
Power Load Management as a Computational Market
Fredrik Ygge

Department of Computer Science (IDE)
University of Karlskrona/Ronneby

372 25 Ronneby, Sweden

Fredrik.Yggn@ ide.hk-r.se, http:llwww.pt.hk-r.sel~fredriky

Hans Akikermans
AKMC & University of Twente

Department of Information Systems (INF/IS)

P.O. Box 217, NL-7500AE Enschede, The Netherlands
akkermans@ecn.nl, J.M.Akkermans @cs.utwente.ni

Abstract
Power load management enables energy utilities to re-
dace peak loads and thereby save money. Due to the
large number of different loads, power load manage-
ment is a complicated optimization problem. We present
a new decentralized approach to this problem by model-
ing direct load management as a computational market.
Our simulation results demonstrate that our approach is
very efficient with a superlinear rate of convergence to
equilibrium and an excellent scalability, requiring few
iterations even when the number of agents is in the order
of one thousand. A framework for analysis of this and
similar problems is given which shows how nonlinear
optimization and numerical mathematics can be exploit-
ed to characterize, compare, and tailor problem-solving
strategies in market-oriented programming.

1 Introduction
Computational markets have been suggested as a solution to

resource allocation, scheduling, and optimization problems

(e.g. [2][5][7][8]). In this paper we present how computa-
tional markets can be used to handle the application of power

load management. A load, in this context, is any device that
consumes electric energy, such as a water heater or an elec-

tric motor. With load management we mean the concept of
controlling the loads at the demand side to achieve a better

use of energy, better for the utility, the customer or both.

Load management can be used for many different purposes,
like avoiding overloads in bottlenecks in the grid, reduce

losses caused by reactive power, reduce overtones and stabi-
lize the network. One normally distinguishes between two
different categories of load management [4]: direct and indi-

rect. Direct load management implies that the utility deter-

mines what loads are to be connected, reduced, or
disconnected at specific occasions. Indirect load manage-

ment is the case where the utility sends some signal to the

customer, such as price information, and relies on his/her
ability to adjust to this signal. The topics discussed in this pa-

per are relevant for both the direct and the indirect approach,

although we focus on direct load management.
There is a number of reasons why it is interesting to study

decentralized algorithms such as computational markets in

the area of power load management. First, the information
required at each step in a load management process is dis-
tributed throughout the system. There is a potential gain in

reduced communication by not transmitting this informa-

tion to a central point, as in a purely centralized approach.
Second, the load management problem itself is a computa-

tionally complex task, since there is a large nmnber of loads

to deal with. By using a decentralized approach the inherent
computational power in the network is utilized. Last, but not

least, the software engineering aspect: by using a number of
distributed manageable models, such as user and process

models, instead of a giant, centralized one, software modifi-

cations are kept local, simplifying the whole life-cycle of
the software, making it possible to add and delete loads

without having to modify the existing system.
In this paper we show how a computational market design

can be utilized to approach the highly complex and distrib-
uted control problem of power load management. In a

broader, application-independent’ analysis of the problem
solving task, we will further show that Adam Smith’s ’in-

visible hand’ [11] allows for a plethora of different prob-
lem-solving strategies that fundamentally impact the rate of

convergence, efficiency, information and communication
requirements, and needed agent competencies within mar-

ket designs. We sketch a general framework for such a
problem-solving method analysis, whereby advances in

knowledge system analysis [12][10] and, in particular, non-
linear optimization and numerical mathematics [1][3][6]

prove to be helpful.
In section 2 we discuss design issues for an automated

power load management system and introduce our compu-

tational market design. Simulation results are presented in
section 3. A framework for analysis of problem-solving

strategies, illustrated by some published market approaches,

Ygge 393

From: Proceedings of the Second International Conference on Multiagent Systems. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

is outlined in section 4, and conclusions are given in section

5.

2 HOMEBOTS: Agents for Automated
Load Management

From the energy utility point of view it is desirable to have a
system that hides most details of the different loads while

still providing enough information for energy optimization.
The system should be able respond to high level control

commands for, e.g., reduction of the current load in the dis-
tribution system by a certain amount.

2.1 Computational Market Design

Every controllable load in our system is represented by a
load agent, called a HOMEBOT, whose needs and prefer-

ences are modeled by a utility function, describing how im-
portant it is for the agent to have a share of the resource (i.e.
the electrical power). From these utility functions we intro-

duce market mechanisms which settle the distribution of en-

ergy according to the market model described below. The
agents are grouped in correspondence with the inherent to-

pology of electrical grid and the communication system.

This can for example be as in Figure 1.

O Interface Agents

Load Agents,
I HOMEBOTS

r-"?.._2 Loads

400V /(/\ Gray lines and objects denote

] [i the electrical grid and black

agent society.

Figure 1 Agent society structure

The role of the interface agents, as shown in Figure 1, is to
provide the utility with an interface to the load management

system. The interface agents can be thought of as the utility’s

local salesmen. An interface agent can thus be directly ma-
nipulated by the utility in order to make the system behave in
a certain way, so they embody the decentralized control

strategies of the energy utility. Interface agents might or
might not at the same time serve as load agents. Two exam-
ples of the use of the interface agents are given in section 3.

394 ICMAS-96

Note that even though we have introduced a computation-

al market, the relation between the utility and the customers
is regulated through contracts, and the purpose of the com-
putational market is to make good use of these contracts.

2.2 Utility Functions

The utility function is determined by a number of factors,

e.g. load model, current state of the load, user model, utili-

ty/customer contract and expected future prices.

From our experience it is, for a number of loads and con-
tracts, very normal to have a concave utility function, so the

marginal utility (i.e. the first derivative of the utility func-

tion), which serves as the bidding price, decreases with in-
creased resource (i.e. the second derivative is negative).

This property of the utility function is very common in other
application areas as well [7][13].

Figure 2 shows two typical utility functions, one repre-

rmm rmaxr

Water heater Electrically heated house

Figure 2 Typical value curves

senting a water heater and one representing an electrically

heated house. In the case of the water heater the utility in-
creases until the heater is fully heated. For a heated house,

on the other hand, the utility typically raises to a certain
point, when comfort is maximized for the user, and then

gradually decreases.

In this paper we have chosen a utility function, denoted by
u(r), where r is the allocated resource (electric power) for

certain agent, of the form t:

(1) u(r) = a-b.e-(C’r)-(d.r)

By adjusting the parameters, a, b, c, and d, we can describe a

large number of useful utility functions. For each load, r is
constrained, in that it has a lower and an upper bound.

1.This utility function is chosen as a reasonable utility
function. The exact form will be established fi’om fur-
ther investigations of load models etc.

From: Proceedings of the Second International Conference on Multiagent Systems. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

2.3 Bids and Auction Schemes

Reallocations in computational markets are often realized
through auctions (e.g. [2][5][7]) and this mechanism is also

adopted here. In an auction every agent in a group sends a
bid, to a designated auctioneer or to the other agents, and

then a realiocation of the resource is computed. When de-
signing a computational market, one has to decide how bids

should be constructed and, from these bids, determine a

proper reallocation scheme. Thus, the auctioneer should
maximize the total utility of the system from the current bids

of the agents. Formally this leads to the following optimiza-

tion problem:

n
(2) Maximize Utot (rl,r2,...,rn) = E uj (rj)

j=l

such that ~_~rk=R
k=!

Since the total utility is the sum of the local utilities for every

agent, the problem is said to be separable [6]. This property
gives rise to a significant simplification of the realloc- ation

task.
From nonlinear optimization theory we know that when

the Kuhn-Tucker conditions are fulfilled, i.e. when all first

derivatives of the utility functions, ui’(ri), are equal to
shared value ~,, for all agents having an amount of resource

different from their boundary values, then we have achieved
an optimal global solution for this constrained nonlinear

separable concave problem. (For details refer to for example

Ibaraki and Katoh [6] or Fletcher [I].) Loosely, this means
that no agent which is not at its boundary, has a higher mar-
ginal utility than any other agent.

It follows that an optimal solution can be obtained by

solving the nonlinear equation system u’i(ri) - U’n(rn) ---

for i = 1, 2 n- 1. To this end, we introduce a column vec-
tor f = ill, f2 fn.i] T, where fi ffi u’i(ri) " U’n(rn)- Then
apply the standard multi-variable Newton method, (3), for
solving the vector equation f = 0:

(3) Ark = (grad fk)-l,fk
r TM =rk+O~*Ark

where r is the column vector, r = [r l, r2 rn.i]T, grad f is

the gradient matrix of f (also called Hessian matrix, contain-
ing the sccond-order partial derivatives of the utility func-
tion), cx is a step size. and k is the index of the iteration. With
utility functions of the above kind we can use a step size

equal to unity. The key advantage of a Newton scheme is its

very fast quadratic convergence; a property clearly borne out
in our experiments, and of central importance to real-life

load management.
For solving the constrained problem we rewrite rn as R -

rt - r2 - ... - rn.t. Then grad f is:

I u"i(ri)+U"n(rn),
(4) grad fij = ~i

I U"n(rn), i ~
t

After the elimination-by-substitution of the resource con-

straint, we have an unconstrained optimization left, which

we solve by the standard Newton scheme cf. equation (3).

Due to the separability, inversion of the Hessian matrix in
equation (3) is easily done in closed form by use of the Sher-
man-Morrison formula [3].

In order to manage the local boundaries of the resource we

use a scheme based on the RELAX algorithm with lower
and upper bounds on variables [6] with the above Newton

method as relaxed allocation algorithm. Loosely, the idea of

the RELAX algorithm with lower and upper bounds on vari-
ables is to first solve the relaxed allocation problem, i.e.

without bounds on variables, and for each of the variables
that exceed their limit value assign the corresponding limit

value and allocate the remaining resource among the unlim-
ited agents by using the RELAX algorithm recursively. For

details refer to Ibaraki and Katoh [6]. It is not difficult to
show that this way of dealing with the local bounds theoret-

ically scales at most linearly with the number of agents. (In

our simulation experiments of section 3, it even appears to
be rather independent of the number of agents.)

The information needed from every agent in each auction,

the agents’ bids, is the current value and the lower and up-
per bounds of the resource and the first and second deriva-
tives of the utility function. Then for every consecutive

iteration of the auction the first and second derivatives are
needed.

With the simple utility functions specifically used in equa-

tion (4) we could also use an alternative price directed auc-

tion scheme, see section 4. However, the Newton algorithm
will work for a very wide class of utility functions, and is

thus more general.

3 Simulation Results

In this section we present simulation results demonstrating
how interface agents can be used to control the loads in the

distribution system, and see that the above algorithm rapidly

Ygge 595

From: Proceedings of the Second International Conference on Multiagent Systems. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

reailocates the resource properly in the system. Throughout

the simulation, one iteration is performed per time unit. As
we want to take advantage of the benefits of really decentral-

ized control, the energy utility behaves Like any other party

on a competitive market, rather than wielding monopolistic
power as in a purely centralized approach. We will see that

this indeed turns out to be possible, and very efficiently so.
Looking at the formal problem statement of equation (2),

follows that basically two different strategies are open to the
utility within the confines of distributedness: I) Influencing

a single interface agent’s resource in the global resource con-
straint, so as to effectively reduce the total R. 2) Influencing

the utility optimum, by changing a single interface agent’s
utility function and, thereby, bidding price.

Simulation results for both strategies are described in sec-

tions 3.1 and 3.2 respectively. For reasons of clarity, results
are given for a system of ten agents. Scaling issues for the

field application are discussed in section 3.3.

3.1 Reducing by a Certain Amount of Resource

In the first simulation we demonstrate a situation where the
utility needs to reduce the total load, R. in the system, due to
shortage in production, overload in a bottleneck in the grid,

or similar. In this case the interface agent is designated to a

load, say a water heater with a minimum load of 0kW and
maximum load of 3kW. The utility can directly remove or

add resource to this agent. Here we demonstrate how a re-

quest for a reduction of 5.3kW is managed by the system.
In Figure 3 we see that from a given initial allocation,

Power (kW)
2-

0 , ° , ,\,

-2 Time units

-3

-4- / v
Interface agent

Figure 3 A direct reduction of resource in a load
management system.

measured in kW of electric power, the system rapidly relax-

es to equilibrium (in two time units). Then at time six the
utility requests the reduction and simply sets the going re-
source value for the interface agent from approximately

1.3kW to -4kW. This results in a non-feasible allocation,

396 ICMAS-96

since the lower limit of the interface agent (0kW) is violat-

ed. First, the system regains a feasible allocation: after one
time unit the utility controlled load is above its lower bound

(0kW), due to reduced allocation to other agents, and thus
the 5.3kW (I.3 + 4) reduction is performed. After another

three time units the system is back in equilibrium. If the
price of the resource directly corresponds to the real price of

power, we immediately can tell how much this load reduc-

tion costs. This is of course very useful when evaluating the
load management system.

3.2 Changing the Price

As a second control strategy we show a similar system, but
one where the interface agent is not a load agent. Here the

utility attempts to influence the total energy consumption not

by controlling a specific resource, but by bidding a specific
price through changing its utility function. It then trusts the

load management system to achieve a new equilibrium; here
it is open how much the customer loads will be reduced. For
achieving this we have used a linear utility function for the

interface agent. This means that the interface agent will "buy

back" power, thus reducing the consumption of the loads and
decreasing production with the same amount, from all agents

having a lower marginal utility than the marginal utility of

the interface agent, i.e. the slope, or derivative, of the straight
line.

In Figure 4 a simulation of a price change is shown. Again

Power (kW) Interface agent
4,5-,- \ :_.---
3,5 -

/

3-
2,5 -
2

0,5 -
0 I I I I I 1~"’~’7 ~, ! I

I 2 3 4 5 6 7 8 9 10

Time units

Figure 4 Changing the price of the resource

the agents are assigned a given initial amounts of resource.
The interface agent (the top curve in Figure 4) starts with

marginal utility (its bid price) of say 0.3. From the initial sit-
uation, equilibrium is reached in three time units. Then the

utility attempts to reduce the consumption of the loads, by
entering a new bid price for its interface agent equal to, say,

From: Proceedings of the Second International Conference on Multiagent Systems. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

0.4. at time seven. Two time units later the system is seen to

be back in equilibrium. From the amount of resource owned
by the utility agent we see that by changing the price, the

amount of used resource in this part of the system was de-

creased by approximately 2.6kW (ria(10)- ria(4) = 4.1-1.5

2.6).

3.3 Scaling Up

The two simulations shown in sections 3.1 and 3.2 were run
with 10, 20, 50, 100, 500 and 1000 agents and all results are

as good, with respect to convergence, as the ones shown
above. We note that in a real-life application, the number of

loads will typically be in the order of a few hundreds in a sec-
ondary substation area. For getting back to equilibrium when

the disturbance is introduced, three to four and two iterations
are needed in simulation one and two respectively. The result

is much more favorable than the worst-case theoretical result
which indicates a linear scaling with the number of agents. In
the simulations we have only referred to time in terms of

number of iterations, but in field applications we have to deal

with real time constraints. However, a realistic value for
reaching a new equilibrium, which depends on communica-

tion speed, computational power in the network, and agent
configuration, is estimated to be below 0.5s. This is an ex-

tremely satisfactory figure, because it means that our market

approach to power load management in real-life situations is
just a matter of seconds.

4 Analysis
Above, we have shown the practical value of the computa-

tional market in solving a specific, but important, real-life

application problem. As the number of successful applica-
tions quickly increases, there is a growing need for a com-

mon framework for analysis, the more so because the tackled
problems as well as the problem-solving strategies appear

highly diverse. Application-independent, knowledge-level

[9][10][12] characterizations of problems and strategies are
needed, in order to gain an improved understanding of, and
formulate better guidelines for market-oriented prob-

lem-solving. For computational markets, the following
knowledge level aspects of analysis seem particularly usetul

to us:
I) Problem or overall task characteristics: goals, givens,

working conditions and features set by the task environment.
2) Task organization: decomposition, I/O flow, control, re-

sponsibilities due to the distribution over agents. 3) Informa-
tion requirements: what is needed to know for successful

task execution, and where is this information located? 4)

Communication requirements: what information must be
communicated to other agents, and when? 5) Agent compe-
tencies: what must be/is an agent capable of?. 6) Performance

and quality metrics for task execution. This enables us to
*position’ different approaches and strategies in a multidi-
mensional ’space’ of analysis.

Wellman [15] emphasizes a similar point, and specifically

proposes to build on concepts and theory of microcconom-

ics as a formal foundation, and Kurose and Simha [7] offer a
practical example. These ate steps in turning the computa-
tional market idea from an attractive but informal metaphor

for multi-agent system architectures (the famous ’invisible

hand’[11]) into a full scientific theory. We concur with such

a position, but note that there is an extensive additional
body of knowledge in modern mathematics, which in our

view has not yet been exploited to the full benefit of formal
analysis of market-oriented programming. This concerns in

particular nonlinear optimization and numerical mathemat-

ics (for recent overviews, see e.g. [I][6]). In this section
sketch some insights ensuing from such an analysis, illus-

trated by various computational market problems published
in the literature.

4.1 Resource- vs. Price-Orlented Strategies

Our task organization - which we see as the technical lay-

out of what in fact is a new business process in energy utili-
ties - is based on what is sometimes called a reso-
urce-directed strategy, in contrast to a price-directed strate-

gy. Essentially, this distinction refers to how different sub-
task responsibilities are distributed between the trading

agents on the one hand, and the auctioneer on the other

hand. The dynamic variables to be dealt with in market
problems are given by the vector pair (p,r) of bid prices and
demands for resources. In a price-directed strategy, the trad-

ing agents handle the r-part by indicating their resource de-

mands at the going price (by inversion of the first derivative
of the utility function), and the auctioneer then deals with

the p-part, repeatingly sending out market update informa-

tion in terms of adjusted price signals until the resource con-
straints are met. This leads to a market dynamics whereby
the prices function as the independent variables. In re-
source-directed strategies, it is the other way around. Here

the resource equality demand is first dealt with (through
elimination by substitution), and then the utility optimiza-

tion task is undertaken (by an iteration procedure).
It can be verified that the computational complexity in

both cases is the same under appropriate conditions. A capa-

Ygge 397

From: Proceedings of the Second International Conference on Multiagent Systems. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

bility needed, however, in the price-directed strategy is to
carry out the function inversion (existence is guaranteed by

concavity). This is only possible in a limited number of cas-
es, but if it works this is also highly efficient. In resource-di-

rected allocation the competence to calculate derivatives is
needed instead (to achieve comparable efficiency), but this
will work for a wider class of problems.

Wellman’s Walras system [14][15], and ’tatonnement’ in

general, represent prototypicai examples of a price-based
strategy. Mixed strategies, in which agents bid both for a re-

source and offer a price are also possible, cf. Huberman and

Clearwater [5]. Kurose and Simha [7] and the present work
both employ resource-directed strategies.

4.2 Bid Information and Convergence

As pointed out in section 2.3 we have made the strategic
choice that load agents communicate two information point

items (p, p’) consisting of their marginal utility at the current

local resource and its derivative. In principle, one item is
sufficient for a working solution, but adding the second item

has the advantage that it leads to a quadratic rather than lin-

ear convergence rate. If this competency of obtaining deriv-
ative values is not available, in our application we could

switch to variable-metric (quasi-Newton) or conjugate-gra-

dient strategies which will need more iterations but are still
superlinear.

We note that most current market schemes, including the

binary search in Walras as well as ’tatonnement’ in general
[14], the mixed scheme for energy management in [5], and

the first-order algorithm of [7], are all linear schemes, be-

cause they are all in some way proportional to the current
’error’. Communication requirements are also very differ-

ent: Walras [14] communicates full curves rather than point

items, the information content in [5] is different but the re-
lated communication burden is higher (since additional glo-

bal information is required for the local bids) compared to
our case, whereas in the first-order algorithm of [7] only a
single point item is communicated. It follows that given the

amount and nature of the communicated information, in all
mentioned systems except the first-order algorithm of [7],
superlinear rather than linear convergence speed could be

achieved. More generally, many strategic choices are at our
disposal that can improve problem-solving and computa-

tional properties. The tools of nonlinear optimization and
numerical mathematics are helpful in a formal analysis of

this, and we will show this by example in 4.3 and 4.4 in
some technical detail.

Another point worth metioning here is that in Walras,
since the entire utility function is sent to the auctioneer, the

convergence is a task solely resting with the auctioneer.
while the other strategies presented here require inter-agent

communication at each iteration.

4.3 Analysing Kurose-Simha

Kurose and Simha [7] consider a distributed file allocation
problem. The major difference with our problem is in the ab-

sence of upper bounds and in the shape of the utility func-
tions. In Kurose and Simha’s application it is taken to be

(5) ui (ri) = e/r~ +

where ci, #i, Ai are cost parameters

Their simulation results demonstrate clearly how computa-

tional properties favorably change by adding a single com-
municated information item (p’) in going from their first-

order to their second-order algorithm. These results become

theoretically obvious by our following proposition.

Proposition: The second-derivative algorithm of [7] is

equivalent to a Newton algorithm (as outlined in our equa-

tion {3)), specialized to an optimization problem that (i)
separable and (ii) has a linear equality constraint.
Proof: Separability leads to a simple diagonal Hessian ma-

trix in unconstrained problems, and to the form of our equa-

tion {4) in the constrained case. Due to this special form,
equation (3) can be analytically solved by using the matrix

inversion formula named after Sherman-Morrison [3]. Car-
tying out these calculations precisely gives Kurose and Sim-

ha’s second-derivative algorithm.

Corollary: Being a Newton scheme, this is provably a quad-
ratically convergent algorithm, in the sense that quadratic
test functions are optimized in O(1) iterations. In contrast,

linear schemes as mentioned above, need ~(n) iterations I’or
solving the Kuhn-Tucker gradient conditions, n representing
the number of dimensions, i.e. agents, computer nodes or

commodities. The utility functions of both equations (I) and
¢5) are sufficiently similar to a quadratic function over

wide range so that a Newton scheme converges and practi-
cally achieves this superlinear convergence. This also theo-
retically explains why our HOMEBOTS system attains

equilibrium in so few iterations.
Thus, a proper choice of information and communication

resources and competencies leads to very efficient prob-
lem-solving. This has been shown above within a re-

398 ICMAS-96

From: Proceedings of the Second International Conference on Multiagent Systems. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

source-directed strategy, but also holds for price-directed

strategies. Interestingly, Kurose and Simha emphasize the
drawbacks of the price-directed strategy. However, we now
prove that their file allocation problem might also be effi-

ciently solved by a price-directed strategy which is equiva-

lent to Walras [14].

Proposition: The (unconstrained) resource demands corre-

sponding to the (first derivative of the) utility function (5)

given by

(6)

Proof: The corresponding Kuhn-Tucker gradient condition

(all dimensions/agents share the same market equilibrium

price p for their marginal utilities) results, due to the separa-
bility, in a set of equations with a single resource variable

and p as a free parameter. These can be easily solved by
function inversion. Basically, the resource scales with the in-

verse square root of the market price, as seen in equation (6).

Corollary: The task of the auctioneer is to find a value for
the equilibrium price p such that the resources satisfy the

global equality constraint (telling that (6) sum up to unity).
This is a one dimensional root search problem. We further

note that our application might also be handled in the same
fashion. Analytical results, such as these, are very useful for

testing and validating.

4.4 Analysing Walras

Along the same lines we can show that Wellman’s Walras

system [14] [15] might solve the same problems through al-
ternative resource-directed strategies. In his price-based

strategy he employs binary search for the global resource
constraint, which has a linear rate of convergence. This may

be improved to a quadratic scheme, especially if second-or-
der derivative calculations can be made. In his application

to configuration design [15], the constant elasticity utility

function is used, and in this ease this is not much of a prob-
lem,

Walras has the
modity problem,

own application

special feature that it solves a multi-corn-

while all other cited work as well as our
involves a single commodity. This poses

the question [14] how the complexity of resource allocation

problems scales with both the number of agents and com-
modities. A partial answer was given in the previous sec-
tions, where we pointed out that worst-case theory gives a

linear scaling with the number of agents, for concave sepa-
rable problems, and for each commodity. In practice, we
found that it is even more favorable. This fits, by the way,

with Weliman’s remarks. He conjectures that the scaling
with the number of commodities is much more badly. Nev-
ertheless, we have that mutatis mutandis, interchanging

agents with commodities, a worst-case statement holds
analogous to the one above. In Walrns, each agent has to
solve an optimization problem, but this is very efficiently
done by inverse function evaluation. For each commodity,

we have a global resource constrainL In the Walras formula-

tion [I 5], however, these are all coupled through the prices.
This leads to a root search in k dimensions simultaneously,

with k denoting the number of commodities, rather than k
times a one dimensional search as in a separable case.

Hence, the Walras approach is separable in terms of agents,

but nonseparable in terms of commodities. This explains the
difference in computational complexity. But other strategies

with different scaling properties are conceivable.

5 Conclusions

In this paper we introduced a computational market design
for power load management. Power load management aims

at managing the energy consumption of customer equipment

such as boilers and heaters. Every device acts as an agent in
a computational market buying and selling energy. This is a

decentralized way to reduce unwanted peak loads and hereby
save money. We describe an operational simulation environ-
ment, called the HOMEBOTS system. Simulation experi-

ments carried out with the system show that:
¯ the optimal allocation is achieved within a few

bidding iterations.

¯ the system scales up nicely since the number of
needed iterations is ralher independent of the

number of agents, even if it is as high as one

thousand.
¯ the utility can act as being just a party among

many on the market, and still rely on very sim-

ple tactics to successfully manage many loads:

it suffices to either remove a certain amount of
resource or to change the bidding price, imper-

sonated by a single utility-controlled agent.

In conclusion, market-oriented programming is well suited
for this kind of applications, because the information re-
quired for optimization is inherently distributed, prob-
lem-solving turns out to be simple and efficient and it

enables loads to be added and deleted without modifications
of the existing system.

Furthermore, we have given a brief, broader analysis of

this and other computational market problems from the lit-

erature. Nonlinear optimization and numerical mathematics

Ygge 399

From: Proceedings of the Second International Conference on Multiagent Systems. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

provide an integrated framework to characterize different

market strategies and to compare their advantages and dis-
advantages. From our analysis we conclude that:

¯ this branch of mathematics offers solutions to
problems much more complicated than cur-

rently investigated in market-oriented program-
ming, opening up new application areas.

¯ it is possible to find schemes with a superlinear
rate of convergence for market-oriented pro-

gramming problems, better than the often used

binary search schemes.
¯ it is possible to derive analytical insights into

computational markets, important for validat-
ing and testing computational market programs

for real settings.

Hence this approach helps to better understand, but more-

over, considerably extends available problem-solving strate-
gies in market-oriented programming.

Acknowledgments

We would like to thank professor Rune Gustavsson at the
University of Karlskrona Ronneby and president Hans Ot-

tosson at EnerSearch AB for their large support and encour-
agement, Hans Olsson at Lund University for enlightening

us on some numerical analysis issues, and the SoC team at
the University of Karlskrona/Ronneby and Lund University,

the load management team at Lund University, the student

team Flux at SIKT for interesting discussions and comments

on draft material.

References

[I] Fletcher, R., Practical Methods of Optimization, Sec-

ond Edition, John Wiley & Sons, 1987.

[2] Gagliano, R. A., M. D. Fraser, and M. E. Schaefer,

Auction Allocation of Computing Resources, Commu-

nications of the ACM, Vol. 38, No. 6, June 1995, pp.

88-102.

[3] Golub, G. H. and C. F. Van Loan, Matrix Computa-

tions - Second Edition, John Hopkins University Press,

1991.

[4] Hiigg, S. and F. Ygge, Agent-Oriented Programming in

Power Distribution Automation - An Architecture, a

Language, and their Applicability, licentiate thesis,

Department of Computer Science, Lund University,

LUNFD6/(NFCS-3094)/1-193/(1995), LUTEDX/(TE-
CS-3056)/1-193/(1995), ! 995. Also available through

400 ICMAS-96

http://www.pt.hk-r.se/~ fredriky

[5] Huberman, B. and S. Clearwater, A Multi-Agent Sys-

tem for Controlling Building Environments, in Proc-

eedings of First International Conference on

Mull-Agent Systems - ICMAS-95, San Francisco, Cali-

fornia, June, 1995, pp. 171-176.

[6] Ibaraki, T. and N. Katoh, Resource Allocation Prob-

lems - Algorithmic Approaches, The MIT Press, Bos-

ton. 1988, ISBN 0-262-09027-9.

[7] Kurose, J. F. and R. Simha, A Microeconomic Ap-

proach to Optimal Resource Allocation in Distributed

Computer Systems, IEEE Transactions on Computers,

Vol. 38, NO. 5, May 1989, pp. 705-717.

[8] Lenting, J. H. J. and P. J. Braspenning, Delegated ne-

gotiation for resource re-allocation, Lecture Notes in

Artificial Intelligence, Vol. 671, pp. 299-312, Springer

Verlag, Berlin, 1993.

[9] Newell, A., The Knowledge Level, Artificial Intelli-

gence, Vol 18, 1982, pp. 87-127.

l! 0] Schreiber, G., B. Wielinga, H. Akkermans, W. Van de
Velde, and R. de Hoog, CommonKADS - A compre-

hensive methodology for KBS development, II~.I~E Ex-

pert 9(6), December 1994, pp. 28-37.

[l 1] Smith, A., An Inquiry into the Nature and Causes of

the Wealth of Nations, University of Chicago Press,

Chicago, 1976. Reprint of the 1776 edition.

[12]Stcels, L., Components of Expertise, AI Magazine

I 1(2), Summer 1990, pp. 28-49.

[13]Steiglitz, K., M. L. Honig and L. M. Cohen, A Compu-

tational Market Model Based on Individual Action, in

Market-Based Control: A Paradigm for Distributed Re-

source Allocation, Scott Clearwater ted.), World Sci-

entific, Hong Kong, 1995.

[14]Wellman, M., A Market-Oriented Programming Envi-

ronment and its Application to Distributed Multicom-

modity Flow Problems, Journal of Artificial

Intelligence Research, Vol. 1, No. 1, 1993, pp. 1-23.

[15]Wellman, M. A Computational Market Model for Dis-

tributed Configuration Design, Proceedings of AAAI

"94, Morgan-Kaufman, CA, 1994, pp. 401-407.

From: Proceedings of the Second International Conference on Multiagent Systems. Copyright © 1996, AAAI (www.aaai.org). All rights reserved.

