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Abstract -Clock root gating transformation targets power 
savings on the clock tree by inserting gating logic at the root of 
the clock. In this paper we propose an efficient graph-based 
algorithm to solve the root clock gating optimization problem. 
The algorithm is also tightly integrated with clock tree synthesis 
tool so that real power savings can be achieved after clock tree is 
generated. Experimental results on industrial circuits showed 
that significant power savings can be achieved.  
 

I Introduction 
 

T he proliferation of portable consumer electronics, 
high-performance microprocessors has caused a major 
paradigm shift in the electronic design community.  Power 
consumption has become one of the key concerns of 
designers.  

Clock gating is a well-known technique to reduce dynamic 
power dissipation of a digital circuit [1,2,4]. It saves power 
by shutting off the sequential elements and part of the 
clock-network during the idle state. However clock gating 
saves power mainly on the registers and a small portion of 
the clock tree as the gating logic tends to be placed close to 
the registers [3]. Since a major portion of the clock tree is 
still toggling and drives large loads, the power consumed on 
the clock tree could be still very significant. Clock root 
gating transformation targets power savings on the clock tree 
itself. It inserts gating logic at the root of the clock to save 
the power consumed by the clock network feeding these 
instances. The clock tree is shut down when all the clock 
gating instances are disabled. Without loss of generality, for 
the rest of the paper we will refer clock root gating as simply 
root gating. 

Fig. 1 illustrates a simple example with root gating 
potential. From Fig. 1, it can be seen that the clock gating 
logic instances (g1,g2,g3,g4) are placed close to the leaf 
register banks(r1,r2,r3,r4). As a result, the sub-clock-tree of 
b1 to b2 and b1 to b3 are still toggling and consumes power, 
although they do not have to toggle all the time. Assume the 
enable signal for g1 and g2 is a and the enable signal for g3 
and g4 is a’b and ab respectively. The enable signal for 
register bank r5 is a’. For sub-clock-tree b1 to b2, the root 
gating logic c1 is added. The enable signal is simply the 
enable signal a because for g1 and g2 the enable functions 
are the same. Because of root gating instance c1, the toggles 
on the sub-tree from b1 to b2 will be reduced. Similarly, for 
sub-clock-tree b1 to b3, the root gating logic c2 is added. The 
enable signal is the Boolean OR of the enable signals for g3 
and g4, i.e. a’b+ab=(a+a’)b=b.   

As far as to our knowledge, there is no commercial tool 
offering automatic root gating transformation for power 

optimization. Furthermore, most of the publications [2,3]on 
this topic suffer from the same shortcoming in that no 
physical information of the clock tree sinks is considered 
during the clock gating transformation. As a result, the clock 
tree constraints may not be met or the power of the design 
may actually go up after the clock tree synthesis [6]. 

 
II Problem of Root Gating 

 
There are two major challenges in applying the root gating 

transformation in the optimization flow. First the possible 
number of candidates for root gating grows exponentially 
with the number of clock gating logic in the design. In fact if 
the total number of clock gating instances of a design is n 
then the total possible ways to root gate these n instances is 
O(2n). In a complicated digital design, there may be hundreds 
or even thousands of clock gating instances inserted during 
front-end synthesis. Therefore, an exhaustive search 
algorithm for the optimal solution of root gating is not 
feasible. 

Second, applying root gating transformation without 
taking into account the physical placement information of the 
clock gating instances will impose a major challenge to clock 
tree synthesis tool. The fragmentation of the clock tree into 
several clock gating domain makes skew balancing very 
difficult [4,5]. Additionally, the inserted root gating logic 
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Fig. 1. Physical view of a simple clock tree. 
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may create unnecessary duplications of sub-clock tree. This 
may increase the clock tree insertion delay and power 
dissipation after clock tree has been generated. 
 In this paper, we present a novel graph based algorithm to 
achieve near optimal clock root gating insertion on a placed 
design. In Section III, we are introducing two basic data 
structures used by the proposed algorithm. Section IV 
describes the proposed algorithm in detail. An improved root 
gating scheme is presented in Section V. The experimental 
results on a few industrial designs are given in Sect ion VI. 
Finally the conclusion and future work is given in Section 
VII. 
 

III. Basic Data Structures  
 
A. Clock-Gating Graph (CGgraph) 
 

Let D be the netlist representation of a digital design. A 
CGgraph Gc(R, N)  of a design D is a DAG (Directed Acyclic 
Graph) to represent the structure of the clock tree of the 
design. N  is the set of nodes (called CGnode) and R is the 
root node of the graph. Each CGnode n has the following 
fields: type, pin, enable, parent, and children.  For the rest of 
the section, we use n(.) to denote a field of CGnode n. Each 
CGnode has a corresponding instance pin in D, as defined by 
the field pin. If the pin is the clock pin of a clock gating 
instance, the field enable of the node is the enable signal for 
the clock gating instance. Otherwise it is null. Let n(pin) 
denotes the pin field of CGnode n. Then a CGnode n is the 
parent of another CGnode m if and only if there exists a path 
from n(pin) to m(pin) in D. There are five different types of 
CGnode as described below, where n(type) denotes the type 
of the CGnode n: 

n(type) = I : The CGnode corresponds to the output pin p 
of a clock gating instance (e.g. AND gate) in D where n(pin) 
= p.  n(enable)  is the enable signal for the gating logic. For a 
latch based clock gating scheme, n(enable)  is  simply the data 
input of the corresponding gating latch. n(parent) = m  where 
m is also a CGnode and m(type)=L or P or T. n(children) =? . 

n(type) = R : The CGnode corresponds to the output pin p 
of a register in D where n(pin) = p . n(enable) is the enable 
signal for the register if there is any. n(parent) = m  where m  

is also a CGnode and m(type)=L or P or T. n(children) =? . 
n(type) = L : This CGnode is a Logic Clustering Node 

(LCN) which has no corresponding object in D and n(pin) = 
null. It represents a partition of the set of CGnodes CIR of 
type I and/or R, which have the same enable function. 
n(enable) is the common enable function of its children 

where n(children)= CIR  and n(parent) = m. m is also a 
CGnode and m(type)= P or T.   

n(type) = P : This CGnode is a Physical Clustering Node 
(PCN) which has no corresponding object in D and n(pin) = 
null. It represents a partition of the set of CGnodes CL of type 
L whose children (I or R type nodes) fall into the same 
physical partition determined by their physical proximity. 
n(children) = CL. n(parent) = m where m  is also a CGnode 
and m(type)= P or T.  n(enable) = null.  

n(type) = T : The CGnode corresponds to the root pin p of 
a clock tree in D where n(pin) = p. n(enable) = null. n(parent) 
= null and n(children) is a set of nodes of types L, P, I, or R. 

The CGgraph Gc(R, N) for the example in Fig. 1 without 
considering physical proximity of the gating instance is 
shown in Fig. 2.1; where N={N0,…,N9} and R=N0. The 
detail information for each node is shown in Fig. 2.2. For 
example, for node N5 the corresponding object in the netlist 
is the out pin of g1; the type is I (gating instance) and the 
enable function of the gating logic is a; the parent of the node 
is N1 and it has no children. Similarly, node N1 is a logic 
cluster node with enable function of a because both of its 
children N5 and N6 having the same enable function. It can 
be seen that the logic cluster node represents the leaf clock 
gating instances of a design with the same enable function. 
Now the task of root gating is to identify the best set of 
LCN’s such that the combined root gating logic will reduce 
the power of the clock-tree.  
 
B. Root-Gating Graph (RGgraph) 
 

An RGgraph Gr(N,E) is an undirected graph used to 
explore possible combination of different LCN’s of a 
CGgraph to identify candidates of root gating. It consists of 
sets of nodes N (RGnode) and sets of edges E (RGedge).  

An RGnode n is a tuple of (M,fe) where M is a set of 
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N0 

Fig. 2. 1. The CGgraph for the design in Fig. 1 
with logic clustering only. 

node name = {type, pin, enable, parent, children} 
 
N0 = {T, clk, null, null, {N1,N2,N3,N4}} 
N1 = {L, null, a, N0, {N5,N6}} 
N2 = {L, null, a’, N0, {N7}} 
N3 = {L, null, a’b, N0, {N8}} 
N4 = {L, null, ab, N0, {N9}} 
N5 = {I, g1, a, N1, null} 
N6 = {I, g2, a, N1, null} 
N7 = {R,  r5, a’, N2, null} 
N8 = {I, g3, a’b, N3, null}  
N9 = {I, g4, ab, N4, null} 
 
Fig. 2.2 The detail information of each node in Fig. 2.1 



CGnodes m1,m2,…,mk where fe is the combined Boolean OR 
of the enable functions of nodes in M and fe= 
m1(enable)+m2(enable)+…+mk(enable).  

An RGedge e is an edge between two RGnodes nleft and 
nright where the enable function fe of the edge is simply 
fe(nleft)+fe(nright).  

Simply put, each RGnode represents a set of CGnodes that 
can be grouped together to form a candidate of root gating. 
The RGedge represents another root gating candidate by 
gating the RGnodes it is connected to. 

Let us explain the construction of an RGgraph, as shown 
in Fig. 3, for the CGgraph in Fig. 2.1. In Fig. 2.1, there are 4 
CGnodes with type of L. Therefore in the RGgraph, 4 
RGnodes {n1,n2,n3,n4} are created in Fig. 3 corresponding 
to the CGnodes {N1,N2,N3,N4} in Fig 2.1. For example, for 
node n1 in Fig. 3, the corresponding CGnode is N1 in Fig. 
2.1. The enable function of n1 is the enable function of N1 
which is a. An RGedge represents a possible grouping of the 
left and right RGnode to form a new candidate for root gating. 
For example the edge e3 represents a possible grouping of 
N3 and N4 to form a root gating. The enable function of e3 is 
the Boolean OR of the enable functions of the nodes 
connected by the edge, i.e. a’b+ab=b. Note that, if the 
enable function is 1 then no possible power saving can be 
achieved by using the enable. As a result, there exists an edge 
between two RGnodes if and only if the OR function of the 
enable function of the two nodes is not 1. For example, there 
is no edge between n1 and n2 because the OR function of the 
enable function of n1 and n2, i.e. a and a’ respectively, is 
a+a’= 1.   

Since an RGedge represents a candidate for a root gating 
move, the RGgraph represents all possible pair wise root 
gating candidates of all RGnodes. New RGnodes can be 
created by merging the RGedges. The merging of an RGedge 
means the acceptance of root gating of the nodes it connected 
to save power. The enable function of the new node is the 
enable function of the merged edge. The estimated amount of 
the power saved by merging an edge is the product of the 
probability of the enable function of the new  node being off 
and the power consumed by the subtree. With the new 
RGedge created, the edge set of the RGgraph needs to be 
updated based on the original connectivity of the merged 
edge. For example, the edge merge process of the RGgraph 
in Fig. 3 is shown in Fig. 4. For exemplary purpose, we 

assume the power saving can always achieved as long as the 
signal probability of the enable function is not 1.  First node 
n3 and n4 are merged. The new merged node is n34 and the 
new enable function is ab+a’b=b. All t he edges connected to 
n3 and n4 are removed. However, since n2 connected to both 
n3 and n4 before, a new edge e6 will be created between the 
new node n2 and n34 to represent the potential root gating of 
merging these two nodes in the future. The enable function is 
the OR of the enable of n2 and n34, i.e. a’+b. Similarly, edge 
e7 is created with enable function a+ b . The next merge is for 
edge e6 that merges n34 and n2. A new node n342 created 
with enable function a’+a’+b=a’+b. There will be no edge 
between n342 and n1 although n1 is connected to n34 before. 
This is because the enable function of the edge is a’+b+a=1. 
The merge process stops since no more edges exist in the 
graph.  

With the RGgraph, the task of finding the best sets of 
LCN’s such that the com bined root gating logic will save the 
power of the clock tree becomes the exploration of the 
RGgraph by iteratively merging the edges until no more edge 
in the graph. The final RGgraph is a collection of RGnodes 
and each node represent a candidate of root gating. 

An important property of the RGgraph is that there is an 
edge between two nodes if and only if the OR’ed enable 
function of the nodes it connected to is not 1. In practice, the 
constraint can be further tightened such that there is an edge 

n3 

n2 

n4 

n1 

e3 

e2 
e4 e5 e1 

e6 

n3 

n2 

n4 

n1 

n34 

e7 

n3 

n2 

n4 

n1 

n34 n342 

Fig. 4. Merge of RGgraph in Fig. 3. 

n3 

n2 

n4 

n1 

e3 

e2 
e4 

e5 
e1 

Fig. 3. The RGgraph built from the CGgraph 
shown in Fig. 2. 



if and only of the signal probability of the OR’ed enable 
function of the nodes it connected to is not significantly close 
to 1. For example, in Fig. 4, after the first merge, the enable 
function of edge e6 becomes a’+b. If the signal probability of 
the function is very close to 1, we know that merging node 
n34 and n2 is not a good candidate. We can simply remove 
the edge and the merge process stops right there. Therefore 
even though the RGgraph may consist of a lot of edges 
initially, the merge process is very fast because the number of 
mergeable edges drops very quickly. 

C. Physical Partition of clock gating instances 
 
As pointed out earlier, one of the major challenges in 

applying root gating transformation is that it has to be closely 
integrated with the clock tree synthesis tool and take the 
physical placement into consideration. For the example 
shown in Figure 1, assume the probability of the combined 
enable function for g3 and g4 is very low. The lower the 
probability of an enable signal, the higher chance for power 
savings when it is used to gate clock. Therefore without 
taking the placement information into account, we may 

consider root gating g2 and g3, as shown in Figure 5. It can 
be seen clearly that this root gating will create a lot of 
duplication in the clock tree. Therefore instead of saving 
power it may actually increase power, compared to the clock 
tree in Figure 1. In this work, we will use a fast mode clock 
tree synthesis to produce a reasonable realistic clock tree. We 
will then use this tree to create a physical partition of the 
clock gating instances that are the targets for root gating. The 
advantage of this approach is that this physical partition is 
very close to the final synthesized clock tree. When the 

physical partition information becomes available, the power 
saving estimated during root gating exploration will be very 
close the result seen after clock tree synthesis.  Thus it 
prevents the situation illustrated in Figure 5 from happening. 
For example, assume Figure 1 represents the netlist after fast 
clock tree synthesis, the corresponding CGgraph with 
physical clusters nodes is shown in Figure 6. 

In Figure 6, the nodes N5 to N9 are partitioned into three 
physical clusters. For example, N5 and N6 belong to physical 
cluster P1. N7 belongs to physical cluster P2. N8 and N9 
belong to the physical cluster P3. Only CGnodes within the 
same physical cluster will be considered for root gating. In 
other words, a new RGgraph is created for each physical 
clustering node and root gating exploration only happens 
within that physical partition. 

 
IV. The Algorithm 

 
A. Overall Algorithm  
 

The overall algorithm for the root gating optimization is 
shown in Fig. 7. A key concept of the algorithm is that the 
separation of the trial of each root gating move and the actual 
commit (implementation) of the move. The advantage of this 
approach is that during trial phase a simpler but much faster 
cost function can be used to explore all possible moves. Then 
during commit phase, a more accurate cost function can be 
used to determine the power savings and slack overhead for 
each move. If a move saves power and does not violate 
timing constraints, the move will be accepted and committed. 
The trial of potential root gating move in the algorithm is 
simply the exploration RGgraph by merging the edges until 
no edge left (mergeRGgraph). The result of the exploration is 
a set of RGnodes where each node corresponds to a potential 
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Fig. 5. An example of bad root gating - without considering 
the physical placement 
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Fig. 6. The CGgraph of Fig. 2.1 when physical cluster 
nodes are inserted given the netlist in Figure 1. 
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rootGating (D ) { 
/* D  is a gate level netlist */ 
1.  oldPow = estimated clock tree power for D ; 
2.  C = set of all leaf clock gating instances; 
3.  R = set of all regs with enable function; 
4.  Gc = constructCGgraph(C,R);     
5.  construct LCN and PCN for Gc;    
6.  Gr = constructRGgraph(Gc);   
7.  mergeRGgraph(G r);       
8.  committRGgraph(Gr);     
9.  buildClockTree(D ); 
} 

Fig. 7. Root clock gating algorithms. 



root gating move. Then in the decreasing order of estimated 
power savings for each possible move (i.e. RGnode), each 
move will then be committed in the later stage.  
 The details of step 4 through 6 have been covered in 
earlier sections. At step 5, a fast mode of clock tree synthesis 
is called and the resulting CGgraph contains both LCN and 
PCN for later use. Due to the limitation of the size of the 
paper, in the following sections, we will only discuss step 7 
and 8 in greater detail. 
 
 
B. Merge of RGgraph 

 
The process of merging edges of an RGgraph is shown by 

an example in Section III.C. A formal description of the 
merging algorithm is shown in Figure 8. 

The function estimatePowerSaving is to estimate the clock 
tree power to be saved by using the enable signal from the 
RGedge E. As mentioned in previous section, at this trial 
phase, a simple cost function can be us ed to evaluate the 
power savings. For example, it can be the product of the 
probability of the enable function of edge E being zero and 
the total power consumes by the clock gating instances. As a 
result, the lower the probability of the enable signal, the 
larger potential for power savings. 

There are several key points to be noted in the above 
algorithm. For each edge of Gr , we try the root gating for all 
the corresponding nodes connected to the edge. If power 
saving is greater than 0 it means the current root gating may 
be a good candidate. Then a new node is created by merging 
the edge to represent the solution. The power saving of the 
new node is the power saving evaluated from the edge. The 
enable function of the new node is the enable function of the 
merged edge. Note that a new edge is created only if the new 
enable function is not a constant 1 because if the new enable 
function is 1 then there is no chance to reduce the switching 
activity of clock using this enable function. Finally, at step 2 
the order of the edges being selected is important. In our 
implementation, the edges are selected in the decreasing 

order of its estimatePowerSaving. 
 

C. Commit RGgraph  
 

The result of a merged RGgraph is an RGgraph with a set 
of nodes but without edges. The exhaust of edge means no 
more new root gating candidate can be found to possibly 
reduce power dissipation. Also each RGnode, which 
corresponds a set of gates in the netlist,  represents a good 
candidate for insert root gating in front of those gate objects. 
Each RGnode has a cost field that represents the estimated 
power saving for each root gating transformation. The cost is 
updated during the merge process. The root gating decommit 
algorithm is shown in Fig. 9.  

At the beginning of the commit phase, all nodes of  the 
merged RGgraph are sorted in the decreasing order of power 
savings. Since each of the RGnode represents a potential root 
gating candidate, the top of the list is the candidate with 
largest power savings. Then a RGnode is taken from the top 
one by one and a root gating logic is inserted using the enable 
function associated with the RGnode. 

Inserting root gating logic involves two basic operations. 
First the composite enable logic needs to be created. It is the 
Boolean OR of the enable functions of all the leaf gating 
logic to be tried for this root gating move. Because the enable 
function for each leaf gating logic may be presented in 
different logical hierarchy, new ports may be created to for 
the new enable signal. Secondly, the new clock signal is 
connected to the clock pins of the leaf gating logic. For the 
same reason, new ports may also be created. 

 
VI. Partially Committing of Root Gating 

 
As described above, the enable signal to root gate a set of 

objects is the Boolean OR function of the enable signals of 
these objects. However, the additional logic will add delays 
of the clock signal, which may cause timing constraint 
violation. Instead of not committing the root gating 
transformation when it occurs, another choice is to see if the 
enable function can be simplified to reduce the delay. For 
example, let the enable function for the root gating logic be 
ab+bc=a(b+c).  Assume that signal b is very late, the added 
logic of a(b+c) may significant delay the clock signal and 
hence may worse the performance of the root gated design. 
However we know that signal a itself can be used to root gate 

mergeRGgraph  ( Gr , D) { 
/* D  is the target design and Gr is the RGgraph */ 
1. while (number of edges of Gr > 0) { 
2.   pick an edge E from Gr and delete it from Gr; 
3.   powerSaving = estimatePowerSaving(E,D); 
4.   if(powerSaving > 0) { 
5.    Nnew=create new RGnode; 
6.    Nnew[enable] = E[enable]. 
7.    LR = all nodes conn. to the left/right node of E; 
8.    delete all edges conn. to the left/right node of E; 
9.    for each (node NLR in LR) { 
10.      en = NLR[enable] OR Nnew[enable]; 
11.      if(en != 1) { 
12.         Enew=createNewRGedge(NLR,Nnew); 
13.         Enew[enable] = en; 
14.       } 
15.     }  /*end of for loop*/ 
16.     Nnew [powerSaving] = powerSaving; 
17.   }   /*end of while loop*/ 
18. } 

Figure 8. Algorithm of mergeRGgraph 

commitRGgraph (D, Gr) { 
/* D is the target design and Gr is the RGgraph */ 
1.  S = sub set of all Gr nodes whose power saving  
    value is greater than 0; 
2.  sort all nodes in S in the decreasing order of     
   power saving; 
3.  while (S is not empty) { 
4.     pick the top Nr from S;  
5.     C = all the gate objects referred by Nr; 
6.   insertRootGating(C,D); 
7.   } /*end of while loop*/ 
8. } 
 

Figure 9. Algorithm of commitRGgraph 



those clocks. Although by doing this, the probability of the 
clocks being shut off is reduced but the logic of the enable 
signal is simplified. Since signal b is no longer part of the 
root gating enable function, the design will be faster than the 
one using a(b+c) as the enable function. To achieve this 
improvement, only a minor modification is required in the 
algorithm shown in Fig. 7. In step 8 of Fig. 7, after 
committing a root gating transformation, the design is 
checked for possible timing violation introduced by the root 
gating logic. If so a new enable function is searched for the 
root gating logic and used if found one. 

 
VI. Experimental Results 

 
The proposed algorithm is implemented in Cadence?  

PKS/LPS 5.0 release [7]. The PKS/LPS flow  starts from the 
RTL of a design. During generic optimization, clock gating 
logic is inserted. It is then followed by pre-placement timing 
and power optimization. Root gating trans formation is 
applied after placement but before clock tree synthesis. 
Finally, PKS optimize the timing and power simultaneously.  

Four industrial circuits with real timing and clock 
constraints and physical floorplan are selected for 
experiment. Circuits A and B are control logic. Circuit C is a 
DSP block and Circuit D is a communication chip. For C and 
D,  customer test benches are used to run simulation to 
generate the switching activity file for power estimation [7]. 
For design A and B, random vectors are used. All 
experiments are run on a SUN workstation with 750 MHz 
CPU and 4 GB of memory. The experimental results are 
shown in Table 1. 

The column “Total Inst.” shows the total number of 
instances in each design. The columns “Flip Flops” and 
“Clock Gated” show the total number of sequential elements 
and the number of clock gating inserted by LPS [7], 
respectively. The column “% CT Power” is the power of 
clock tree as a percentage of the total power. The next three 
columns show the clock tree power, insertion delay and skew 
respectively. The sub -columns “w/o RG” show the results for 
running the test cases with normal PKS low power flow [7]. 
The sub-columns “w/ RG” show the results for running the 
test cases with the root gating transformation. The columns 
“%” show the percentage improvements for the results. The 
last column shows the number of root gating inserted for 
each circuit.  

From the table it can be seen that root gating can save 
significant clock tree power on big designs . The impact of 
the transformation on the clock skew is very marginal 
however the maximum clock insertion delay becomes worse 
for all cases. For small designs, the results of applying root 
gating are mixed. For example, for design A, the clock tree 
power actually increases a little bit after the optimization has 

been done. A detailed analysis showed that the fast clock tree 
estimation during root gating transformation does not 
correlate well with the final synthesized clock tree for 
relatively small clock trees. The run time and memory usage 
overhead of the additional root gating transformation in the 
design flow is very little. Also there is no significant 
difference in the circuit worst slack for the flow with and 
without root clock gating. Due to the limitation on the size of 
the paper, these results are not shown here. 

 
VII. Conclusions and Future Work 

 
In this paper, we have proposed a novel solution for root 

gating optimization that further reduces the clock tree power. 
The novelty lies in using efficient graph-based data 
structures and algorithm to solve the problem and making the 
optimization knowledgeable of placement of clock tree and 
the topology of clock-tree.  

Future work in this area are: (1) improve the physical 
partition algorithm to achieve a fast yet accurate physical 
partition of all clock gating logic; (2) improve the integration 
with clock tree synthesis to reduce the clock insertion delay 
after root gating inserted; (3) implement post clock tree 
synthesis root gating de -commitment. The idea is that, after 
clock tree synthesis, if it is found that root gating violates 
timing or clock tree constraints, the tool should be able to 
remove them. In this case, incremental clock tree synthesis 
rather than a full clock tree rebuild is needed. 
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Total Flip Clock % CT CT Power  (mW) CT Delay  (ns) CT Skew (ns) RG
Design Inst. Flops Gated Power w/o RG w. RG % w/o RG w. RG w/o RG w. RG Inserted
A 6519 1282 40 66.8% 1.15 1.19 -3.5% 3.12 3.07 0.48 0.51 1
B 9523 2340 40 55.8% 5.23 5.11 2.3% 4.70 5.62 1.07 0.86 4
C 23539 1960 38 89.7% 46.27 40.62 12.2% 1.10 1.20 0.11 0.13 3
D 63121 5087 303 54.3% 79.00 72.57 8.1% 1.27 1.75 0.30 0.30 17
Avg. 25676 2667 105 0.67 32.91 29.87 4.8% 2.55 2.91 0.49 0.45 6

Table 1. Experimental results. 


