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POWER MANAGEMENT IN A HYDRO�THERMAL

SYSTEM UNDER UNCERTAINTY BY LAGRANGIAN

RELAXATION

NICOLE GR�OWE�KUSKA�� KRZYSZTOF C� KIWIELy�

MATTHIAS P� NOWAKz� WERNER R�OMISCHx� AND ISABEL WEGNER�

Abstract� We present a dynamic multistage stochastic programming model for the
cost�optimal generation of electric power in a hydro�thermal system under uncertainty in
load� in�ow to reservoirs and prices for fuel and delivery contracts� The stochastic load
process is approximated by a scenario tree obtained by adapting a SARIMA model to
historical data� using empirical means and variances of simulated scenarios to construct
an initial tree� and reducing it by a scenario deletion procedure based on a suitable prob�
ability distance� Our model involves many mixed�integer variables and individual power
unit constraints� but relatively few coupling constraints� Hence we employ stochastic
Lagrangian relaxation that assigns stochastic multipliers to the coupling constraints�
Solving the Lagrangian dual by a proximal bundle method leads to successive decom�
position into single thermal and hydro unit subproblems that are solved by dynamic
programming and a specialized descent algorithm� respectively� The optimal stochastic
multipliers are used in Lagrangian heuristics to construct approximately optimal �rst
stage decisions� Numerical results are presented for realistic data from a German power
utility� with a time horizon of one week and scenario numbers ranging from � to ���� The
corresponding optimization problems have up to 	������ binary and 
������ continuous
variables� and more than ������� constraints�

Key words� Stochastic programming� Lagrangian relaxation� unit commitment�
bundle methods� scenario generation�

AMS�MOS� subject classi�cations� ��C��� ��C��� ��C��� ��C	�� ��K��

�� Introduction� Many issues motivate a growing interest in mathe�
matical modeling and optimization techniques for operating power systems
and trading electricity� Some of them are related to the ongoing liberal�
ization of electricity markets� electric utilities generate power in a compet�
itive environment� generating and trading activities must be coordinated�
electricity portfolios for spot and option markets become important� and
the electrical load as well as electricity prices become increasingly unpre�
dictable� Further issues are related to the complex nature of mathemat�
ical models for the e�cient generation� transmission and distribution of
electric power� They often lead to optimization problems characterized
by combinations of challenges such as mixed�integer decisions� nonlinear
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costs and constraints� huge dimensions and data uncertainty� The latter
aspect mostly concerns uncertainty in electric load forecasts� generator fail�
ures� stream �ows to hydro reservoirs� and fuel and electricity prices �see
��	� ��� �
� ��� 

 for relevant earlier work��

The present paper aims at optimizing generation and trading of an
electric hydro�thermal based utility under data uncertainty� More speci��
cally� we consider a power system comprising thermal units� pumped hydro
storage plants and contracts for delivery and purchase� The relevant un�
certain data comprise electric load� stream �ows to hydro units� and fuel
and electricity prices�

We develop a dynamic stochastic programming model where the ex�
pected production costs are minimized subject to operational constraints�
Since the model contains stochastic mixed�integer decisions and is large�
scale� new questions are raised on designing solution algorithms and gener�
ating approximate scenario�based data processes� Our model and solution
techniques are validated on the system of the German utility Vereinigte
Energiewerke AG �VEAG�� The VEAG generation system consists of ��
�coal��red or gas�burning� thermal units and � pumped hydro units� Its
total capacity is about ���			 megawatts �MW� including a hydro capacity
of ���		 MW� the system peak loads are about ���		 MW�

Nowadays� solution methods are well developed for linear dynamic
�multistage� stochastic programs without integrality constraints �see the
monographs �
� ��� �� and the surveys ��� ���� Most of them are based
on discrete approximations of the stochastic data process in the form of
scenario trees� Recently� some algorithmic progress has also been achieved
in mixed�integer stochastic programming models and applications to power
optimization� The following algorithmic approaches to mixed�integer sto�
chastic programs appear in the literature� �a� stochastic branch and bound
methods �
	� �b� scenario decomposition by splitting methods combined
with suitable heuristics ��	� ��� �
� ��� �c� scenario decomposition com�
bined with branch and bound ��� �� �d� stochastic �augmented� Lagrangian
relaxation of coupling constraints ��� �� �� 
�� ��� ��� The approaches in
�b� and �c� are based on a successive decomposition of the stochastic pro�
gram into �nitely many deterministic �or scenario� programs that may be
solved by available conventional techniques� The approach of �d� hinges on
a successive decomposition into �nitely many smaller stochastic subprob�
lems for which �e�cient� solution techniques must be developed eventually�
Due to the nonconvexity of the underlying stochastic program� the succes�
sive decompositions in �b���d� have to be combined with certain global
optimization techniques �branch�and�bound� heuristics� etc���

The solution approach pursued in the present paper consists in a
stochastic version of classical Lagrangian relaxation ���� which is very
popular in power optimization ��� ��� ��� ��� ��� ��� ��� Since the coupling
constraints contain random variables� stochastic multipliers are needed for
their dualization� and the dual problem is a nondi�erentiable stochastic
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program� Consequently� this approach is based on the same� but stochas�
tic� ingredients as in the classical case� a solver for the nondi�erentiable
dual� subproblem solvers� and a Lagrangian heuristic� With a state�of�the�
art bundle method for solving the dual� specialized subproblem solvers and
Lagrangian heuristics� this stochastic Lagrangian relaxation algorithm be�
comes rather e�cient� Our numerical results indicate that the algorithm
bears potential for solving complex real�life power scheduling models under
uncertainty in reasonable time�

Generation of representative scenario trees is presently an active �eld
of research� see the survey ��
� Known scenario generation methods may
essentially be classi�ed into two categories� �a� approaches that are embed�
ded in the solution procedure of stochastic programs ��	� �	� ��� ��� ��� and
�b� approaches that generate optimal scenario trees for classes of stochas�
tic optimization problems �
�� ��� �	� ��� For power management under
uncertainty discrete time stochastic models are calibrated from historical
time series for the load and stream �ows ��	� ��� The calibrated models
can be used to simulate or select a large number of sample paths� These
independently generated data trajectories are combined into scenario trees�
The algorithmic approaches in �a� allow possible updates of the scenario
tree structure as part of the solution procedure in the case of linear or con�
vex stochastic programs without integrality constraints� Since a sequence
of stochastic programs corresponding to subsequent approximations have
to be solved� the computational e�ort of all these methods is high� The
tree building procedures in �b� control the goodness�of��t of the approx�
imation by certain distances� An optimal scenario tree is de�ned as the
tree�structured discrete distribution that minimizes the selected distance�
The resulting scenario trees can be tested within postoptimality analysis
���� ��� The iterative procedure in �
� is based on the Wasserstein dis�
tance of probability measures� A weighted least�squares criterion is used
in ��� to obtain a scenario tree that preserves certain moments or other
statistical properties of the true multivariate distribution� the scenario tree
is obtained by solving highly nonlinear nonconvex programs� ��	 proposes
a scenario reduction technique �nonrandom sampling� for the expectation
of path�dependent discount functions�

In our approach to load scenario tree generation� simulation scenarios
are drawn from a SARIMA model for the load� Their empirical means and
standard deviations enter a tree building scheme for the initial �binary�
load scenario tree� In a �nal step the number of load scenarios is reduced
by a scenario deletion procedure based on a suitable probability distance�

The paper is organized as follows� In x� we give a description of a
hydro�thermal generation system and develop our stochastic programming
model� In x� we describe the stochastic Lagrangian relaxation approach
together with its components and report on numerical results for the VEAG
system with uncertain load� In x
 we present our procedure for generating
scenario trees of the electrical load process and report on numerical tests�
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�� Power system modeling� We consider a power generation sys�
tem comprising thermal units� pumped storage plants and contracts for
delivery and purchase� and describe a model for its cost�optimal operation
under uncertainty in electrical load �i�e�� demand�� stream �ows in hydro
units and prices for fuel or electricity�

The scheduling horizon for unit commitment is typically discretized
into uniform �e�g�� hourly� intervals� Accordingly� the load� stream �ows
and prices are assumed to be constant within each time period� The
scheduling decisions for thermal units are� which units to commit in each
period� and at what generating capacity� The decision variables for hydro
plants are the generation and pumping levels for each period� Contracts
for delivery and purchase are regarded as special thermal units� The sched�
ule should minimize the total generation costs� subject to the operational
requirements�

We use the following notation� There are T time periods� I and J
are the numbers of thermal and hydro units� respectively� For a thermal
unit i in period t� uit � f	� �g is its commitment �� if on� 	 if o��� and pit

its production� with pit � 	 if uit � 	� pit � �pmin
it � pmax

it  if uit � �� where
pmin
it and pmax

it are the minimum and maximum capacities� Additionally�
there are minimum up�down�time requirements � when unit i is switched
on �o��� it must remain on �o�� for at least ��i �� i� resp�� periods� For a
hydro plant j� vjt and wjt are its generation and pumping levels in period
t� with upper bounds vmax

jt and wmax
jt respectively� and ljt is the storage

volume in the upper dam at the end of period t� with upper bound lmax
jt �

The water balance relates ljt with lj�t��� vjt� wjt and the water in�ow �jt�
using the pumping e�ciency �j � The initial and �nal volumes are speci�ed
by linj and lendj �

The basic system requirement is to meet the electric load� Another
important requirement is the spinning reserve constraint� To maintain
reliability �compensate sudden load peaks or unforeseen outages of units�
the total commited capacity should exceed the load in every period by a
certain amount �e�g�� a fraction of the demand�� The load and the spinning
reserve during period t are denoted by dt and rt� respectively�

Figure � shows a typical load curve and a corresponding cost�optimal
hydro�thermal schedule� The load curve exhibits a daily cycle� also weekly
cycles may occur �see� e�g�� Fig� � in x
���� E�cient operation of pumped
storage hydro plants exploits such cycles by generating during peak load
periods and pumping during o��peak periods�

Since the operating costs of hydro plants are usually negligible� the
total system cost is given by the sum of startup and operating costs of
all thermal units over the whole scheduling horizon� The fuel cost Cit for
operating thermal unit i during period t has the form

Cit�pit� uit� �� max
l����l

f ailtpit � biltuit g ������
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Fig� �� Typical load curve and hydro�thermal schedule

with coe�cients ailt� bilt such that Cit��� �� is convex and increasing on
R� � note that Cit�	� 	� � 	� The startup cost of unit i depends on its
downtime� it may vary from a maximum cold�start value to a much smaller
value when the unit is still relatively close to its operating temperature�
This is modeled by the startup cost

Sit�ui� �� max
�����c

i

ci�

�
uit �

�X
���

ui�t��

�
������

where 	 � ci� � � � � � ci�c
i
are �xed cost coe�cients� �ci is the cool�down

time of unit i� ci�c
i
is its maximum cold�start cost� ui �� �uit�

T
t��� and

ui� � f	� �g for � � �� �ci � 	 are given initial values�

���� Stochastic model� In electric utilities� schedulers forecast the
electric load for the required time span� Since the load is mainly driven
by meteorological parameters �temperature� cloud cover� etc��� the actual
load deviates from its prediction� Of course� the load uncertainty increases
with the length of the planning horizon� Other sources of uncertainty
are generator outages� stream �ows in hydro units� and prices of fuel and
electricity�

To formulate a power generation model that incorporates �uctuations
in stream in�ows in hydro plants� and fuel and electricity prices in addition
to the load uncertainty� we use a probabilistic description of uncertainty�
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Thus

f�t �� �dt� rt��t�at� bt� ct� g
T
t�������

is assumed to be a discrete�time stochastic process on some probability
space ���F �P�� where dt� rt and �t represent the load� the spinning reserve
and the water in�ows in period t� while at� bt and ct collect the cost
coe�cients of ����� and ����� �we use bold characters to emphasize random
elements��

The scheduling decisions for period t are made after learning the re�
alization of the stochastic variables for that period� Denote by Ft � F the
���eld generated by f��g

t
���� i�e�� the events observable till period t� Since

the information on �� is complete� F� � f���g� i�e�� �� is deterministic� By
assuming FT � F we require that full information be available at the end of
the planning horizon� The sequence of scheduling decisions fut�pt�vt�wtg
also forms a stochastic process on ���F �P�� which is assumed to be adapted
to the �ltration of ���elds� i�e�� nonanticipative� Nonanticipativity means
that the decisions �ut�pt�vt�wt� may depend only on the data observable
till period t� or equivalently that �ut�pt�vt�wt� is Ft�measurable�

In a stochastic programming framework� an optimal schedule is ob�
tained by minimizing the expectation of the costs caused by all nonanti�
cipative decisions while meeting the operational constraints� Formally� our
stochastic problem is stated as�

min E

�
TX

t��

IX
i��

�Cit�pit�uit� � Sit�ui� 

�
s�t����
�

pmin
it uit � pit � pmax

it uit� uit � f	� �g� t � ��T� i � �� I�����a�

ui� � ui���� � uit� � � t� ��i � �� t� �� t � ��T� i � �� I�����b�

ui���� � ui� � �� uit� � � t� � i � �� t� �� t � ��T� i � �� I�����c�

	 � vjt � vmax
jt � 	 � wjt � wmax

jt � 	 � ljt � lmax
jt � t � ��T� j � �� J�����a�

ljt � lj�t�� � vjt � �jwjt � �jt� t � ��T� j � �� J�����b�

lj� � linj � ljT � lendj � j � �� J�����c�

IX
i��

pit �

JX
j��

�vjt �wjt� � dt� t � ��T�����a�
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Fig� �� Example of a scenario tree

IX
i��

�uitp
max
it � pit� � rt� t � ��T�����b�

�u�p�v�w� �
T
�
t��

L�
�
��Ft�P �R

��I�J�
�
������

where ���
� is the expected cost �cf� �������������� ����� describes the oper�
ating ranges and minimum up�down�time requirements of thermal units�
����� models the operating ranges and dynamics of hydro units� ����� im�
poses the load and reserve requirements� ����� expresses the nonanticipativ�
ity constraint �since all decision variables are uniformly bounded� we may
restrict attention to decisions in L����F � P �R��I�J� ��� and for

�ini �� �� max
i���I

f �ci � ��i � �� � i � � g�����

and � � �ini� 	� ui� in ���
� �cf� ������ and ����b������c� are replaced by
�xed initial values ui� � f	� �g� i � �� I �

���� Scenario tree model� To develop algorithms for problem ���
��
������ we now assume that we have a discrete distribution of the data pro�
cess f�tg

T
t�� �cf� ������� Its support consists of scenarios �i�e�� realizations

of f�tg
T
t��� that form a scenario tree based on a �nite set of nodes N �cf�

Fig� ��� The root node n � � stands for period t � �� Every other node n
has a unique predecessor node n� and a transition probability �n�n

�

� 	�
which is the probability of n being the successor of n�� The successors to
node n form the set N��n�� their transition probabilities add to �� The
probability �n of each node n is generated recursively by

�� � �� �n � �n�n
�

�n
�

for n �� ��
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Nodes n with N��n� � � are called leaves� they constitute the terminal
set NT � A scenario corresponds to a path from the root node to a leaf�
The probabilities f�ngn�NT

provide a distribution for the set of all scenar�
ios� Conversely� given such scenario probabilities� the remaining node and
transition probabilities are generated recursively by

�n �
X

n��N��n�

�n� � �n��n � �n�	�n for n� � N��n��

Let path�n� denote the path from the root to node n� Then node
n corresponds to a set of realizations of f�tg

T
t�� that coincide until the

period t�n� �� j path�n�j associated with node n� their common value �t�n�
is denoted by 
n �� �dn� rn� �n� an� bn� cn�� Let the decisions for period t be
made after learning the realization of f�tg

t
���� The scheduling decisions

�un� pn� vn� wn� assigned to nodes n in Nt �� fn � t�n� � tg are realizations
of the stochastic decisions �ut�pt�vt�wt�� note that

P
n�Nt

�n � ��

Let u
path�n�
i �� �u�i ���path�n�� We use the following notation for the

sequence of predecessors of any node n � N n f�g� n�� �� n�� n������ ��
�n���� if t��� � �� note that t�n��� � t�n��� for � � �� t�n���� To handle
the initial values u�i � ui� with � � �ini� 	 �cf� ������� we let n� �� �� t�n�
for � � t�n� � �ini� t�n� �as if the original tree were augmented with nodes
� � �ini� 	 with associated periods t��� � ��� Then �cf� ����� and ������

Cn
i �p

n
i � u

n
i � �� max

l����l
f anilp

n
i � bnilu

n
i g

and

Sn
i

�
u
path�n�
i

�
�� max

�����c
i

cni�

�
uni �

�X
���

u
n
��

i

�
����	�

are the fuel and startup costs of unit i at node n�
The scenario�tree form of the stochastic problem ���
������� reads�

min
X
n�N

�n

IX
i��

h
Cn
i �p

n
i � u

n
i � � Sn

i

�
u
path�n�
i

�i
s�t�������

pmin
it�n�u

n
i � pni � pmax

it�n�u
n
i � uni � f	� �g� n � N � i � �� I������a�

u
n
��

i � u
n
������

i � uni � � � �� ��i � �� n � N � i � �� I������b�

u
n
������

i � u
n
��

i � �� uni � � � �� � i � �� n � N � i � �� I������c�

	 � vnj � vmax
jt�n�� 	 � wn

j � wmax
jt�n�� 	 � lnj � lmax

jt�n�� n � N � j � �� J������a�
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Table �

Size of the scenario�tree model �	������	���� depending on the numbers of scenarios
and nodes for T � ���� I � 	� and J � �

S N Variables Constraints Nonzeros
binary continuous

� ��� �	�� ���	 �
��� �����
	� ���� 	���� ����� ����� �
���	
�� 	��� ����� ����	 ���	�� 	�����
��� �	�� ������ ��
��� 

���� ������

lnj � l
n
�

j � vnj � �jw
n
j � �nj � n � N � j � �� J������b�

l�j � linj � lnj � lendj � n � NT � j � �� J������c�

IX
i��

pni �

JX
j��

�vnj � wn
j � � dn� n � N �����
a�

IX
i��

�uni p
max
it�n� � pni � � rn� n � N �����
b�

Note that the objective and constraints of �����������
� correspond directly
to ���
�������� whereas the nonanticipativity constraint ����� is handled
implicitly �i�e�� it is ensured automatically� by the tree�based model�

The tree�based form �����������
� for N �� jN j nodes involves IN
binary and �I � �J�N continuous decision variables� In contrast� the
stochastic program ���
������� for S �� jNT j scenarios has ITS binary and
�I � �J�TS continuous decision variables� note that typically N 	 TS�

Table � shows how the size of a mixed�integer LP formulation of the
scenario�tree model �����������
� increases with the number of nodes �with�
out taking into account the constraints of type �����b�������c� and the
objective function��

�� Stochastic Lagrangian relaxation� In this section we develop
Lagrangian duals of the stochastic program ���
������� and its tree�based
version �����������
�� We also describe the structure of Lagrangian relax�
ation� the bundle method used for solving the dual problem� the algorithms
for solving subproblems and two Lagrangian heuristics for recovering pri�
mal solutions� Finally� we give numerical results�

���� Dual stochastic problem� Problem ���
������� is almost sep�
arable with respect to units� since only constraints ����� couple di�erent
units� This structure allows us to apply a stochastic version of Lagrangian
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relaxation by associating a stochastic Lagrange multiplier � with the cou�
pling constraints ������ For convex multistage stochastic programs� this
approach is justi�ed by the general duality theory of �
�� Hence suppose
momentarily the constraint uit � f	� �g of ����a� is relaxed to uit � �	� ��
so that problem ���
������� becomes convex� Then �cf� ���� x
� with mul�
tipliers � � ������� belonging to �T

t�� L
����Ft�P �R���� the Lagrangian

L�u�p�v�w��� �� E

TX
t��

�
IX

i��

�Cit�pit�uit� � Sit�ui� �����

� ��t

h
dt �

IX
i��

pit �
JX

j��

�vjt �wjt�
i
� ��t

h
rt �

IX
i��

�uitp
max
it � pit�

i��
� �

and the dual function

D��� �� min
�u�p�v�w�

L�u�p�v�w��� s�t� constraints �����������������

the dual problem reads

max

	
D��� � � �

T
�
t��

L����Ft�P �R���



������

In particular� this means that the stochastic multiplier process f�tgTt�� is
nonnegative P�almost surely and adapted to the �ltration fFtgTt��� In the
general case of integrality constraints in ����a�� the optimal value of the
dual problem ����� only provides a lower bound for the optimal cost of the
nonconvex primal problem �the duality gap is discussed in ���� x
��

The minimization in ����� decomposes into stochastic single unit sub�
problems� Speci�cally� the dual function

D��� �
IX

i��

Di��� �
JX

j��

�Dj��
�� � E

TX
t��

���tdt � ��trt����
�

may be evaluated by solving the thermal subproblems

Di��� �� min
ui

�
E

TX
t��

� min
p

it

fCit�pit�uit�� ���t � ��t �pitg�����

� ��tuitp
max
it � Sit�ui� s�t� �ui�pi� �

T
�
t��

L����Ft�P �R� � and �����




�where we used separability and exchanged expectation with minimization
over pi� and the hydro subproblems

�Dj��
�� �� min

�vj �wj�

�
E

TX
t��

��t �wjt � vjt� s�t������

�vj �wj� �
T
�
t��

L����Ft�P �R�� and �����



�
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Both subproblems represent multistage stochastic programming models for
the operation of a single unit� While the thermal subproblem ����� is
a combinatorial multistage program involving stochastic costs� the hydro
subproblem ����� is a linear multistage model with stochastic costs and
stochastic right�hand sides�

���� Dual scenario�based problem� Let us now assume that a dis�
crete distribution of the data process f�tg

T
t�� is given in the scenario tree

form discussed in x���� Then f�tgTt��� being adapted to the �ltration
fFtgTt�� generated by f�tg

T
t��� has the tree structure of f�tg

T
t��� and is

nonnegative P�almost surely� Accordingly� the multipliers �n � R
�
� as�

signed to nodes n in Nt �� fn � t�n� � tg are realizations of the stochastic
multipliers �t� for t � ��T � Letting � �� ��n�n�N �� ���� ��� � RN� � R

N
� �

where N �� jN j� we may rewrite the dual problem ������ the decomposed
dual objective ���
� and the Lagrangian subproblems ����������� as follows�

max
�
D��� � � � R�N�

�
������

D��� �
IX

i��

Di��� �
JX

j��

�Dj���� �
X
n�N

�n ��
n
� d

n � �n� r
n� ������

Di��� � min
ui

�X
n�N

�n


min
pn
i

fCn
i �p

n
i � u

n
i �� ��n� � �n� �p

n
i g�����

� �n�u
n
i p

max
it�n� � Sn

i

�
u
path�n�
i

��
s�t� ������

�
�

�Dj���� � min
�vj �wj�

�X
n�N

�n�
n
� �w

n
j � vnj � s�t� ������

�
�����	�

Alternatively� these expressions may be derived from the Lagrangian

L�u� p� v� w��� ��
X
n�N

�n

�
IX

i��

Cn
i �p

n
i � u

n
i � �

IX
i��

Sn
i

�
u
path�n�
i

�
������

� �n�

h
dn �

IX
i��

pni �
JX

j��

�vnj � wn
j �
i
� �n�

h
rn �

IX
i��

�uni p
max
it�n� � pni �

i��
� �

and the de�nition of the dual function

D��� �� min
�u�p�v�w�

L�u� p� v� w��� s�t� constraints ��������������������

The dual function D is concave and polyhedral� since the fuel costs
����� are polyhedral�
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solution of the dual problem

�proximal bundle method�

�
Lagrange heuristics

��
�stochastic� economic dispatch

�
�

�
�

solution of subproblems

�stochastic dynamic programming�

�descent algorithm�

Fig� �� Structure of the stochastic Lagrangian relaxation method

���� Structure of the solution method� Extending Lagrangian
relaxation approaches for deterministic power management models� our
method for solving the tree�based model �����������
� consists of the fol�
lowing ingredients�

�a� Solving the dual problem ����� by a proximal bundle method using
function and subgradient information�

�b� E�cient solvers for the single unit subproblems� dynamic pro�
gramming for ����� and a special descent algorithm for ����	��

�c� Lagrangian heuristics for determining a nearly optimal �rst�stage
decision that employ economic dispatch�
These components are discussed in the following subsections� their interac�
tion is illustrated in Fig� ��

���� Proximal bundle method� The tree�based problem �������
����
� has the following form�

min
� �� min ��z� s�t� l�z� � 	� l � ��L� z � Z������

with z �� �z�� � � � � zI�J� and Z �� Z� � � � � � ZI�J � where Zi is the set of
points zi �� �uni � p

n
i �n�N satisfying ������ for i � �� I � ZI�j is the set of

points zI�j �� �vnj � w
n
j �n�N satisfying ������ for j � �� J � L �� �N � and

��z� ��

IX
i��

X
n�N

�n

n
Cn
i �p

n
i � u

n
i � � Sn

i

�
u
path�n�
i

�o
�����
a�

n�z� �� dn �
IX

i��

pni �
JX

j��

�vnj � wn
j �� n � ��N�����
b�

N�n�z� �� rn �
IX

i��

�uni p
max
it�n� � pni �� n � N � �� �N�����
c�

Note that each function l� l � 	�L� is continuous on the compact set Z�
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Let � denote the dual space RL of multipliers � � ���� ��� � RN �RN

equipped with the probabilistic inner product

h�� �i	 ��
NX
n��

�n ��
n
��

n
� � �n��

n
� � � h��� �i �������

where � � R
L�L is a diagonal matrix with entries �nn �� �N�n�N�n ��

�n� n � ��N � and h�� �i is the standard inner product on RL � Then� with
the constraint function  �� ��� � � � � L�� the Lagrangian ������ becomes

L�z��� �� ��z� � h�� �z�i	������

�cf� ����
��� Thus the dual function ������ of problem ������

D��� �� min
z�Z

L�z��� � min
z�Z

f��z� � h�� �z�i	g

may be evaluated at � by �nding a partial Lagrangian solution

z��� � Z��� �� Argmin
z�Z

L�z��� � Argmin
z�Z

f��z� � h�� �z�i	g �������

which provides a subgradient gD��� �� �z���� of D at �� i�e��

D��� � L�z������ � D��� � h�� �� gD���i	 
��������

Clearly� gD��� is bounded� since  is continuous on the compact Z�
Suppose the primal problem ������ �������������
�� is feasible� Then

it has a nonempty solution set Z� �by Weierstrass�� Further� the lower
bound D� �� sup

RL�
D � min� �weak duality� yields D� � �� so the dual

optimal set �� �� maxRL�D is nonempty �since D is polyhedral��

In e�ect� the proximal bundle method ���� ���� xXV�� may be used for
solving the dual problem ���� This method generates a sequence f�kcg

�
k�� 

R
L
� converging to some �� � ��� and trial points �k � RL� for evaluating the

Lagrangian solutions zk �� z��k� �cf� �������� the subgradients gkD �� �zk�
of D and its linearizations �cf� �������

Dk��� �� D��k� �
�
� � �k � gkD

�
	
� D����

starting from an arbitrary point ��c � �� � R
L
� � Iteration k uses the

polyhedral model of D

Dk��� �� min
l�Lk

Dl��� with k � Lk  f�� kg������

for �nding the next trial point

�k�� �� argmax
�
Dk����

�
�ukj�� �kc j

�
	 � � � RL�

�
�����	�
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where the proximity weight uk � 	 and the penalty term j � j�	 �� h�� �i	
should keep �k�� close to the prox�center �kc � An ascent step to �k��c �
�k�� occurs if �k�� is signi�cantly better than �kc as measured by

D��k��� � D��kc � � ��k�������

where � � �	� �� is a �xed Armijo�like parameter and

�k �� Dk��
k����D��kc � � 	

is the predicted ascent �if �k � 	 then �kc � D� and the method may stop��
Otherwise� a null step �k��c � �kc improves the next model Dk�� with the
new linearization Dk�� �cf� ��������

The choice of weights uk is discussed in ���� ��� For choosing Lk���
subgradient selection exploits the fact that the QP method of ��
 for solv�
ing subproblem ����	� produces multipliers �kl � 	 of the linear pieces Dl in

������ such that
P

l�Lk �
k
l � � and the set �Lk �� fl � Lk � �kl � 	g satis�es

j�Lkj � L��� To save storage without impairing convergence� it su�ces to
choose Lk�� � �Lk � fk � �g� i�e�� we may drop inactive linearizations Dl

with �kl � 	� �The multipliers �kl could be used for constructing a general�
ized solution to a relaxed version of problem ������� and for recovering good
primal feasible solutions� this idea is exploited for deterministic unit com�
mitment in ���� but its stochastic extension requires further work�� Since
subgradient selection may require too much storage �up to L�� lineariza�
tions�� alternatively one may employ subgradient aggregation ���� in which
groups of past linearizations are replaced by their convex combinations so
that at most NGRAD � � linearizations are stored�

The proximal bundle method has very strong convergence properties�
First� because D is polyhedral� for subgradient selection the convergence
is �nite ��� �i�e�� �k � 	 and �kc � �� for some k� if the dual problem
����� satis�es a mild technical condition� or  su�ciently many! iterations
require an exact ascent step� i�e�� ������ with � � �� For subgradient
aggregation� �nite convergence need not occur� but �kc � �� � �� and fzkg
converges to Z���� �cf� �������� In particular� the thermal unit schedules

u
�k�
i of zki � �u

�k�
i � p

�k�
i � converge to  dual optimal! schedules� this may

be exploited in Lagrangian heuristics for recovering a good primal feasible
solution� Further� �k � 	� so that for any optimality tolerance opt tol � 	�
the method eventually meets the stopping criterion

�k � opt tol
�
� � jD��kc �j

�
�������

Usually� when opt tol � �	�m is used� upon termination the dual objective
value D��kc � has m correct digits ����

We may add that using the probabilistic inner product ������ and

norm j � j	 �� h�� �i
���
	 in the Lagrangian ������ and the bundle subproblem
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����	� is natural in the stochastic setting� It may also enable faster conver�
gence� Namely� in a similar context �� reports poor bundle performance
for � replaced by the identity matrix in ������ and ����	�� and much better
performance for � replaced by ���� in ������ and by the identity matrix
in ����	�� the latter version corresponds to ours �expressed in variables
�� � �������

���� Descent algorithm for stochastic hydro units and eco�

nomic dispatch� The hydro subproblem ����	� for unit j is solved by
a specialized descent method that generates a �nite sequence of feasible
hydro decisions �vj � wj� with decreasing objective values

"�vj � wj� ��
X
n�N

�n�
n
� �v

n
j � wn

j �

and terminates with an optimal solution� The method begins by �nding
a feasible hydro decision �vj � wj� that satis�es ������� The next feasible
iterate �#vj � #wj� with "�#vj � #wj� � "�vj � wj� is chosen so that the di�erence
�#vnj � #w

n
j �� �vnj � w

n
j � is nonzero only for n belonging to a rather small subset

NG of N � Here the subscript G refers to a subset of N with the following
properties� There exist nG � G and LG � G such that nG � path�n� for
each n � G� N��n� � G � � for each n � LG� and N��n� � G for each
n � GnLG� Since such a subset G corresponds to a subtree with root node
nG and leaves in LG� it is called d�subtree in what follows�

It is shown in �
� that for each nonoptimal feasible hydro decision
�vj � wj� there exist a d�subtree G and a hydro decision �#vj � #wj� such that
#vnj � vnj and #wn

j � wn
j for each node n � N n NG with NG � fnGg � LG�

and X
n�NG

�n�
n
� �#v

n
j � vnj � � #wn

j � wn
j �� � 	�

which implies "�#vj � #wj� � "�vj � wj�� Moreover� there exists a constant

�G �� 	 such that #lnj � lnj ��G for n � GnLG and #lnj � lnj for n � Nn�GnLG��

where #lj and lj are the corresponding storage volumes� If �G � 	 then
#vnGj � vnGj or #wnG

j � wnG
j � and #wn

j � wn
j or #vnj � vnj for each n � LG� and

similarly for �G � 	� For a precise description of the iterative scheme we
refer to �
�� It is also shown there that for each nonoptimal feasible hydro
decision� a d�subtree leading to steepest descent of " can be determined
with complexity that grows linearly with N � Implementation issues and
numerical results of the descent algorithm are given in �
�� 
��

When the binary decisions uni are �xed� the tree�based model �������
����
� becomes an economic dispatch problem� This problem can be refor�
mulated as

min
X
n�N

�n$
n

�
� JX

j��

�vnj � wn
j �

�
A s�t� �������������
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where $n are the optimal value functions of the following one�parametric
thermal subproblems

$n��� �� min
p

�
IX

i��

Cn
i �pi� u

n
i � � pmin

it�n�u
n
i � pi � pmax

it�n�u
n
i � i � �� I�

dn � � �
IX

i��

pi �
IX

i��

pmax
it�n�u

n
i � rn

�
�

Such piecewise linear functions may be evaluated via e�cient algorithms
�e�g�� ����� If the functions $n were di�erentiable� successive linearization
combined with the above descent technique could be used to solve �������
This suggests replacing each $n by a di�erentiable function #$n that is
obtained from $n by smoothing its kinks with quadratic functions on small
intervals� Then successive linearization and descent may be combined with
progressive reduction of the smoothing intervals� More information on this
economic dispatch algorithm and its numerical performance may be found
in �
�� 
��

���� Dynamic programming for stochastic thermal units� To
solve the thermal subproblem ����� for unit i by dynamic programming�
the startup costs ����� and the minimum up�down�times �����b�������c�
are incorporated in its state space Si �� f���i���g � f�� ��ig with ��i ��
maxf�ci � � ig� Unit i is in state s � 	 �s � 	� if it has been up �down� for
at least s ��s� resp�� time periods� The set Ti � Si � Si of feasible state
transitions of unit i is given by

Ti �� f�s� s� �� for s � �� ��i � �� ���i� ��i�� ���i����� ����i����i��

�s� s� �� for s � ���i � ����� �s� �� for s � ���i��� ig �

To formulate the dynamic programming recursion� we set for all nodes
n � N and integers s� #s

�n
i �s� ��

�
	 if s � ��

min
pmin
it�n�

�p�pmax
it�n�

�Cn
i �p� ��� ��n� � �n� �p� �n� p

max
it�n� else�

�n
i �s� #s� ��

	
cni��s if s � f��ci ���g and #s � 	�
	 otherwise�

where cni� are the startup cost coe�cients of ����	�� Thus �n
i �s� is the

weight of node n in state s� and �n
i �s� #s� is the weight for the arc from state

s to state #s at node n in the dynamic programming graph� Then we have

Di��� � min
ui

X
n�N

�n

�
�n
i �u

n
i � � max

�����c
i

cni�

�
uni �

�X
���

u
n
��

i

��
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� min

�X
n�N

�n ��
n
i �s

n� � �n
i �s

n
� � sn� � �sn� � sn� � Ti� n � N

�

� ��i �s
�
i ��

where s�i is the initial state determined by the given fui�g����ini� and ��i �s�
is determined by the backward recursion

�ni �s� � �n
i �s� �

X
n��N��n�

�n��n min
�s�
s��Ti

�
�
n�

i �s� #s� � �
n�

i �#s�
�
� s � Si�

for n � N � f	g with ��
i �s� � 	� N��	� � f�g� ���� � �� Now� the dy�

namic programming algorithm works as follows� First the cost�to�go �ni �s�
is computed for all states s � Si and nodes n � N via the backward re�
cursion� which also yields ��i �s

�
i �� Then the optimal scheduling decisions

f�un
i ���� p

n
i ����gn�N are obtained by forward tracing the tree� Implemen�

tation issues are discussed in more detail in �
��

���� Lagrangian heuristics� When the bundle method delivers an
optimal multiplier ��� the optimal value D���� provides a lower bound
for the optimal cost of the model �����������
�� In general� however� the
 dual optimal! scheduling decisions z���� � �u����� p����� v����� w�����
�cf� ������� violate the load and reserve constraints ����
��

In practice the data forecast may be reliable until some period t� �
f��T��g� so that the data process f�tg

t�
t�� is deterministic� Thus it is useful

to distinguish the deterministic �rst stage comprising periods t � �� t�� The
nodes of the �rst stage form the set N�rst �� �t�

t��Nt �see also Fig� ���
In the following� we describe two Lagrangian heuristics that determine

nearly optimal �rst stage decisions f�un� pn� vn� wn�gn�Nfirst
starting from

the optimal multiplier �� and z����� While the �rst heuristics provides a
nearly optimal decision only at nodes n � N�rst� the result of the second
one is a nearly optimal solution at every node in N �

Our �rst heuristic LH� starts by computing mean values of the scena�
rio�based stochastic processes 
� �� and lj � lj��

��� j � �� J � i�e�� we
determine �
 � E �
� ��� � E ���  and �lj � E �lj � For instance� we have

� �dt� �rt� ��t� �at��bt� �ct� � �
t �
X
n�Nt

�n

n �

X
n�Nt

�n�d
n� rn� �n� an� bn� cn��

Next� replacing N by f��Tg and 
 by �
� we consider deterministic single�
scenario versions of the model �����������
� and the thermal subproblems
������ Then we �nd deterministic generation and pumping decisions vj and
wj that satisfy the constraints ������ with lj and �j replaced by �lj and ��j �
respectively� Furthermore� deterministic on�o� decisions ui are computed
by dynamic programming as solutions of the thermal subproblems �����
with the multiplier � and the cost coe�cients a� b and c replaced by ���� �a�
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�b and �c� In the next step� the hydro decisions vj and wj are rescheduled in
order to meet� as much as possible� the modi�ed reserve constraint

IX
i��

uitp
max
it � �dt � �rt �

JX
j��

�wjt � vjt� t � ��T�����
�

i�e�� the sum of the load and reserve constraints ����
a� and ����
b� with
d and r replaced by �d and �r� To this end our procedure reduces the right�
hand side of ����
� by modifying the hydro schedules at those t where the
constraint is violated and its right�hand side is largest in a certain set of
neighboring time periods� This procedure is repeated several times �see
also ����� In the next step the hydro variables are �xed� and following ���
we search for binary variables ui that satisfy the constraint ����
�� The
main idea is to select the period t where ����
� is most violated and to
increase ���t as much as necessary to switch on in the thermal subproblems
just as many units as needed to satisfy ����
� at t� This is repeated until
the constraint ����
� is satis�ed in all periods� Since this technique does not
distinguish between identical units that appear quite often in practice� the
startup costs of such units are slightly modi�ed� Once the binary decisions
ui are �xed� the economic dispatch algorithm �see x��� and �
�� completes
LH� by providing �deterministic� scheduling decisions fpt� vt� wtg for the
whole planning horizon t � ��T �

The second Lagrangian heuristic LH� is based on the observation that
usually the binary decisions in u��� � ��� change signi�cantly relative to
u���� even for small � � 	� and ensure feasibility for � large enough� �Here
� denotes the L�vector with unit components�� Hence� LH� starts by �nd�
ing some � � 	 such that z��� � ��� satis�es all constraints �����������
��
Then taking u��� � ��� as a starting point� a �nite sequence of binary
decisions is constructed such that their components are decreasing� This
is done by selecting a node n � N where the available reserve capacityPI

i���u
n
i p

max
it�n� � pni � � rn is maximal� and switching some unit i o� at n

and some predecessor and successor nodes� This unit i and the neighbor�
ing nodes of n are detected by stochastic dynamic programming� Next�
a stochastic economic dispatch problem is solved by the descent method
described in x��� and �
�� This procedure� which generates a sequence of
scheduling decisions at all nodes� is continued until infeasibility is detected
during economic dispatch� The heuristic terminates with the scheduling
decision having minimal cost �������

��	� Numerical results� The stochastic Lagrangian relaxation algo�
rithm was implemented in C�� except for the proximal bundle method� for
which the Fortran package NOA ��	 ��� was used as a callable library� For
numerical tests we considered the hydro�thermal power system of VEAG
�with T � ���� I � �� and J � �� under uncertain load �i�e�� the remaining
data were deterministic�� A bunch of load scenario trees was constructed
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Table �

Computing times and gaps with LH� �NOA ���� opt tol � ����� NGRAD � ��	

S N time�s� gap��� N time�s� gap���
	� ���	 �� ���� ��	� �� ����
	� ���� �� ��
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Table �

Computing times and gaps with LH
 �NOA ���� opt tol � ����� NGRAD � 	��	

S N NOA time�s� total time�s� gap���
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� 
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 ��� ���� ����

� 
��� ��� ���	 ���	

as follows� Starting with a reference load scenario obtained from real�life
data� S� � random branching points were selected successively to produce
a scenario tree with S identical scenarios� Then a �discretized� Brownian
motion was added to each node of the scenario tree� The test runs were
performed on an HP �			 ���	�J��	� computer with ��	 MHz frequency
and ��� MByte main memory under HP�UX �	��	�

First we consider the Lagrangian relaxation algorithm based on LH��
Table � shows computing times and gaps for di�erent numbers of scenarios
�S� and four randomly generated scenario trees� each having a di�erent
number of nodes �N�� The gap refers to the relative di�erence

�

D�

�
TX

t��

IX
i��

�Cit�pit� uit� � Sit�ui��D�

�

of the cost of the scheduling decision �u� p� v� w� and the optimal value D�

of the dual problem� We note that� in general� this gap does not provide
a quality measure for the approximate �rst stage solution �it may even
become nonpositive�� When reading the computing times in Table �� it is
worth recalling that N � 
			 and N � �			 correspond to �		� 			 and
�		� 			 binary variables in the model �����������
�� respectively�

Table � reports computing times and gaps for the Lagrangian relax�
ation algorithm based on LH� applied to test problems with di�erent num�
bers S and N of scenarios and nodes of randomly generated load scenario
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trees� Here the gap refers to the following bound of the relative duality gap
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Clearly� this bound provides an accuracy certi�cate for the approximate
primal�feasible solution f�un� pn� vn� wn��gn�N �

While the  deterministic! Lagrangian heuristics LH� requires only
short computing times� this becomes quite di�erent for the  stochastic!
heuristics LH�� Table � gives more insight into the �total� computing
times of di�erent test runs� Higher computing times are always due to
very many economic dispatches required by LH�� It is worth mentioning
here that LH� is quite sensitive to the accuracy of the dual solution� i�e��
to the optimality tolerance of the proximal bundle method� The advantage
of using LH� consists in low running times even for mid�size scenario trees�
while its drawbacks are that only �rst�stage solutions are provided with no
accuracy bounds� The advantage of LH� is that it produces a  stochastic!
solution together with a guaranteed accuracy bound� but at the expense of
higher computing times even for scenario trees of smaller size� For further
information the interested reader is referred to �
��

Another test employed a load scenario tree with sixteen scenarios and
��� nodes that was generated from real�life VEAG data by the technique
described in x
�
� As before� we had T � ���� I � ��� J � �� In e�ect�
the scenario tree formulation of our optimization model had ����		 binary
and 
����� continuous variables� �����
 constraints and �
���	
 nonzeros�
Figure 
 provides the �nal output of the Lagrangian relaxation algorithm
using LH�� It presents �� realizations of load and generation levels�

�� Generation of load scenario trees� Our generation of load sce�
nario trees for the stochastic power generation model �����������
� proceeds
according to the following steps�

�� Identify a statistical �time series or regression� model of the load�
and use it for generating a large number of simulation scenarios�

�� Determine an initial structure of the load tree� Compute scenario
values� using the sample means and standard deviations of the simulated
scenarios�

�� Reduce the number of scenarios in the tree optimally�
These steps are explained in the following subsections�

���� Identi
cation of a time series for the electric load� For
the identi�cation of a statistical model we got from the VEAG utility an
hourly load pro�le for one year� We could not �t regression models because
of missing meteorological parameters�

To select a suitable class of models for the set of observed load data
fdtgt�I with I  Z �� f	������� � � �g� fdtgt�I is considered as part of a
realization of the stochastic load process fdtgt�Z� A time series model for
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Fig� �� Optimal stochastic solution for one week

fdtgt�I is a speci�cation of the joint distributions of fdtgt�Z� We now recall
some concepts of time series analysis�

A complete time series model for a stochastic process fXtgt�Z should
specify the distribution of any random vector �Xi� � � � � � Xil�� Often the
analysis focuses on the second�order properties of fXtg� the expected val�
ues EXt and the covariances cov�Xt� Xs� �� E ��Xt � EXt ��Xs � EXs � for
all t� s� In the particular case of Gaussian time series all random vari�
ables Xt are normally distributed� Therefore all the joint distributions
are multivariate normal and completely characterized by the second�order
properties of fXtg� Classical time series analysis relies on the concept of
stationarity� Recall that fXtg is stationary if EX�

t � �� EXt is constant
and cov�Xr� Xs� � cov�Xr�t� Xs�t�� 
r� s� t � Z�

To select an appropriate model for observed data� their properties are
analyzed �rst� In particular� the data graph is searched for any seasonal
�periodic� or trend �nonconstant mean� components� outlying observations
or sharp changes in behavior� Then suitable transformations are applied
to the data to get a new stationary series �residuals� with zero mean and
unit variance� The trend and seasonal components may be removed by
estimating these components and subtracting them from the data� this is
the classical decomposition model incorporating trend� a seasonal compo�
nent and random noise� Another transformation is called di�erencing � it
replaces fXtg by fYt �� Xt �Xt�sg for some lag s � N� thus eliminating
a seasonal component of period s�
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Fig� �� Time plot of the load pro�le for one year

Figures � and � highlight the periodic components of our historical
data� In the week and month load data there is clearly a recurring pattern
with the seasonal period of �
 �one day�� There are further periodic com�
ponents of length ��� �one week� and change points in the year data due
to the start�end of the daylight saving time�

Most approaches for �tting a time series to the deseasonalized data
rely on linear models� Autoregressive moving average �ARMA� models
are characterized by �nite�order linear di�erence equations with constant
coe�cients� The process fXtg is called ARMA�p� q� if it is stationary and

Xt � ��Xt�� � � � �� �pXt�p � Zt � ��Zt�� � � � �� �qZt�q 
t��
���

where ��k�
p
k�� and ��l�

q
l�� are real coe�cients and fZtgt�Z is the white

noise process WN�	� ��� with zero mean and variance ��� i�e�� EZt � 	�
EZ�

t � ��� 
t � Z� and EZrZt � 	 if r �� t� Using the backward shift
operator B de�ned by B�Xt �� Xt�� for t� � � Z� the ARMA equations
�
��� can be rewritten as

��B�Xt � ��B�Zt� 
t � Z� fZtg �WN�	� ����

where � and � denote the polynomials ��z� � � � ��z � � � � � �pz
p�

��z� � � � ��z � � � � � �qz
q� An ARMA�p� q� process fXtgt�Z is said to

be causal �or future�independent� if there exists a real sequence f�g such
that
P�

��� � �� and

Xt �
�X
���

�Zt��� 
t � Z�
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If the di�erenced series fYt � �� � Bs�Xtgt�Z is an ARMA�p� q� process
then the model for the original series fXtg reads ��B����Bs�Xt � ��B�Zt�
further� fXtg belongs to the class of seasonal autoregressive integrated mov�
ing average �SARIMA� processes if fYtg is causal� General SARIMA
processes are de�ned as follows� The process fXtgt�Z is said to be a
SARIMA�p� d� q�� �P�D�Q�S process with period s if the di�erenced pro�
cess Yt �� ���B�d���BS�DXt is the causal ARMA process

��B�$�Bs�Yt � ��B�%�Bs�Zt� fZtg �WN�	� ����

where ��z� � ��� � ���pzp� $�z� � ��� � ��$P z
P � ��z� � ��� � ���qz

q and
%�z� � �� � � ��%Qz

Q� Then the model for fXtgt�Z reads ��B�$�BS����
B�d���BS�DXt � ��B�%�BS�Zt�

There is no single systematic approach to identifying SARIMA mod�
els of higher order� see� e�g�� ��� To determine a suitable SARIMA model
for a given time series� the di�erencing orders d� D and the length S of
the seasonal component must be identi�ed� Characteristics of the origi�
nal time series like trend and substantial periodic components are re�ected
in the empirical autocorrelation function� the empirical counterpart of the
autocorrelation function cov�X�� X��	 var�X��� � � Z� The length of the
seasonal component S can be discovered by inspecting the periodicity of the
empirical autocorrelation function� and the seasonal components are elimi�
nated by di�erencing the data D times with lag S� Next� d is chosen so that
di�erencing d times with lag � gives residuals Yt �� ���B�d���BS�DXt

that are stationary in appearance� The behavior of the di�erenced �desea�
sonalized� series is described by two coupled ARMA models� The model
orders P and Q should to be chosen so that the empirical autocorrelation
function is consistent with that of an ARMA�P�Q� model for multiples of
the period S� The orders p and q should be selected so that the empirical
autocorrelation function within the period S shows the same behavior as
the autocorrelation function of an ARMA�p� q� process� Finally� the model

coe�cients ����
p
���� �$��

P
���� ����

q
���� �%��

Q
��� and the white noise vari�

ance �� can be estimated via parameter estimation procedures for ARMA
processes� If the white noise process fZtg is Gaussian� the most e�cient
estimates are produced by the maximum likelihood method� Since such
estimates are found as optimal solutions to a highly nonlinear nonconvex
optimization problem� good initial values for the model coe�cients are
needed� They can be obtained by the Hannan�Rissanen algorithm �cf� ���
x�� that solves the problem of order selection and parameter estimation
for ARMA processes simultaneously�

In our case� di�erencing the hourly load pro�le with lag ��� �one week�
gave residuals that were stationary in appearance� The residuals were
treated as part of a realization of the stochastic process fYt �� dt�dt���g�
The Hannan�Rissanen algorithm from the Mathematica Time Series Pack
��� selected for fYtg an ARMA����� model that served as an initial model
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for the maximum likelihood method� For the resulting maximum likelihood
estimates �����

�
��� and �����

�
���� the time series model for fYtg reads

Yt � ���Yt�� � � � �� ���Yt�� � Zt � ���Zt�� � � � �� ���Zt��� t � Z�

where the estimated model coe�cients and random noise process are

����� � � � � ���� � �������
���� ������
���� ����������� 	��	��

����� � � � � ���� � ������� ����������� 	�����	�����	�	�� 	���� 	���� 	�	���

fZtg � N�	� ������	��� t � Z�

Accordingly� the time series model for the load process fdtgt�Z is the
SARIMA��� 	� ��� �	� �� 	��� model

dt � ���dt�� � � � �� ���dt�� � dt��� � ���dt���� � � � �� ���dt�����
���

� Zt � ���Zt�� � � � �� ���Zt��� t � Z�

Suppose there is a reliable load prediction fdtg
t�
t�� for the �rst�stage

�deterministic� time span t � �� t�� t� � T � A large number �M� of sim�
ulated load scenarios �d� � � �d�t�

T
t�t���� � � ��M � may be generated using

the SARIMA equation �
��� with M i�i�d� realizations of fZtgTt�t��� and

starting values fdtg
t�
t�t����� �supplied by the power utility�� The empirical

means �dt and standard deviations ��t of the simulated load scenarios are
de�ned by

�dt �
�

M

MX
���

�d�t � ���t �
�

M � �

MX
���

� �d�t � �dt�
�� t � t� � ��T��
���

���� The initial load scenario tree� An important initial decision
is the choice of the number of stages and of the branching scheme for the
scenario tree� i�e�� the number and positions of branching levels and the
branching degree in every node� We choose the following initial structure
of the load scenario tree�

� A balanced tree with K branching periods tk� k � ��K� The
branching periods tk� k � ��K� are equidistant within the time
span t � t��T � i�e�� tk �� t� � �T � t���k � ��	K� k � ��K�

� jN��n�j �

	
�� n � Ntk � fn � t�n� � tkg� k � ��K�
�� otherwise�

Thus� the tree consists of S �� �K scenarios ds � �dst �
T
t��� s � ��S� The

branching points tk� k � ��K� should correspond to the �normally �xed�
times when already observable meteorological and load data provide the
opportunity to re�adjust the unit commitment� For the planning horizon
of one week with an hourly discretization� tk � �� � ��k for k � �� �� is a
reasonable choice for the generation system of the utility VEAG� For longer
scheduling periods� non�equidistant branching points would be preferable
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in order to restrict the number of scenarios� By assigning two successors to
any node n in Ntk � k � ��K� we may distinguish the events  low load! and
 high load! for periods t � tk � �� tk��� where tK�� �� T � An additional
event such as  medium load! could easily be included� but it would increase
the scenario number to S � �K �

It remains to specify the scenario values and their probabilities� To
this end� we �rst compute the empirical means f �dtgTt�t��� and the stan�

dard deviations f��tkg
K��
k�� �cf� �
����� The load predicted for the �rst�stage

periods t � �� t� yields the �rst t� components for all scenarios� �If no load
prediction were available� one could use the empirical means�� To each
scenario s � ��S we assign a vector �s � ��sk�

K
k�� with �sk � f��� �g that

describes the path in the binary tree corresponding to scenario s� Speci��
cally� we set �sk � �� ��sk � �� if the values of scenario s for t � tk��� tk��
are realizations of the event  low load! � high load!�� The value of scenario
s for periods t � t� � ��T is de�ned as

dst ��
�dt �

k��X
i��

�si
��ti��

��K���i���
� �sk

��tk��
��K���k���

t� tk
tk�� � tk

�
�
�

for t � tk � �� tk��� k � ��K�

We let all scenarios have equal probabilities S�� � ��K � �Alternative
scenario probabilities might be computed from histograms of the simulated
scenarios��

A few comments on the tree construction formula �
�
� are in order�

First� for t � t� � ��T � the mean scenario value �
S

PS
s�� d

s
t coincides with

the empirical mean �dt� Second� the symmetry of the load tree is consistent
with the normality assumptions imposed on the time series model for the
load process� Third� for k � ��K� the events  low load! � high load!� for
t � tk � �� tk�� are expressed in terms of scaled empirical standard devia�
tions ��tk�� � To model increasing load uncertainty� the variances var�dt� of
scenario values are strictly increasing with t� The extremal scenario s with
�sk � � for all k has in the �nal period T the value

dsT � �dT � ��K����t� � � � �� �������T �

Thus unrealistic � too large!� load values are avoided� Further�

var�dtk��� � ��K���t� � � � �� ���K���k����tk�� � k � ��K�

so for ��tk�� � ��� k � ��K� we have var�dT � � ���� �
�K

� � � � � �
� � � ����

Finally� we add that the scenario values between the tk&s are linearly inter�
polated so as to save work required for computing ���t for all t � t� � ��T �

Figure � shows ten scenarios �including the extremal paths correspond�
ing to  low load! and  high load! for the time span t � t��� � T � of a load
scenario tree generated via the scheme �
�
� with ��� � 
	�� scenarios for a
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Fig� �� Ten selected scenarios of a load scenario tree for one week

planning horizon of one week with an hourly discretization and branching
points tk � �� � ��k� k � �� ���

Calibration of scenario trees generated by the scheme �
�
� is studied
in the forthcoming paper ����

���� Optimal reduction of the scenario tree� As shown in x
���
the probability distribution of the load may be approximated by a dis�
crete probability distribution with a �nite number of scenarios� Since the
mixed�integer model �����������
� is large even for relatively few nodes� a
compromise between acceptable computing times and the quality of the ap�
proximate scenario tree is unavoidable� Therefore� one often has to reduce
the number of scenarios of the initial scenario tree�

Our reduction argument is based on certain probability metrics that
measure the distance between the initial discrete approximation and the
reduced one� Quantitative stability results for stochastic programs �cf�
���� ��� 
�� indicate which probability metric is canonically associated to
a given model and�or to a speci�c type of approximation� In particular�
the results in ���� ��� 
� suggest considering the Fortet�Mourier metrics
�h� h � �� for a multistage stochastic program like ������

For h � � we denote by Gh the class of functions g � RT � R satisfying
the Lipschitzian property

jg���� g����j � ch��� �
�� for all �� �� � RT �

where ch��� �
�� �� maxf�� k�kh��� k��kh��gk� � ��k and k � k is the Eu�

clidean norm on RT � Furthermore� we denote by Mh the set of all �Borel�
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probability measures � such that
R
RT k�kh��d�� � �� Then the Fortet�

Mourier metric �h of �Borel� probability measures �� � � Mh is

�h��� �� �� sup

	��� Z
RT

g�����d���

Z
RT

g�����d��
��� � g � Gh



��
���

For h � �� �� is also known as the �L��� Wasserstein or Kantorovich met�
ric� The metric �h enjoys a well developed duality theory and convergence
analysis �cf� �
�� Chap� ���

Let �� denote the probability measure on R
T having unit mass at

� � RT � Consider now two discrete probability measures

� ��

SX
s��

�s��s and � ��


SX
s��

#�s�
�s

with supports f�sgSs��� f#��g

S
���� and nonnegative weights �s� #�� such thatP

s �s �
P

� #�� � �� Then the dual transportation problem

�h��� �� � sup

��
�

SX
s��

�s�s �


SX
���

#�� #�� � �s � #�� � ch��s� #���

��
�

is the �nite�dimensional analogue of �
���� When the two measures � and
� have the same support f�sgSs��� but di�erent weights� upper and lower
bounds for �h��� �� can be derived ����

Now� let � �
PS

s�� �s��s be a discrete probability distribution on
RT that is regarded as a good initial approximation for the probability
distribution entering a given stochastic program� For � � ��S� let


���� �� min

�
�h

�
��

SX
s��

#�s��s

�
� #�s � 	�

SX
s��

#�s � �� #�� � 	

�
�

Thus 
���� is the distance of � to a closest probability distribution having
support f�s � s � ��S� s �� �g� i�e�� corresponding to deleting scenario � of
�� Then we have �cf� ����


���� � ��min
s���

ch���� �s� for every � � f��Sg��
���

with the upper bounds attained if ch satis�es the triangle inequality� i�e��
for h � ��

An optimal rule for deleting one scenario of � may be stated as�

Remove scenario �k with k � Arg min
����S


�����

Replacing 
���� above by the upper bounds of �
��� yields the more easily
implementable deletion rule�

Delete scenario �k with k � Arg min
����S

	
��min

s ���
ch���� �s�



�
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Fig� �� Shifted supports of the reduced scenario tree

Then� roughly speaking� deletion occurs where scenarios are close as mea�
sured by the distance ch or where probabilities are small� The reduced
discrete probability measure

PS
s���s ��k �s��s has S � � scenarios� where

�sk �� �sk � �k for some sk � Argmin
s��k

ch��k� �s��

�s �� �s for all s 	� fsk� kg�

This reduction procedure may be repeated until a prescribed number #S of
scenarios in the reduced measure is attained�

���� Example of scenario reduction� To test our approach� we
generated a load scenario tree via the scheme �
�
� for an hourly discretized
time horizon of one week �T � ���� with branching points tk � �� � ��k�
k � �� �� �cf� Fig� ��� The initial number of scenarios S � 
	�� was reduced
to �� by applying the scenario reduction rule of x
���

Figure � shows the position of the shifted supports �dst � �dt�
��
t��� s �

�� ��� of the reduced scenario tree within the extremal paths of the initial
scenario tree indicated by dashed lines� with grey levels proportional to
scenario probabilities� The probabilities �s� s � �� ��� assigned to scenarios
in the reduced tree vary between 	�	
 and 	����

The reduction technique of x
�� produces a discrete approximation
whose moments di�er in general from those of the initial approximation
generated by �
�
�� For example� Figure � shows the di�erence between

the mean scenario value
P��

s�� �sd
s
t of the reduced tree and the empirical

mean �dt of the simulation scenarios for t � t� � ��T � Figure �	 compares
the standard deviation at the branching periods tk� k � �� ��� for the initial
approximation and the reduced scenario tree�
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