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Power Management for Multicore Processors via

Heterogeneous Voltage Regulation and Machine

Learning Enabled Adaptation

Xin Zhan , Jianhao Chen, Edgar Sánchez-Sinencio, Fellow, IEEE, and Peng Li, Fellow, IEEE

Abstract— This work is based on the vision that the ultimate
power integrity and efficiency may be best achieved via a
heterogeneous chain of voltage processing starting from onboard
switching voltage regulators (VRs), to on-chip switching VRs, and
finally to networks of distributed on-chip linear VRs. As such,
we propose a heterogeneous voltage regulation (HVR) archi-
tecture encompassing regulators with complimentary character-
istics in response time, size, and efficiency. By exploring the
rich heterogeneity and tunability in HVR, we develop systematic
workload-aware power management policies to adapt heteroge-
neous VRs with respect to workload change at multiple temporal
scales to significantly improve system power efficiency while pro-
viding a guarantee for power integrity. The proposed techniques
are further supported by hardware-accelerated machine learn-
ing (ML) prediction of nonuniform spatial workload distributions
for more accurate HVR adaptation at fine time granularity.
Our evaluations based on the PARSEC benchmark suite show
that the proposed adaptive three-stage HVR reduces the total
system energy dissipation by up to 23.9% and 15.7% on average
compared with the conventional static two-stage voltage regula-
tion using off-chip and on-chip switching VRs. Compared with
the three-stage static HVR, our runtime control reduces system
energy by up to 17.9% and 12.2% on average. Furthermore,
the proposed ML prediction offers up to 4.1% reduction of system
energy.

Index Terms— Machine learning (ML), multicore processor,
power delivery network (PDN), power management, voltage
regulation.

I. INTRODUCTION

SUPPLY voltage regulation serves the critical role of deliv-

ering power to on-die devices for high-performance VLSI

systems such as in server and desktop applications [1]–[3].

Power shall be delivered with ensured power quality to

prevent timing violations. On the other hand, achiev-

ing power efficiency has become a key challenge in

the dark silicon age [4]. Power management must be

employed to maximize power efficiency in every possible

way [5], [6].
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Power delivery networks (PDNs) and voltage regula-

tors (VRs) significantly impact power efficiency and integrity.

Switching VRs are more efficient than linear VRs such as

low-dropout VRs [low dropout regulators (LDOs)] over wide

output voltage and load ranges, while linear VRs are more

area efficient and can achieve faster subnanosecond response

times [7]–[9]. Distributed on-chip voltage regulation is an

important ongoing design trend where multiple area-efficient

linear VRs are distributed within a power domain to provide

fast suppression of power supply noise in the vicinity of such

linear VRs. For instance, the recent IBM POWER8 processor

employs 1764 on-chip distributed linear VRs [2].

Tradeoffs between performance and power dissipation can

be optimized using dynamic power management such as

dynamic voltage and frequency scaling (DVFS) [3], [10]–[15].

However, dynamic workloads and power management may

push the VRs away from their optimal operating points,

degrading the efficiency of the entire system. Recent

work has attempted to reconfigure the PDN based on the

workload [16]–[19]. As an example, the workload-aware

quantized power management (QPM) scheme in [17] adopts

simple control policies to dynamically adjust the num-

ber of active on-chip and off-chip switching VRs. How-

ever, such schemes have only considered switching VRs

and little work has been done toward holistic explo-

ration of heterogeneous VRs and their systematic adapta-

tion considering complex interdependencies between such

regulators.

This work is based on the vision that the ultimate power

quality and efficiency may be best achieved via a hetero-

geneous chain of voltage processing starting from on-board

switching VRs, to on-chip switching VRs, and finally to

networks of distributed on-chip linear VRs. As depicted

in Fig. 1, we propose a heterogeneous voltage regula-

tion (HVR) architecture encompassing regulators with compli-

mentary characteristics in response time, size, and efficiency.

This work aims to answer the following key question for

the first time. Given a desired power supply voltage set by

a higher level power management policy, e.g., one based

on DVFS, for each power domain, how shall the VRs in

the HVR system be adapted autonomously with respect to

workload change at multiple temporal scales to significantly

improve system power efficiency while providing a guaran-

tee for power integrity? The contributions of this paper are

severalfolds.
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Fig. 1. Proposed HVR.

1) This is the first work that systematically explores HVR.

The most general form of HVR consists of VRs with

complimentary characteristics across three processing

stages. In the first two stages, off-chip and on-chip

switching (dc–dc) converters are employed to achieve

high efficiency over a wide output voltage range, serving

the major role of voltage conversion. Compared with

single stage dc–dc conversion, two-stage dc–dc conver-

sion allows for area reduction, improved power effi-

ciency, and fine-gained DVFS, which is supported by the

fast response time of on-chip dc–dc converters. Unlike

conventional one or two-stage PDNs, HVR largely

decouples voltage conversion from voltage regulation,

the latter of which is optimally achieved by placing

a large number of compact LDOs with subnanosecond

response time in a distributed manner within each power

domain, forming an interconnected active regulation

network.

2) We propose systematic workload-aware control policies

to jointly optimize power efficiencies of all voltage

processing stages to maximize the overall system power

efficiency. To best exploit the potential of energy effi-

ciency of HVR, our control policies minimize system

power losses by considering interdependencies across

the entire voltage processing chain and adapt HVR at

multiple time scales given the significantly different

response times of the considered VRs.

3) Uncertainties caused by unknown nonuniform spatial

distribution of the workload are hard to predict but can

jeopardize power integrity. To minimize the extra voltage

margin, hence power loss, needed for accounting for

nonuniform spatial workload distribution, for the first

time, we propose a novel machine learning (ML) solu-

tion that accurately sets the output voltage of the on-chip

switching VRs to maximize the system power efficiency

while effectively tracking the worst case voltage drop in

each power domain to safeguard power integrity. Our

ML solution consists of a few on-chip voltage-noise

sensors that provide inputs to a low-overhead hardware-

accelerated ML predictor, which fine tunes the output

voltage of the on-chip switching VRs. This provides an

autonomous end-to-end integrated ML solution whose

low latency allows for fine-grained adaptation of HVR.

II. MOTIVATION OF HETEROGENEOUS

VOLTAGE REGULATION

A. Overview of Voltage Regulators

VRs are key components of a power delivery system and

the characteristics of VRs have critical impacts on power

efficiency and performance of the entire system. Generally,

linear VRs such as LDOs are more area efficient and can

achieve fast response time, while switching VRs are usually

more energy efficient. The inductor-based buck converter and

the switched capacitance (SC) converter are the two main

categories of switching VRs. The integration of SC converter

requires only capacitance, which have a significantly higher

power density and can be integrated more easily than its

inductance counterpart [20]. However, it only supports certain

discrete voltage divide ratios and usually needs a large number

of phases for ripple loss reduction [21]. On the other hand,

the enabled continuous and wide range of output voltages with

high efficiency makes inductor-based buck converter a natural

choice for dynamic voltage scaling (DVS), and therefore it

has been used for most switch VRs for past decades. In this

work, we use inductor-based buck converter as the switch

VR to demonstrate the benefit of multistage voltage regulation.

However, the adaptive control scheme with multistage voltage

regulation as proposed later may also be applied to the system

with capacitance-based converters in a similar way.

In a PDN, off-chip inductor-based buck VR, switching at a

rate of hundreds of kilohertz to tens of megahertz, can achieve

excellent efficiency at the expense of bulky and costly off-chip

LC components [22], [23]. Furthermore, off-chip VRs have

slow response times and, hence, cannot support fine-grained

DVS. There has been a great deal of progress on fully inte-

grated buck VRs, thanks to on-die/in-package inductors and

new magnetic materials [24]–[26]. Operating at a frequency

of tens or hundreds of megahertz, fully integrated buck VRs

come with fast response times and promises for efficient local

power delivery and fine-grain DVFS. However, integrating

high-Q power inductors to support high current density with

low loss is still a major challenge [24]–[26]. Compared to

their off-chip counterparts, on-chip buck VRs incur more

conduction and switching losses, leading to lower efficiency,

especially at light loads. On-chip linear (e.g., LDOs) are area

efficient and can achieve subnanosecond response times [9].

Their efficiency drops with increasing dropout voltage, making

them inefficient for wide-range voltage conversion. Clearly,

those VRs have complimentary characteristics in response

time, area and power efficiency and none of them can address

the IC power delivery challenge alone.

Conversion Versus Regulation: Although conversion and

regulation are used almost interchangeably, we shall note a

fine distinction between them with respect to the best ways

for realizing conversion and regulation. Switching VRs are

well suited for wide-range voltage conversion for which linear

VRs suffer from large loss. On the other hand, area-efficient
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TABLE I

COMPARISON OF DIFFERENT VRS

Fig. 2. PDN architectures. (a) Single-stage PDN using off-chip buck con-
verters. (b) Two-stage PDN using both on-chip and off-chip buck converters.
(c) Proposed three-stage HVR.

integrated linear VRs provide fast regulation. Table I summa-

rizes the characteristics of different VRs.

B. Heterogeneous PDN Architecture

Three power delivery architectures are illustrated in Fig. 2.

The single-stage PDN [Fig. 2(a)] is managed by only off-chip

buck converters, achieving a high efficiency over a wide work-

load range. However, the board/package parasitics degrade the

power quality delivered from the off-chip bucks to the on-chip

power domains. Furthermore, the slow response time of

off-chip buck converters limits the application of fine-grained

DVS. Thanks to the progress of on-die/in-package inductors

and new magnetic materials the buck converters can be inte-

grated on chip. The two-stage PDN [Fig. 2(b)] consists of both

off-chip and on-chip buck converters, improves the quality of

power delivery by lowering the impedance from the power

supply to the load circuits, and supports fine-grained per-

core DVS since the integrated VRs can settle much faster.

These benefits make this architecture widely used in modern

SoCs such as the Intel’s Haswell processors [27]. However,

the response time of on-chip buck converters can still limit

the PDN performance in the case of highly unpredictable

TABLE II

CONTROL VARIABLES IN HVR

load currents which may occur, for example, in server-class

processors [14].

We argue that the ultimate quality and efficiency in supply

voltage regulation may be only achieved by fully exploiting

the heterogeneity in PDN architecture with heterogeneous reg-

ulators with complimentary characteristics in response time,

power efficiency, and cost. As shown in Fig. 2(c), we propose

an HVR architecture with three voltage processing stages:

multiple off-chip buck VRs supplying power to multiple clus-

ters of on-chip buck VRs with each cluster powering a network

of distributed on-chip LDO driving a power/voltage domain.

Fig. 3(a) depicts a more detailed view of the three-stage

HVR. Clearly, the first stage enjoys high efficiencies of

off-chip buck VRs over wide ranges of workloads. Their slow

response is compensated by the second stage of on-chip buck

VRs. Bypassing board/package parasitic impedances, on-chip

buck VRs can settle much faster, enabling fine grained per

core DVS otherwise impossible. Having two stages of buck

converters gives the added benefit of lowering the step-down

ratio for each stage, improving the efficiency of both off-chip

and on-chip buck converters, and reducing sizes of the off-chip

passives and power transistors [17]. Leaving most of the

voltage conversion functionality to the first two stages, the

on-chip LDO networks act as the last (main) stage of voltage

regulation. Due to the small footprint of LDOs, a large

number of compact LDOs with ultrafast response time can

be placed on-chip in a distributed manner within a power

domain, forming an interconnected active regulation network.

In vicinity of on-chip hot spots, on-chip network can respond

very quickly to local voltage droops, achieving good regulation

performance.

C. Tuning Opportunities in HVR

Heterogeneity brings in a great deal of tunability at mul-

tiple HVR stages for workload-aware adaption. The power

efficiency of a single VR stage is usually a function of its

input–output voltages and current load. For a cluster of VRs,

its power efficiency can be optimized according to runtime

workload by either tuning its input–output voltages or modu-

lating the number of online VRs, which changes the load per

regulator. There are important interdependencies among dif-

ferent voltage processing stages which must be carefully con-

sidered in order to optimize the overall energy efficiency and

regulation performance. For example, the output of the pre-

ceding VR stage is also the input of the subsequent VR stage.

Fig. 4 summarizes the rich tunability and complicated energy

and performance interdependencies in HVR system.

We define several important control variables in Table II,

and will use them throughout this paper. Considering an HVR

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:03:04 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. (a) Modeling of three-stage HVR system. (b) Distributed LDO network.

Fig. 4. Overview of tunability in HVR system.

system consisting of N power domains as in Fig. 2(c), the con-

trol decision variables are: the number of online converters

in each on-chip buck VR cluster N
(i)
online,on, and the cluster’s

output voltage V
(i)
out,on, i = 1, . . . , N , which is the input voltage

to the LDO network driven by the cluster; the number of

online converters in the off-chip buck cluster Nonline,off , and

its output voltage Vout,off , which sets the input voltage to all

on-chip buck VR clusters in the considered tree.

III. MODELING OF HVR SYSTEM

Clearly, the HVR voltage processing chain has a tree struc-

ture consisting of multiple voltage processing stages starting

from a cluster of off-chip buck VRs and ending at the on-die

loads in each local power domain. We look into the detailed

energy and regulation characteristics at each individual stage

first then consider the interdependencies across different stages

in the HVR system.

A. Characteristics Per Stage

1) On/Off-Chip Buck Clusters: Fig. 5 shows a typically

multiphase buck converter which is commonly used in modern

processor systems. Each phase of the buck VR is imple-

mented with fixed switching frequency and pulsewidth mod-

ulation (PWM). Each PWM comparator sets the duty cycle

of its output voltage waveform which then drives power

switches to produce the modulated final output voltage.

The multiple parallel time-interleaved phases cancel out the

Fig. 5. Schematic of a multiphase PWM buck converter.

high-frequency output noise and reduce the transient response

time at the cost of increased overhead of inductors and control

circuits [28].

The major power losses of a buck converter include two

parts: the switching loss which is largely independent of load

current and the resistive loss which is a function of the load

current [29]. The switching loss dominates the power loss

at light loads while the resistive loss grows quadratically

with increasing load current. In addition, both parts of power

loss are functions of the input–output voltages of the buck

converter. In a cluster of buck VRs, its overall power efficiency

can be further impacted by the number of online VRs Nonline

which varies the total switching loss under the same overall

load current. As a result, the general form for the power

efficiency of a buck cluster can be written as

ηbuck = f (Vin, Vout, Nonline, IL ). (1)

For given input–output voltages, a single VR achieves the

peak efficiency at an optimal load point Iopt where the ratio

of total loss over the load power is minimized. Relying on

the analytic power model as in [28] for a given set of design

parameters such as switching frequency, filter inductance, and

size of MOS switches, Fig. 6(a) demonstrates that the power

efficiency curves of a buck cluster can be dramatically changed

with a different number of online VRs Nonline. The peak

power efficiency for each curve can only be achieved at a

certain optimal current load point, which is roughly Nonline Iopt.

Therefore, it is intuitive to bring online only a certain number

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:03:04 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 6. (a) Impact of online buck VRs on power efficiency. (b) Impact of
input voltage on Iopt for a single buck VR.

of buck VRs in the cluster such that the load current per

VR stays around Iopt. The number of required VRs Nonline

can be quantized as

Nonline = min

{

Nmax,

⌈

IL

Iopt

⌉}

(2)

where Nmax is the maximum number of VRs in a cluster and

IL is the total load current.

Note that the chain structure of the HVR makes things

much more complicated, because Iopt is a function of VR’s

input–output voltages which can be influenced by the preced-

ing and subsequent stages. Fig. 6(b) illustrates the shift of Iopt

for a single buck converter with varied input voltage. Such

effect must be considered in (2). As will be discussed later,

the adaptive control policy proposed in this work requires short

processing latency to enable fine-grained temporal control

resolutions. Therefore, the complex characteristics of buck

converters are stored in two lookup tables (LUTs) for the ease

of online use. For instance, LUTη stores the power efficiency

characteristics which are indexed by the input–output voltages

and load current for each buck VR. As a function of the

input and output voltages, LUTIopt stores the optimal load

current under which the peak efficiency is achieved for a single

buck VR.

Although the dc–dc buck converters are more suitable for

voltage conversion as discussed earlier, the on-chip buck VRs,

which is the final stage in the conventional two-stage PDN,

have to be carefully designed with the consideration of supply

noise. The power integrity will be largely determined by

the transient response of the on-chip buck VRs. In general,

increasing the switching frequency of the buck VRs will help

reduce both the transient response time and output voltage

ripples but at the price of increasing switching power loss.

As a result, it is common to integrate on-chip buck converters

operating at hundreds of megahertz in the two-stage PDN [27].

2) On-Chip LDO Networks: The proposed three-stage HVR

system explores the fast voltage load regulation of an addi-

tional stage of distributed on-chip LDOs as discussed earlier.

In addition, LDOs can be designed with a good power supply

ripple rejection (PSRR) to suppress noise from the input

voltage (i.e., line regulation) [30]. As a result, the on-chip

buck converters in the three-stage HVR can be optimized to

Fig. 7. Schematic of LDO.

Fig. 8. Relationship between LDO’s dropout voltage and load current.

achieve better power efficiency, e.g., by operating them at a

lower switching frequency.

To supply a specific output voltage, a linear LDO converts

an input voltage using an error amplifier and feedback loop as

depicted in Fig. 7. The power efficiency of an LDO is strongly

limited by the input-to-output differential voltage �V = Vin −
Vout for a given targeted output voltage Vout

ηldo =
Vout

Vout + �V
. (3)

At a certain load point, the dropout voltage Vdrop of an LDO is

defined to be the minimum input-to-output differential voltage

at which the LDO ceases to regulate the output voltage,

i.e., entering the dropout region from the regulation region.

Fig. 8(a) illustrates Vout as a function of Vin. Therefore, it is

desirable to set Vin just Vdrop above Vout to keep the LDO

at the boundary between the dropout and regulation regions

to maximize efficiency. However, setting Vin too low may

jeopardize the regulation of LDOs and violate power integrity.

Vdrop is a function of the load current IL , which is shown

in Fig. 8(b) for a realistic LDO design [30]. It can be seen

that Vdrop is approximately linear in IL , hence Vdrop ≈
(IL/IL ,max)Vdrop,max, where Vdrop,max is the dropout voltage

at the maximum current load IL,max. Given a target output

voltage Vdd, e.g., one set by DVS, the optimal LDO’s input

voltage (output voltage of the on-chip buck VRs), which leads

to the highest of LDO power efficiency, is

Vin,opt ≈ Vdd +
IL

IL ,max
Vdrop,max. (4)

B. Interdependencies Between Voltage Processing Stages

According to the above discussion, the power efficiency

of a single VR stage largely depends on its input–output

voltages and current load. Thus, there are important interde-

pendencies among voltage processing stages which must be

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on January 20,2021 at 19:03:04 UTC from IEEE Xplore.  Restrictions apply. 



2646 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2019

carefully considered in order to optimize the overall energy

efficiency and regulation performance. Such interdependencies

can be observed in (5), shown at the bottom of this page,

which describes the overall power efficiency as the product of

efficiencies at all stages. Since the input voltage of the off-chip

buck VRs is assumed to be constant, it is not considered in

the corresponding power efficiency ηbuck,off . Under a certain

workload �IL ,on = {I
(1)
L ,on, I

(2)
L ,on, . . . I

(N)
L ,on} and DVS setting

�Vdd = {V
(1)
dd , V

(2)
dd , . . . V

(N)
dd }, where N is the number of power

domains, the control variables listed in Table II can simulta-

neously influence the power efficiencies at multiple stages due

to the interdependencies in the voltage regulation chain. For

example, the output voltage of the off-chip buck VRs Vout,off

influences the efficiencies of both off-chip and on-chip buck

VRs. Set by the output of corresponding on-chip buck cluster

V
(i)
out,on, the input voltage to an LDO network significantly

impacts the power efficiencies of the (preceding) on-chip buck

cluster, and the final power quality for the loads observed on

the power grids. As a result, such interdependencies have to be

considered in the online adaption for maximal power efficiency

and noise tradeoffs.

IV. HVR CONTROL POLICIES

We present our proposed control policies for three-stage

HVR, while these policies can be straightforwardly applied to

adapt two-stage HVR consisting of only off-chip and on-chip

switching VRs. Unlike most related work executing power

management in the OS or software [16], [18], the proposed

policies can be efficiently implemented in firmware based

on simple arithmetics and precomputed LUTs supported by

hardware accelerated ML prediction of workload.

The settling times of off-chip and on-chip switching VRs

of the first two stages can differ by several orders of mag-

nitude. Hence, they are adapted using two different control

cycle times, denoted by Toff and Ton, respectively. Each Toff

is split into a multiple of Ton. Accordingly, off-chip and

on-chip switching VRs are adapted by two control procedures,

which are shown in Fig. 9 for an HVR system with N

power domains, one for each core. We estimate the core-level

workloads �IL ,Toff = {I
(1)
L ,Toff, I

(2)
L ,Toff, ..I

(N)
L ,Toff} and �IL ,Ton =

{I
(1)
L ,Ton, I

(2)
L ,Ton, ..I

(N)
L ,Ton}, respectively, at the time granularities

of Toff and Ton using power sensors [31] at the output of

each on-chip switching VR (buck converter) cluster. At both

time scales, we use the workload estimates obtained from

the previous control cycle to generate control actions for the

current cycle.

In each off-chip VR control cycle Toff , the off-chip

VR control procedure VR_OFF_OPT is invoked to optimize

the off-chip VR output voltage Vout,off and the number of

online off-chip VRs Nonline,off based on �IL ,Toff . Each Toff

is divided into a multiple of much finer grained on-chip

VR control cycles Ton as shown in Fig. 10. The on-chip control

procedure VR_ON_OPT is invoked in each Ton cycle to adjust

Fig. 9. Control of off-chip and on-chip switching VRs at two time scales.

Fig. 10. Two control sequences.

the output voltage V
(i)
out,on and the number of online VRs

N
(i)
online,on for each on-chip VR cluster, i = 1, 2, . . . N , based

on the finer grained workload estimation I
(i)
L ,Ton. As detailed

in Section V, VR_ON_OPT relies on an ML module utilizing

a small NS number of voltage sensors to more precisely

adjust �Vout,on = {V
(1)
out,on, V

(2)
out,on, . . . , V

(N)
out,on}, based on the

spatial distribution of the workload in each power domain. The

voltage sensor readings �Vsensor = {V
(1)
sensor, V

(2)
sensor, . . . , V

(NS )
sensor}

are included as input to VR_ON_OPT.

Fig. 10 shows the timing of the control sequences. There are

three steps involved in each Ton cycle. The first decision mak-

ing step executes VR_ON_OPT procedure to compute �Vout,on

and �Nonline,on and the on-chip VRs are adjusted accordingly

in the second decision execution step.

A. Off-Chip Switching VR Control

The output voltage Vout,off of the off-chip switching VRs

is the input voltage to all on-chip switching VR clusters.

Vout,off impacts the power efficiencies of both on-chip and

off-chip buck VRs as well as the resistive power loss due

to printed circuit board (PCB)/package parasitics. As in Algo-

rithm 1, the off-chip control procedure VR_OFF_OPT uses the

following iterative search to find the optimal Vout,off among

ηHVR = ηbuck,off(Vout,off, Nonline,off, IL ,off)ηbuck,on(Vout,off, �Vout,on, �Nonline,on, �IL ,on)ηldo( �Vout,on, �Vdd) (5)
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Algorithm 1 Off-Chip Control Algorithm V R_O F F_O PT

a set of discretized values of Vout,off while considering the

above interactions. At each iterative search step with a targeted

Vout,off value, we first estimate the input voltage to each LDO

network V
(i)
out,on in line 5 as a linear function of workload to

maximize the power efficiency of the LDO’s as in Section III-

A for three-stage HVR. Otherwise, for two-stage HVR, V
(i)
out,on

is directly set by system’s power management (e.g., DVFS)

unit as shown in line 7. Then, the optimal load point for each

on-chip buck VR I
(i)
opt is determined in line 9 via an LUT

with the known input–output voltages. N
(i)
online,on is further

determined in line 10. The power efficiency for each on-chip

buck cluster is conveniently estimated through the use of

another LUT in line 11. The total through-package current,

which is the sum of the input currents of all on-chip buck

clusters is computed in line 13 and used as the load current of

the off-chip buck cluster. The power efficiency of the on-chip

components of HVR is computed in line 14 considering both

integrated buck VRs and LDOs. Our experimental study shows

that the resistive loss caused by PCB/package parasitics may

not be negligible, which is considered in line 15. Following a

similar procedure, Nonline,off and the off-chip power efficiency

are determined in lines 16–18. The overall system power

efficiency at the current value of Vout,off is the product of the

efficiencies of all stages as in line 19. Finally, the combination

of the value of Vout,off and the corresponding Nonline,off that

maximizes the system efficiency is chosen as the optimal

control of the off-chip buck VRs for this Toff cycle.

B. On-Chip Switching VR Control

Once the slowly changing variables Vout,off and Nonline,off

are determined for each Toff cycle, V
(i)
out,on and N

(i)
online,on per

Algorithm 2 On-Chip Control Algorithm V R_O N_O PT

domain are updated for each finer temporal cycle Ton by

calling VR_ON_OPT shown in Algorithm 2. We follow a flow

similar to VR_OFF_OPT to determine N
(i)
online,on in lines 2–8.

However, if the ML is enabled, the final V
(i)
out,on is fine-tuned by

the ML module with the consideration of fine-grained spatial

workload distribution, described next.

V. MACHINE LEARNING ENABLED ADAPTION

One key objective of voltage regulation is to deliver power

to on-die devices with ensured power integrity, e.g., without

dropping the worst case voltage from the on-chip power grids

below a preset level. Power supply noise hotspots are created

due to the nonuniform spatial distribution of workload on-

chip. To make things even worse, the locations of hotspots can

shift during runtime. Such effects can significantly impact the

on-die supply noise. Thus, the output voltage of each on-chip

switching VR cluster, which is the final point of two-stage

voltage regulation, and also the input voltage to the distributed

LDO network in the case of three-stage HVR, shall be adapted

with the considerations of fine-grained spatial workload distri-

bution. However, predicting such spatial workload distribution

for the purpose of PDN adaptation is a challenging problem.

Recently, ML has been received a significant amount of

interest for power system design. For instance, noise-sensor-

based ML techniques [32], [33] have been developed to detect

voltage emergencies within functional blocks. Different from

these works, we leverage ML to directly learn the optimal

control policy based on the fine-grained spatial workload

distribution predicted from a small number of distributed

voltage noise sensors. This enables a very desirable end-to-

end ML solution that can lead to additional energy and power

integrity benefits.

A. Machine Learning Problem Formulation

We first formulate the ML problem. For a power domain,

denote the output voltage of the corresponding on-chip switch-

ing VR (buck) cluster Vout,on. By exploiting the correlation
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Fig. 11. Demonstration of ML module and voltage sensors.

between voltage drops at different nodes in the power grids

(including sensor locations) and the distribution of workload,

an ML model can directly learn the optimal control variable

V
opt
out,on using the voltage sensor readings as input features.

Here, V
opt
out,on is defined as the minimum Vout,on value such

that the worst case supply voltage across the entire power grids

does not fall below a preset safety voltage level. By leveraging

the fine-grained spatial information of workload distribution,

Vout,on can be set in a more accurate way, achieving improved

power efficiency and quality. An ML model is used to learn

the following mapping:

�SPDN, �Vsensor → V
opt
out,on (6)

where �Vsensor is the worst case voltage values sensed by the

voltage sensors during an on-chip VR control cycle Ton. �SPDN

includes the PDN configurations such as control variables

under which the voltage sensor values are measured. The

training samples can be collected by circuit simulation by

sweeping Vout,on within a certain range to obtain the target

V
opt
out,on under the same workload. Fig. 11 illustrates the ML

module and voltage sensors in a power domain.

B. Machine Learning Algorithm

We integrate our ML module (accelerator) on-chip to enable

fast real-time workload-aware adaption. Such ML module

must come with sufficient accuracy, low area/power overhead,

and should incur low processing latency to enable HVR adap-

tation at fine temporal granularity. In this work, we adopted

a recently developed sparse Bayesian-based ML algorithm,

namely, sparse relevance kernel machine (SRKM) [34], [35]

as the ML algorithm. As a kernel machine, SRKM predicts

the target value y of a new input vector x using N training

samples X i

y(x; w) =

N
∑

i=1

wi · K (x, X i ) (7)

where K (x, X i ) is the kernel function, and w =
[w1,w2, . . . ,wN ]T is the vector of sample weights. It should

be noted that for the system with analog/mixed-signal circuits,

such as the PDN under this study containing a large number

of active VRs, SRKM utilizes a nonlinear kernel function

that can well capture the nonlinear mapping from voltage

Fig. 12. (a) Proposed on-chip SRKM accelerator. (b) Layout of an SRKM
accelerator with parallelism parameter equaling 8.

sensor readings and PDN configurations to the optimal control

variable as illustrated earlier.

Applying the above nonlinear regression model for all N

training samples gives t = � · w + e, where � is an N × N

matrix defined by �(i, j) = K (xi , x j ), t is the vector of

the N target values, and e is the error vector. Similar to the

relevance vector machine (RVM), the SRKM model is treated

as probabilistic, whereby the model parameters w are consid-

ered as random variables, which are optimally inferred in the

training process. It has been demonstrated the advantages of

SRKM for a variety of applications in [34] and [35]. Unlike

the widely adopted support vector machine (SVM) and RVM,

SRKM can achieve sparsity in both the (training) sample

and (parameter) feature space. For each sample and feature,

a weight parameter is learned from the training process to

signify the significance of the sample/feature with respect to

the prediction of the target value. SRKM produces sparser

models with improved accuracy compared to SVM and RVM,

and offers a built-in mechanism to filter out redundant samples

and features based upon quantitative weight information. The

resulted sparse model is very appealing for achieving low

processing latency and hardware overhead in our application.

More details about SRKM can be found in [34] and [35].

C. SRKM Accelerator

Following (7), we propose an on-chip SRKM predictor

design in Fig. 12(a). It only utilizes simple arithmetics such as

ADD and MUL/DIV, and a 1-D LUT for the exponential cal-

culation. The model parameters obtained from offline training

are stored using a small amount of on-chip memory. The entire

design is based on fixed-point 24-bit operation and only intro-

duces a small quantization error of 2.2 mV evaluated under

4000 samples. By exploiting the rich parallelisms embedded

in (7), we explore SRKM modules of different degree of paral-

lelisms using a standard 45-nm CMOS technology. The main

hardware results are summarized in Table III, demonstrating

a good tradeoff between processing latency, power, and area

overhead. The layout of the SRKM hardware with eight-way

parallelism is shown in Fig. 12(b).

In our work, we train an SRKM model offline based

on 2000 training samples collected from circuit simulation.
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TABLE III

HARDWARE RESULT FOR SRKM ACCELERATOR

WITH DIFFERENT PARALLELISM

TABLE IV

PROCESSOR CONFIGURATION

It achieves a normalized mean square error (NMSE) of 4.3e-3,

demonstrating excellent prediction accuracy. As mentioned

earlier, the trained SRKM model is mapped to a hardware

accelerator for efficient runtime application. It should be

noted that the proposed overall control scheme does not

need additional software support except the offline SRKM

model training. At runtime, all the decision-making of control

variables will be processed through light-weighted hardware

such as simple arithmetics, precomputed LUTs storing VRs’

characteristics, and the SRKM hardware accelerator for work-

load prediction.

VI. EXPERIMENTAL EVALUATIONS

A. Experimental Setup

1) Multicore Processor Model and Power Analysis:

We use the full-system multicore simulator GEM5 [36] to

generate runtime statistics with the granularity of 100 ns and

then feed them into the power analysis tool McPAT [37] to

produce realistic workload current traces. The 45-nm four-core

processor model illustrated in Table IV is evaluated using the

PARSEC benchmark suite [38]. The total die area including

on-chip VRs is estimated as 286.4 mm2 by McPAT and

PowerSoC [28]. The peak workload current per core is 25 A.

Each core is divided into 11 functional blocks. The current

workload of each block, derived from McPAT, is evenly

distributed within the block to load the PDN.

2) Power Delivery Network: To enable the comparison

across different PDN architectures, we consider the widely

used two-stage PDN shown in Fig. 2(b) with on-chip/off-

chip buck VRs as the reference. The main structure of the

reference system is similar to the three-stage HVR except

that the centered on-chip buck converters are used as the

last voltage processing stage instead of the distributed LDO

network. We adopt a PCB/package/power grid model similar

to [39], which is derived based on Pentium 4 processor, for

both PDNs. The effects of packaging and long power routing

are included in the power model of PDNs. Considering the

feasibility of circuit-level simulation, the on-chip power grids

of the PDN are modeled using an RC network with more than

3000 nodes. As the on-chip decoupling capacitance (decap) is

highly correlated with the voltage noises, we scale the total

amount of decap Cdecap by keeping a similar Cdecap/Imax ratio

as in [39], where Imax is the maximum load current.

In the regulation chain of each PDN, a cluster of 5 off-chip

buck VRs is used to drive 5 on-chip buck clusters with

each cluster containing four identical on-chip VRs. In three-

stage HVR, each on-chip VR cluster further drives a network

of 250 on-chip LDOs for each core (power domain). The

topology from [30] is adopted for on-chip LDOs with maxi-

mum 100-mA load capability. The off-chip and on-chip buck

converters are designed using PowerSoC [28], which finds

the key design parameters such as switching frequency, filter

inductance, and size of MOS switches under a static nominal

load condition. Considering the on-chip buck converters are

the final regulation stage in the two-stage reference PDN, they

are designed with more emphasis on regulation performance

at the cost of more energy loss. As a result, the on-chip buck

VRs of the two-stage PDN operate at 291 MHz, while those of

the three-stage HVR operate at 107 MHz. The area of on-chip

buck VRs for two-stage and three-stage PDNs are 15 mm2

and 13.75 mm2, respectively. The area of on-chip LDOs for

three-stage PDN is 1.25 mm2. Clearly, the total area budget

of on-chip VRs (including LDOs) is set to 15 mm2 for both

PDNs for a fair comparison.

3) Control Scheme Setup: The on-chip and off-chip

VR control periods Ton and Toff are set to 1 and 100 us,

respectively, to suit the response times of the considered

on-chip and off-chip switching VRs.

As shown in Algorithm 2, the ML-enabled control scheme

takes the voltage sensor readings as input to predict the optimal

output voltage of on-chip switching VRs. However, obtaining

the voltage sensor readings for each PARSEC benchmark

during runtime through the simulation of our complex PDN

model is prohibitively computationally expensive. To speed up

the evaluation process, we once again leverage ML but for the

purpose of fast estimation of voltage sensor readings. We train

another SRKM model offline which performs the following

mapping:

�SPDN, �Iblock(n), �Iblock(n − 1) → �Vsensor(n) (8)

where �Iblock(n) and �Iblock(n−1) are the block-level workloads

at the current and past 100ns time steps, representing the

fine-grained workload transition, �Vsensor(n) is the worst case

voltage sensor readings caused by the corresponding transi-

tions. Based on the traces of �Vsensor(n), the worst case voltage

sensor readings for each control cycle Ton can be computed

as the input to the ML module. Similar to the online SRKM

module in Section V, the PDN state variables �SPDN are

included as part of the input features for this offline SRKM

model to estimate �Vsensor(n). Trained with 4000 samples, this

offline SRKM model is very accurate and achieves an average

NMSE of 1.52e−4.

B. Online Machine Learning Overhead

The area and power overhead of the proposed ML-enabled

HVR adaptation comes from the voltage sensors and

SRKM accelerators. The voltage sensors can be implemented
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TABLE V

ADDITIONAL AREA AND POWER OVERHEAD (%). AREA IS NORMALIZED

TO THE ORIGINAL ON-DIE AREA. POWER IS NORMALIZED TO

HALF OF THE PEAK POWER

based on low-power high-speed analog-to-digital converters

(ADCs) [40], [41]. The ADC design in [41] is considered to

estimate the sensor cost. In our study, ten voltage sensors and

a compact SRKM accelerator are placed in each core. The ML

calculation is the major latency in the control loop. To avoid

large performance degradation and achieve good responsive-

ness to workload change, the SRKM latency is expected

to be much smaller than the on-chip control window size

Ton (e.g., 1 µs). Considering the tradeoffs among processing

latency and hardware overhead as in Table III, we choose the

SRKM accelerator with parallelism equaling eight to achieve a

satisfactory short latency with a moderate hardware overhead.

As summarized in Table V, the proposed ML approach only

incurs an overhead of 2.5% on area and 0.2% on power but

comes with great benefits.

C. Power Integrity and Adaptive Control

1) Power Integrity: We examine the power quality of sev-

eral adaptive PDNs through detailed circuit-level simulation.

Verilog-A models with PWM control are used to model the

on-chip buck converters based on design parameters obtained

from PowerSoC. The ideal voltage source is used for the

off-chip VRs since they have little impact on power supply

noise. The complexity of our PDN model with a large number

of VRs causes significant simulation challenge. It takes around

112 h to simulate a 100-µs segment of benchmark workload

with four threads on an Intel Xeon E5-2697A processor at

2.60 GHz. We select a 100-µs workload segment from each

PARSEC benchmark, forming a workload simulation set. This

set contains a representative worst case workload segment

from the fluidanimate benchmark and random segments from

other benchmarks, serving as typical workload conditions.

As described in Section IV, our control algorithm supports

both two-stage and three-stage PDNs and also provides two

options with and without ML module. This creates four adap-

tive PDNs and they are simulated based on the aforementioned

workload simulation set.

In modern processors, multiple factors such as clock gating

and workload variation can lead to unpredictable supply volt-

age noises. Once the worst case voltage droop exceeds an oper-

ating margin (10% of the nominal Vdd in this study), voltage

emergency (VE) will happen and may cause timing violations.

Although designing a static PDN based on worst case load

scenario can guarantee the robustness with a large voltage

safety margin, the power efficiency significantly degrades.

Instead, more aggressive voltage margins can be used in mod-

ern designs to reduce the power consumption greatly and allow

rare occurrences of VEs by fail-safe mechanisms such as the

rolling-back recovery [42] or adaptive frequency tuning [43].

Fig. 13. Average number of VEs per power domain for each benchmark
segment.

In our study, we assume the processor is equipped with such a

mechanism to recover from the rare events of VEs. The count

of VEs is used as a metric for power quality.

Fig. 13 plots the average count of VEs per power domain

under the workload segment of different PARSEC bench-

marks. On average VE only occurs about once in each power

domain for all PDNs. In other words, all PDNs have the

same power integrity level. Under this equal power quality

condition, we will compare these PDNs in terms of energy

efficiency in Section VI-D.

2) Case Study for Adaptive Control: Next, we use two

simulation examples of the adaptive three-stage HVR systems

with and without ML module to shed some light on how the

proposed control policies adapt to the workload change and

the benefits brought by ML. Fig. 14(a) shows the transient

waveforms based on fluidanimate. Such workload segment

represents a worst case scenario since the total load current

suddenly increases to the maximum 25-A peak current from

light-load condition. The fast and large load variations as such

tend to cause a considerable amount of power supply noise,

imposing a significant regulation challenge. The resulting

worst voltage VPG in the entire on-chip power grids is plotted.

The dashed line indicates the supply voltage level under which

VE is considered to happen. It can be seen that the system

armored with ML can more accurately set the output voltage

of the on-chip buck converters Vout. That is, Vout that is further

fine-tuned by the proposed ML module becomes lower under

lighter load conditions, reducing the energy loss of the LDO

networks. On the other hand, Vout can be quickly increased in

response to the arrival of heavier workloads. The number of

online on-chip buck converters Nonline is also well adapted to

the workload variation for energy saving.

Fig. 14(b) shows a more typical workload example from

the streamcluster benchmark. The corresponding power trace

exhibits periodic behavior resulted from a for loop in the

program. Although no VE happens in both PDNs, it is evident

that the ML solution further improves energy efficiency due

to lower values of Vout.

D. Overall Energy Evaluation

1) Energy Comparison: The overall energy efficiencies of

different PDN architectures with various control schemes are
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Fig. 14. Transient circuit simulation waveforms of the adaptive three-stage
HVR running (a) fluidanimate benchmark and (b) streamcluster benchmark.

compared. We name all considered PDNs in Fig. 15 (top).

There are four three-stage PDNs denoted by 3-S1–3-S4 with

different control policies. Take the 3-S4 PDN with config-

uration three-stage Nonline,on/off-Vout,on/off(ML) for example.

The configuration means that the system utilizes a three-stage

HVR PDN architecture, enables the tuning of the number

of online VRs, output voltage of both on-chip and off-chip

switching VRs, and it integrates the ML module. The first

3-S1 system indicates a static three-stage PDN with no run-

time adaptation. Similarly, we have four different PDNs with

two-stage architecture. We highlight several observations from

Fig. 15.

1) Without any adaptive control, the static 3-S1 outper-

forms 2-S1 with an energy reduction of 4.0% on average.

On the other hand, with a complete control scheme,

3-S4 shows up to 5.0% energy reduction over 2-S4.

It demonstrates the potential of leveraging HVR to

improve energy and performance tradeoffs.

2) The 2-S2 adopts a simple control scheme similar to [17]

by tuning the number of online on-chip/off-chip buck

VRs in the two-stage PDN. It is observed that it reduces

the energy by 8.5% over the static 2-S1. However,

adding Vout,off into 2-S3 can bring in an additional

2.1% energy saving on average, since such a scheme

captures more interdependency among the regulation

chain. By comparing 2-S4 with 2-S3, the proposed ML

module offers up to 4.1% reduction of system energy by

utilizing the spatial workload distribution information.

3) The highest energy efficiency is achieved by the pro-

posed ML enabled adaptive 3-S4 system. The 3-S4 sys-

tem reduces the total system energy dissipation by up

to 17.9% and 12.2% on average compared to the static

3-S1. Compared with the conventional static 2-S1, our

3-S4 with runtime control reduces system energy by up

to 23.9% and 15.7% on average.

Fig. 16 further decomposes the energy consumption for

2-S1, 2-S4, 3-S1, and 3-S4 systems. It is observed that,

in general, the processor in the two-stage HVR consumes

less energy compared to that of the two-stage PDN. That is

because the distributed LDO network enhances the supply

noise suppression and thus enables lower supply voltage

while maintaining the same power integrity, demonstrating the

benefit of HVR in voltage regulation. By setting the output

voltage of on-chip buck VRs in a more accurate way, the use of

ML module significantly improves the LDO’s power efficiency

in the three-stage HVR system while reducing the processor’s

energy consumption in the two-stage system. With full consid-

eration of the energy interdependency in the regulation chain,

the proposed control policy achieves a near-optimal overall

power efficiency by carefully trading off power loss at different

stages.

2) Impact of Control Granularity: As discussed earlier,

great benefits of adaptive control may be achieved at the

finest possible temporal granularity by tracking the workload

more closely. To demonstrate the same, Fig. 17(a) shows the

corresponding power loss increments for the 3-S4 system by

applying coarser on-chip control granularities. Enlarging Ton

from 1 to 10 µs and 100 µs, the total power loss increases by

up to 5% and 10%, respectively, demonstrating the benefits

of fine-grained adaptive control. However, it is observed

in Fig. 17(b) that even with a coarser Ton, significant power

reduction can still be achieved over the static 3-S1 system,

demonstrating the effectiveness of the proposed adaptive HVR

over a wide range of control granularity.

VII. RELATED WORK

Recently, various power management techniques [3],

[10]–[13] have been proposed to save power and improve the

overall processor’s performance at the system and architecture

level. For example, [3] explores the benefits of fast DVFS at

submicrosecond time scale using on-chip switching regulators.

And [13] proposes an adaptive guard-banding approach to

dynamically adapt chip clock frequency and voltage based

on timing-margin measurements at runtime. Different from

these DVFS techniques which target the optimization of

processor’s power and performance, this work explores the

energy reduction opportunity in the PDN which delivers

energy to the processor.

At the circuit level, several works have investigated the

benefits of workload-aware PDN designs. Optimizing toward

the single-stage PDN, as shown in Fig. 3(a) [18], consolidates
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Fig. 15. Overall energy estimation for different PDN designs.

Fig. 16. Detailed energy breakdown for four different PDNs.

multiple power domains with the same supply voltage level

to share a single off-chip inductor-based buck VR to avoid

low conversion efficiency at light-load condition. In the same

spirit, [16] proposes to reconfigure the PDN by combining the

output of multiple VRs when the workload demand exceeds

the peak current of a single VR. Targeting a two-stage PDN

using both off-chip and on-chip switching VRs as shown

in Fig. 3(b), a workload-aware QPM scheme is proposed

in [17] to dynamically adjust the number of active on-chip and

off-chip switching VRs at multiple granularities according to

the chip-level runtime workload. However, these PDN recon-

figuration techniques are all based on the core- or chip-level

workload estimations without considering on-chip distributed

LDOs and finer grained spatial workload distribution which

can significantly impact on-chip supply noise. In addition, they

do not consider the interdependencies among different power

stages during power efficiency optimization. As discussed in

this paper, the optimal tradeoff between power efficiency and

quality can be best achieved with a systematic and joint con-

sideration of all the related factors. For example, different from

the adaptive control policy applied to the off-chip VRs as pro-

posed in [17], this work sets the number of off-chip buck VRs

along with other voltage processing stages to maximize the

overall system power efficiency by considering interdependen-

cies across the entire voltage processing chain. In addition, one

additional control variable, i.e., the output voltage of off-chip

VR stage, is considered in this work to make the proposed

control scheme more comprehensive, bringing 2.1% overall

system energy reduction on average. We also show the poten-

tial benefits of the three-stage heterogeneous PDN with mul-

tiple VR topologies with complementary characteristics over

the conventional two-stage PDN with a single VR topology.

Finally, the use of ML and voltage sensors to directly learn

the control policy considering the spatial on-chip workload

distribution presents excellent new opportunities. Our results

demonstrate the great potential in leveraging the rich het-

erogeneity and optimization opportunities in multistage HVR

systems for improved power efficiency and quality tradeoffs.

VIII. CONCLUSION

Targeting multistage HVR systems, this paper develops

comprehensive workload-aware control policies acting at mul-

tiple temporal granularities based on complimentary charac-

teristics of on-chip and off-chip VRs. The considered control
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Fig. 17. Impact of different control granularities on the power loss
of 3-S4 PDN. (a) Total loss increment compared to Ton = 1 µs. (b) Total
loss reduction over static 3-S1 PDN.

variables are jointly optimized to improve the overall power

efficiency according to important interdependencies existing

in the regulation chain. Our control policies are further sup-

ported with an integrated machine-learning module to cope

with fine-grained spatial distributions of workload, achieving

further improved power quality and efficiency. We show that

the proposed adaptive HVR and control policies reduce system

energy by up to 17.9% and 23.9% over a static three-stage

HVR and conventional two-stage PDN, respectively.
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