
Power Log'n'Roll: Power-Efficient Localized Rollback for MPI
Applications Using Message Logging Protocols

Dichev, K., Daniele, D. S., Nikolopoulos, D. S., Cameron, K., & Spence, I. (2022). Power Log'n'Roll: Power-
Efficient Localized Rollback for MPI Applications Using Message Logging Protocols. IEEE Transactions on
Parallel and Distributed Systems, 33(6). https://doi.org/10.1109/TPDS.2021.3107745

Published in:
IEEE Transactions on Parallel and Distributed Systems

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2021, IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:22. Sep. 2023

https://doi.org/10.1109/TPDS.2021.3107745
https://pure.qub.ac.uk/en/publications/930fe33e-dd16-4660-82ab-7d304017d76d


1

Power Log’n’Roll: Power-Efficient Localized
Rollback for MPI Applications Using Message

Logging Protocols
Kiril Dichev, Daniele De Sensi, Dimitrios S. Nikolopoulos, Kirk W. Cameron, Ivor Spence

Abstract—In fault tolerance for parallel and distributed systems, message logging protocols have played a prominent role in the last
three decades. Such protocols enable local rollback to provide recovery from fail-stop errors. Global rollback techniques can be
straightforward to implement but at times lead to slower recovery than local rollback. Local rollback is more complicated but can offer
faster recovery times. In this work, we study the power and energy efficiency implications of global and local rollback. We propose a
power-efficient version of local rollback to reduce power consumption for non-critical, blocked processes, using Dynamic Voltage and
Frequency Scaling (DVFS) and clock modulation (CM). Our results for 3 different MPI codes on 2 parallel systems show that
power-efficient local rollback reduces CPU energy waste up to 50% during the recovery phase, compared to existing global and local
rollback techniques, without introducing significant overheads. Furthermore, we show that savings manifest for all blocked processes,
which grow linearly with the process count. We estimate that for settings with high recovery overheads the total energy waste of
parallel codes is reduced with the proposed local rollback.

F

1 MOTIVATION

It is widely accepted that compute clusters and super-
computers are transitioning towards systems of millions
of compute units to satisfy the requirements of compute-
intensive parallel scientific applications. With this increase
in compute components, a proportional decrease in the
Mean-Time-Between-Failure (MTBF) across parallel execu-
tions will follow [1], [2], which would make highly scalable
parallel application runs infeasible without integrating re-
silience. In this manuscript, our focus is on recovery from
fail-stop errors, i.e. any failures leading to the unexpected
termination of an MPI process and the loss of its data; a
node crash is among the possible causes of fail-stop errors.
For fail-stop errors, two main fault tolerance techniques are
used today: the traditional recovery strategy, global rollback,
and another strategy requiring more programming efforts,
local rollback. Besides these techniques, replication, a more
resource-demanding technique, is an alternative resilience
technique [3].

Global rollback is the strategy most commonly used
today. In global rollback, all processes periodically write
coordinated checkpoints, and if a process fails, all processes
roll back execution to the latest global checkpoint. In this
approach, a potentially large amount of work needs to be
recomputed by all surviving processes. Checkpoint/restart
for global rollback has long been analyzed [4], [5], and
supported by a wide range of libraries (e.g. [6], [7], [8]).

Local rollback is the fault tolerance direction which
requires only a small subset of processes to roll back and re-
peat computation from a previous checkpoint. This strategy

• K. Dichev, I. Spence: Queen’s University Belfast, D. De Sensi: University
of Pisa. D. S. Nikolopoulos, K. W. Cameron: Virginia Tech
E-mails: Kiril.Dichev@gmail.com, desensi@di.unipi.it, dsn@vt.edu,
cameron@cs.vt.edu, i.spence@qub.ac.uk

usually relies on important distributed systems protocols,
message logging protocols. In message logging, event and
message logs are stored during communication. When a
failed process is restarted, it recovers with a combination
of a recent checkpoint and replayed messages, which are
replayed by surviving processes, after event logs are in-
spected. Such a scenario is illustrated in Fig. 1a. Process
P5 unexpectedly terminates during execution; the set of
failed/restarted processes is marked with R (solid timeline
in figure). P5 is replaced by another process, which reads
the latest checkpoint, and then continues execution with
the support of message replays from survivors (S – dashed
and dotted lines). Message logging runtimes have never
exploited the fact that S really consists of two survivor
sets. Some of the processes Sactive (with dotted timelines in
figure), replay messages to restarted processes. The remain-
ing survivors Sblocked (with dashed timelines in figure) do
not participate in replays to failed processes. By recognizing
these different process sets, we design power-efficient local
rollback protocols in this work.

By design, local rollback protocols reduce the recom-
pute for surviving processes. It is, however, not easy to
see the end-to-end benefits of local rollback. Even local
rollback requires restarted processes to recompute, and for
tightly-coupled parallel codes all survivors are blocked until
restarted processes recover. Researchers in the HPC commu-
nity have seen local rollback translate into quicker recovery
than global rollback for some applications and some settings
only. In this work, we look into power savings for local
rollback for the first time, and find that this direction leads
to reduced power consumption across different applications
and settings. We explore the differences between active and
inactive processes during recovery, which manifest across
applications and systems. We pursue this idea to show
that local rollback can save power and energy reliably.



2

P0
P1
P2
P3
P4

P5

P6
P7
P8
P9
P10
P11

S_blocked
(blocked processes)

S_active
(active processes)

R
(failed and restarted)

replayed
message

C
H
EC

KP
O
IN
T

(a) Recovery of R via replays of message logs from the set of
processes Sactive. Processes R ∪ Sactive are on the critical path
of recovery. Processes Sblocked are the focus of our power saving
efforts.

P0 P1 P2 P3

P4 P5 P6 P7

P8 P9 P10 P11

(b) A virtual topology of a 2D stencil code, distributed to 12 MPI
processes in a 4x3 grid. The recovery manifests in partitions as
shown above.

Fig. 1: Illustration of local rollback. Failed process is R =
{P5}, the processes actively recovering R are Sactive =
{P1, P4, P6, P9}, and the processes not actively recovering
R are Sblocked = {P0, P2, P3, P7, P8, P10, P11}.

We observe that the critical path of recovery consists of
R ∪ Sactive, and the complementary process set Sblocked,
which are blocked during recovery, build the majority of
processes during every local rollback. A design of power
saving techniques is feasible for Sblocked, and due to the
linear growth of this set with the process count, it yields
consistent power savings. In this work, we design and
measure such power saving techniques on top of message
logging protocols. We show that such savings can be made
without compromising execution time beyond the existing
overheads of message logging protocols.

We recognized the benefits of power savings for a
process set Sblocked in an earlier work [9], but relied on
an unusual recompute-based technique specific to stencil
codes, which we were unable to generalize to codes with
stronger data dependencies. In this work, we design MPI
application extensions applicable to all send-deterministic
MPI applications, which build almost all MPI-parallel codes
used today, and we enable better and more flexible power savings
for these codes:

• We abandon our earlier local rollback technique, since
it was limited in applicability, and instead focus on
message logging protocols, which are applicable to any
applications.

• We previously employed per-socket DVFS to save en-
ergy. Now, we apply DVFS and an orthogonal tech-
nique, clock modulation, to explore further savings. We
enable per-core power saving techniques, which allows
to fully utilize resources without the undesired side
effects of per-socket modifications.

We applied our design to three different HPC codes
as power-efficient local rollback extensions. We see power
savings of ≈ 50% across CPUs, compared to existing mes-

sage logging protocols, during the recovery phase. The
proposed power savings manifest for all tested codes, and
complement the runtime savings local rollback has to offer.

The paper is organised as follows: In Sect. 2 we overview
the related work in message logging and energy efficiency
for resilience. In Sect. 3, we overview local rollback via
message logging. We describe an application-level message
logging design, and also provide an illustration, in Sect. 4.
Power savings are first introduced in Sect. 5. We proceed
to show power-efficient local rollback in Sect. 6. The exper-
imental evaluation is presented in Sect. 7. We follow with a
model comparing our work to existing approaches in total
energy costs (Sect. 8). We conclude the paper with Sect. 9.

2 RELATED WORK

2.1 Message Logging Background

The seminal paper of Strom [10] first introduced optimistic
message logging protocols; it also formalised orphans and
determinants. A number of message-logging protocols with
different complexity and trade-offs have since been ex-
plored. In the general case, uncoordinated checkpointing
and message logging faces many challenges during rollback;
the so called “domino effect” may revert an execution to the
very start [11].

Within MPI runtimes, message logging protocols are a
widely studied area of fault tolerance. Researchers in the
MPI community have mainly focused on three types of
message logging protocols – optimistic, causal, and pes-
simistic [12]. Optimistic message logging [13], [14] is the
least synchronous of the three protocols, and involves send-
ing messages without waiting for either the payload, or the
event to be logged. Causal message logging [15], [16], [17]
involves piggybacking events along with messages being
sent. Pessimistic message logging [18], [19], [20] is the most
synchronous and least efficient protocol, which requires
payloads and events to be logged before messages are sent.
However, pessimistic message logging avoids orphan mes-
sages, one of the major challenges to recovery in distributed
systems. We use a variation on a pessimistic protocol in
our work, synchronously logging payloads before sending
messages. While very different in their design, some con-
tributions eliminate [18] or reduce [19] event logging when
observing some level of determinisim; we also eliminate the
event logger based on similar assumptions on determinism.
Compromises between the extremes of global rollback and
local rollback, called hybrid or partially message-logging
protocols, also exist [21].

In terms of available codebase, a pioneering project for
message logging, MPICH-V(2), is not publicly available or
maintained. Message logging is not actively maintained in
recent releases of Charm++/AMPI either. The only func-
tional open-source message logging protocol can be found
in the pessimistic sender-based VProtocol within the Open
MPI codebase. We find deploying and experimenting with
the VProtocol challenging. The difficulties in experimenting
with message logging runtimes in HPC today have driven
us to implement a working and compact message logging
protocol as application extensions [22]. This opens up the
path for experimenting with further features, such as power



3

savings, as demonstrated in this work. ULFM [23] is a de-
facto fault tolerance standard, consisting of a set of recovery
routines, as well as an underlying implementation for these
routines based on Open MPI. Our protocol relies on ULFM
for features such as failure detection, failure propagation,
and communicator recovery after failures. It is only after
these steps are complete that we recover the application
data of survivors and failed processes via message logs. As
our extensions are on application-level, other fault tolerant
MPI implementations providing such features are potential
candidates for replacing ULFM.

2.2 Resilience and Power Savings

In terms of power savings for MPI applications, many
works [24], [25], [26], [27], [28], [29] apply power reduction
techniques such as DVFS during slow phases (e.g. commu-
nication). They do this in an automated and dynamic way,
balancing between small performance losses and reasonable
energy savings. Our work differs from these contributions,
as we require compact but hand-written extensions for the
recovery phase. We analyze the domain of local rollback
protocols, and apply power savings only when these proto-
cols activate. As a result, we do not impact normal execution
beyond message logging overheads, and do not measure
overheads even during the power saving post failure phase.

In fault tolerance, there are various studies on energy
consumption for the checkpointing phase [30], [31], [32],
[33]. Our work is orthogonal to these, as we focus on
power savings during the recovery phase, rather than the
checkpointing phase. Power savings and resilience have also
been combined in recent years in areas such as approximate
computing [34], where aggressive power saving might re-
sult in errors, which in turn can be handled by using fault
tolerance techniques.

3 LOCAL ROLLBACK VIA MESSAGE LOGGING

3.1 Message Logging Protocols in Runtimes

Message logging protocols have been studied widely in the
past, and found various uses; one of them is the ability
to forge combinations of uncoordinated checkpointing and
message logging, which reduces the overheads of check-
pointing. However, we here use message logging protocols
in another popular direction [20], [22] – in order to enable
local rollback.

We outline here the fundamentals of how message log-
ging protocols allow for local rollback for MPI applica-
tions, without detailing the differences between different
flavours of such message logging protocols. Message log-
ging protocols require two important aspects of execution
to be logged: events and message payloads. Events include
send or receive events triggered by a process. The send
and receive events are logged in some way, depending on
the message logging protocol. The simplest event logging
variation is pessimistic event logging. In pessimistic event
logging, “all previous non-deterministic events of a process
are logged before the process is allowed to impact the rest of
the system” [20]. This pessimistic protocol increases latency
by logging non-deterministic events in a blocking manner,
but it avoids some significant complications that may arise,

such as orphan messages. The popular sender-based version
of the pessimistic protocol logs message payloads being sent
over the network at the sender.

If a fail-stop error occurs, such as a crash of MPI
processes, a recovery protocol is triggered. During local
rollback, only the failed processes need to roll back to the
latest valid checkpoint. We have earlier illustrated a typical
local rollback in Fig. 1a. We denoted the set of restarted
processes with R. These processes need to restart the paral-
lel execution, sending and receiving messages almost as in
normal execution (some re-sends need to be cancelled). The
receives, unknown to the processes R, are actually message
replays by survivors.

Not all survivors behave uniformly during local rollback.
It is instrumental to observe how communication patterns
determine the level of involvement of survivors during
local rollback. Let us consider a two-dimensional stencil
code, such as the Jacobi solver of our experimental work. A
virtual topology of processes is illustrated in Fig. 1b. In this
example, process P5 crashes unexpectedly, i.e. R = {P5}.
Each process communicates with the processes adjacent to
it in the virtual 2D topology (north, south, east, and west
direction). The adjacent processes to P5 are the active pro-
cesses replaying messages to it during recovery. Therefore,
for this example the replay of messages manifests exactly as
shown in Fig. 1a.

We can define a function Sactive, which maps a sub-
set of P , the failed processes, into another subset of P ,
the active processes involved in replaying messages, i.e.
Sactive : 2P −→ 2P . For any subset of failed processes
R, Sactive(R) is entirely determined by the communication
pattern of the application. For the Jacobi example, as shown
in Fig. 1b, Sactive({P5}) = {P1, P4, P6, P9}. We define the
complement Sblocked = P \ {Sactive ∪ R}. The set Sblocked
is central to our contribution, as these processes do not
participate in the recovery along the critical path (as shown
in Fig. 1a). Another way to formulate Sblocked is as the set of
processes not replaying any messages to processes from the
set R.

Sactive(R) is determined by R and the communication
pattern of each HPC application. It would appear that codes
employing collectives would result in Sactive = P . We will
detail in Sect. 6.3 how the implementation of MPI collec-
tives, where each process only communicates with few peers
directly, results in a small set Sactive. This results in a large
set Sblocked (proportional to the process count), allowing
for large power savings even for traditionally challenging
codes, such as CG. This observation significantly generalizes
our work, beyond local dependency codes such as stencil
codes.

It is worth noting that Sblocked and Sactive are never
explicitly defined in our implementation. The difference
between them manifests during recovery, when message
replays are needed (or not) by a process. We only define
Sactive and Sblocked explicitly to illustrate our approach,
to analyze our experiments, and to project the large-scale
benefits in this work.

3.2 Why We Apply Power Savings Only to Sblocked
The process set Sactive(R) is involved in message replays for
the set R. A key observation is that the joint set of processes



4

R ∪ Sactive are all on the critical path of recovery (Fig. 1a).
Any power saving techniques applied to processes from this
set lead to a slowdown of recovery. Therefore, we apply all
power saving techniques entirely on the complementary set
Sblocked.

3.3 Saving Time or Energy for Local Rollback

Contributions employing message logging protocols have
shown faster recovery with local rollback, compared to
global rollback [18], [20], [35]. All of these contributions
differ from each other, both in underlying setup and used
runtime and applications, and their observations cannot be
generalized. Indeed, there are some fundamental challenges
when we ask if global or local rollback is faster. For example,
the recovery of failed processes (see P5’s timeline in Fig. 1a)
is on the critical path of execution. Only when this critical
path is faster for local rollback than for global rollback do
we observe quicker recovery. For some systems and appli-
cations, local rollback reduces the workload of a checkpoint
server, RAM or CPU resources, compared to global rollback,
as shown in related work. However, such observations are
not performance-portable in any way. By optimizing the
underlying system (more efficient resource utilization, less
load imbalances), or optimizing an HPC application, the
observed benefits of local rollback in related contributions
are likely to become less noticeable.

On the other hand, power savings during local rollback
have not been previously explored. We will show that such
savings manifest for all tested codes, and for two different
clusters, due to the algorithmic differences between active
and inactive processes during recovery. Also, the power
savings are orthogonal to the savings in execution time,
and are therefore an added (and unexplored) benefit to local
rollback.

Time and energy savings of local rollback will be further
analysed in Sect. 8.

4 EXAMPLE: MESSAGE LOGGING JACOBI ITERA-
TION

In this section we detail our design of message logging
capabilities, which enable local rollback. We postpone the
discussion on power savings to Sect. 5.

We find the best available implementation [20], Open
MPI, challenging for enabling message logging protocols
(we had difficulties both with payload logging via the
Vprotocol, as well as with the event logger). Our work
therefore implements message logging as application ex-
tensions [22], instead of using message logging runtimes.
To our knowledge, our design is unique in the message
logging landscape. Similarly to runtime implementations,
we log message payloads, but on application level. We
never log events, since the codes are send-deterministic; a
similar optimisation has previously been explored for run-
times which dynamically inspect the level of determinism
of communicaion [19]. Some implementation details also
differ, e.g. communication repair between survivors after
failure (details in Sect. 4.6).

Some advantages of our extensions are: (a) they encour-
age experimentation, while very compact (b) they apply to

all send-deterministic codes, which cover most existing HPC
codes in use today [36] (c) they simplify deployment, as
we eliminate the event logger component altogether (d) by
design, we are not bound to any MPI runtime, as long as it
provides failure detection and communicator recovery.

Some disadvantages of the extensions are: (a) we re-
quire manual code instrumentation (b) our techniques carry
memory/runtime overheads compared to optimized mes-
sage logging runtimes, in particular the repair of survivor
communication of Sect. 4.6 (c) MPI collectives need to be
re-written for our extensions, as we only log point-to-point
calls in this prototype.

For illustrative purposes, we walk through the message
logging extensions of a Jacobi iteration, an application used
for modelling heat propagation, in Alg. 1. Message logging
aspects include the send wrapper, the replay routine, as
well as the catch block, all highlighted in blue. While the
power-efficient extensions are also listed here (reduce dvfs
function, and try block, highlighted in gray), they will
be discussed in later section. In order to enable message
logging capabilities, and local rollback, we extend the Jacobi
iteration. The principles shown for this implementation
apply to the other tested codes, CG and LULESH, as well.

4.1 Starting Point – Checkpointing Jacobi Iteration
The starting point for extensions is an already fault tolerant
Jacobi iteration, with global rollback via checkpoint/restart.
It is shown in the try block, starting from line 56. Each iter-
ation performs neighbour exchange in all 4 directions in 2D
(north, south, west, east), followed by an SOR (Successive
Over-Relaxation) update. Every CP_INTERVAL iterations,
each process writes a checkpoint of its state to a persistent
medium.

4.2 Sender-Based Payload Logging
First, MPI send operations for each of the codes are replaced
by send wrappers, as outlined for one of the exchanges
(with the northern neighbour) in Alg. 1 (line 42). The send
wrapper is implemented as shown, starting from line 10.
This function implements sender-based payload logging.
The logic is two-fold: (a) Normal send: If sender and re-
ceiver iterations match (line 12), we issue a non-recovering
send, in which case we log a message payload for future
failures. (b) Recovering send: Otherwise, we are issuing
a replay request during recovery, and we need to send a
logged message (either to a survivor notified of a failure in
a previous iteration, or to a restarted process). The send-
deterministic communication pattern means we are guar-
anteed to have previously logged this message as part of
a normal send. The iteration argument, which extends the
standard MPI_Send argument list, is required as a key for
storing or looking up logs. The send wrapper is applied very
similarly across different applications.

4.3 Failure Detection and Communicator Repair
The detection of failures can happen in any of the MPI calls
(part of the neighbour exchanges) in the try block in Alg. 1.
The underlying ULFM implementation, which provides
these capabilities, leans towards a C-based programming



5

Algorithm 1 Outline of power-efficient message logging
Jacobi. The send wrapper and replay routines build the
message logging extensions. The reduce dvfs call followed
by a barrier (try block) build the power saving extension.

1 void reduce dvfs ( ) {
2 / / Get t h e c o r e where t h i s p r o c e s s i s p inned
3 Domain* d ;
4 d = Config : : cpufreq−>getDomain ( Config : : v i r tua lCore ) ;
5 / / S e t t h e c o r e t o t h e minimum f r e q u e n c y
6 Frequency t a r g e t = d−>getAvai lab leFrequenc ies ( ) . f r o n t ( ) ;
7 d−>setGovernor (GOVERNOR USERSPACE ) ;
8 d−>setFrequencyUserspace ( t a r g e t ) ;
9 }

10 void send wrapper ( . . . , i n t dest , i n t c u r r e n t i t e r ) {
11 i f ( c u r r e n t i t e r == p e e r i t e r s [ dest ] ) {
12 i f ( p e e r i t e r s [me] == p e e r i t e r s [ dest ] ) {
13 append log ( buf , c u r r e n t i t e r ) ;
14 MPI Send ( buf , . . . ) ; }
15 / / r e p l a y i n g send
16 e lse i f ( p e e r i t e r s [me] > p e e r i t e r s [ dest ] ) {
17 / / g e t p r e v i o u s l y s t o r e d l o g
18 log buf = get log ( c u r r e n t i t e r , . . . ) ;
19 MPI Send ( log buf , . . . ) ; }
20 e lse { return 0 ;} / / f i l t e r out s e n d s i n t o f u t u r e
21 }
22 }
23 void replay from logs ( ) {
24 MPI Allgather ( p e e r i t e r s , . . . ) ;
25 i f (me == f a i l e d ) {
26 read checkpoint ( ) ;
27 }
28 e lse { / / s u r v i v o r p r o c e s s
29 maxit = max( p e e r i t e r s ) ;
30 minit = min ( p e e r i t e r s ) ;
31 for ( i n t i t =minit ; i t<maxit ; i t ++) {
32 send wrapper (NULL, . . . , i t ) ; / / n o r t h
33 send wrapper (NULL, . . . , i t ) ; / / s o u t h
34 send wrapper (NULL, . . . , i t ) ; / / e a s t
35 send wrapper (NULL, . . . , i t ) ; / / wes t
36 update ( p e e r i t e r s ) ;
37 }
38 }
39 }
40 void exchange north ( void * sbuf , void * rbuf , i n t i t ) {
41 MPI Irecv ( rbuf , . . . ) ;
42 send wrapper ( sbuf , . . . , i t ) ;
43 MPI Wait ( . . . ) ;
44 }
45 void j a c o b i ( ) {
46 for ( i n t i t =0 ; i t<i t e r a t i o n s ; i t ++)
47 {
48 t r y{
49 i f ( r e c e n t l y f a i l e d &&
50 ( i t == max( p e e r i t e r s ) ) ) {
51 reduce dvfs ( ) ;
52 MPI Barrier ( ) ;
53 r e s e t d v f s ( ) ;
54 r e c e n t l y f a i l e d = f a l s e ;
55 }
56 exchange north ( . . . , i t ) ;
57 exchange south ( . . . , i t ) ;
58 exchange east ( . . . , i t ) ;
59 exchange west ( . . . , i t ) ;
60 SOR update ( ) ;
61 i f ( i t % CP INTERVAL == 0)
62 wri te checkpoint ( ) ;
63 }
64 catch ( ) {
65 r e c e n t l y f a i l e d = t rue ;
66 repair communicator ( ) ;
67 r e s e t i t e r a t i o n ( ) ;
68 replay from logs ( ) ;
69 }
70 }
71 }

style, but we choose the try/catch illustration for clarity.
In ULFM, a survivor detects a failure only in an MPI call,
which can either detect the termination of another process
directly (e.g. via timeout), or it may be informed of the
failure during the propagation of failure notification from
another survivor.

The MPI communicator repair functionality we adopt
from ULFM detects and repairs the world communicator
for the codes we use (we do not employ sub-communicators
for the tested codes). The repair of non-basic communicators
has not been studied in detail in this work. We have shown
the repair as a repair communicator() call (l. 66). It involves
important distributed protocols such as consensus/agree-
ment.

4.4 Reset Iteration

Resetting iterations (line 67) is a design decision we will
detail in Sect. 4.6. In the case of a Jacobi iteration, the
reset iteration function is an empty stub. The original code
uses double buffering; old and new buffer are swapped after
each SOR update. Until the swap happens, an iteration can
be reset without side effects (operations on a “new” buffer
can be repeated without side effects). However, for other
applications, such as CG and LULESH, we introduce addi-
tional buffers of the entire application data; by using double
buffering, we avoid unnecessary deep copy operations of
buffers; reset iteration then needs to only ensure the current
iteration is restarted without swapping buffers.

4.5 Replay Messages

The replay of messages (l. 68) is at the heart of recovery
for message logging protocols. We have outlined our design
in the replay from logs function. The current iteration of
each process (including restarted processes) is broadcast
to everyone (MPI_Allgather call). This is sufficient to
determine which sends or receives need to be reposted
across all processes.

Each survivor repeats only the send calls of its commu-
nication pattern, ranging from the latest checkpoint itera-
tion til the forefront of computation (l. 31-36). The send
calls in replay from logs replicate exactly the exchange in
north/south/east/west direction, following the application
communication pattern. It is important to preserve the
send pattern, as the protocol is validated against send-
deterministic applications. Note that some receives may
very well complete in a different order before and after
failure, and this by definition has no consequences in send-
deterministic applications [36].

4.6 Repairing Survivor Communication by Resetting
MPI Iterations

A major difference in our message logging extensions, com-
pared to runtimes, is in the recovery of communication
between survivors after failure. In runtimes, two important
components of post-failure recovery for survivors are (a) the
reposting of interrupted communication, and (b) tracking
messages; these are detailed in recent work ( [20], Sect. 6
and 7). The reposting of interrupted communication could



6

iterationst t+ 1

Message logging runtime: re-post MPI
calls, re-send lost messages between
survivors

Survivor
detects
failure

Message logging application: reset entire
iteration from the start

Fig. 2: Illustration of post-failure communication between
survivors. In MPI, rollback is minimised with complex
tracking protocols. Our application-levevl solution instead
uses transactional MPI iterations, and rolls back up to a full
iteration.

be implemented in user space; still, it is complex, as non-
blocking communication consists of multiple calls (e.g. the
non-blocking send and the corresponding wait), and the
internal progress of interrupted communication needs to be
inspected. The tracking protocol is even more challenging
for our design, since it requires tight integration with the un-
derlying MPI library. After failure, tracking allows to decide
which messages need to be resent, and which messages have
been successfully delivered. Following this implementation
path requires exposing MPI library internals to the appli-
cation, which conflicts with our application-level design of
message logging.

Therefore, we propose an application-level solution,
which is portable across runtimes, and avoids the issues
of re-posting communication and tracking protocols to roll
forward. Our solution is to make MPI iterations transactional.
After failure, all surviving processes restart their current
iteration, which may be a rollback of an entire iteration, be-
fore continuing execution. This is a departure from message
logging runtimes, where survivors may only re-issue a very
limited number of MPI calls, but use MPI library-dependent
protocols to do so. We illustrate the differences in degree of
rollback for survivor communication repair in Fig. 2. Our
solution requires us to keep additional copies of application
data, as otherwise repeating parts of the same iteration
before and after failure may corrupt the application data
(most applications are non-idempotent). This can double
memory overheads, but runtime overheads are minimal by
using double buffering techniques (i.e. writing updates of
old buffer into new buffer). This solution provides us with a
portable survivor recovery, which is detached from any MPI
underlying runtime, and is free from fine-grained protocols
such as re-posting and tracking.

We have validated our message logging extensions by
checking the application data integrity at various post-
failure stages [22].

5 POWER SAVING TECHNIQUES

In this work we focus on reducing the CPU power con-
sumption, because it usually accounts from 40% to 70%
of the total consumed power [37], [38], [39]. Even if the
power profile might be different on multi-GPU systems,
the CPU would still consume a relevant fraction of the
total power. To reduce CPU power consumption, we explore
two widely used techniques: Dynamic Voltage and Frequency
Scaling (DVFS), and Clock Modulation (CM).

5.1 DVFS

Linearly decreasing the clock frequency leads to an almost
cubic decrease in the dynamic power consumption. More-
over, reducing the supply voltage also reduces the static
power consumption. Modern CPUs provide the possibility
to manually change the frequency by selecting it from a
discrete set of values (also known as P-states). Depending
on the CPU type, sets of cores may be forced to run at the
same clock frequency. For example, on older CPUs, all the
cores on the same socket might need to run at the same clock
frequency.

5.2 Clock Modulation (CM)

CM uses clock gating (i.e. disables the clock to some portion
of the circuit) to alternate activity periods to idle periods.
During idle periods, the dynamic power consumption is
reduced to zero. Clock modulation relies on T-states, and
each T-state corresponds to a given idle period duration.
For example, in T1 the power manager may clock-gate 25%
of the cycles, meaning that the core will be active for the
75% of the time only, while in T2 the power manager may
clock gate 50% of the cycles. The duration for the clock-gated
periods depends on the specific CPU technology.

These two techniques are orthogonal. Whereas by using
DVFS the CPU always executes instructions (but at a lower
speed), with CM the CPU alternates periods when it is
completely idle, to periods when it is active (and running
at an arbitrary frequency).

5.3 Per-Core DVFS and CM

Modern computers consist of many-core sockets, and it
is normal to subscribe all cores during MPI-parallel runs.
However, the disjunct partitions Sblocked and Sactive, which
manifest during failure, are not correlated with our process
placement on nodes. It is very undesirable to burden the
programmer with these considerations. If we are only capa-
ble of coarse-grained techniques, such as per-socket DVFS,
performance issues are inevitable. If after a failure a mix of
processes from both Sblocked and (Sactive ∪ R) are on the
same socket, we end up with a race condition during per-
socket power modifications. This leads to either a significant
slowdown of execution, or a reset of frequency with no
energy savings. We experienced such race conditions in
practice, and for this reason we only use per-core DVFS or
per-core CM.



7

Matrix
Product

Barrier
(Default)

Barrier
(CM)

Barrier
(CM+DVFS)

Barrier
(DVFS)

0

25

50

75

100

CP
U 

po
we

r
co

ns
um

pt
io

n 
(W

at
ts

)

Fig. 3: Results from barrier variations (Alg. 2) demonstrate
that applying power saving techniques is clearly beneficial
to barrier synchronization.

5.4 Power Saving Techniques Compensate for
Performance-Driven MPI Progress Engine

Since MPI implementations are geared towards perfor-
mance, the MPI progress engine usually busy waits, polling
the progress of events, during point-to-point communica-
tion, such as blocking receive calls. It is useful to quantify
the power consumption of blocking MPI calls. If the power
consumption of blocking MPI calls is equal to the idle
power consumption, the power saving techniques applied
to Sblocked in this work would be unnecessary. Rather, the
message logging protocols would automatically and trans-
parently translate into power savings.

To quantify the potential of energy savings on an Ether-
net cluster (see Tab. 1 for details), we use a synthetic bench-
mark, in which per-node power consumption of following
phases is measured:

Algorithm 2 A synthetic benchmark used to illustrate the
potential savings of power-effient MPI Barrier calls.

MATRIX PRODUCT . no power saving
MPI BARRIER . no power saving
MPI BARRIER . 8/8 per-core CM
MPI BARRIER . 8/8 per-core DVFS+CM
MPI BARRIER . 8/8 per-core DVFS

For the matrix product, each of 8 MPI processes (1
process per core) independently performs a naive three-
time nested matrix-multiply loop. For the MPI_Barrier,
1 of 8 MPI processes sleeps for 5 seconds, before joining
the remaining 7 processes in the barrier call. We adjust each
phase to take ≈ 5 secs, and divide the measured energy
consumption in joules by the time of each benchmark in
order to get the power consumption in watts.

The results shown in Fig. 3 are for the CPU power
consumption. While we expect that the compute-intensive
matrix-multiply would consume most power (98 watt), the
standard MPI_Barrier call burns 91 watt, busy waiting on
progress in MPI. Similar effects have also been shown for
other use cases and MPI library implementations [29]. We
then apply per-core DVFS and/or per-core CM. Overall, we
observe that applying either technique to the MPI_Barrier
saves 26 watt, reducing CPU power consumption by 28%
to 64-65 watt. The combined DVFS+CM technique provides
marginally better results than the other techniques, saving
around 30 watt, or 33% of the CPU power.

The reader may notice that our message replay (Sect. 4.5)
relies on two-sided communication. In recent years related
work [40] has performed some parts of the message replay

via one-sided communication. The authors strive to make
the recovery phase less synchronous in this way, and mea-
sure performance gains at surviving and restarted processes.
It is an open research question how the introduction of
one-sided communication into our design (e.g. via restarted
processes reading from the remote memory of survivors)
would affect power consumption; it would be particularly
interesting to explore this topic for Infiniband networks
supporting RMA on hardware level.

In the remainder of this contribution, we entirely focus
on per-core power settings, which provide good energy
savings without the undesired side effects of per-socket
power settings (Sect. 5.3).

6 INTEGRATING POWER EFFICIENCY INTO LOCAL
ROLLBACK PROTOCOL

6.1 Reducing and Resetting Power Settings
In order to improve power efficiency for any process p ∈
Sblocked, we need to interface with the underlying hardware.
To do that we essentially introduce two calls resulting
in power savings. Reducing power (reduce_power) may
use DVFS or CM, to start a power saving phase, with
possible loss in performance. Resetting power to maximum
(reset_power) resets to the “nominal” frequency settings,
and maximum performance.

The exploration of DVFS and CM may yield impor-
tant benefits, and in this work we employ Mammut [41],
a high-level programming interface for managing system
settings, including DVFS and modulation. The Mammut
API enriches our capabilities in a number of ways. On
one hand, we can use high-level calls to set per-core DVFS
and/or CM, in combination with the acpi cpufreq driver (we
previously had to edit driver files, in a low-level and error-
prone manner). On the other hand, we can do fine-grained
energy readings per socket, allowing us flexible application
monitoring at each iteration.

To illustrate the use of the API, we have shown the
reduce dvfs() implementation in the beginning of Alg. 1.
The implementation of reset, or CM modifications, is very
similar. Now that we have the building blocks for power
savings with MPI calls, we use them only in the recovery
phase to minimize the impact on execution time.

6.2 Post-Failure Power Saving MPI Barrier
We apply power savings entirely to MPI_Barrier calls,
which are injected into the code, as shown in the try block of
Alg. 1. We refrain from applying power savings to computa-
tionally intense or other MPI communication calls. There is
an important reason we choose a barrier synchronization; as
noted in related work [42] also experimenting with power
saving barriers, “synchronization steps do not have to pro-
cess a given amount of load, but the progress of the program
is delayed until the synchronization signal is received”. This
results in a marginal loss of performance. The real challenge
is the careful design of where power saving barrier calls are
introduced.

We only use power saving barrier synchronization after
recovery. A small loss in performance is possible in this
phase; however, in our experimental evaluation, we did not



8

P4

P5

P6 P7

P4 P6

P5

Fig. 4: Fixed communication partners of a random process
P5 for two MPI Allreduce implementations. Left: Failed
process is inner node of binomial tree reduce+broadcast im-
plementation. Sactive = {P4, P6, P7}. Right: Failed process
is any node of ring implementation. Sactive = {P4}.

notice a slowdown; the performance loss is mostly in the
order of milliseconds, which makes it negligible for recovery
phases in the order of seconds. In the remainder of this
section, we discuss some of the challenges of the power
saving synchronization.

6.2.1 Synchronizing when the barrier is called
Notice that we synchronize the barrier call at the forefront
of computation (line 52 in Alg. 1). All MPI processes must
agree on a well-defined execution point in the future for
synchronization. Since even the most advanced process
restarts its current iteration (Fig. 2), all processes will even-
tually execute the synchronizing barrier after recovery. This
consideration is important as otherwise a deadlock might
occur.

6.3 Management of MPI Collectives

MPI collective communication is essential to most HPC
codes. Consider the very important MPI_Allreduce collec-
tive, which is also used in all the applications we test. Since
survivors do not need to recompute completed collective
calls, we do not need to re-issue allreduce everywhere.
Still, survivors must replay all messages of the allreduce
to restarted processes, and the underlying implementation
is important. A very inefficient allreduce implementation
(example: round-robin communication to/from all peers)
could lead to Sblocked(R) = ∅ for any failed processes R.

Fortunately, no MPI implementation is that inefficient.
Usually, communication trees with few edges per node are
scheduled. As an example, consider Fig. 4; the allreduce
in the NPB CG benchmark is implemented as shown on
the left, as a binomial tree reduce upwards, followed by a
binomial tree broadcast downwards. For this efficient im-
plementation (among others) of allreduce, any process has
a fixed number of communication partners, independent of
the total process count. For failed process R = {P5}, this
results in Sactive(R) = {P4, P6, P7}. In addition, we have
implemented for LULESH allreduce via another popular
algorithm, the ring algorithm (Fig. 4, right), where we again
use our sender-based message logging. For this implementa-
tion, if R = {P5}, Sactive(R) = {P4}. These optimizations
allow Sblocked to build the majority of processes for limited
numbers of failed processes til recovery. Only few processes
communicate with a failed process directly, therefore only
a limited number of processes replay messages to a failed
process.

Cluster #
Nodes

CPU DVFS
Range

CM
Range

RAM Network

QUB 4 Single-socket
6-core

Haswell
(E5-2620 v3),
total 6 cores

1.2-2.4
GHz

6.25%
– 100%

32GB 1Gb
Ethernet

VT 18 Dual-socket
4-core

Broadwell
(E5-2637 v4),
total 8 cores

1.2-3.5
GHz

6.25%
– 100%

16GB 10Gb
Ethernet

TABLE 1: Hardware configuration/settings of development
clusters at QUB and VT.

Different implementations for collectives exist (e.g.
allreduce implementations include ring-allreduce, Raben-
seifner’s allreduce [43], binomial tree reduce + broadcast).
We will not study in detail the many implementations of
MPI collectives here. However, for performance reasons
most implementations reduce the communication partners
per process, which fits well with our design for power
savings of Sblocked.

7 EVALUATION

7.1 Experimental Setting
We use two development clusters for our experiments – one
at Queen’s University Belfast (QUB), and one at Virginia
Tech (VT). The hardware details of each cluster , including
permitted ranges for DVFS and CM, are given in Tab. 1.

In terms of experimentation, modifying the power set-
ting (e.g. applying DVFS and CM) requires either root per-
missions, or the presence of the msr-safe kernel module [44].
This usually introduces disruptions and security concerns
and the access to those mechanisms is usually not provided
to non-privileged users on large systems. For these reasons,
we were able to setup these mechanisms only on medium-
size systems on which we had root permissions, and not on
larger scale systems. We used the acpi-cpufreq driver on both
systems.

We employ ULFM [23] (version ULFM 2.0 rc1), which
exposes a set of fault tolerance routines to the devel-
oper; these fault tolerance building blocks are implemented
within Open MPI, an open-source implementation of the
MPI standard. We run all settings with fixed process to core
binding, in order to ensure that a process is not migrated
upon setting the frequency or clock modulation of a core.

The Mammut library is linked and called at each MPI
process similarly to single-process applications. We imple-
mented a few wrapper functions, which use the existing
Mammut API to initialize and reset benchmarks. Before
each benchmark, we first set all cores on all nodes to run at
minimum frequency. At the start of a benchmark, the clock
frequency is reset to the maximum frequency only on the
cores with pinned MPI processes. This initialization is required
for all experiments not utilizing processors fully, as we only
read energy on a per-node level, and we need to make sure
unused cores do not skew our readings. During recovery,
per-core DVFS and/or CM are performed as required, as
outlined in previous sections. We use Mammut to read the
energy consumption of the CPUs. On the systems we use,
Mammut relies on RAPL [45] for energy readings.



9

LULESH CG Jacobi
Processes/nodes for

small-scale runs @QUB
8/2 16/4 24/4

Processes/nodes for
small-scale runs @VT

8/1 16/2 24/3

Processes/nodes for
medium-scale runs @VT

125/16 128/8 144/18

Problem Size 453 Per
process

Class D 75002 per
process

#Iterations 100 100 25
Failing Iteration 90 95 18

Observed S active for
R = {0} and mid-scale

runs

{1, 5, 25} {1, 2, 4, 8} {1, 8}

TABLE 2: Setting and parameters for each HPC application
during experiments.

The HPC applications used in this work are Jacobi, CG,
and LULESH. All of these have been extended with message
logging capabilities. Our message logging kernels are open-
sourced and freely available [46] (branch ’rc1’ is used for
this submission). All the underlying libraries, including
ULFM, msr-safe, Mammut, are also made available by the
corresponding developers.

7.2 Benchmark Codes
We have chosen the following three individual benchmarks,
from different software projects, and extended them with
power saving message logging capabilities:
CG The NAS Parallel Benchmarks [47] are well-known

performance benchmarks in HPC. CG is among the
most communication-intensive and challenging codes
when message logging is enabled, because its allreduce
phase requires global synchronization.

LULESH LULESH is a popular hydrodynamics mini-app,
often used in various performance and power bench-
marks [48]. We extended LULESH version 1.0, as it
provides a checkpointing code.

Jacobi The Jacobi iteration is not really a performance
benchmark, but a classic heat propagation code popular
with the ULFM developers for demonstrating the use
of its fault tolerance extensions. Jacobi was the only
code running with any even-numbered processes, so
it always fully subscribed the available cores.

7.3 Failure Scenarios
The settings for each application are outlined in Tab. 2. We
try to fully subscribe the available cores, but are unable to
do so in some cases, due to limitations in the benchmarks
(e.g. LULESH process count must always be a cube, which
is why we cannot fully subscribe the QUB cluster cores for
LULESH).

The power saving message logging protocols only man-
ifest when failures occur. We have modified each of the un-
derlying applications to run only a few iterations, compared
to the iterations of the original benchmark suites. These
iterations are representative for a failure and recovery phase,
since our power savings only apply to such phases. Without
loss of generality, such a phase starts with a checkpoint (in
the RAM of a buddy process, or on disk). After a fixed
number of iterations we kill a fixed process number (rank
0 for all of our experiments) by raising a SIGKILL signal.

We rely on ULFM to detect the failure and recover the
MPI communicator first. After that, we experiment with the
resilience strategies global rollback, and local rollback via
message logging with (a) no power saving techniques (b)
DVFS (c) CM (d) DVFS and CM. The first two techniques
are state-of-the-art: Global rollback is the classic check-
point/restart with no message logging, where all processes
roll back and recompute from the latest checkpoint (e.g. [5],
[49], [50], [51]). Local rollback uses our version of a message
logging protocol via application extensions. First, we make
no efforts to reduce power consumption, which corresponds
to existing message logging rollback. The novelty of our
work is then showcased in experiments (b)-(d), a power
saving local rollback for different applications.

7.4 Results

We first observe runtime and power consumption as iter-
ations progress, in Fig. 5. The results are for the medium-
scale runs (see Table 2). For clarity, we zoom into a small
range of iterations around the failure iteration. The duration
of each iteration, as well as the power consumption (in
watts) for each iteration, are shown. We report the per-CPU
power consumption, which is read at each MPI process. For
each bar the standard deviation visible as black line repre-
sents the deviation between process readings. Each iteration
displays the time and power consumption from start to
completion of the iteration – with or without a failure. This
makes comparison between different resilience mechanisms
easier; however, global and local rollback fundamentally
differ for survivors. Global rollback rolls back all processes,
which leads to all iterations between the last checkpoint and
the iteration of failure detection to be repeated by every
survivor. Local rollback displays a very different behaviour
for survivors, which remain in the respective iterations
where failure is detected. In terms of durations, while global
and local rollback are similar in duration for Jacobi and
LULESH, for CG local rollback is much faster than global
rollback. We attribute this to the reduced communication for
CG, which is a bottleneck for this code. The quick recovery
for CG reduces the impact of our power saving design on
overall power consumption, as we will detail later. In terms
of energy savings, the experiments show that for all codes,
our proposed power-efficient local rollback makes around
50% power savings, or around 50 watts per Intel Broadwell
node, during the recovery iterations. These savings are
made over the usual local rollback protocol without power
savings. For the Broadwell-based cluster, DVFS is clearly the
most power saving technique, better than CM which saves
around 20 watts per CPU. For the Haswell-based cluster,
CM and DVFS both show good power savings. Overall,
we find that using the combined DVFS+CM power saving
technique is the safest choice across different platforms. The
larger standard deviation between MPI process readings
during recovery (both in duration and power consumption)
is normal, as they are either restarted, active, or blocked (R,
Sactive, Sblocked).

We show in Fig. 6 the totals of execution time, CPU
energy consumed, and energy-delay product (EDP) [52]
per benchmark, across rollback techniques, benchmarks,
and clusters (QUB and VT). The CPU energy per run is



10

88 89 90 91 92
Iteration

0

20

Ex
ec

ut
io

n
tim

e 
(s

)  Global rollback

88 89 90 91 92
Iteration

 Local rollback
(no power saving)

88 89 90 91 92
Iteration

 Local rollback
(DVFS)

88 89 90 91 92
Iteration

 Local rollback
(CM)

88 89 90 91 92
Iteration

 Local rollback
(DVFS+CM)

88 89 90 91 92
Iteration

0

100

Pr
oc

es
so

r
po

we
r (

wa
tts

)

 Global rollback

88 89 90 91 92
Iteration

 Local rollback
(no power saving)

88 89 90 91 92
Iteration

 Local rollback
(DVFS)

88 89 90 91 92
Iteration

 Local rollback
(CM)

88 89 90 91 92
Iteration

 Local rollback
(DVFS+CM)

(a) LULESH

93 94 95 96 97
Iteration

0

20

Ex
ec

ut
io

n
tim

e 
(s

)  Global rollback

93 94 95 96 97
Iteration

 Local rollback
(no power saving)

93 94 95 96 97
Iteration

 Local rollback
(DVFS)

93 94 95 96 97
Iteration

 Local rollback
(CM)

93 94 95 96 97
Iteration

 Local rollback
(DVFS+CM)

93 94 95 96 97
Iteration

0

100

Pr
oc

es
so

r
po

we
r (

wa
tts

)

 Global rollback

93 94 95 96 97
Iteration

 Local rollback
(no power saving)

93 94 95 96 97
Iteration

 Local rollback
(DVFS)

93 94 95 96 97
Iteration

 Local rollback
(CM)

93 94 95 96 97
Iteration

 Local rollback
(DVFS+CM)

(b) CG

16 17 18 19 20 21
Iteration

0

10

Ex
ec

ut
io

n
tim

e 
(s

)  Global rollback

16 17 18 19 20 21
Iteration

 Local rollback
(no power saving)

16 17 18 19 20 21
Iteration

 Local rollback
(DVFS)

16 17 18 19 20 21
Iteration

 Local rollback
(CM)

16 17 18 19 20 21
Iteration

 Local rollback
(DVFS+CM)

16 17 18 19 20 21
Iteration

0

100

Pr
oc

es
so

r
po

we
r (

wa
tts

)

 Global rollback

16 17 18 19 20 21
Iteration

 Local rollback
(no power saving)

16 17 18 19 20 21
Iteration

 Local rollback
(DVFS)

16 17 18 19 20 21
Iteration

 Local rollback
(CM)

16 17 18 19 20 21
Iteration

 Local rollback
(DVFS+CM)

(c) Jacobi

Fig. 5: Time (seconds) and CPU power consumption (watts) in the range of failure iterations. Used benchmarks are LULESH,
CG, and Jacobi. Experiments are for mid-scale runs on VT cluster. Rollback strategies include existing global rollback or
local rollback without power savings, as well as power savings via DVFS or/and CM.

56
58
60
62
64

lulesh
Execution Time (s)

2.6
2.8
3.0
3.2
3.4

lulesh
Energy (kJ)

0

50

100

150

200

lulesh
EDP (s*kJ)

90
100
110
120
130
140

cg
Execution Time (s)

10

12

14

16

18

cg
Energy (kJ)

0

1000

2000

cg
EDP (s*kJ)

46.0

46.5

47.0

47.5

jacobi
Execution Time (s)

7.0

7.5

8.0

8.5

jacobi
Energy (kJ)

0

100

200

300

400

jacobi
EDP (s*kJ)

46

48

50

52

4.00
4.25
4.50
4.75
5.00
5.25

0

100

200

100

120

140

160

180

15

20

25

30

35

0

2000

4000

6000

33.2

33.4

33.6

33.8

8

9

10

0

100

200

300

Gl
ob

al
Lo

ca
l

(n
o 

sa
vi

ng
s)

Lo
ca

l
(D

VF
S)

Lo
ca

l
(C

M
)

Lo
ca

l
(D

VF
S+

CM
)

50

60

70

80

Gl
ob

al
Lo

ca
l

(n
o 

sa
vi

ng
s)

Lo
ca

l
(D

VF
S)

Lo
ca

l
(C

M
)

Lo
ca

l
(D

VF
S+

CM
)60

80

100

120

Gl
ob

al
Lo

ca
l

(n
o 

sa
vi

ng
s)

Lo
ca

l
(D

VF
S)

Lo
ca

l
(C

M
)

Lo
ca

l
(D

VF
S+

CM
)0

2500

5000

7500

10000

Gl
ob

al
Lo

ca
l

(n
o 

sa
vi

ng
s)

Lo
ca

l
(D

VF
S)

Lo
ca

l
(C

M
)

Lo
ca

l
(D

VF
S+

CM
)30

40

50

60

70

Gl
ob

al
Lo

ca
l

(n
o 

sa
vi

ng
s)

Lo
ca

l
(D

VF
S)

Lo
ca

l
(C

M
)

Lo
ca

l
(D

VF
S+

CM
)

60

80

100

120
Gl

ob
al

Lo
ca

l
(n

o 
sa

vi
ng

s)
Lo

ca
l

(D
VF

S)
Lo

ca
l

(C
M

)
Lo

ca
l

(D
VF

S+
CM

)0

2000

4000

6000

8000

Gl
ob

al
Lo

ca
l

(n
o 

sa
vi

ng
s)

Lo
ca

l
(D

VF
S)

Lo
ca

l
(C

M
)

Lo
ca

l
(D

VF
S+

CM
)33.2

33.4

33.6

33.8

Gl
ob

al
Lo

ca
l

(n
o 

sa
vi

ng
s)

Lo
ca

l
(D

VF
S)

Lo
ca

l
(C

M
)

Lo
ca

l
(D

VF
S+

CM
)45

50

55

60

65

Gl
ob

al
Lo

ca
l

(n
o 

sa
vi

ng
s)

Lo
ca

l
(D

VF
S)

Lo
ca

l
(C

M
)

Lo
ca

l
(D

VF
S+

CM
)0

500

1000

1500

2000

QU
B 

(S
m

al
l)

VT
 (S

m
al

l)
VT

 (M
ed

iu
m

)

Fig. 6: Execution time (in seconds), energy consumed (in kJ), and energy-delay product (in seconds*kJ) per benchmark
across cluster CPUs. We include experiments for both QUB and VT cluster, for different resilience techniques, and
benchmarks.

80 100
CPU power (watt)

0.00

0.05

0.10

Technique = global

80 100
CPU power (watt)

Technique = local(no savings)

80 100
CPU power (watt)

Technique = local(DVFS)

80 100
CPU power (watt)

Technique = local(CM)

80 100
CPU power (watt)

Technique = local(DVFS+CM)

Fig. 7: Distribution of power consumption for medium-scale Jacobi runs on VT cluster across resilience techniques.

a sum across the used cluster CPUs for a benchmark; e.g.
a benchmark employing 4 QUB nodes measures the CPU
energy consumed on the 4 nodes running MPI processes,
including normal execution and recovery. For all cluster
runs, local rollback tends to be either quicker or comparable
to global rollback in execution time. For CG, the speedup
with local rollback is the largest (1.5 or more), compared to
global rollback; Jacobi shows almost no speedup for local
rollback. This supports our view that local rollback may
or may not be quicker than global rollback, depending on
the setting and benchmark. Our introduced power saving
local rollback either does not slow down local rollback,
or only marginally increases it for some settings (up to a

second). For consumed CPU energy across cluster nodes,
small and medium-scale runs show the same trends, with
some differences in which power saving technique is most
efficient; combined DVFS+CM proves to be the most reliable
power saving technique across clusters. The larger runs
show improved energy savings for almost all applications.
For LULESH, the mid-scale VT cluster runs lead to 45%
less CPU energy consumption (50 kJ savings for 1-minute
parallel run), and for Jacobi, CPU energy savings are 24% (16
kJ savings for 30-second parallel run). The mid-scale runs
with the CG benchmark show no notable energy savings
per run with DVFS/CM. We attribute this to the significant
speedup of local rollback recovery, which is then too short



11

to show benefits in power for these runs (Fig. 5 shows that
power consumption is still reduced by 50% in the recovery
phase). Still, our approach does not slow down execution
for local rollback either, making it a good candidate for
energy savings without noticeable drawbacks. Consistent
energy savings manifested for small and mid-scale runs
for most benchmarks, confirming that process set Sactive
remains limited (2-4 processes), leading to proportionally
larger savings for larger runs. Energy-delay product (EDP),
computed as the product between time and energy, repre-
sents the energy efficiency of each different solution (the
lower the better). We observe that the efficiency of the local
rollback is always better than that of the global rollback,
across all the applications and systems. We also observe that
when applying DVFS+CM the efficiency is always better
than local rollback without energy savings, and up to 2x
better for LULESH on VT-medium.

Finally, we show in more detail the distribution of power
consumption across nodes on the Jacobi example for the
medium-scale runs, in Fig. 7. We can visually recognize the
presence of two distribution peaks of power consumption
when power saving techniques are used. The lower power
peak correlates with process set Sblocked, where we apply
power saving techniques, while the higher power peak cor-
relates with the process set Sactive∪R, which show the same
power consumption as the processes from global rollback
or non-power saving local rollback runs. For all codes and
experiments, we have observed that Sactive consists of 2-4
processes. For mid-scale runs, we list Sactive in Tab. 2; these
are either the virtual topology neighbours of a failed process
(Jacobi, LULESH), or the direct communication partners of
the failed process for a collective operation (CG).

8 ENERGY IMPLICATIONS OF MESSAGE LOGGING

8.1 Memory-Related Energy Overheads
Message logging incurs overheads in RAM; e.g. in sender-
based message logging, senders save the message payloads
in memory, as these might need to be replayed. In our
experience, these overheads do not seem to affect power
draw sufficiently to be modelled. It has been shown (e.g.
[20], [22]) that logs only need to be kept for recent enough
time frames, regardless of execution duration. In the latter
contribution, we have measured the overheads of message
logs to the memory footprint at less than 1% for two of
the tested kernels. Previous experimental evaluation of the
total power draw on nodes during various phases of local
rollback [32] also concludes that message logging itself does
not introduce measurable power overheads.

8.2 Compute-Related Energy Overheads
In this subsection, we leave memory overheads aside, and
estimate the energy cost of CPU computation for existing
local and global rollback, and for our proposed technique.

8.2.1 Comparison to Existing Local Rollback
It is at the core of localised rollback that the majority of
processes remain idle during rollback. As shown in this
work, with a careful power saving design this contributes
to linear energy savings of O(N) per failure for a process

count N . We validated that linear savings in O(N) man-
ifest, compared to existing local rollback during recovery
(see Fig. 5 for a focus on recovery iterations). These linear
savings also manifest compared to global rollback, as there
are no idle processes during global recovery.

8.2.2 Comparison to Global Rollback
In terms of overall execution time, Bosilca et al. [53] derive
detailed performance models for existing rollback tech-
niques, including local rollback. For local rollback protocols,
they assume that the main differences to global rollback are
two-fold: (a) Parallel execution is slowed down by message
logging by a factor 1

λ ; the authors set λ = 0.98 based on
empirical observations. (b) Local rollback is estimated to
have a speedup of a factor µ, with 1 ≤ µ ≤ 2. We agree
with these findings, and we shall exemplify how our power
savings bring energy gains which complement the savings
resulting from a recovery speedup (for µ > 1).

Transferring these findings for the different phases to
energy consumption has not been studied in great detail in
the past. Meneses et al. [32] derive individual energy contri-
butions of different phases (solve, dump, rework, and restart
phase) from the well-known work of Daly [5]. We adopt
the same approach, but need our derivations, as Meneses
et al. assume the runtime (in their case: Charm++) will
redistribute work, instead of reduce power, during recovery.
If we denote with LR terms relating to local rollback, and
with GR terms relating to global rollback, we can express
the total execution time of local rollback as follows:

TLRtotal =
1
λ ∗ T

GR
solve + TLRdump +

1
µ ∗ T

GR
rework + TLRrestart

(1)
The probability of failures for a run of duration Tsolve,

given an overhead multiplier 1
λ and a Poisson distribu-

tion, increases by (e
Tsolve
MTBF − e

Tsolve∗
1
λ

MTBF ) (see e.g. [53] for
some probability formulations). As this increase is very
small in most practical settings, it is safe to approximate
TLRdump ≈ TGRdump and TLRrestart ≈ TGRrestart. This enables fol-
lowing simplified energy consumption comparison between
local and global rollback (with E = P ∗ T ):

ELRtotal − EGRtotal =
1− λ
λ
∗ TGRsolve ∗ Psolve︸ ︷︷ ︸

global rollback saves energy during compute

−

TGRrework ∗ (PGRrework −
1

µ
∗ PLRrework)︸ ︷︷ ︸

local rollback saves energy during recovery

(2)

Eq. 2 clearly shows the trade-offs between global and local
rollback – while global rollback saves energy with faster
failure-free compute phase, the proposed local rollback is
more power-efficient than global rollback in the recovery
phase. While individual settings have different values of λ,
average estimates of 2% [53] or 1.05% [32] runtime over-
heads of message logging have been used. We adopt ≈ 2%
overhead estimates, i.e. λ = 0.98; for global recovery, there
is also no difference between compute and re-compute,
therefore Psolve = PGRrework. We can then write Eq. 2 as:

ELRtotal−EGRtotal = Psolve ∗ (0.02 ∗TGRsolve+
TGRrework

µ
∗ (C − 1))

(3)



12

C =
PLRrework
Psolve

(0 < C <= 1) is the ratio of Psolve,
the power draw on the node during compute phases, for
the power-efficient recovery phase. For example, we have
demonstrated a reduction of half the 100W CPU power
draw during recovery. If we assume that Psolve is 200W ,
then C = 0.75, i.e. we reduce power consumption across
almost all nodes (proportional to idle processes) by 25%
during recovery. We can compute the intersection point,
where power-saving message logging begins to outperform
global rollback in energy savings (EGRtotal = ELRtotal in Eq. 3). If
we assume local recovery is not faster than global rollback
(µ = 1), the introduced technique saves energy when the
total recovery time amounts to 8% or more of the separate
compute (or solve) phase. In some cases local rollback may
accelerate recovery (even if we hold such observations to
not be performance-portable). For example, we may see
local recovery lead to a speedup of 2 (i.e. µ = 2), then our
technique saves energy when the recovery time amounts to
4% or more of the separate compute phase.

9 CONCLUSION

We revisited message logging protocols, a broadly studied
topic in the parallel and distributed computing domain. We
argued that despite the many studied variations on message
logging protocols in the MPI domain, the performance bene-
fits of local rollback via message replays are just one, and not
the most portable, direction to explore. We identified power
savings, as opposed to runtime savings, as the more portable
and reproducible direction of optimization. We then pro-
posed to block surviving processes not actively replaying
messages in a power saving barrier, which lasts until the
recovery completes for all processes. Our proposal was
motivated by the observation that MPI calls, without adding
power saving techniques, are extremely energy consuming
for state-of-the-art MPI implementations. Our implementa-
tion yielded consistent power savings across the three used
benchmarks, with savings of up to 50 watts per node, or
50% of the power consumption of an Intel Broadwell CPU.
DVFS provided the best results for Broadwell CPUs, but CM
and DVFS showed comparable benefits for Haswell CPUs.
We showed that power-saving localized rollback can save in
total energy for settings where recovery costs are high.

We believe that the implementation of message logging
applications without underlying message logging runtimes,
as well as the addition of power saving techniques, are of
interest to the HPC community. A more general lesson from
our design is that it can educate how to extend message
logging runtimes with power saving capabilities in the
future, so that extensions to applications are not required
to achieve power savings during local rollback.

REFERENCES

[1] B. Schroeder and G. Gibson, “A large-scale study of failures
in high-performance computing systems,” IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 4, pp. 337–350, Oct
2010.

[2] G. Zheng, X. Ni, and L. V. Kalé, “A scalable double in-memory
checkpoint and restart scheme towards exascale,” in DSN-W, 2012
IEEE/IFIP 42nd Intl. Conf. on. IEEE, 2012, pp. 1–6.

[3] K. Ferreira et al., “Evaluating the viability of process replication
reliability for exascale systems,” in SC’11. New York, NY, USA:
ACM, 2011, pp. 44:1–44:12.

[4] J. W. Young, “A first order approximation to the optimum check-
point interval,” Communications of the ACM, vol. 17, no. 9, pp. 530–
531, 1974.

[5] J. T. Daly, “A higher order estimate of the optimum checkpoint
interval for restart dumps,” Future Generation Computer Systems,
vol. 22, no. 3, pp. 303–312, 2006.

[6] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart
(blcr) for linux clusters,” in Journal of Physics: Conference Series,
vol. 46, no. 1, 2006, p. 494.

[7] L. Bautista-Gomez et al., “Fti: high performance fault tolerance
interface for hybrid systems,” in SC’11. IEEE, 2011, pp. 1–12.

[8] A. Moody et al., “Design, modeling, and evaluation of a scalable
multi-level checkpointing system,” in SC’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 1–11.

[9] K. Dichev, K. Cameron, and D. S. Nikolopoulos, “Energy-efficient
localised rollback via data flow analysis and frequency scaling,” in
Proc. of the 25th European MPI Users’ Group Meeting. ACM, 2018,
p. 11.

[10] R. Strom and S. Yemini, “Optimistic recovery in distributed sys-
tems,” ACM Transactions on Computer Systems (TOCS), vol. 3, no. 3,
pp. 204–226, 1985.

[11] E. N. Elnozahy et al., “A survey of rollback-recovery protocols
in message-passing systems,” ACM Computing Surveys (CSUR),
vol. 34, no. 3, pp. 375–408, 2002.

[12] L. Alvisi and K. Marzullo, “Message logging: Pessimistic, opti-
mistic, causal, and optimal,” IEEE Transactions on Software Engi-
neering, vol. 24, no. 2, pp. 149–159, 1998.

[13] T. Ropars and C. Morin, “O2p: An extremely optimistic message
logging protocol,” Ph.D. dissertation, INRIA, 2006.

[14] A. Bouteiller et al., “Reasons for a pessimistic or optimistic mes-
sage logging protocol in MPI uncoordinated failure recovery,” in
2009 IEEE Intl. Conf. on Cluster Computing and Workshops. IEEE,
2009, pp. 1–9.

[15] G. Bosilca et al., “MPICH-V: Toward a scalable fault tolerant MPI
for volatile nodes,” in SC’02. IEEE, 2002, pp. 29–29.

[16] A. Bouteiller et al., “MPICH-V2: a fault tolerant MPI for volatile
nodes based on pessimistic sender based message logging,” in
SC’03. ACM, 2003, p. 25.

[17] E. Meneses, G. Bronevetsky, and L. V. Kale, “Evaluation of sim-
ple causal message logging for large-scale fault tolerant HPC
systems,” in Parallel and Distributed Processing Workshops and Phd
Forum (IPDPSW), 2011 IEEE Intl. Symposium on. IEEE, 2011, pp.
1533–1540.

[18] S. Chakravorty and L. V. Kalé, “A fault tolerance protocol with fast
fault recovery,” in 2007 IEEE International Parallel and Distributed
Processing Symposium. IEEE, 2007, pp. 1–10.

[19] A. Bouteiller, G. Bosilca, and J. Dongarra, “Redesigning the mes-
sage logging model for high performance,” Concurrency and Com-
putation: Practice and Experience, vol. 22, no. 16, pp. 2196–2211, 2010.

[20] N. Losada et al., “Local rollback for resilient MPI applications
with application-level checkpointing and message logging,” Fu-
ture Generation Computer Systems, vol. 91, pp. 450–464, 02-2019
2019.

[21] T. Ropars et al., “On the use of cluster-based partial message
logging to improve fault tolerance for MPI HPC applications,”
in European Conference on Parallel Processing. Springer, 2011, pp.
567–578.

[22] K. Dichev and D. S. Nikolopoulos, “Implementing efficient mes-
sage logging protocols as MPI application extensions,” in Eu-
roMPI’19, ser. EuroMPI ’19. New York, NY, USA: Association
for Computing Machinery, 2019.

[23] W. Bland et al., “Post-failure recovery of MPI communication
capability: Design and rationale,” IJHPCA, vol. 27, no. 3, pp. 244–
254, 2013.

[24] K. W. Cameron, R. Ge, and X. Feng, “High-performance, power-
aware distributed computing for scientific applications,” Com-
puter, vol. 38, no. 11, pp. 40–47, 2005.

[25] M. Y. Lim et al., “Adaptive, transparent frequency and voltage
scaling of communication phases in mpi programs,” in Proceedings
of SC’06. IEEE, 2006, pp. 14–14.

[26] A. Benoit et al., “Reducing the energy consumption of large-scale
computing systems through combined shutdown policies with
multiple constraints,” IJHPCA, vol. 32, no. 1, pp. 176–188, 2018.

[27] S. Bhalachandra et al., “Improving Energy Efficiency in Memory-
constrained Applications Using Core-specific Power Control,” in
E2SC’17. New York, NY, USA: ACM, 2017, pp. 6:1—-6:8.



13

[28] B. Rountree et al., “Adagio: Making dvs practical for complex hpc
applications,” in ICS’09. New York, NY, USA: Association for
Computing Machinery, 2009, p. 460–469.

[29] D. Cesarini et al., “Countdown: A run-time library for application-
agnostic energy saving in MPI communication primitives,” in
ANDARE’18. New York, NY, USA: Association for Computing
Machinery, 2018.

[30] B. Mills et al., “Evaluating energy savings for checkpoint/restart,”
in E2SC’13. New York, NY, USA: ACM, 2013, pp. 6:1–6:8.

[31] R. Rajachandrasekar et al., “Power-check: An energy-efficient
checkpointing framework for HPC clusters,” in Proceedings of the
CCGRID’15. IEEE Press, 2015, p. 261–270.

[32] E. Meneses, O. Sarood, and L. Kalé, “Energy profile of rollback-
recovery strategies in high performance computing,” Parallel Com-
puting, vol. 40, no. 9, pp. 536 – 547, 2014.

[33] M. Morán, J. Balladini, D. Rexachs, and E. Luque, “Prediction of
energy consumption by checkpoint/restart in hpc,” IEEE Access,
vol. 7, pp. 71 791–71 803, 2019.

[34] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European
Test Symposium (ETS), 2013, pp. 1–6.

[35] A. Bouteiller, P. Lemarinier, G. Krawezik, and F. Cappello, “Coor-
dinated checkpoint versus message log for fault tolerant MPI,” in
CLUSTER, 2003.

[36] F. Cappello, A. Guermouche, and M. Snir, “On communication
determinism in parallel HPC applications,” in 2010 Proc. of 19th
Intl. Conf. on Computer Communications and Networks. IEEE, 2010,
pp. 1–8.

[37] A.-C. Orgerie et al., “A survey on techniques for improving the en-
ergy efficiency of large-scale distributed systems,” ACM Comput.
Surv., vol. 46, no. 4, Mar. 2014.

[38] R. Ge et al., “Powerpack: Energy profiling and analysis of high-
performance systems and applications,” IEEE TPDS, vol. 21, no. 5,
pp. 658–671, 2010.

[39] K. T. Malladi et al., “Towards energy-proportional datacenter
memory with mobile dram,” in ISCA’12, 2012, pp. 37–48.

[40] N. Losada et al., “Asynchronous receiver-driven replay for local
rollback of MPI applications,” in 2019 IEEE/ACM 9th Workshop on
Fault Tolerance for HPC at eXtreme Scale (FTXS). IEEE, 2019, pp.
1–10.

[41] D. De Sensi, M. Torquati, and M. Danelutto, “Mammut: High-level
management of system knobs and sensors,” SoftwareX, vol. 6, pp.
150–154, 2017.

[42] R. Schöne et al., “Software controlled clock modulation for energy
efficiency optimization on intel processors,” in E2SC’16, 2016, pp.
69–76.

[43] R. Rabenseifner, “Optimization of collective reduction opera-
tions,” in Intl. Conf. on Computational Science. Springer, 2004, pp.
1–9.

[44] “libmsr library and msr-safe kernel module,” sep 2013.
[45] M. Hähnel, B. Döbel, M. Völp, and H. Härtig, “Measuring energy

consumption for short code paths using rapl,” SIGMETRICS Per-
form. Eval. Rev., vol. 40, no. 3, p. 13–17, Jan. 2012.

[46] “GitHub repository of message logging kernels,”
https://github.com/KADichev/message-logging-kernels, 2019.

[47] D. Bailey et al., “The NAS parallel benchmarks,” The International
Journal of Supercomputing Applications, vol. 5, no. 3, pp. 63–73, 1991.

[48] I. Karlin et al., “LULESH programming model and performance
ports overview,” Tech. Rep. LLNL-TR-608824, December 2012.

[49] K. M. Chandy and L. Lamport, “Distributed snapshots: Deter-
mining global states of distributed systems,” ACM Trans. Comput.
Syst., vol. 3, no. 1, p. 63–75, Feb. 1985.

[50] G. Zheng, L. Shi, and L. Kale, “FTC-Charm++: an in-memory
checkpoint-based fault tolerant runtime for Charm++ and MPI,”
in CLUSTER, Sept 2004, pp. 93–103.

[51] J. Ansel et al., “Dmtcp: Transparent checkpointing for cluster
computations and the desktop,” in 2009 IEEE ISPDP. IEEE, 2009,
pp. 1–12.

[52] J. H. Laros III et al., Energy Delay Product. London: Springer
London, 2013, pp. 51–55.

[53] G. Bosilca et al., “Unified model for assessing checkpointing pro-
tocols at extreme-scale,” Concurrency and Computation: Practice and
Experience, vol. 26, no. 17, pp. 2772–2791, 2014.

Kiril Dichev received his PhD degree from
University College Dublin in 2014, where he
studied how to support efficient MPI collec-
tives on heterogeneous networks. He is cur-
rently a Research Software Engineer at Uni-
versity of Cambridge. His research interests
revolve around high performance computing,
distributed computing, and parallel codes.
He has contributed close to 20 publications
in international conferences and journals.

Daniele De Sensi received his PhD de-
gree from University of Pisa in 2018, where
he did research on autonomic and power-
aware runtime solutions for parallel applica-
tions. He is now a Postdoctoral Researcher
in the Scalable Parallel Computing Labora-
tory (SPCL) at ETH Zurich, where he does
research on high-performance interconnec-
tion networks. He co-authored more than
30 publications on power-aware computing,
parallel-computing and high-performance in-

terconnection networks.

Dimitrios Nikolopoulos is the John W. Han-
cock Professor of Engineering, Professor in
Computer Science and Professor (by cour-
tesy) in Electrical and Computer Engineer-
ing at Virginia Tech. His current research in-
terests are in virtualization technologies for
scalable computing and memory manage-
ment for large-scale heterogeneous systems.
He is a recipient of major faculty investigator
awards (NSF, DOE, Royal Society, SFI), indus-
try awards (IBM), and nine Best Paper awards

from ACM and the IEEE. Nikolopoulos is a Fellow of the British
Computer Society and Distinguished Member of the ACM. He has
received BEng (1996), MSc (1997) and PhD (2000) degrees from the
University of Patras.

Kirk W. Cameron received the PhD degree
in computer science from Louisiana State
University in 2000. He is currently Professor
and Associate Head of Computer Science at
Virginia Tech where he directs the stack@cs
Center for Computer Systems. Cameron pi-
oneered high-performance, energy-efficient
computing in HPC garnering many awards
and accolades, contributing more than 100
technical publications, and founding the
Green500 List of energy efficient supercom-

puters. He is an IEEE Fellow and an ACM Distinguished Scientist.

Ivor Spence received his PhD degree from
Queen’s University Belfast in 1984, where
he did research on code generation. He is
currently a Reader in Computer Science at
Queen’s University Belfast where he leads
the Artificial Intelligence Research Theme.
His research is primarily on heterogeneous
computing systems for AI.


