
Power Minimization by Clock Root Gating

Qi Wang & Sumit Roy
Cadence Design Systems, Inc

River Oaks Parkway, San Jose, CA 95125, USA
qwang@cadence.com,

Abstract -Clock root gating transformation targets power
savings on the clock tree by inserting gating logic at the root of
the clock. In this paper we propose an efficient graph-based
algorithm to solve the root clock gating optimization problem.
The algorithm is also tightly integrated with clock tree synthesis
tool so that real power savings can be achieved after clock tree is
generated. Experimental results on industrial circuits showed
that significant power savings can be achieved.

I Introduction

T he proliferation of portable consumer electronics,
high-performance microprocessors has caused a major
paradigm shift in the electronic design community. Power
consumption has become one of the key concerns of
designers.

Clock gating is a well-known technique to reduce dynamic
power dissipation of a digital circuit [1,2,4]. It saves power
by shutting off the sequential elements and part of the
clock-network during the idle state. However clock gating
saves power mainly on the registers and a small portion of
the clock tree as the gating logic tends to be placed close to
the registers [3]. Since a major portion of the clock tree is
still toggling and drives large loads, the power consumed on
the clock tree could be still very significant. Clock root
gating transformation targets power savings on the clock tree
itself. It inserts gating logic at the root of the clock to save
the power consumed by the clock network feeding these
instances. The clock tree is shut down when all the clock
gating instances are disabled. Without loss of generality, for
the rest of the paper we will refer clock root gating as simply
root gating.

Fig. 1 illustrates a simple example with root gating
potential. From Fig. 1, it can be seen that the clock gating
logic instances (g1,g2,g3,g4) are placed close to the leaf
register banks(r1,r2,r3,r4). As a result, the sub-clock-tree of
b1 to b2 and b1 to b3 are still toggling and consumes power,
although they do not have to toggle all the time. Assume the
enable signal for g1 and g2 is a and the enable signal for g3
and g4 is a’b and ab respectively. The enable signal for
register bank r5 is a’. For sub-clock-tree b1 to b2, the root
gating logic c1 is added. The enable signal is simply the
enable signal a because for g1 and g2 the enable functions
are the same. Because of root gating instance c1, the toggles
on the sub-tree from b1 to b2 will be reduced. Similarly, for
sub-clock-tree b1 to b3, the root gating logic c2 is added. The
enable signal is the Boolean OR of the enable signals for g3
and g4, i.e. a’b+ab=(a+a’)b=b.

As far as to our knowledge, there is no commercial tool
offering automatic root gating transformation for power

optimization. Furthermore, most of the publications [2,3]on
this topic suffer from the same shortcoming in that no
physical information of the clock tree sinks is considered
during the clock gating transformation. As a result, the clock
tree constraints may not be met or the power of the design
may actually go up after the clock tree synthesis [6].

II Problem of Root Gating

There are two major challenges in applying the root gating

transformation in the optimization flow. First the possible
number of candidates for root gating grows exponentially
with the number of clock gating logic in the design. In fact if
the total number of clock gating instances of a design is n
then the total possible ways to root gate these n instances is
O(2n). In a complicated digital design, there may be hundreds
or even thousands of clock gating instances inserted during
front-end synthesis. Therefore, an exhaustive search
algorithm for the optimal solution of root gating is not
feasible.

Second, applying root gating transformation without
taking into account the physical placement information of the
clock gating instances will impose a major challenge to clock
tree synthesis tool. The fragmentation of the clock tree into
several clock gating domain makes skew balancing very
difficult [4,5]. Additionally, the inserted root gating logic

 register file clock gating clock tree root clock
 logic buffers gating

Fig. 1. Physical view of a simple clock tree.

r5

r4

r1
r2

clock port

b1
b2

b4

b3

b5

c1

c2

g1 g2

g3

g4

r3

may create unnecessary duplications of sub-clock tree. This
may increase the clock tree insertion delay and power
dissipation after clock tree has been generated.
 In this paper, we present a novel graph based algorithm to
achieve near optimal clock root gating insertion on a placed
design. In Section III, we are introducing two basic data
structures used by the proposed algorithm. Section IV
describes the proposed algorithm in detail. An improved root
gating scheme is presented in Section V. The experimental
results on a few industrial designs are given in Sect ion VI.
Finally the conclusion and future work is given in Section
VII.

III. Basic Data Structures

A. Clock-Gating Graph (CGgraph)

Let D be the netlist representation of a digital design. A
CGgraph Gc(R, N) of a design D is a DAG (Directed Acyclic
Graph) to represent the structure of the clock tree of the
design. N is the set of nodes (called CGnode) and R is the
root node of the graph. Each CGnode n has the following
fields: type, pin, enable, parent, and children. For the rest of
the section, we use n(.) to denote a field of CGnode n. Each
CGnode has a corresponding instance pin in D, as defined by
the field pin. If the pin is the clock pin of a clock gating
instance, the field enable of the node is the enable signal for
the clock gating instance. Otherwise it is null. Let n(pin)
denotes the pin field of CGnode n. Then a CGnode n is the
parent of another CGnode m if and only if there exists a path
from n(pin) to m(pin) in D. There are five different types of
CGnode as described below, where n(type) denotes the type
of the CGnode n:

n(type) = I : The CGnode corresponds to the output pin p
of a clock gating instance (e.g. AND gate) in D where n(pin)
= p. n(enable) is the enable signal for the gating logic. For a
latch based clock gating scheme, n(enable) is simply the data
input of the corresponding gating latch. n(parent) = m where
m is also a CGnode and m(type)=L or P or T. n(children) =? .

n(type) = R : The CGnode corresponds to the output pin p
of a register in D where n(pin) = p . n(enable) is the enable
signal for the register if there is any. n(parent) = m where m

is also a CGnode and m(type)=L or P or T. n(children) =? .
n(type) = L : This CGnode is a Logic Clustering Node

(LCN) which has no corresponding object in D and n(pin) =
null. It represents a partition of the set of CGnodes CIR of
type I and/or R, which have the same enable function.
n(enable) is the common enable function of its children

where n(children)= CIR and n(parent) = m. m is also a
CGnode and m(type)= P or T.

n(type) = P : This CGnode is a Physical Clustering Node
(PCN) which has no corresponding object in D and n(pin) =
null. It represents a partition of the set of CGnodes CL of type
L whose children (I or R type nodes) fall into the same
physical partition determined by their physical proximity.
n(children) = CL. n(parent) = m where m is also a CGnode
and m(type)= P or T. n(enable) = null.

n(type) = T : The CGnode corresponds to the root pin p of
a clock tree in D where n(pin) = p. n(enable) = null. n(parent)
= null and n(children) is a set of nodes of types L, P, I, or R.

The CGgraph Gc(R, N) for the example in Fig. 1 without
considering physical proximity of the gating instance is
shown in Fig. 2.1; where N={N0,…,N9} and R=N0. The
detail information for each node is shown in Fig. 2.2. For
example, for node N5 the corresponding object in the netlist
is the out pin of g1; the type is I (gating instance) and the
enable function of the gating logic is a; the parent of the node
is N1 and it has no children. Similarly, node N1 is a logic
cluster node with enable function of a because both of its
children N5 and N6 having the same enable function. It can
be seen that the logic cluster node represents the leaf clock
gating instances of a design with the same enable function.
Now the task of root gating is to identify the best set of
LCN’s such that the combined root gating logic will reduce
the power of the clock-tree.

B. Root-Gating Graph (RGgraph)

An RGgraph Gr(N,E) is an undirected graph used to
explore possible combination of different LCN’s of a
CGgraph to identify candidates of root gating. It consists of
sets of nodes N (RGnode) and sets of edges E (RGedge).

An RGnode n is a tuple of (M,fe) where M is a set of

N1 N2 N3 N4

N5 N6 N7 N8 N9

N0

Fig. 2. 1. The CGgraph for the design in Fig. 1
with logic clustering only.

node name = {type, pin, enable, parent, children}

N0 = {T, clk, null, null, {N1,N2,N3,N4}}
N1 = {L, null, a, N0, {N5,N6}}
N2 = {L, null, a’, N0, {N7}}
N3 = {L, null, a’b, N0, {N8}}
N4 = {L, null, ab, N0, {N9}}
N5 = {I, g1, a, N1, null}
N6 = {I, g2, a, N1, null}
N7 = {R, r5, a’, N2, null}
N8 = {I, g3, a’b, N3, null}
N9 = {I, g4, ab, N4, null}

Fig. 2.2 The detail information of each node in Fig. 2.1

CGnodes m1,m2,…,mk where fe is the combined Boolean OR
of the enable functions of nodes in M and fe=
m1(enable)+m2(enable)+…+mk(enable).

An RGedge e is an edge between two RGnodes nleft and
nright where the enable function fe of the edge is simply
fe(nleft)+fe(nright).

Simply put, each RGnode represents a set of CGnodes that
can be grouped together to form a candidate of root gating.
The RGedge represents another root gating candidate by
gating the RGnodes it is connected to.

Let us explain the construction of an RGgraph, as shown
in Fig. 3, for the CGgraph in Fig. 2.1. In Fig. 2.1, there are 4
CGnodes with type of L. Therefore in the RGgraph, 4
RGnodes {n1,n2,n3,n4} are created in Fig. 3 corresponding
to the CGnodes {N1,N2,N3,N4} in Fig 2.1. For example, for
node n1 in Fig. 3, the corresponding CGnode is N1 in Fig.
2.1. The enable function of n1 is the enable function of N1
which is a. An RGedge represents a possible grouping of the
left and right RGnode to form a new candidate for root gating.
For example the edge e3 represents a possible grouping of
N3 and N4 to form a root gating. The enable function of e3 is
the Boolean OR of the enable functions of the nodes
connected by the edge, i.e. a’b+ab=b. Note that, if the
enable function is 1 then no possible power saving can be
achieved by using the enable. As a result, there exists an edge
between two RGnodes if and only if the OR function of the
enable function of the two nodes is not 1. For example, there
is no edge between n1 and n2 because the OR function of the
enable function of n1 and n2, i.e. a and a’ respectively, is
a+a’= 1.

Since an RGedge represents a candidate for a root gating
move, the RGgraph represents all possible pair wise root
gating candidates of all RGnodes. New RGnodes can be
created by merging the RGedges. The merging of an RGedge
means the acceptance of root gating of the nodes it connected
to save power. The enable function of the new node is the
enable function of the merged edge. The estimated amount of
the power saved by merging an edge is the product of the
probability of the enable function of the new node being off
and the power consumed by the subtree. With the new
RGedge created, the edge set of the RGgraph needs to be
updated based on the original connectivity of the merged
edge. For example, the edge merge process of the RGgraph
in Fig. 3 is shown in Fig. 4. For exemplary purpose, we

assume the power saving can always achieved as long as the
signal probability of the enable function is not 1. First node
n3 and n4 are merged. The new merged node is n34 and the
new enable function is ab+a’b=b. All t he edges connected to
n3 and n4 are removed. However, since n2 connected to both
n3 and n4 before, a new edge e6 will be created between the
new node n2 and n34 to represent the potential root gating of
merging these two nodes in the future. The enable function is
the OR of the enable of n2 and n34, i.e. a’+b. Similarly, edge
e7 is created with enable function a+ b . The next merge is for
edge e6 that merges n34 and n2. A new node n342 created
with enable function a’+a’+b=a’+b. There will be no edge
between n342 and n1 although n1 is connected to n34 before.
This is because the enable function of the edge is a’+b+a=1.
The merge process stops since no more edges exist in the
graph.

With the RGgraph, the task of finding the best sets of
LCN’s such that the com bined root gating logic will save the
power of the clock tree becomes the exploration of the
RGgraph by iteratively merging the edges until no more edge
in the graph. The final RGgraph is a collection of RGnodes
and each node represent a candidate of root gating.

An important property of the RGgraph is that there is an
edge between two nodes if and only if the OR’ed enable
function of the nodes it connected to is not 1. In practice, the
constraint can be further tightened such that there is an edge

n3

n2

n4

n1

e3

e2
e4 e5 e1

e6

n3

n2

n4

n1

n34

e7

n3

n2

n4

n1

n34 n342

Fig. 4. Merge of RGgraph in Fig. 3.

n3

n2

n4

n1

e3

e2
e4

e5
e1

Fig. 3. The RGgraph built from the CGgraph
shown in Fig. 2.

if and only of the signal probability of the OR’ed enable
function of the nodes it connected to is not significantly close
to 1. For example, in Fig. 4, after the first merge, the enable
function of edge e6 becomes a’+b. If the signal probability of
the function is very close to 1, we know that merging node
n34 and n2 is not a good candidate. We can simply remove
the edge and the merge process stops right there. Therefore
even though the RGgraph may consist of a lot of edges
initially, the merge process is very fast because the number of
mergeable edges drops very quickly.

C. Physical Partition of clock gating instances

As pointed out earlier, one of the major challenges in

applying root gating transformation is that it has to be closely
integrated with the clock tree synthesis tool and take the
physical placement into consideration. For the example
shown in Figure 1, assume the probability of the combined
enable function for g3 and g4 is very low. The lower the
probability of an enable signal, the higher chance for power
savings when it is used to gate clock. Therefore without
taking the placement information into account, we may

consider root gating g2 and g3, as shown in Figure 5. It can
be seen clearly that this root gating will create a lot of
duplication in the clock tree. Therefore instead of saving
power it may actually increase power, compared to the clock
tree in Figure 1. In this work, we will use a fast mode clock
tree synthesis to produce a reasonable realistic clock tree. We
will then use this tree to create a physical partition of the
clock gating instances that are the targets for root gating. The
advantage of this approach is that this physical partition is
very close to the final synthesized clock tree. When the

physical partition information becomes available, the power
saving estimated during root gating exploration will be very
close the result seen after clock tree synthesis. Thus it
prevents the situation illustrated in Figure 5 from happening.
For example, assume Figure 1 represents the netlist after fast
clock tree synthesis, the corresponding CGgraph with
physical clusters nodes is shown in Figure 6.

In Figure 6, the nodes N5 to N9 are partitioned into three
physical clusters. For example, N5 and N6 belong to physical
cluster P1. N7 belongs to physical cluster P2. N8 and N9
belong to the physical cluster P3. Only CGnodes within the
same physical cluster will be considered for root gating. In
other words, a new RGgraph is created for each physical
clustering node and root gating exploration only happens
within that physical partition.

IV. The Algorithm

A. Overall Algorithm

The overall algorithm for the root gating optimization is
shown in Fig. 7. A key concept of the algorithm is that the
separation of the trial of each root gating move and the actual
commit (implementation) of the move. The advantage of this
approach is that during trial phase a simpler but much faster
cost function can be used to explore all possible moves. Then
during commit phase, a more accurate cost function can be
used to determine the power savings and slack overhead for
each move. If a move saves power and does not violate
timing constraints, the move will be accepted and committed.
The trial of potential root gating move in the algorithm is
simply the exploration RGgraph by merging the edges until
no edge left (mergeRGgraph). The result of the exploration is
a set of RGnodes where each node corresponds to a potential

register file clock gating clock tree root clock
 logic buffers gating

Fig. 5. An example of bad root gating - without considering
the physical placement

r5
r1

r2

clk port

b1

b2
b4

b3

b6 c1
g1 g2

g3

g4

r3

r4

b5

Fig. 6. The CGgraph of Fig. 2.1 when physical cluster
nodes are inserted given the netlist in Figure 1.

N0

N1 N2 N3 N4

N5 N6 N7 N8 N9

P1 P2 P3

rootGating (D) {
/* D is a gate level netlist */
1. oldPow = estimated clock tree power for D ;
2. C = set of all leaf clock gating instances;
3. R = set of all regs with enable function;
4. Gc = constructCGgraph(C,R);
5. construct LCN and PCN for Gc;
6. Gr = constructRGgraph(Gc);
7. mergeRGgraph(G r);
8. committRGgraph(Gr);
9. buildClockTree(D);
}

Fig. 7. Root clock gating algorithms.

root gating move. Then in the decreasing order of estimated
power savings for each possible move (i.e. RGnode), each
move will then be committed in the later stage.
 The details of step 4 through 6 have been covered in
earlier sections. At step 5, a fast mode of clock tree synthesis
is called and the resulting CGgraph contains both LCN and
PCN for later use. Due to the limitation of the size of the
paper, in the following sections, we will only discuss step 7
and 8 in greater detail.

B. Merge of RGgraph

The process of merging edges of an RGgraph is shown by

an example in Section III.C. A formal description of the
merging algorithm is shown in Figure 8.

The function estimatePowerSaving is to estimate the clock
tree power to be saved by using the enable signal from the
RGedge E. As mentioned in previous section, at this trial
phase, a simple cost function can be us ed to evaluate the
power savings. For example, it can be the product of the
probability of the enable function of edge E being zero and
the total power consumes by the clock gating instances. As a
result, the lower the probability of the enable signal, the
larger potential for power savings.

There are several key points to be noted in the above
algorithm. For each edge of Gr , we try the root gating for all
the corresponding nodes connected to the edge. If power
saving is greater than 0 it means the current root gating may
be a good candidate. Then a new node is created by merging
the edge to represent the solution. The power saving of the
new node is the power saving evaluated from the edge. The
enable function of the new node is the enable function of the
merged edge. Note that a new edge is created only if the new
enable function is not a constant 1 because if the new enable
function is 1 then there is no chance to reduce the switching
activity of clock using this enable function. Finally, at step 2
the order of the edges being selected is important. In our
implementation, the edges are selected in the decreasing

order of its estimatePowerSaving.

C. Commit RGgraph

The result of a merged RGgraph is an RGgraph with a set
of nodes but without edges. The exhaust of edge means no
more new root gating candidate can be found to possibly
reduce power dissipation. Also each RGnode, which
corresponds a set of gates in the netlist, represents a good
candidate for insert root gating in front of those gate objects.
Each RGnode has a cost field that represents the estimated
power saving for each root gating transformation. The cost is
updated during the merge process. The root gating decommit
algorithm is shown in Fig. 9.

At the beginning of the commit phase, all nodes of the
merged RGgraph are sorted in the decreasing order of power
savings. Since each of the RGnode represents a potential root
gating candidate, the top of the list is the candidate with
largest power savings. Then a RGnode is taken from the top
one by one and a root gating logic is inserted using the enable
function associated with the RGnode.

Inserting root gating logic involves two basic operations.
First the composite enable logic needs to be created. It is the
Boolean OR of the enable functions of all the leaf gating
logic to be tried for this root gating move. Because the enable
function for each leaf gating logic may be presented in
different logical hierarchy, new ports may be created to for
the new enable signal. Secondly, the new clock signal is
connected to the clock pins of the leaf gating logic. For the
same reason, new ports may also be created.

VI. Partially Committing of Root Gating

As described above, the enable signal to root gate a set of

objects is the Boolean OR function of the enable signals of
these objects. However, the additional logic will add delays
of the clock signal, which may cause timing constraint
violation. Instead of not committing the root gating
transformation when it occurs, another choice is to see if the
enable function can be simplified to reduce the delay. For
example, let the enable function for the root gating logic be
ab+bc=a(b+c). Assume that signal b is very late, the added
logic of a(b+c) may significant delay the clock signal and
hence may worse the performance of the root gated design.
However we know that signal a itself can be used to root gate

mergeRGgraph (Gr , D) {
/* D is the target design and Gr is the RGgraph */
1. while (number of edges of Gr > 0) {
2. pick an edge E from Gr and delete it from Gr;
3. powerSaving = estimatePowerSaving(E,D);
4. if(powerSaving > 0) {
5. Nnew=create new RGnode;
6. Nnew[enable] = E[enable].
7. LR = all nodes conn. to the left/right node of E;
8. delete all edges conn. to the left/right node of E;
9. for each (node NLR in LR) {
10. en = NLR[enable] OR Nnew[enable];
11. if(en != 1) {
12. Enew=createNewRGedge(NLR,Nnew);
13. Enew[enable] = en;
14. }
15. } /*end of for loop*/
16. Nnew [powerSaving] = powerSaving;
17. } /*end of while loop*/
18. }

Figure 8. Algorithm of mergeRGgraph

commitRGgraph (D, Gr) {
/* D is the target design and Gr is the RGgraph */
1. S = sub set of all Gr nodes whose power saving
 value is greater than 0;
2. sort all nodes in S in the decreasing order of
 power saving;
3. while (S is not empty) {
4. pick the top Nr from S;
5. C = all the gate objects referred by Nr;
6. insertRootGating(C,D);
7. } /*end of while loop*/
8. }

Figure 9. Algorithm of commitRGgraph

those clocks. Although by doing this, the probability of the
clocks being shut off is reduced but the logic of the enable
signal is simplified. Since signal b is no longer part of the
root gating enable function, the design will be faster than the
one using a(b+c) as the enable function. To achieve this
improvement, only a minor modification is required in the
algorithm shown in Fig. 7. In step 8 of Fig. 7, after
committing a root gating transformation, the design is
checked for possible timing violation introduced by the root
gating logic. If so a new enable function is searched for the
root gating logic and used if found one.

VI. Experimental Results

The proposed algorithm is implemented in Cadence?

PKS/LPS 5.0 release [7]. The PKS/LPS flow starts from the
RTL of a design. During generic optimization, clock gating
logic is inserted. It is then followed by pre-placement timing
and power optimization. Root gating trans formation is
applied after placement but before clock tree synthesis.
Finally, PKS optimize the timing and power simultaneously.

Four industrial circuits with real timing and clock
constraints and physical floorplan are selected for
experiment. Circuits A and B are control logic. Circuit C is a
DSP block and Circuit D is a communication chip. For C and
D, customer test benches are used to run simulation to
generate the switching activity file for power estimation [7].
For design A and B, random vectors are used. All
experiments are run on a SUN workstation with 750 MHz
CPU and 4 GB of memory. The experimental results are
shown in Table 1.

The column “Total Inst.” shows the total number of
instances in each design. The columns “Flip Flops” and
“Clock Gated” show the total number of sequential elements
and the number of clock gating inserted by LPS [7],
respectively. The column “% CT Power” is the power of
clock tree as a percentage of the total power. The next three
columns show the clock tree power, insertion delay and skew
respectively. The sub -columns “w/o RG” show the results for
running the test cases with normal PKS low power flow [7].
The sub-columns “w/ RG” show the results for running the
test cases with the root gating transformation. The columns
“%” show the percentage improvements for the results. The
last column shows the number of root gating inserted for
each circuit.

From the table it can be seen that root gating can save
significant clock tree power on big designs . The impact of
the transformation on the clock skew is very marginal
however the maximum clock insertion delay becomes worse
for all cases. For small designs, the results of applying root
gating are mixed. For example, for design A, the clock tree
power actually increases a little bit after the optimization has

been done. A detailed analysis showed that the fast clock tree
estimation during root gating transformation does not
correlate well with the final synthesized clock tree for
relatively small clock trees. The run time and memory usage
overhead of the additional root gating transformation in the
design flow is very little. Also there is no significant
difference in the circuit worst slack for the flow with and
without root clock gating. Due to the limitation on the size of
the paper, these results are not shown here.

VII. Conclusions and Future Work

In this paper, we have proposed a novel solution for root

gating optimization that further reduces the clock tree power.
The novelty lies in using efficient graph-based data
structures and algorithm to solve the problem and making the
optimization knowledgeable of placement of clock tree and
the topology of clock-tree.

Future work in this area are: (1) improve the physical
partition algorithm to achieve a fast yet accurate physical
partition of all clock gating logic; (2) improve the integration
with clock tree synthesis to reduce the clock insertion delay
after root gating inserted; (3) implement post clock tree
synthesis root gating de -commitment. The idea is that, after
clock tree synthesis, if it is found that root gating violates
timing or clock tree constraints, the tool should be able to
remove them. In this case, incremental clock tree synthesis
rather than a full clock tree rebuild is needed.

References

[1] L. Benini and G. De Micheli, “Automatic synthesis of low power gated

clock finite state machine,” IEEE Trans. Computer-Aided Design, vol.
15, pp. 630-643, June 1996

[2] A. Farrahi, C. Chen, A. Srivastava, G. Tellez, and M. Sarrafzadeh,
“Activity driven clock design,” IEEE Trans. Computer-Aided Design,
vol. 20, pp. 705-714, June 2001.

[3] J. Oh and M. Pedram, “Gated clock routing for low power
microprocessor design,”, IEEE Trans. Computer-Aided Design, vol.
20, pp. 715-722, June 2001.

[4] D. Garrett, M. Stan and A. Dean, “Challenges in Clock-gating for a
Low Power ASIC Methodology,” International Symposium on Low
Power Electronic Design (ISLPED), pp. 176 – 181, August 1999.

[5] T. Kitahara and et. al., “A Clock-Gating Method for Low Power LSI
Design,” International Symposium on Low Power Electronic Design
(ISLPED), August 1998.

[6] D. Garrett, “A Low Power Normalized-LMS Decision Feedback
Equalizer for a Wireless Packet Modem”, Proceeding of ISLPED,
August 2002.

[7] Cadence? Low Power Synthesis (LPS) User’s Guide for Cadence?
PKS.

Total Flip Clock % CT CT Power (mW) CT Delay (ns) CT Skew (ns) RG
Design Inst. Flops Gated Power w/o RG w. RG % w/o RG w. RG w/o RG w. RG Inserted
A 6519 1282 40 66.8% 1.15 1.19 -3.5% 3.12 3.07 0.48 0.51 1
B 9523 2340 40 55.8% 5.23 5.11 2.3% 4.70 5.62 1.07 0.86 4
C 23539 1960 38 89.7% 46.27 40.62 12.2% 1.10 1.20 0.11 0.13 3
D 63121 5087 303 54.3% 79.00 72.57 8.1% 1.27 1.75 0.30 0.30 17
Avg. 25676 2667 105 0.67 32.91 29.87 4.8% 2.55 2.91 0.49 0.45 6

Table 1. Experimental results.

