
Power Minimization for Multi-Cell OFDM Networks
Using Distributed Non-cooperative Game Approach

Zhu Han, Zhu Ji, and K. J. Ray Liu
Electrical and Computer Engineering Department, University of Maryland, College Park.

Abstract— In this paper, we use noncooperative game ap-
proach to have distributed sub-channel assignment, adap-
tive modulation, and power control for multi-cell OFDM
networks. The goal is to minimize the overall transmitted
power under each user’s maximal power and minimal rate
constraints. Our contribution is to model and solve this
complicated problem by a distributed noncooperative game
approach: Each user water-fills its power to different sub-
channels regarding other users’ powers as interferences. A
noncooperative game is constructed for each user to com-
pete with others. A method is constructed as a mediator
(judge) for the game. From the simulation results, the pro-
posed scheme reduces the overall transmitted power greatly
compared with the fixed channel assignment algorithm and
pure water-filling algorithm.

I. Introduction

Orthogonal Frequency Division Modulation (OFDM) is
a promising modulation scheme for wireless broadband net-
works. In multiuser OFDM networks, efficient resource al-
location can greatly improve system performances by per-
forming sub-channel assignment, rate allocation, and power
control for different users.

In multi-cell OFDM systems, the resource allocation
problem becomes more complicated, even if the assign-
ment of sub-channels to users is predetermined. This is
because users in different cells reuse the same sub-channels
and cause interferences to each other. If the number of
co-channel users is relatively large, the interference seen by
a user in a sub-channel can be approximated by a Gaus-
sian random variable applying the central limit theorem.
In this case, water-filling algorithm provides a good solu-
tion. When the channel assignment is fixed, many iterative
water-filling methods are proposed in [1], [2], [3], [4], [5]
to maximize the rate with power constraints. However, if
the sub-channel assignment is not predetermined, all pos-
sible combinations of co-channel users should be checked
to determine the optimal resource allocation. In [6], the
authors present heuristic distributed algorithms, which are
based on iterative water-filling with removing sub-channels
of low signal to interferences plus noise ratio (SINR).

In the multi-cell systems, the mobile users do not have
the knowledge of other users conditions and cannot coop-
erate with each other, they act selfishly to maximize their
own performances in a distributed way. Such a fact mo-
tivates us to adopt the game theory [8]. The resource al-
location can be modelled as a noncooperative game that
deals largely with how rational and intelligent individuals
interact with each other in an effort to achieve their own
goals. In the resource allocation game, each mobile user is
self-interested and trying to optimize his utility function,
where the utility function represents the user’s performance
and controls the outcomes of the game.

In this paper, we want to minimize the overall trans-
mitted power under each user’s maximal power and mini-
mal rate constraints. By noncooperative game theory ap-
proach, we find the following facts: If the co-channel in-
terferences are small, users can share the sub-channels for
transmission. In this case, by carefully designing the utility
function, the noncooperative game for each user to compete
the resources will be balanced in an optimal and unique
Nash equilibrium point (NEP). If the co-channel interfer-
ences are severe for some sub-channels, NEP may not be
optimal and there might be multiple NEPs. In order to
deal with this situation, some users with bad channels or
large interferences to others must be kicked out from using
these sub-channels, so that the rest of the users can make
good use of the corresponding sub-channels. We design the
utility function for each user, define the criterion as a game
rule to kick out users, and develop an adaptive algorithm
for resource allocation. From the simulation results, we
can see that the proposed scheme can reduce the overall
transmitted power greatly compared to the fixed channel
assignment algorithm and pure water-filling algorithm.

The rest of this paper is organized as follows: In Section
II, we give the system model and formulate the problem.
In Section III, the adaptive algorithm of the noncooper-
ative approach is developed. In Section IV, we show the
simulation results. In Section V, conclusions are drawn.

II. System Model and Problem Formulation

The K co-channel cells are taken into consideration that
may exist in distinct cells of OFDM networks. Each cell
consists of a mobile user and its assigned base station. As-
sume coherent detection is possible so that it is sufficient
to model this multiuser system by an equivalent baseband
model. We also assume the different links among cells are
synchronized.1 The total number of OFDM sub-channels
is L. For the uplink case, the sampled signal on the lth

sub-channel of the ith user can be expressed as:

xl
i(n) =

K∑
k=1

√
P l

kGl
kis

l
k(n) + nl

i(n) (1)

where P l
k and Gl

ki is the transmitted power and propaga-
tion loss from the kth user to the ith base station in the
lth sub-channel, respectively, sl

k is message symbol from
the kth user to the ith base station at time n, and nl

i(n)
is the sampled thermal noise. We assume that the chan-
nels change slowly. Without loss of generality, we assume
N l

i = E(‖nl
i‖2) = N0. The ith user’s SINR at sub-channel

l can be expressed as:

1this assumption can be relaxed using the same approach in this
paper.
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Rate adaptation such as adaptive modulation provides
each sub-channel with the ability to match the effective bit
rates, according to the interference and channel conditions.
MQAM is a modulation method with high spectrum effi-
ciency. In [7], for a desired rate rl

i of MQAM, the BER of
the lth sub-channel of the ith user can be approximated as
a function of the received SINR Γl

i by:

BERl
i ≈ c1e

−c2
Γl

i

2
rl

i−1 (3)

where c1 ≈ 0.2 and c2 ≈ 1.5 with small BERl
i. Rearrange

(3), for a specific desired BERl
i, the ith user’s transmission

rate of the lth sub-channel for the SINR Γl
i and the desired

BERl
i can be expressed as:2

rl
i = W log2(1 + ci

3Γ
l
i) (4)

where W is the bandwidth and ci
3 = − ci

2

ln(BERl

i/ci
1)

. In

this paper, for simplicity, we assume all the sub-channels
and users have the same BER requirement, i.e., BERl

i =
BER, ∀ i, l.

Each user requires the rate Ri and distributed its rate
into L sub-channels, i.e.,

∑L
l=1 rl

i ≥ Ri. Define rate allo-
cation matrix [r]il = rl

i. Each user’s transmitted power is
bounded by Pmax. Define the K × L channel assignment
matrix A with [A]il = 1, if rl

i > 0; [A]il = 0, otherwise.
Therefore, our objective is to minimize the overall trans-
mitted power under the minimal rate and maximal power
constraints, i.e.,

min
A,r

f(r) =
K∑

i=1

L∑
l=1

P l
i (5)

s.t.



∑L

l=1 rl
i − Ri ≥ 0, ∀i,∑L

l=1 P l
i − Pmax ≤ 0, ∀i,

rl
i, P

l
i ≥ 0, ∀i, l.

Since power is continuous increasing function of rate, the
optimum occurs when

∑L
l=1 rl

i = Ri. The problem in (5)
is very difficult to solve by centralized constrained non-
linear integer optimization, because the complexity and
communication overhead grows fast as the number of users
increases. This motivates us to develop a distributed al-
gorithm with limited controls by using the game theory
approach.

III. Noncooperative Game Approach

In this section, our focus is to solve (5) by noncooperative
game theory. First, we analyze the system feasible region.
Then we will construct the game. A two-user two-sub-
channel example is given to show insights. The properties
of the NEP are analyzed. Finally, an iterative algorithm
for multiple users with a game mediator is developed.

2Here the rate of MQAM is assumed to be continuous. Discrete
MQAM can be applied in a similar way for the approach developed
later in this paper.

A. System Feasibility Region

In order to ensure the desired BER, for every sub-
channel, every user should have SINR no less than the
required SINR γl

i, i.e., Γl
i ≥ γl

i, ∀ i, l. Rewrite these in-
equalities in matrix form, we have

(I − DlFl)Pl ≥ vl, ∀l, (6)

where I is a K ×K identity matrix, vl = [vl
1, . . . , v

l
K ]′ with

vl
i = N0γ

l
i/Gii, Dl = diag{γl

1, . . . , γ
l
K}, and

[Fl
ij ] =

{
0 if j = i,
Gl

ji

Gl
ii

if j �= i.

By Perron-Frobenius theorem, there exists a positive power
allocation if and only if the maximum eigenvalue of DlFl,
i.e. spectrum radius ρ(DlFl), is inside unit circle. When
|ρ(DlFl)| < 1, the optimal power solution is

Pl =
{

(I − DlFl)−1vl, |ρ(DlFl)| < 1;
+∞, otherwise.

(7)

The system feasibility region Ω is defined as the supporting
domain where there exist solutions and power constraint in
(5) is satisfied. The condition for (7) to have finite solu-
tions is a necessary condition for existence of feasible Ω and
convergence of the algorithm proposed later.
B. Noncooperative Game and Nash Equilibrium

Each user wants to minimize its transmitted power by
allocating its rate into the different sub-channels, regardless
other users in a distributed way. Define ri = [r1

i . . . rL
i ]T ,

the noncooperative game can be written as:

Game: arg min
ri∈Ω

ui =
L∑

l=1

P l
i , s.t.

L∑
l=1

rl
i = Ri, (8)

where ui is the utility function defined as the ith user’s
transmit power. If the interferences from others are fixed,
it is a water filling problem. Define

I l
i =

∑
k �=i P l

kGl
ki + N0

ci
3G

l
ii

, (9)

the solution is

P l
i = (µi − I l

i)
+ and rl

i = log2(1 +
P l

i

I l
i

) (10)

where y+ = max(y, 0). µi is solved by bisection search of

L∑
l=1

log2

(
1 +

(µi − I l
i)

+

I l
i

)
= Ri. (11)

However the interferences from other users do change.
Based on the game theory [8], the system will be balanced
in a Nash equilibrium defined as:

Definition 1: Define r−1
i = [r1 . . . ri−1ri+1 . . . rL]. Nash

Equilibrium Point ri is defined as:

ui(ri, r−1
i ) ≤ ui(r̃i, r−1

i ), ∀i, ∀r̃i ∈ Ω, r−1
i ∈ ΩL−1. (12)

i.e., given the other users’ rate allocation, no user can re-
duce its transmitted power alone by changing its rate allo-
cation to different sub-channels.

Globecom 2004 3743 0-7803-8794-5/04/$20.00 © 2004 IEEE
IEEE Communications Society



0 1 2 3 4 5 6
0

1

2

3

4

5

6

user2’s α
2

overall system transmitted power

us
er

1’
s 

α 1

Nash Equilibrium/Optimal Point

Fig. 1. Two-user example: Unique Optimal NEP

C. Two-User Two-Sub-channel Analysis
In order to explain the Nash equilibrium and show the

idea of our noncooperative game approach, we analyze a
two-user two-sub-channel case in this subsection. Suppose
the ith user puts αi proportion of its rate Ri to the first sub-
channel. The second sub-channel has the rate of (1−αi)Ri.
Obviously 0 ≤ αi ≤ 1. Let P j

i (αi) denote the transmission
power of the ith user on the jth sub-channel, which is a
function of αi,∀i. For simplicity, we write P j

i (αi) as P j
i .

The Lagrangian function of the optimal allocation problem
can be represented as

J(α1, α2) = P 1
1 + P 2

1 + P 1
2 + P 2

2 +
2∑

i=1

µiαi +
2∑

i=1

λi(1−αi)

(13)
where µi and λi are the Lagrange multipliers. By taking
derivatives of α1 and α2,

∂J(α1)
∂α1

= 0; ∂J(α2)
∂α2

= 0, we can
obtain the global optimal solution. However, global chan-
nel information such as Gki, k �= i is necessary to solve
(13), which causes great implementation difficulty in mul-
ticell OFDM networks.

On the other hand, for Nash equilibriums, the users per-
form the water-filling algorithms in a distributed way by
using local information only. The Lagrangian functions of
optimization problems are illustrated as

J1 = P 1
1 + P 2

1 + µ′
1α1 + λ′

1(1 − α1), (14)
J2 = P 1

2 + P 2
2 + µ′

2α2 + λ′
2(1 − α2), (15)

where µ′
i and λ′

i are the Lagrange multipliers. The Nash
equilibriums of the above channel allocation problem can
be obtained by solving ∂J1(α1)

∂α1
= 0; ∂J2(α2)

∂α2
= 0. Obvi-

ously, the solutions of global optimum and Nash equilib-
rium are different. However from the observation, the two
solutions are close when the minimal rates are low.

In order to compare the Nash equilibriums and the
optimal solution, a simple two-user two-sub-channel ex-
ample is illustrated as follows. The simulation setup is:
BER = 10−3, N0 = 10−3, Pmax = 104, and

G1 =
[

0.0631 0.0100
0.0026 0.2120

]
, G2 =

[
0.4984 0.0067
0.0029 0.9580

]
.

Fig. 2. Two-user example: Multiple Local Optima

Fig. 1 shows the overall power contour as a function
of two users’ rate allocations, where R1 = R2 = 6. The
axes are α1 and α2, respectively. The two curves show
the minimal locations for the two users’ own powers when
the interference from the other user is fixed, respectively.
Each user tries to minimize its power by adjusting its rate
allocation so that the operating point is more close to the
curve. Consequently, the cross is a Nash equilibrium, where
no user can reduce its power alone. We can see that the
Nash equilibrium under this setup is unique and optimal
for the overall power. (It is worthy to mention that the
feasible domain is not convex at all.) Fig. 2 shows the
situation when R1 = R2 = 8. Because the rate is increased,
the co-channel interferences are increased and the NEP is
no longer the optimum. There exists more than one local
optima and the global optimum occurs when user1 doesn’t
occupy the sub-channel 1. Fig. 3 shows the situation when
R1 = R2 = 8.5. The contour graph is not connected. There
are two NEPs and two local optima. Under the above two
conditions, we need to remove users from using the sub-
channels. If we further increase R1 = R2 = 10, there exists
no feasible area, i.e., both users cannot have a resource
allocation that satisfies both power and rate constraints. In
this case, the minimal rate requirement should be reduced.

From the above observations, we can see that the be-
haviors of the optimal solution and NEP depend on how
severe interferences are. In order to let NEP converge to
the desired solution, we need to find a criterion as the game
rule to decide whether the users can make a good use of
the sub-channels like the situation in Fig. 1. If not, we
should decide which user should be kicked out from using
the sub-channels. The following two theorems are proved
for the properties of NEP.
D. Properties of Nash Equilibrium

Theorem 1: There exists NEP in the proposed game de-
fined in (8), if Ω is not empty.

Proof: In [8], it has been shown a NEP exists, if ∀ i

1. Ω, the support domain of ui(ri), is a nonempty, con-
vex, and compact subset of some Euclidean space 	L.

2. ui(ri) is continuous in ri and quasiconvex in rl
i.
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Fig. 3. Two-user example: Multiple NEPs

We consider that each user allocates its transmitted
power to different subchannnels first. Since each sub-
channel can be allocated by Pmax and overall transmitted
power for all sub-channels is linearly constraint by Pmax,
the supporting domain for power allocation is compact and
convex. Because rate is a linear function of transmitted
power if the interferences are fixed, the supporting domain
Ω for rl

i, ∀l is a convex and compact subset of some Eu-
clidean space (	+)L. It is worthy mentioning that ΩK is
not convex and one example is shown in Fig. 1. But our
proof only needs that Ω is convex and nonempty.

From (2) and (4), when the watterfilling is done for (8),

ui =
L∑

l=1

(
(2rl

i − 1)(
∑

k �=i P l
kGl

ki + N0)

ci
3G

l
ii

− µir
l
i

)
. (16)

Obviously, it is continuous and convex for ri. QED
Theorem 2: If the global minimum of (5) occurs when

rl
i > 0,∀Ail �= 0 and

∑L
l=1 P l

i < Pmax and
∑L

l=1 rl
i =

Ri, ∀i, the NEP satisfies the necessary Karush-Kuhn-
Tucker (KKT) condition [9].

Proof: First, if
∑L

l=1 P l
i < Pmax and

∑L
l=1 rl

i =
Ri, ∀i at NEP, the iterative water-filling converges. For
each user, the resource allocation is optimal if the inter-
ferences are considered as noises. By Lagrangian method,
define ∇ = ∂

∂ri
, the following equation hold at the NEP

when power is less than Pmax.

∇(
L∑

l=1

P l
i ) − µi∇(

L∑
l=1

rl
i − Ri) = 0. (17)

For the problem in (5), if rl
i > 0,∀Ail �= 0 and

∑L
l=1 P l

i <
Pmax, ∀i, the global optima will satisfy the KKT condition
without considering the inequality constraints:

K∑
i=1

∇(
L∑

l=1

P l
i ) −

K∑
i=1

µi∇(
L∑

l=1

rl
i − Ri) = 0. (18)

Obviously, when the iterative water-filling converges,
(18) will be satisfied from (17). So the KKT necessary
condition is satisfied for NEP.

Iterative WaterfillingNon-cooperative
Game in S 1

Non-cooperative
Game in S K

R1, S1 RK, SK

Desired NEP
Y

Reduce
S 1

     N

Desired NEP
Y

     N

Game
Mediator

K User

Candidate?

Reduce
R 1

Y
Candidate?

Reduce
S K

Y

Reduce
R K

     N      N

Fig. 4. Multiuser Noncooperative Game

E. Distributed Power Minimization Algorithm

Before developing the proposed algorithm, we analyze
two extreme cases. In the first case, the groups of sub-
channels are assigned to different cells without overlapping
such that there are no co-channel interferences among cells.
We call it the fixed channel assignment scheme. However,
this extreme method has the disadvantages of low spectrum
efficiency because of the low frequency re-usage. In the sec-
ond extreme case, all the users share all the sub-channels.
We call it pure water-filling scheme. From Fig. 2 and Fig.
3, we can see that the system can be balanced at the un-
desired point, because of the severe inter-cell co-channel
interferences. So the facts motive us to believe that the
optimal resource allocation is between these two extreme
cases, i.e., each sub-channel can be shared by only a group
of selected users for transmission.

The block diagram of the proposed algorithm is shown
in Fig. 4. We define the sub-channel set that the ith user
can allocate their rates as transmission group Si. Each
user plays the noncooperative game to minimize its power.
If the game cannot converge to a good solution, a medi-
ator is introduced to kick out some users from using the
sub-channel. If no candidate can be removed, the required
rate has to be reduced. Here, we assume that base stations
can accurately measure the channel gains of their associ-
ated mobile users. Moreover, the feedback channel exists
from the base station to the mobile user. The proposed dis-
tributed algorithm is shown in Table I. First, we initialize
the channel and power allocation so that the constraints are
satisfied, which ensure the initial point located in the feasi-
ble set. This can be obtained by applying any heuristics or
greedy approaches. Then, each user minimizes its own util-
ity function, i.e. transmitted power, in a distributed game
by applying water-filling. The system will be balanced at
some NEP.

If the co-channel interferences are not large, the NEP
should be the desired solution. Three criteria are used in
the proposed algorithm to judge if the NEP is desired: 1) If
the constraints of minimal rate and maximal transmitted
power are satisfied; 2) If the NEP is not a local optimum; 3)
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Table I: Distributed Power Minimization Algorithm
1. Initialization:

The sub-channels are assigned to the users
while satisfying the power and rate constraints.

2. Water Filling:
each user have noncooperative game in (8).

3. Desired NEP:
if
∑L

l=1 P l
i < Pmax and

∑L
l=1 rl

i = Ri and
if not local minimum on boundary and
if each user’s power is non-increasing, go to Step 2;

4. Sub-channel Removal/Rate Reduction:
remove sub-channel from transmission group by (19)
go to Step 2. If no user can reduce his transmission
group, reduce Ri, go to Step 2.

If transmit power is decreasing during NEP convergence.
From Theorem 1, Theorem 2, and the previous observa-
tions, if any of these criteria are not satisfied, the system is
probably balanced at an undesired solution. So a game me-
diator needs to redefine the game by reducing the number
of users that share the sub-channels, i.e., changing Si.

The criterion to decide which user to be removed from
using which sub-channel is determined by the SINR level
within transmission groups as

(l, j) = arg min
l,j

P l
jG

l
jj∑

k �=j P l
kGl

kj + N0
. (19)

Because of the minimal rate requirement, the selected
user might not be able to be removed. Then the algorithm
tries to select the next candidate in (19). The criterion for
whether or not the user can be removed from the trans-
mission group is determined by three factors: 1) Each user
must has at least one sub-channel to transmit. 2) No sub-
channel is wasted, i.e., at least one user is assigned for each
sub-channel. 3) User cannot be kicked out from the sub-
channel, if the user cannot transmit his rate Ri using the
rest of sub-channels, even though he occupies them alone.
If no user can be removed from the transmission group,
the minimal rate Ri must be reduced. This situation hap-
pens when the system is very crowed and the co-channel
interference is large.

IV. Simulation Results

To show the improvements of the proposed algorithm,
we set up two simulations consisting of a two-cell case and
a seven-cell case. The base station is located at the center
of each cell and one co-channel mobile per cell is gener-
ated as a uniform distribution within the corresponding
cell for each simulation instance. The propagation model
takes into consideration of path loss and shadowing. The
received signal (in dB) at distance d from the base station
is L(d) = L(d0) + 10α log10

d
d0

, where d0 = 10m is used as
a reference point in measurements (L(d0) = 0dB) and α is
set to 3.5. Shadow fading for each user is modelled as an
independent log-normal random variable with standard de-
viation σ = 10dB. The four-path Rayleigh model is taken
into consideration to simulate the frequency selective fad-
ing channels, which has an exponential power profile with
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100ns root-mean-square (RMS) delay spread. We consider
a multi-cell OFDM system with 32 sub-channels in total.
The overall bandwidth is 6.4MHz. The receiver thermal
noise is -70dBm. The required BER of the transmitted
symbols is 10−3 for every sub-channel and user, which cor-
responds to c3 = 0.2831. We define the reuse factor Ru as
the distance between two base stations D over the cell ra-
dius r which is set as 100m, which is one of the main factors
to affect the severeness of co-channel interference. To eval-
uate the performances, we simulate 103 sets of frequency
selective fading channels.

First, we show the simulation results for the two-cell case.
Let Ru = 2 and assume Ri = Rj ,∀i, j. In Fig. 5, we com-
pare the probability of convergence to the desired NEP of
the proposed algorithm with that of the pure water-filling
algorithm. It shows that the proposed approach achieves a
much higher convergence probability especially with high
rate constraint. The reason is because of the proposed user
removal mechanism, which ensures that each sub-channel
is well utilized. Note that if the convergence cannot be
achieved, we decrease the rate constraint till convergence.
If Fig. 6, the number of iteration rounds is plotted vs. the
rate constraint. We can see that the convergence speed is
fast for all rates in the range. More rounds are necessary
with larger interferences (higher rate constraint).

In Fig. 7, we show the total transmitted power as the
rate constraint Ri increases. Compared with the fixed as-
signment algorithm, the proposed algorithm reduces about
80% transmission power. This is because the fixed as-
signment algorithm wastes too many resources by letting
only one user occupy one sub-channel. Compared with
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the pure water-filling algorithm, the proposed algorithm
reduces about 25% transmission power. This is because
pure water-filling algorithm makes some sub-channels over-
crowed.

In Fig. 8, we show the number of users occupying each
sub-channel when increasing the rate constraint. The fixed
channel assignment algorithm always has only one user per
channel (UPC). The proposed algorithm has lower UPC
compared with the pure water-filling algorithm. For pure
water-filling algorithm, some sub-channels may not be allo-
cated any power when the rate constraint is small, because
of the low water-filling level. For the proposed algorithm,
more users are kicked out from using certain sub-channels
when the rate constraint becomes large.

The simulation results for 7-cell networks are shown as
follows. The rate constraint is set as 10Mbits for each user.
In Fig. 9 and Fig. 10, the total transmission power and
UPC are compared between the proposed scheme and the
pure water-filling algorithm as the reuse factor increases,
respectively. We can see that the proposed algorithm can
reduce the overall power about 90% when the co-channel
interferences are severe (Ru = 2), which will greatly im-
prove the system performance. Also, the proposed scheme
kicks more users out and reduces the number of users per
sub-channel for smaller reuse factor. When Ru increases,
the co-channel interferences reduce. Consequently, two
schemes shows similar performances.

V. Conclusions
In this paper, the goal is power minimization under

the constraints of minimal rate and maximal transmitted
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Fig. 9. Overall Power vs. Ru for Multicell Case
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Fig. 10. User per sub-channel vs. Ru for Multicell Case

power in multi-cell OFDM systems. We develop a dis-
tributed game theory approach to adaptively assign the
sub-channels, rate, and powers. From the simulation re-
sults, the proposed distributed algorithm reduces the over-
all transmitted power up to 80% compared with the fixed
assignment scheme for two-cell case, and up to 90% com-
pared with the pure water-filling scheme for seven-cell case
when the co-channel interferences are severe. As a result,
the system performances can be greatly improved.
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