
Power Management of Variation Aware Chip
Multiprocessors

Abu Saad Papa
Center for VLSI and Embedded System

Technologies
International Institute of Information Technology

Hyderabad - 500032, India
abu_saad@research.iiit.ac.in

Madhu Mutyam
Department of Computer Science and

Engineering
Indian Institute of Technology Madras

Chennai - 600036, India
madhu@cse.iitm.ac.in

ABSTRACT
Faced with the challenge of finding ways to use an ever-
growing transistor budget, microarchitects have begun to
move towards the chip multiprocessors (CMPs) as an attrac-
tive solution. CMPs have become a common way of reducing
chip complexity and power consumption while maintaining
high performance. Multiple cores are replicated on a single
chip, resulting in a potential linear scaling of performance.
Cores are becoming sufficiently small with technology scaling.
As technology continues to scale, inter-die and intra-die vari-
ations in process parameters can result in significant impact
on performance and power consumption, leading to asym-
metry among the cores that were designed to be symmetric.
Adaptive voltage scaling can be used to bring all cores to the
same performance level leaving only core-to-core power vari-
ations. The goal of our work is to find the optimal frequency
that balances performance with power against asymmetry.
We also demonstrate that traditional task scheduling tech-
niques need to be revisited to mitigate the effects of process
variations.

Categories and Subject Descriptors
C.1 [Processor Architectures]: Parallel Architectures; C.4
[Performance of Systems]: Performance attributes; D.4.1
[Operating Systems]: Process Management—Scheduling,
Threads

General Terms
Performance

Keywords
Adaptive Voltage Scaling, Chip Multi-Processor, Process Vari-
ation, Power-Aware

1. INTRODUCTION
Technology scaling is increasing the gap between design

and manufacturing expectations. As technology continues
to scale beyond 65nm, inter-die and intra-die variations in
process parameters (e.g., channel length and threshold volt-
age) can result in significant variations in the circuit char-
acteristics. With the rapid advent of chip multiprocessors

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’08, May 4–6, 2008, Orlando, Florida, USA.
Copyright 2008 ACM 978-1-59593-999-9/08/05 ...$5.00.

(CMPs), these manufacturing uncertainties may lead to sig-
nificant variations in the operating frequencies and power
consumptions of on-chip cores. As a result, it leads to asym-
metry among the cores that were designed to be symmetric in
performance causing core-to-core (C2C) variations [16]. This
can cause reduced throughput, missed real-time deadlines, or
excessive thermal throttling if more computationally inten-
sive threads are mapped to higher-power cores or assigning
too much work to slow cores and too little to fast cores.

Thus, to have a uniform frequency and equal performance
across all cores, we can reduce the frequency of fast cores
to the slowest running core (by techniques such as adaptive
body biasing or VDD adjustments) but this leads to perfor-
mance loss or we can increase the frequency of slow cores
to the fastest running core which results in increased ther-
mal throttling. Thermal throttling is a mechanism that re-
duces power consumption when the core temperature exceeds
a threshold temperature limit. Excessive thermal throttling
affects the system performance.

In this work we find the optimal frequency which balances
the performance with power against asymmetry and make an
analysis to find the minimum power for a fixed performance
deadline or maximum performance for a fixed power budget.
The aim of this analysis is a system design perspective. If a
system is aware of its power excesses due to inter-component
process variation, it can make variation-aware decisions for
allocating cores in a power-efficient manner. We also show
the need for revisiting traditional scheduling techniques so as
to mitigate the effects of process variation. We consider only
C2C variations in this work.

The remaining paper is organized as follows. Section 2
gives the related work. Section 3 provides the analytical
model used for simulating the 8-core system with process
variations. Section 4 describes our frequency analysis model.
Section 5 describes the experimental methodology and the
performance metrics that we use to derive the results. Sec-
tion 6 stresses on the need for revisiting traditional scheduling
techniques and Section 7 concludes the paper.

2. RELATED WORK
Process variations have been considered as a major de-

sign challenge at the circuit and microarchitectural level [3].
Many circuit level techniques have been proposed to mitigate
the effects of process variations [9, 31]. Variation tolerant ar-
chitectural approaches include variation-tolerant register files
[21], caches [1, 17, 26], issue queues [29], and pipeline orga-
nizations [12]. Chandra et.al. provided a methodology for
modeling variations during system-level power analysis [7].



Very little work has considered the impact of process vari-
ations on CMPs. Humenay et.al. proposed a model for vari-
ations in multicore architectures [15]. In another work [16],
Humenay et.al. showed that systematic within-die (WID)
variations can cause large performance, power, and thermal
variations among cores which were intended to be identical.
In a recent work, Das et.al. [10] developed a variation-aware
scheme for power optimization using single/multiple voltage
islands across different cores in a CMP. Their work empha-
sized on the importance of multiple voltage islands in CMPs
to reduce power dissipation and performed a detailed analysis
of advantages for various voltage island formations.

Among the power management techniques, Isci et.al. [20]
proposed and evaluated a dynamic power management per-
spective for CMP systems. Their work focused on the chip-
level global monitoring, control, and dynamic management
of power for the multi-core systems. Similar work is pursued
by Sharkey et.al. [30], where design trade-offs associated with
various CMP power management alternatives have been ex-
amined. They showed that chip-wide solutions are necessary
to take the advantage of power optimization and concluded
that on-chip hardware global power manager designs are nec-
essary for effective power management. Note that both [20]
and [30] have not taken process variations into consideration.

Donald et.al. [11] examined power and performance char-
acteristics of multicore architectures, when running multipro-
grammed workloads and parallel applications, in the context
of process variation. Meng et.al. [24] presented a strategy
for thread assignment that reduces the overall power con-
sumption for chip multiprocessors fabricated under extreme
parameter variations.

Our work is an extension of [16] and different from the
other studies that have considered process variations in CMPs,
in that

• We develop a frequency model that allows us to exam-
ine various performance-power configurations of a vari-
ation aware chip-multiprocessor in a full-system simu-
lation environment.

• We make an analysis to find the optimal frequency for
all cores which balances the performance with power
against asymmetry.

3. MODEL
Systematic WID variations are the main source for C2C

variations. In order to estimate the magnitude of frequency
variations across the cores, we develop a model used by Hu-
menay et.al. [16]. An assumption is made that chief source
of systematic WID variation is variability in effective gate
length (Leff ) due to optical variations across the exposure
field. The optical component that Humenay et.al. [16] mod-
eled is chiefly due to lens aberrations and is modeled as a
simple polynomial function of position within the exposure
field. The cross-chip systematic variation in Leff (in nm),
Δsys, for a die positioned in the lower-left hand quadrant of
the reticle can be approximated by:

Δsys = ax2 + by2 + cx + dy + exy + Intercept (1)

We use the same scaled coefficients as used by Humenay
et.al. [16] in order to model variations at the 45nm tech-
nology node. The Leff variations are then used to estimate
the gate delay variations. The gate delay (D) and Leff have

a dependency as given in [27], i.e.,

D ∼ L1.5
eff .Vdd/(Vdd − Vth)α (2)

where Vdd is supply voltage, Vth is threshold voltage, and
α is velocity saturation. α approaches 1 as channel length
becomes shorter. We assume α = 1.3 for 45nm technology
as given in [16].

Also Leff is related to Vth by the equation shown below [6]

Vtheff
= Vth0 − Vdd.e(αDIBL−Leff ) (3)

where Vth0 is the threshold voltage for long channel transis-
tors and αDIBL is the DIBL coefficient. The default values
for Vth0 = 0.22 and αDIBL = 0.15 were provided by the
Predictive Technology Model [28].

Thus we can see that variation in Leff leads to perfor-
mance and power asymmetry among the cores. Hardware
and software techniques can be employed to remove these
asymmetries. One method is to design a simple software
assuming symmetric core performance and apply hardware
techniques such as adaptive voltage scaling (AVS) to reduce
the frequency spread among the cores. This can increase
power asymmetry and lead to either expensive cooling so-
lutions or thermal throttling [16]. In another method, one
can deal only with software to mitigate the effects of process
variation. For example one can develop a process-variation
aware task scheduling algorithm which takes care of both
performance and power asymmetry among the cores, but
the performance asymmetry can complicate processes such
as scheduling, synchronization, and load balancing in addi-
tion to the thermal-management issues.

In this work, we opt for a method which employs both
hardware and software techniques. We first remove the per-
formance asymmetry by applying AVS technique. The power
asymmetry is then taken care by software scheduling tech-
nique proposed in Section 6.

4. FREQUENCY MODELING
We would like all cores to have the same performance by

making their operating frequencies equal. The two most
common techniques to achieve symmetrical performance are
adaptive body biasing (ABB) and AVS. Both the techniques
do affect the leakage power of the cores. Also AVS has a cu-
bic impact on dynamic power and ABB affects the dynamic
power linearly.

In our work we use only AVS to compensate the core fre-
quencies as AVS requires a much smaller change (percentage-
wise) in supply voltage than ABB requires in threshold volt-
age. As a result, AVS has much milder impact on leakage
and is more power-efficient and thermally compatible solu-
tion than ABB [16]. Also ABB requires the complicated deep
N-well or triple well process for its implementation.

AVS can be implemented by providing a different supply
voltage to each core (multiple voltage islands [10]) and mea-
suring the core’s maximum frequency during testing and then
computing the necessary supply voltage scaling. The imple-
mentation of AVS is beyond the scope of our work and we
assume that AVS has been implemented in our simulated
multicore processor.

Using AVS we boost the frequency of slow running cores
and reduce the frequency of high performance cores. The
aim of this analysis is to find the optimal frequency which
balances the performance loss against power asymmetry. For
this we define a parameter β known as the performance-power



factor. By assuming f1, f2, f3, . . . fN as the frequencies of
N cores of a CMP, arranged in the ascending order without
applying any frequency compensation techniques, we define
β = i

2N
such that the frequency for all cores for a particular

β value can be found by using the formula as shown below:

Freq,F =

(
f1+f2+... +fi

i
, i ≤ N

fN+fN−1+... +fi−N

(2N−i)+1
, i > N

(4)

When β is ‘1’, the performance is maximum and power saving
is minimum, i.e., all cores operate at the frequency of the
highest speed core. When β is approximately ‘0’, the power
saving is maximum and performance is minimum, i.e., all
cores operate at the frequency of the slowest core.

As we show in the next section, the optimal value of fre-
quency is obtained when β is around 0.5, i.e., the optimal
frequency is the mean of the original frequencies of the N
cores. Thus by varying the value of β, we can get differ-
ent performance-power configurations for our CMP. For an
application with a specific power budget we can achieve the
maximum performance by using higher values of β, in such a
way that the power consumption is within the specified power
budget. For an application with a specific performance dead-
line we can achieve maximum power savings by using lower
values of β such that the execution time of the application is
within the performance deadline. In an extreme case, if an
application requires maximum performance, we can set the
value of β to 1 so that all cores operate at the frequency
of the highest performance core, and if we have a power
sensitive application which does not require a performance
deadline, we can set the value of β to 1/2N(≈ 0) and get
the maximum power savings. Thus using different values of
β, we can get the minimum power for a fixed performance
deadline or maximum performance for a fixed power budget.
The β value decides the common operating frequency of all
the cores which is achieved by supplying different voltages to
each core. Note that this β can correspond to different lev-
els as considered in [30] for their chip-wide DVFS approach
but in our work we supply different voltages to each core to
achieve the same performance as we take process variations
into consideration.

5. EXPERIMENT METHODOLOGY
5.1 Architectural Model

We use a modified version [14] of CMPFlex.OoO of the
Flexus [32] family, which adds a detailed timing model to
Virtutech Simics [22] to model performance and power of an
8-core Sparc based processor running Solaris OS. Flexus is
a family of component based computer architecture simu-
lators that enables full system timing-accurate simulation of
uni and multiprocessor systems running unmodified commer-
cial applications and operating systems. The CMPFlex.OoO
simulator of the Flexus family simulates a Piranha [2] based
chip-multiprocessor with out-of-order execution. Each core
has a private L1 cache and a shared L2 cache. The en-
hanced simulator has a hybrid instruction-microarchitecture
level Wattch-like [4] dynamic power model integrated with
Flexus. The process and architecture parameters used in our
experiments are given in Table 1.

5.2 Simulation
For validating our techniques, we use the following bench-

marks of SPLASH-2 [33] application suite, namely, cholesky,
fft, lu, radix, raytrace, ocean, and volrend. For lu and ocean,

Global Design Parameters
Process Technology 45nm
Target Supply Voltage 1V
Clock Rate 3 GHz
Organization 8-core, shared L2 cache

Core Configuration
Decode Width 4
Issue Width 4
Commit Width 4
Functional Units 3 FP ADD/SUB Units, 2 FP

MUL/DIV Units, 6 Integer
ALUs

Physical Registers 128 GPR, 128 FPR
Branch Predictor 16K-entry bimodal, gshare,

selector
Memory Hierarchy

L1 Dcache 64 KB, 2-way, 64 byte blocks,
1-cycle latency

L1 Icache 64 KB, 2-way, 64 byte blocks,
1-cycle latency

L2 cache 16 MB, 8-way Piranha, 64
byte blocks, 12-cycle latency

Main Memory 200-cycle latency

Table 1: Design parameters for modeled 8-core CMP

we use both the contiguous and non-contiguous blocks for our
simulation. The desired clock rate of our processor is 3GHz
[16, 25] but due to process variations each of the 8-cores has
different operating frequency. We model our processor as an
evenly distributed floor plan as in [16] with four rows and two
columns. For our simulation we use the common frequency
to all cores for five different values of β namely 0.125(≈ 0),
0.25, 0.5, 0.75, and 1.

5.3 Performance Metrics
This section describes the metrics that we use to character-

ize performance and power-efficiency of various performance-
power configurations.

We measure the performance of the system when running
the given parallel applications by using the execution time or
delay, which is computed as the time taken for the application
to complete its execution. Power-efficiency is evaluated based
on the total system power consumed by the application to
complete its execution.

Common energy-time metric, the Energy-Delayn Product
(EDnP), includes the Power-Delay Product (Energy) [8],
when n=0, the Energy-Delay Product (EDP) [13], when n=1,
the Energy-Delay2 Product (ED2P) [23], when n=2 and so
on. Brooks et.al. [5] suggest using EDP for high-end work-
stations and ED2P for high performance servers, i.e., EDnP
metrics, when n < 2, are usually preferred when targeting
low power systems, while EDnP metrics, when n > 2, are
used when focus is on high performance. In this work we use
ED2P and ED3P to choose the optimal performance-power
configuration (i.e., the β value that has the minimum ED2P
or ED3P). The ED2P metric is independent of the supply
voltage, but only to the first approximation [23]. We know
that the power consumption is roughly related to V3. The
performance, however, varies better than linearly with the
frequency because the effective memory latency is reduced
as the frequency goes down. As voltage and frequency have
a linear variation, we see the performance to scale better than
V3 (as V decreases) and power scales with V3 in the ED2P



(a) Energy (n = 0) (b) Energy Delay Product (n = 1)

(c) Energy Delay2 Product (n = 2) (d) Energy Delay3 Product (n = 3)

Figure 1: EDnP behavior for different values of β where n = 0, 1, 2, and 3

metric. The net result is a decrease in ED2P with lower β
values although at the cost of significant performance degra-
dation [30]. Thus we have also focussed on ED3P to put
more performance constraint. The other metrics suffer be-
cause they are too energy dominant (n < 2) resulting in
preference given to low performance systems or too perfor-
mance dominant (n > 3) resulting in preference given to high
power consuming systems.

5.4 Results
The EDnP values of the benchmarks for different values of

β when n = 0, 1, 2, and 3 are shown in Figure 1. The val-
ues are normalized to the respective maximum EDnP value
which is achieved for raytrace application when β = 1. Each
of the benchmarks is run to its completion using 8 threads
on our 8-core simulated system. Figure 1(a) and 1(b) show
the Energy and EDP, respectively. As expected, maximum
energy is used when β is 1 and also the performance is max-
imum. The Energy and EDP metrics are biased towards en-
ergy and hence show the optimal configuration when β = 0.
We then focus on the ED2P metric as shown in Figure 1(c).
For the ED2P metric, the optimal performance with accept-

able energy consumption (minimum ED2P value) is achieved
for lower values of β as shown in Figure 1(c). The optimal
configuration for ED2P metric at low β values at the cost
of significant performance degradation is due to the better
scaling of performance than V3 as discussed in the previous
section. Thus to put more performance constraint we use the
ED3P metric as shown in Figure 1(d), where we get the op-
timal configuration when β = 0.5. It is seen that for higher
values of n, i.e., n > 3, the optimal configuration is when
β ≥ 0.75.

The power variation among the cores for different values
of β for the raytrace application is shown in Figure 2. The
power values of each core are normalized to the maximum
core power value achieved when β = 1 for core 7. The nor-
malized power value of ‘0’ indicates the power of the cores
for the ideal case when there is no process variations, i.e., all
cores have a supply voltage of 1V and frequency of 3GHz.
The power deviation from the ideal case for various β val-
ues is shown in Table 2 and the minimum power deviation is
found to be 8.82% for β = 0.5. The other applications have
a similar variation pattern. We find the power asymmetry
among the cores by statistically calculating the standard de-



Figure 2: Power variation of each core for raytrace
application

β Deviation(%) from SD in Watts
the Ideal Case

0 39.55 0.90
0.25 26.67 1.16
0.5 8.82 1.92
0.75 71.89 3.33
1 118.64 4.40

Table 2: Power asymmetry for raytrace application

viation (SD) of the power values of the 8 cores. Table 2
also shows the SD for raytrace application for different β val-
ues. The minimum SD is 0.90W for β = 0 i.e., the power
asymmetry is minimum for β = 0. Though the power asym-
metry is minimum for β = 0, the performance of the CMP is
very poor (Figure 1(d)). The power asymmetry among the
cores for β = 0.25 and β = 0.5 is not much as compared
to the higher β values as shown in Table 2, but the power
deviation from the ideal case is on the higher side (26.67%)
for the configuration of β = 0.25. For the configuration of
β = 0.5 the power deviation from the ideal case is minimum,
and also ED3P value is the least (Figure 1(d)), with only the
power asymmetry slightly higher (1.92W) when compared to
β = 0.25. We can thus conclude that the optimal frequency
which balances performance with power against asymmetry
is when β = 0.5.

6. OS SCHEDULING
The aim of this section is not to validate any new schedul-

ing algorithm but to stress on the need for revisiting tradi-
tional task scheduling techniques so as to achieve maximum
power savings. We use the same set of benchmarks as con-
sidered in Section 5, but this time we make each application
to run with 4 threads on 8 cores. We then use the proces-
sor utility commands of Solaris to execute the benchmarks
in three different modes. In the normal mode we allow the
OS to execute the 4 threads in any 4 of the available 8 cores
without any additional changes. In the best mode, using the
command ‘psradm’ of Solaris, we make 4 threads to run on
the low power consuming cores so as to achieve power savings.
We also show the worst mode where 4 threads execute on the
high power consuming cores. Energy behavior of the three
different modes for a particular value of β, namely, when the

Figure 3: Energy behavior when β = 0.5 for the Best,
Normal, and Worst mode

BenchMarks Energy Savings in %
Cholesky 11.49
FFT 27.43
LU - Contiguous 26.76
LU - Non-Contiguous 26.60
Ocean-Contiguous 29.01
Ocean-Non-Contiguous 28.82
Ray Tracer 30.16
Radix 27.34
Volume Renderer 28.48

Table 3: Energy Savings when β = 0.5

performance-power factor(β) is 0.5, is shown in Figure 3. The
energy values are normalized to the maximum energy value,
achieved for the raytrace application in the worst mode. The
energy savings from the worst case to the best case for the
same β value is shown in Table 3, where we can see savings
upto 30% for the Ray Tracer Application. Note that in all
the three modes the performance of the cores is the same and
hence the energy savings we obtain are without any perfor-
mance degradation. If the OS assumes that all the cores are
same then there are chances that it may schedule the threads
in the worst manner by utilizing the high power consuming
cores instead of the low power consuming cores.

Since our processor has equal performance on all the cores
but unequal power consumption, the OS must schedule
threads by having prior knowledge of the power consump-
tion capabilities of each core. This information is already
available to the OS scheduler during the testing phase of the
processor, eliminating the time overhead in selecting the low
power consuming core. The OS scheduler should be designed
in such a way that it gives high priority to the low power con-
suming core and low priority to the high power consuming
core. If there are more threads than the cores, the power
savings can be achieved by scheduling dynamically the more
computationally intensive threads (i.e., high power consum-
ing thread) to the low power consuming core (since all our
cores have equal performance, there is no performance loss).
Computationally intensive threads can be identified dynam-
ically with the help of hardware performance counters which
allow measuring thread specific runtime statistics. These
counters are found in modern day processors [18, 19].



Thus the OS cannot assume all cores to be equal due to
process variations and the techniques used to mitigate these
variations. The traditional scheduling techniques need to
be revisited and new techniques have to be evolved for ef-
ficient power management of chip multiprocessors. For the
frequency model developed by us, the OS scheduling is made
simple as the OS has prior information of the power con-
sumption capability of each core. We leave the exploration
and design of OS scheduler for future work.

7. CONCLUSIONS
Process variation effects on modern microprocessors are of

utmost concern due to the reliability and thermal issues that
arise if these variations are not taken into consideration. As
the trend towards many-core CMPs has started, it is highly
important to develop techniques to mitigate the impact of
process variations.

To this end, we modeled a variation aware chip multipro-
cessor where the performance of all cores is same but there
is power variation among the cores. This enabled the OS
to schedule the threads in a power-efficient manner without
any extra overhead (in time) in selecting the core for thread
assignment as OS has prior information of power utilization
of each core. We have shown that running 4 threads in our
8 core system with proper utilization of the cores gave us
energy savings of upto 30% as compared to the worst uti-
lization of cores in terms of the power consumption. Also
we found the optimal frequency which balances the perfor-
mance with power against asymmetry and made an analysis
to find the minimum power for a fixed performance deadline
or maximum performance for a fixed power budget.

We also demonstrated that traditional scheduling tech-
niques need to be revisited and new scheduling techniques
are needed to map threads to the proper cores. In future,
software cannot be designed assuming symmetric core perfor-
mance as due to process variations there will be asymmetry
among the cores which should be taken into account.

8. ACKNOWLEDGEMENTS
This work is supported in part by grants from the De-

partment of Science and Technology (DST), Govt. of India,
Project No. SR/S3/EECE/80/2006, and the Indian Insti-
tute of Technology, Madras, under the New Faculty Scheme,
Project No. CSE/07-08/227/NFSC/MADU.

9. REFERENCES
[1] A. Agarwal et.al., “A Process-Tolerant Cache Architecture for

Improved Yield in Nanoscale Technologies.” IEEE Transactions
on VLSI Systems, 13(1), pp. 27-38, 2005.

[2] L. A. Barroso et.al., “ Piranha: A Scalable Architecture Based
on Single-Chip Multiprocessing.” Proc. of the 27th Intl. Symp.
on Computer Architecture, pp. 282-293, 2000.

[3] S. Borkar et.al., “Parameter Variations and Impact on Circuits
and Microarchitectures.”Proc. of the Design Automation
Conf., pp. 338-342, 2003.

[4] D. Brooks et.al., “Wattch: A Framework for Architectural-level
Power Analysis and Optimizations.” Proc. of the 27th Intl.
Symp. on Computer Architecture, pp. 83-94, 2000.

[5] D. Brooks et.al., “Power-Aware Microarchitecture: Design and
Modeling Challenges for Next-Generation Microprocessors.”
IEEE Micro, 20(6), pp. 26-44, 2000.

[6] Y. Cao and L. T. Clark, “Mapping Statistical Process
Variations Toward Circuit Performance Variability: An
Analytical Modeling Approach.” Proc. of 42nd Design
Automation Conf., pp. 658-663, 2005.

[7] S. Chandra et.al., “Considering Process Variations During
System-Level Power Analysis.” Proc. of the Intl. Symp. on Low

Power Electronics and Design, pp. 342-345, 2006.

[8] A. P. Chandrakasan et.al., “Low Power CMOS Digital Design.”
IEEE Journal of Solid-State Circuits, 27(4), pp. 473-484, 1992.

[9] S. H. Choi et.al., “Novel Sizing Algorithm for Yield
Improvement under Process Variation in Nanometer
Technology.” Proc. of the Design Automation Conf., pp
454-459, 2004.

[10] A. Das et.al., “Evaluating Voltage Islands in CMPs under
Process Variations.” Proc. of the Intl. Conf. of Computer
Design, 2007.

[11] J. Donald and M. Martonosi, “Power Efficiency for
Variation-Tolerant Multicore Processors.” Proc. of the Intl.
Symp. on Low Power Electronics and Design, pp. 304-309,
2006.

[12] D. Ernst et.al., “Razor:A Low-Power Pipeline Based on
Circuit-Level Timing Speculation.” Proc. of the Intl. Symp. on
Microarchitecture, pp. 7-18, 2003.

[13] R. Gonzales and M. Horowitz, “Energy Dissipation in General
Purpose Microprocessors.” IEEE Journal of Solid-State
Circuits, 31(9), pp. 1277-1284, 1996.

[14] S. Herbert and D. Marculescu, “Analysis of Dynamic
Voltage/Frequency Scaling in Chip-Multiprocessors.” Proc. of
the Intl. Symp. on Low Power Electronics and Design, pp
38-43, 2007.

[15] E. Humenay et.al., “Impact of Parameter Variations on
Multicore Chips.” Proc. of the 1st Wkshp. On Architectural
Support for Gigascale Integration, 2006.

[16] E. Humenay et.al., “Impact of Process Variations on Multicore
Performance Symmetry.” Proc. of Intl. Conf. on Design,
Automation and Test in Europe , pp. 1653-1658, 2007.

[17] Md. A. Hussain and M. Mutyam, “Block Remap with Turnoff:
A Variation-Tolerant Cache Design Technique.” Proc. of the
Asia and South Pacific Design Automation Conf., pp. 783-788,
2008.

[18] IBM PowerPC 970FX RISC Microprocessor User’s Manual,
Version 1.6, Dec. 2005.

[19] Intel 64 and IA-32 Architectures Software Developer’s Manual,
System Programming Guide, Part 2, Vol-3B, Aug. 2007.

[20] C. Isci et.al., “An Analysis of Efficient Multi-Core Global Power
Management Policies: Maximizing Performance for a Given
Power Budget.” Proc. of the Intl. Symp. on Microarchitecture,
pp. 347-358, 2006.

[21] X. Liang and D. Brooks, “Latency Adaptation of Multiported
Register Files to Mitigate Variations.” Proc. of the 1st Wkshp.
on Architectural Support for Gigascale Integration, 2006.

[22] P. S. Magnusson et.al., “Simics: A full system simulation
platform.” IEEE Computer, 35(2), pp. 50-58, 2002.

[23] A. J. Martin, “Towards an Energy Complexity of Computation.”
Information Processing Letters, 77(2-4), pp. 181-187, 2001.

[24] K. Meng et.al., “Physical Resource Matching Under Power
Asymmetry.” P=ac2 Conf., IBM TJ Watson Research Center,
2006.

[25] M. Monchiero et.al., “Design Space Exploration for Multicore
Architectures: A Power/Performance/Thermal View.” Proc. of
the 20th Intl. Conf. on Supercomputing, pp. 177-186, 2006.

[26] M. Mutyam and N. Vijaykrishnan, “Working with Process
Variation Aware Caches.” Proc. of Intl. Conf. on Design
Automation and Test in Europe, pp. 1152-1157, 2007.

[27] M. Orshanksy et.al., “Characterization of spatial intrafield gate
CD variability, its impact on circuit performance, and spatial
mask-level correction.” IEEE Transactions on Semiconductor
Manufacturing, 17(1), pp. 2-11, 2004.

[28] Predictive Technology Model, http://www.eas.asu.edu/∼ptm.

[29] K.Raghavendra and M. Mutyam, “Process Variation Aware
Issue Queue Design.” Proc. of Intl. Conf. on Design
Automation and Test in Europe, 2008.

[30] J. Sharkey et.al., “Evaluating Design Tradeoffs in On-Chip
Power Management for CMPs.” Proc. of the Intl. Symp. on
Low Power Electronics and Design, pp. 44-49, 2007.

[31] J. Tschanz et.al., “Adaptive Body Bias for Reducing Impacts of
Die-to-Die and Within-Die Parameter Variations on
Microprocessor Frequency and Leakage.” IEEE Journal of
Solid-State Circuits, 37(11), pp. 1396-1402, 2002.

[32] T. Wenisch et.al., “SimFlex: Statistical Sampling of Computer
Architecture Simulation.” IEEE Micro Special Issue on
Computer Architecture Simulation, 26(4), pp. 18-31, 2006

[33] S. C. Woo et.al., “The SPLASH-2 Programs: Characterization
and Methodological Considerations.” Proc. of the 22nd Intl.
Symp. on Computer Architecture, pp. 24-36, 1995.


