger, 2000; Rao, 2001; Holter, 2001; Hasty, 2001; Shen-Orr, 2001). Therefore, 

we must reconcile the scale-free property with potential modularity. In order to account 

for the modularity as reflected in the power-law behavior of )(kC (Fig. 2b) and a 

simultaneous scale-free degree distribution (Fig. 2a), we have to assume that clusters 

combine in an iterative manner, generating a hierarchical network (Ravasz, 2002; 

Vázquez, 2002). Such a network emerges from a repeated duplication and integration 

process of clustered nodes (Ravasz, 2002), which in principle can be repeated 
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indefinitely. This process is depicted in panel 3c, where we start from a small cluster of 

four densely linked nodes (blue). We next generate three replicas of this hypothetical 

initial module (green) and connect the three external nodes of the replicated clusters to 

the central node of the old cluster, thus obtaining a large 16-node module. Subsequently, 

we again generate three replicas of this 16-node module (red), and connect the 16 

peripheral nodes to the central node of the old module, obtaining a new module of 64 

nodes. This hierarchical network model seamlessly integrates a scale-free topology with 

an inherent modular structure by generating a network that has a power law degree 

distribution (Fig. 4c) with degree exponent 26.23ln/4ln1 ≈+=γ  and a clustering 

coefficient C(k) which proves to be dependent on 1−k  (Fig. 4f). However, note that 

modularity does not imply clear-cut sub-networks linked in well-defined ways (Ravasz, 

2002; Holme, 2003). In fact, the boundaries of modules are often blurred (see Fig. 3f), 

bridged by highly connected nodes which interconnect modules. 

 

 

Power laws in network utilization 

 

Despite their successes, purely topologic approaches have important intrinsic limitations. 

For example, the activity of the various metabolic reactions or regulatory interactions 

differs widely, some being highly active under most growth conditions while others are 

switched on only for some rare environmental circumstances. Therefore, an ultimate 

description of cellular networks requires us to consider the intensity (i.e., strength), the 

direction (when applicable) and the temporal aspects of the interactions. While so far we 

know little about the temporal aspects of the various cellular interactions, recent results 

have shed light on how the strength of the interactions is organized in metabolic and 

genetic-regulatory networks (Almaas, 2004).  

 

In metabolic networks the flux of a given metabolic reaction, representing the amount of 

substrate being converted to a product within unit time, offers the best measure of 

interaction strength. Recent metabolic flux-balance approaches (FBA) (Edwards, 2000; 

Edwards, 2001; Ibarra, 2002; Edwards, 2002; Segre, 2002) that allow us to calculate the 
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flux for each reaction, have significantly improved our ability to generate quantitative 

predictions on the relative importance of the various reactions, leading to experimentally 

testable hypotheses. Starting from a stoichiometric matrix of the K12 MG1655 strain of 

E. coli, containing 537 metabolites and 739 reactions (Edwards, 2000; Edwards, 2001; 

Ibarra, 2002; Edwards, 2002), the steady state concentrations of all metabolites satisfy 

  0  ][ ==∑
j

jiji SA
dt
d ν , (5) 

where ijS  is the stoichiometric coefficient of metabolite iA  in reaction j and jν  is the flux 

of reaction j. We use the convention that if metabolite iA  is a substrate (product) in 

reaction j, 0<ijS  ( 0>ijS ), and we constrain all fluxes to be positive by dividing each 

reversible reaction into two “forward” reactions with positive fluxes. Any vector of 

positive fluxes { jν } which satisfies Eq. (5) corresponds to a state of the metabolic 

network, and hence, a potential state of operation of the cell.  

 

Assuming that cellular metabolism is in a steady state and optimized for the maximal 

growth rate (Edwards, 2001; Ibarra, 2002), FBA allows us to calculate the flux for each 

reaction using linear optimization, providing a measure of each reaction’s relative activity 

(Almaas, 2004). A striking feature of the flux distribution of E. coli is its overall 

inhomogeneity: reactions with fluxes spanning several orders of magnitude coexist under 

the same conditions (Fig. 4a). This is captured by the flux distribution for E. coli, which 

follows (the by now familiar) power law where the probability that a reaction has flux ν 

is given by αννν −+ )(~)( 0P . The flux exponent is predicted to be α = 1.5 by FBA 

methods (Almaas, 2004). In a recent experiment (Emmerling, 2002) the strength of the 

various fluxes of the central metabolism was measured, revealing (Almaas, 2004) the 

power-law flux dependence ανν −~)(P  with 1≅α  (Fig. 4b). This power law behavior 

indicates that the vast majority of reactions have quite small fluxes, while coexisting with 

a few reactions with extremely large flux values. 

 

The observed flux distribution is compatible with two quite different potential local flux 

structures (Almaas, 2004). A homogeneous local organization would imply that all 
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reactions producing (consuming) a given metabolite have comparable fluxes. On the 

other hand, a more delocalized “hot backbone” is expected if the local flux organization 

is heterogeneous, such that each metabolite has a dominant source (consuming) reaction. 

To distinguish between these two scenarios for each metabolite i produced (consumed) 

by k reactions, we define the measure (Barthelemy, 2003; Derrida, 1987) 

 ( )
2

1
1

ˆ

ˆ
, ∑

∑=
=














=

k

j
k

l il

ijikY
ν

ν
, (6) 

where ijν̂  is the mass carried by reaction j which produces (consumes) metabolite i. If all 

reactions producing (consuming) metabolite i have comparable ijν̂  values, ),( ikY  scales 

as k/1 . If, however, a single reaction’s activity dominates Eq. (6), we expect 1~),( ikY , 

i.e., ),( ikY  is independent of k. For the E. coli metabolism optimized for succinate and 

glutamate uptake (Fig. 5) we find that both the in and out degrees follow the power law 
27.0~),( −kikY , representing an intermediate behavior between the two extreme cases 

(Almaas, 2004). This indicates that the large-scale inhomogeneity observed in the overall 

flux distribution is increasingly valid at the level of the individual metabolites as well: the 

more reactions consume (produce) a given metabolite, the more likely it is that a single 

reaction carries the majority of the flux. This implies that the majority of the metabolic 

flux is carried along linear pathways – the metabolic high flux backbone (HFB) (Almaas, 

2004). 

 

A power law pattern is also observed when one investigates the strength of the various 

genetic regulatory interactions provided by microarray datasets. Assigning each pair of 

genes a correlation coefficient which captures the degree to which they are co-expressed, 

one finds that the distribution of these pair-wise correlation coefficients follows a power 

law (Kuznetsov, 2002; Farkas, 2003). That is, while the majority of gene pairs have only 

weak correlations, a few gene pairs display a significant correlation coefficient. These 

highly correlated pairs likely correspond to direct regulatory and protein interactions. 

This hypothesis is supported by the finding that the correlations are larger along the links 

of the protein interaction network and between proteins occurring in the same complex 
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than for pairs of proteins that are not known to interact directly (Dezso, 2003; Grigoriev, 

2001; Jansen, 2002; Ge, 2001). 

 

Taken together, these results indicate that the biochemical activity in both the metabolic 

and genetic networks is dominated by several ‘hot links’ that represent a few high activity 

interactions embedded into a web of less active interactions. This attribute does not seem 

to be a unique feature of biological systems: hot links appear in a wide range of non-

biological networks where the activity of the links follows a wide distribution (Goh, 

2002a; deMenezes, 2004). The origin of this seemingly universal property is, again, 

likely rooted in the network topology. Indeed, it seems that the metabolic fluxes and the 

weights of the links in some non-biological system (Goh, 2002a; deMenezes, 2004) are 

uniquely determined by the scale-free nature of the network. A more general principle 

that could explain the correlation distribution data as well is currently lacking 

 

 

Conclusions 

 

Power laws are abundant in nature, affecting both the construction and the utilization of 

real networks. The power-law degree distribution has become the trademark of scale-free 

networks and can be explained by invoking the principles of network growth and 

preferential attachment. However, many biological networks are inherently modular, a 

fact which at first seems to be at odds with the properties of scale-free networks. 

However, these two concepts can co-exist in hierarchical scale-free networks. In the 

utilization of complex networks, most links represent disparate connection strengths or 

transportation thresholds. For the metabolic network of E. coli we can implement a flux-

balance approach and calculate the distribution of link weights (fluxes), which (reflecting 

the scale-free network topology) displays a robust power-law, independent of exocellular 

perturbations. Furthermore, this global inhomogeneity in the link strengths is also present 

at the local level, resulting in a connected “hot-spot” backbone of the metabolism. 

Similar features are also observed in the strength of various genetic regulatory 

interactions. Despite the significant advances witnessed the last few years, network 
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biology is still in its infancy, with future advances most notably expected from the 

development of theoretical tools, development of new interactive databases and increased 

insights into the interplay between biological function and topology. 



E. Almaas and A.-L. Barabási 

 

12

References 
 
Albert, R. & Barabási, A.-L. (2002). Statistical mechanics of complex networks. Rev. 

Mod. Phys. 74, p47-97. 

Albert, R., Jeong, H. & Barabási, A.-L (1999). Diameter of the World-Wide Web. 

Nature, 401, p130-1. 

Albert, R., Jeong, H. & Barabási, A.-L. (2000). Attack and error tolerance of complex 

networks. Nature, 406, p378-82. 

Almaas, E., Kovacs, B., Vicsek, T., Oltvai, Z.N. & Barabási, A.-L. (2004). Global 

organization of metabolic fluxes in the bacterium Escherichia coli. Nature, in press. 

Anderson, P. W. (1972). More Is Different. Science, 177, p393-6. 

Barabási, A.-L. & Albert, R., (1999). Emergence of scaling in random networks. Science, 

286, p509-12. 

Barthelemy, M., Gondran, B. & Guichard, E. (2003). Spatial structure of the Internet 

traffic. Physica A, 319, p633-42. 

Bollobas, B. (1985). Random Graphs. Academic Press, London. 

Bornholdt, S. & Schuster, H. G. (2003). Handbook of graphs and networks: From the 

genome to the Internet. Wiley-VCH, Berlin, Germany. 

Broder, A., Kumar, R., Maghoul, F., Raghavan, P, Rajalopagan, S., Stata, R., Tomkins, 

A. & Wiener, J. (2000). Graph structure in the web. Comput. Netw., 33, p309-20. 

Burge, C. (2001). Chipping away at the transcriptome. Nature Genet., 27, p232-4. 

Caron, H., van Schaik, B., van der Mee, M., Baas, F., Riggins, G., van Sluis, P., Hermus, 

M.C., van Asperen, R., Boon, K., Voute, P.A., Heisterkamp, S., van Kampen, A. & 

Versteeg, R. (2001). The human transcriptome map: Clustering of highly expressed 

genes in chromosomal domains. Science, 291, p1289-92. 

deMenezes, M.A. & Barabási, A.-L. (2004) Fluctuations in network dynamics. Phys. Rev. 

Lett., in press. 

Derrida, B. & Flyvbjerg, H. (1987). Statistical properties of randomly broken objects and 

of multivalley structures in disordered-systems. J. Phys. A: Math. Gen., 20, p5273-88 

(1987). 



E. Almaas and A.-L. Barabási 

 

13

Dezso, Z., Oltvai, Z.N. & Barabási, A.-L. (2003) Bioinformatics analysis of 

experimentally determined protein complexes in the yeast, Saccharomyces cerevisiae. 

Genome Res., 13, p2450-4. 

Dorogovtsev, S.N., Goltsev, A.V. & Mendes, J.F.F. (2002). Pseudofractal scale-free web. 

Phys. Rev. E, 65, 066122. 

Dorogovtsev, S.N. & Mendes, J.F.F. (2003) Evolution of networks: From biological nets 

to the Internet and WWW. Oxford University Press, Oxford. 

Edwards, J. S., Ibarra, R. U. & Palsson, B. O. (2001). In silico predictions of Escherichia 

coli metabolic capabilities are consistent with experimental data. Nat Biotechnol 19, 

p125-30. 

Edwards, J. S. & Palsson, B. O. (2000). The Escherichia coli MG1655 in silico metabolic 

genotype: its definition, characteristics, and capabilities. Proc Natl Acad Sci U S A 

97, p5528-33. 

Edwards, J. S., Ramakrishna, R. & Palsson, B. O. (2002). Characterizing the metabolic 

phenotype: A phenotype phase plane analysis. Biotechn. Bioeng. 77, 27-36. 

Emmerling, M., Dauner, M., Ponti, A., Fiaux, J., Hochuli, M., Szyperski, T., Wuthrich, 

K., Bailey, J.E. & Sauer, U. (2002). Metabolic flux responses to pyruvate kinase 

knockout in Escherichia coli. J Bacteriol., 184, p152-64. 

Erdos, P. & Renyi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. 

Hung. Acad. Sci., 5, p17-61. 

Faloutsos, M., Faloutsos, P. & Faloutsos, C. (1999). On power-law relationships of the 

Internet topology. Comput. Commun. Rev., 29, p251-62. 

Farkas, I.J., Jeong, H., Vicsek, T., Barabási, A.-L. & Oltvai, Z.N. (2003). The topology of 

the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Physica 

A, 318, p601-12. 

Flajolet, M., Rotondo, G., Daviet, L., Bergametti, F., Inchauspe, G., Tiollais, P., Transy, 

C. & Legrain, P. (2000). A genomic approach to the hepatitis C virus. Gene, 242, 

p369-79. 

Freeman, L. (1977). A set of measures of centrality based upon betweenness. Sociometry, 

40, p35-41. 



E. Almaas and A.-L. Barabási 

 

14

Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., 

Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., 

Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., 

Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, 

R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, 

T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G. & Superti-Furga, G. (2002). 

Functional organization of the yeast proteome by systematic analysis of protein 

complexes. Nature, 415, p141-7. 

Ge, H. Liu, Z., Church, G.M. & Vidal, M. (2001). Correlation between transcriptome and 

interactome mapping data from Saccharomyces cerevisiae. Nature Genet., 29, p482-

6. 

Girvan, M. & Newman, M.E.J. (2002). Community structure in social and biological 

networks. Proc. Natl. Acad. Sci., 99, p7821-26. 

Goh, K.-I., Kahng, B. & Kim, D. (2002a). Fluctuation-driven dynamics of the internet 

topology. Phys. Rev. Lett., 88, 108701. 

Goh, K.-I., Oh, E., Jeong, H., Kahng, B. & Kim, D. (2002b). Classification of scale-free 

networks. Proc. Natl. Acad. Sci., 99, p12583-88. 

Grogoriev, A. (2001). A relationship between gene expression and protein interactions on 

the proteome scale: analysis of the bacteriophage T7 and yeast Saccharomyces 

cerevisiae. Nucleic Acids Res., 29, p3513-9. 

Hartwell, L.H., Hopfield, J.J., Leibler, S. & Murray, A.W. (1999). From molecular to 

modular cell biology. Nature, 402, C47-52. 

Hasty, J., McMillen, D., Isaacs, F. & Collins, J.J. (2001). Computational studies of gene 

regulatory networks: In numero molecular biology. Nature Rev. Genet., 2, p268-79. 

Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, 

P., Bennett, K., Boutilier, K., Yang, L.Y., Wolting, C., Donaldson, I., Schandorff, S., 

Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., 

Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., 

Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., 

Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D., Matthiesen, 

J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, 



E. Almaas and A.-L. Barabási 

 

15

M., Hogue, C.W.V., Figeys, D. & Tyers, M. (2002). Systematic identification of 

protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415, 

p180-3. 

Holme, P., Huss, M. & Jeong, H. (2003). Subnetwork hierarchies of biochemical 

pathways. Bioinformatics. 19, p532-9. 

Holter, N.S., Maritan, A., Cieplak, M., Fedoroff, N.V. & Banavar, J.R. (2001). Dynamic 

modeling of gene expression data. Proc. Natl. Acad. Sci., 98, p1693-8. 

Ibarra, R. U., Edwards, J. S. & Palsson, B. O. (2002). Escherichia coli K-12 undergoes 

adaptive evolution to achieve in silico predicted optimal growth. Nature 420, p186-9. 

Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. & Sakaki, Y. (2001). A 

comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. 

Natl. Acad. Sci., 98, p4569-74. 

Ito, T., Tashiro, K., Muta, S., Ozawa, R., Chiba, T., Nishizawa, M., Yamamoto, K., 

Kuhara, S. & Sakaki, Y. (2000). Towards a protein-protein interaction map of the 

budding yeast: A comprehensive system to examine two-hybrid interactions in all 

possible combinations between the yeast proteins. Proc. Natl. Acad. Sci., 97, p1143-

47. 

Jansen, R., Greenbaum, D. & Gerstein, M. (2002). Relating whole-genome expression 

data with protein-protein interactions. Genome Res., 12, p37-46. 

Jeong, H., Mason, S.P., Barabási, A.-L. & Oltvai, Z.N. (2001). Lethality and centrality in 

protein networks. Nature, 411, p41-2. 

Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N. & Barabási, A.-L. (2000). The large-scale 

organization of metabolic networks. Nature, 407, p651-4. 

Kochen, M. (ed.) (1989). The small-world. Ablex, Norwood, N.J. 

Kutznetsov, V.A., Knott, G.D. & Bonner, R.F. (2002). General statistics of stochastic 

processes of gene expression in eukaryotic cells. Genetics, 161, p1321-32. 

Lauffenburger, D. (2000). Cell signaling pathways as control modules: Complexity for 

simplicity. Proc. Natl. Acad. Sci., 97, p5031-33. 

Lawrence, S. & Giles, C. L. (1999). Accessibility of information on the web. Nature, 

400, p107-9. 



E. Almaas and A.-L. Barabási 

 

16

Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E. Aberg, Y. (2001). The web of 

human sexual contacts. Nature, 411, p907-8. 

McGraith, S., Holtzman, T., Moss, B. & Fields, S. (2000). Genome-wide analysis of 

vaccinia virus protein-protein interactions. Proc. Natl. Acad. Sci., 97, p4879-84. 

Milgram, S. (1967). The small-world problem. Psychology Today, 2, p60-7. 

Montoya, J.M. & Sole, R.V. (2002). Small-world patterns in food webs. J. Theor. Biol., 

214, p405-12. 

Newman, M.E.J. (2001). The structure of scientific collaboration networks. Proc. Natl. 

Acad. Sci., 98, p404-9. 

Pandey, A. & Mann, M. (2000). Proteomics to study genes and genomes. Nature, 405, 

p837-46. 

Rain, J.-C., Selig, L., DeReuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., 

Petel, F., Wojcik, J., Schächter, V., Chemama, Y., Labigne, A. & Legrain, P. (2001). 

The protein-protein interaction map of Helicobacter pylori. Nature, 409, p211-15. 

Rao, C.V. & Arkin, A.P. (2001). Control motifs for intracellular regulatory networks. 

Annu. Rev. Biomed. Eng., 3, p391. 

Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N. & Barabási, A.-L. (2002). 

Hierarchical organization of modularity in metabolic networks. Science, 297, p1551-

5. 

Ravasz, E. & Barabási, A.-L. (2003). Hierarchical organization in complex networks. 

Phys. Rev. E, 67, 026112. 

Schwikowski, B., Uetz, P., & Fields, S. (2000). A network of protein-protein interactions 

in yeast. Nature Biotechn., 18, p1257-61. 

Segre, D., Vitkup, D. & Church, G. M. (2002). Analysis of optimality in natural and 

perturbed metabolic networks. Proc. Natl. Acad. Sci., 99, p15112-7. 

Shen-Orr, S.S., Milo, R., Mangan, S. & Alon, U. (2001). Network motifs in the 

transcriptional regulation network of Escherichia coli. Nature Genet., 31, p64-8. 

Strogatz, S.H. (2001). Exploring complex networks. Nature, 410, p268-76. 

Uetz, P., Giot, L., Cagney, G., Mansfield, T., Judson, R., Knight, J., Lockshorn, D., 

Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., 

Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M.J., Johnston, M., Fields, S. 



E. Almaas and A.-L. Barabási 

 

17

& Rothberg, J.M. (2000). A comprehensive analysis of protein-protein interactions in 

Saccharomyces cerevisiae. Nature, 403, p623-27.  

Vázquez, A., Pastor-Satorras, R. & Vespignani, A. (2002). Large-scale topological and 

dynamical properties of the Internet. Phys. Rev. E, 65, 066130. 

Walhout, A., Sordella, R., Lu, X., Hartley, J., Temple, G., Brasch, M., Thierry-Mieg, N., 

& Vidal, M. (2000). Protein interaction mapping in C. elegans using proteins 

involved in vulva development. Science, 287, p116-22. 

Wasserman, S. & Faust, K. (1994). Social Network Analysis: Methods and Applications. 

Cambridge University Press, Cambridge. 

Watts, D.J. & Strogatz, S.H. (1998). Collective dynamics of small-world networks. 

Nature, 393, p440-2. 

 



E. Almaas and A.-L. Barabási 

 

18

FIGURE CAPTIONS 

 

Figure 1. Characterizing degree distributions. For the power-law degree distribution (a), 

there exists no typical node, while for single peaked distributions (b), most nodes are well 

represented by the average (typical) node with degree k . 

 

Figure 2. Properties of the metabolic network of Escherichia coli. (a) The degree 

distribution displays a power law in both the in- and the out degrees (Jeong, 2000). (b) 

The clustering coefficient varies with k as a power law. The solid line corresponds to 1−k . 

(c) Three dimensional representation of the reduced metabolic network (Ravasz, 2002). 

 

Figure 3. Graphical representation of three network models: (a) and (d) The ER 

(random) model, (b) and (e) the BA (scale-free) model and (c) and (f) the hierarchical 

model. The random network model is constructed by starting from N nodes before the 

possible node-pairs are connected with probability p. Panel (a) shows a particular 

realization of the ER model with 10 nodes and connection probability 2.0=p . In panel 

(b) we show the scale-free model at time t (green links) and at time )1( +t when we have 

added a new node (red links) using the preferential attachment probability (see Eq. (4)). 

Panel (c) demonstrates the iterative construction of a hierarchical network, starting from a 

fully connected cluster of four nodes (blue). This cluster is then copied three times 

(green) while connecting the peripheral nodes of the replicas to the central node of the 

starting cluster. By once more repeating this replication and connection process (red 

nodes), we end up with a 64-node scale-free hierarchical network. In panel (d) we display 

a larger version of the random network, and it is evident that most nodes have 

approximately the same number of links. For the scale-free model, (e) the network is 

clearly inhomogeneous: while the majority of nodes has one or two links, a few nodes 

have a large number of links. We emphasize this by coloring the five nodes with the 

highest number of links red and their first neighbors green. While in the random network 

only 27% of the nodes are reached by the five most connected nodes, we reach more than 

60% of the nodes in the scale-free network, demonstrating the key role played by the 

hubs. Note that the networks in (d) and (e) consist of the same number of nodes and 
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links. Panel (f) demonstrates that the standard clustering algorithms are not that 

successful in uncovering the modular structure of a scale-free hierarchical network. 

 

Figure 4.  Properties of the three network models. (a) The ER model sports a Poisson 

degree distribution P(k) (the probability that a randomly selected node has exactly k 

links) which is strongly peaked at the average degree k  and decays exponentially for 

large k. The degree distributions for the scale-free (b) and the hierarchical (c) network 

models do not have a peak, they instead decay according to the power-law γ−kkP ~)( . 

The average clustering coefficient for nodes with exactly k neighbors, C(k), is 

independent of k for both the ER (d) and the scale-free (e) network model. (f) In contrast, 
1~)( −kkC  for the hierarchical network model (cf. Fig. 2). 

 

Figure 5. Flux distribution for the metabolism of E. coli. (a) Flux distribution for 

optimized biomass production on succinate (black) and glutamate (red) rich uptake 

substrates. The solid line corresponds to the power law fit αννν −+ )(~)( 0P  with 

0003.00 =ν  and 5.1=α . (b) The distribution of experimentally determined fluxes (see 

Emmerling (2002)) from the central metabolism of E. coli also displays power-law 

behavior with a best fit to ανν −~)(P with 1=α . 

 

Figure 6. Characterizing the local inhomogeneity of the metabolic flux distribution.  The 

measured kY(k) (see Eq. (6)) shown as function of k for incoming and outgoing reactions 

for fluxes calculated on both succinate and glutamate rich substrates, averaged over all 

metabolites, indicating 27.0~)( −kkY , as the straight line in the figure has slope 73.0=γ . 

Inset: The non-zero mass flows ijν̂  producing (consuming) flavin adenine dinucleotide 

(FAD) on a glutamate rich substrate. 
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