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Abstract

Graphics Processing Units (GPUs) have evolved from fixed function graphics processors
to programmable general-purpose compute accelerators in a short time. The high theo-
retical performance and energy efficiency of GPUs compared to CPUs have made them
indispensable for mainstream computing. However, their high power consumption and
limited energy efficiency under low utilization is a challenge that still needs to be tackled.

This thesis investigates bottlenecks that cause low performance and low energy ef-
ficiency in GPUs and proposes architectural techniques to address them. To conduct
energy efficiency research for GPUs, we first develop a flexible and accurate power simu-
lator called GPUSimPow. We use a hybrid approach for power modeling that improves
flexibility and accuracy compared to previous approaches. Our evaluation shows an av-
erage relative error of 11.7% and 10.8% between simulated and measured power for the
NVIDIA GT240 and GTX580, respectively. We then use GPUSimPow to study the energy
efficiency of a wide range of kernels and categorize them into high performance and low
performance. We further investigate the bottlenecks of low-performance kernels by ana-
lyzing their occupancy. We quantify the gain in performance and energy efficiency when
occupancy is increased. For instance, the average increase in instructions per cycle, the
average reduction in energy consumption and energy-delay-product is 11%, 9%, and 23%,
respectively, when occupancy is increased for a sub-category of low occupancy kernels.
The full occupancy kernels have low performance despite having the maximum number
of threads. Further investigation shows that several of these kernels are memory-bound
and can gain significantly from an increase in memory bandwidth.

The traditional ways of increasing memory bandwidth by widening interfaces and in-
creasing frequency have issues such as high power consumption, large form factor, and
difficulty in the scaling of pin count. Memory compression is a promising alternative to
increase the effective memory bandwidth of GPUs, however, we find that the existing
memory compression techniques for GPUs exploit simple patterns for compression and
trade low compression ratios for low decompression latency. Based on the evidence that
GPUs are less sensitive to latency than CPUs, we propose the more complex Entropy
Encoding Based Memory Compression (E2MC) technique for GPUs. On average, E2MC
delivers 53% higher compression ratio and 8% higher speedup than the state of the art.
E2MC reduces energy consumption and energy-delay-product by 13% and 27%, respec-
tively. While designing E2MC, we observe that lossless memory compression techniques
including E2MC often have a low effective compression ratio due to the large memory
access granularity (MAG) exhibited by GPUs. Our study of the distribution of com-
pressed blocks reveals that a significant percentage of compressed blocks have only a few
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bytes above a multiple of MAG but a whole burst is fetched from memory. With the
goal of reducing the compressed size by these extra bytes, we propose the novel MAG
Aware Selective Lossy Compression (SLC) technique for GPUs which increases the effec-
tive compression ratio and drives the performance and energy efficiency further. For a
lossy threshold of 16B and 32B MAG, SLC provides a speedup of up to 17% on top of
E2MC with a maximum error of 0.64%. SLC reduces energy consumption and energy-
delay-product by 8.4% and 18.2%, respectively.
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Zusammenfassung

Grafikprozessoren (graphics processing units, GPUs) haben sich innerhalb relativ kurzer
Zeit von auf Ausgabe spezialisierten Einheiten zu programmierbaren Universalbeschleuni-
gern entwickelt. Durch die hohe theoretische Leistung und Energieeffizienz von GPUs im
Gegensatz zu CPUs wurden GPUs unverzichtbar für heutige Rechenzentren. Allerdings
ist die hohe Leistungsaufnahme und schlechte Energieeffizienz unter geringer Auslastung
eine Herausforderung, die es noch zu meistern gilt.

Diese Arbeit untersucht die Engpässe, die für eine geringe Leistung und für die geringe
Energieeffizienz verantwortlich sind und schlägt Lösungen vor, die auf einer verbesser-
ten Hardwarearchitektur basieren. Um die Energieeffizienz von GPUs zu untersuchen,
entwickeln wir zuerst einen flexiblen und genauen elektrischen Leistungssimulator GPU-
SimPow. Wir verwenden einen hybriden Ansatz für die Modellierung der Leistung, der
die Flexibilität und Genauigkeit im Vergleich zu bisherigen Ansätzen verbessert. Unsere
Untersuchung zeigt einen durchschnittlichen relativen Fehler zwischen 11,7 % und 10,8 %
zwischen der simulierten und der gemessenen Leistungsaufnahme einer NVIDIA GT240
und einer GTX580. Wir benutzen den Simulator um die Energieeffizienz einer Vielzahl
von Kerneln zu untersuchen. Dabei kategorisieren wir die Kernel in hoch-performante
Kernel und Kernel mit geringer Leistung. Außerdem untersuchen wir die Engpässe der
Kernel mit geringer Leistung und teilen sie in die Gruppen geringe Auslastung und volle
Auslastung. Wir quantifizieren den Zugewinn an Rechenleistung und Energieeffizienz bei
einer Erhöhung der Auslastung. Beispielsweise ist die durchschnittliche Erhöhung der Zy-
klen pro Instruktion, die durchschnittliche Verringerung der Leistungsaufnahme und das
Energy-delay-product bei voller Auslastung jeweils 11 %, 9 % und 23 %, wenn die Auslas-
tung für die Gruppe der Kernel mit geringer Auslastung erhöht wird. Die Kernel mit hoher
Auslastung haben eine geringe Leistung, obwohl sie die maximale Anzahl von Threads
ausführen. Weitere Untersuchen zeigen, dass einige dieser Kernel durch die Speicherband-
breite begrenzt werden (memory-bound) und durch eine Erhöhung der Speicherbandbreite
signifikant beschleunigt werden können.

Traditionelle Techniken zur Vergrößerung der Speicherbandbreite etwa durch breitere
Schnittstellen und höhere Taktraten haben Nachteile wie zum Beispiel hohe Leistungs-
aufnahme, große Bauweise und Probleme bei der Erhöhung der Anzahl der elektrischen
Kontakte. Speicherkompression ist ein vielversprechender Ansatz die effektive Speicher-
bandbreite zu erhöhen. Allerdings stellen wir fest, dass bestehende Speicherkompressi-
onstechniken für GPUs einfache Muster zur Kompression ausnutzen und bei der Dekom-
pression niedrigere Kompressionsraten zum Erreichen geringer Verzögerungen in Kauf
nehmen. Basierend auf der Tatsache, dass GPUs weniger als CPUs von einer höheren La-
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tenz beeinflusst werden, schlagen wir das verbesserte Verfahren Entropy Encoding Based
Memory Compression (E2MC) für GPUs vor. Dieses Verfahren erreicht durchschnittlich
eine 53 % höhere Kompressionsrate und 8 % höhere Leistung als die modernsten Techni-
ken. E2MC reduziert die Energieaufnahme um 13 % und das Energy-delay-product um
27 %. Allerdings zeigt sich, dass die verlustfreie Kompression in vielen Fällen zu einer
geringen effektiven Kompressionsrate führt, da die Granularität der Speicherzugriffe (Me-
mory Access Granularity, MAG) auf GPUs groß ist. Unsere Untersuchung der Verteilung
der komprimierten Blöcke zeigt, dass ein signifikanter Anteil der komprimierten Blöcke
eine Größe haben, sodass ein paar Bytes mehr als die MAG geladen werden müssen und
dadurch trotzdem eine Speichertransaktion ausgeführt wird. Mit dem Ziel die Größe der
komprimierten Blocks um diese extra Bytes zu reduzieren, schlagen wir unseren neuar-
tigen Ansatz MAG Aware Selective Lossy Compression (SLC) vor. Damit erhöhen wir
die effektive Kompressionsrate und verbessern damit die Leistung und Energieeffizienz
weiter. Für eine Schwelle von 16 B und 32 B MAG kann mit SLC eine Beschleunigung
von 17 % im Vergleich zu modernsten verlustfreien Ansätzen erreicht werden, während
der Fehler nur 0,64 % beträgt. SLC reduziert die Energieaufnahme um 8,4 % und das
Energy-delay-product um 18,2 %.
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1 Introduction

Since the release of the first microprocessor by Intel in 1971 until early 2000, performance
has been the main metric that has driven microprocessors design [19, 117]. However, since
early 2000, energy efficiency has gained significance as the main metric for microprocessors
design [48, 117]. The change of focus from performance to energy efficiency is related to
Moore’s law [111] and the end of Dennard Scaling [43, 117]. Dennard [39] observed that
as transistor size reduces with the reduction in process node, the power density of a chip
remains constant because both voltage and current scale downwards with transistor size.
In other words, the power usage of a chip stays in proportion to the chip area. During the
first 30 years of microprocessors design, total chip power has stayed constant for a given
area, and at the same time, the number of transistors doubled and frequency increased
by 40% almost every two years. However, with process nodes below 65 nm, these rules
are no longer applicable due to exponential growth in leakage current, and it is commonly
recognized that Dennard Scaling broke between 2005-2007 [114, 18]. With the end of
Dennard Scaling, it is no longer possible to increase the performance of a chip by simply
increasing the frequency and simultaneously keep the power envelope constant [114].

To continue the gain of performance improvement, microprocessors design has shifted
from single core to homogeneous multi-core and of late even from homogeneous to hetero-
geneous. In recent years, heterogeneous computing has been adopted as a way to achieve
higher absolute performance and better performance per watt [109, 28]. This is achieved
by mapping different parts of an application to the best-suited accelerator for the task.
Hardware accelerators such as Graphics Processing Units (GPUs), Field-programmable
Gate Arrays (FPGAs), many-core CPUs such as Xeon Phi are used as co-processors
resulting in heterogeneous architectures. These accelerators have specialized processing
capabilities to handle various processing tasks.

Among these hardware accelerators, GPUs have become an indispensable component
of mainstream computing. GPUs are being used in almost all forms of computing from
mobile phones to supercomputers, thanks to their tremendous computing power which is
increasing with every generation. GPUs are massively multithreaded processors, designed
for high throughput computing. They have a large number of cores, capable of performing
a large number of floating point operations per second. However, a GPU core is much
simpler than a modern superscalar CPU core which has complex logic to support branch
prediction, out-of-order and speculative execution [80]. GPUs use a single instruction
multiple thread (SIMT) execution model to execute a group of threads concurrently. Each
thread executes the same instruction but operates on different data. Therefore, SIMT
execution model simplifies the front-end of a GPU by sharing the instruction fetch, decode
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1 Introduction

and issue logic among several cores. As GPUs have simpler front-end and control logic, a
large portion of chip area is dedicated to many cores, enabling much higher throughput
than CPUs. Because of their massive computational power, GPUs are being harnessed to
accelerate compute-intensive applications from various domains such as scientific, social
media, and finance [98, 35, 149, 64, 60, 94, 164].

The high-performance demands have influenced the design of GPUs to be optimized
for higher performance per watt, even at the cost of relatively large power consumption.
Although GPUs have high theoretical performance per watt, not all applications can
utilize all available resources. We observe that due to various bottlenecks such as low
occupancy, high bandwidth requirements, branch divergence, memory divergence, the
achieved performance per watt is quite low (see Chapter 5). This thesis investigates key
performance bottlenecks that lead to low performance and low energy efficiency in GPUs
and proposes architectural techniques to address them.

This chapter is organized as follows. Section 1.1 elaborates the motivation for the thesis.
Section 1.2 lists the objectives of the thesis. Section 1.3 highlights the main contributions
of the thesis. Finally, Section 1.4 presents the organization of the thesis.

1.1 Motivation

Although GPUs were initially designed as accelerators for graphics applications, their
massive compute power and high bandwidth made them attractive for general-purpose
computing tasks such as scientific simulations. Scientific researchers were the first users
of the general-purpose computing on GPUs due to their limited programmability. The
high computational power of GPUs together with the recent explosion of data that need
to be processed by applications, led to rapid evolution of general-purpose computing on
GPUs, making them a key computing device in embedded systems, desktop computers,
supercomputers, data centers and of late in cloud-based systems. There are several GPU
vendors such as NVIDIA, AMD, Intel, and ARM. Among them, NVIDIA GPUs are most
popular with a market share of about 69.1% [112].

The first general-purpose capable NVIDIA GPU, GTX-8800, was released towards the
end of 2006 [122]. It has been only a decade, however, GPUs have already become an
indispensable part of the mainstream computing. Since the release of the first general-
purpose capable GPU, NVIDIA has released six main architectures: Tesla, Fermi, Ke-
pler, Maxwell, Pascal, and Volta with several architectural improvements from Tesla to
Volta [121, 119, 120]. We collect data from data sheets for different generations of NVIDIA
GPUs to study their performance scaling. Figure 1.1 shows the scaling of NVIDIA Desk-
top GPUs in terms of the number of CUDA cores, performance as giga floating point
operations per second (GFLOPS), and off-chip memory bandwidth as gigabytes per sec-
ond (GB/s) from Tesla to Volta architecture. The key observations from the figure are:

• The number of CUDA cores and performance in terms of GFLOPS scaled in ac-
cordance with Moore’s law, even better. The number of CUDA cores increased by
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Figure 1.1: Scaling of NVIDIA Desktop GPUs normalized to first CUDA capable GTX-
8800. The first number in the bracket shows architecture, while the second
number shows the fabrication process in nanometer (nm).

about 40× and GFLOPS increased by about 28× in the last decade.

• The performance has increased significantly from GTX-8800 (Tesla architecture)
which has 518 GFLOPS (109) to NVIDIA Titan V (Volta architecture) which has
14.9 TFLOPS (1012).

• Memory bandwidth continues to scale as well, however, with respect to performance
scaling, it is far lagging behind and thus, memory bandwidth scaling continues to
be a major challenge for increasing GPU performance further.

The performance scaling of GPUs needs to continue to meet their ever-increasing de-
mands, especially to attain exascale computing (1018) challenge which can be considered a
next big achievement in computer science. High bandwidth provided by GDDR (Graph-
ics Double Data Rate) memory has been a key enabler of the continuous bandwidth and
performance scaling of GPUs. Successive generations of GDDR (GDDR/2/3/5/5X/6)
memories have increased overall bandwidth primarily by using wider interfaces and in-
creasing frequency of off-chip signaling. However, the later generations of GDDR have
issues such as large form factor, difficulty in the scaling of pin count. Moreover, research
has shown that memory is a significant power consumer [90, 99, 84] and the traditional
ways of increasing memory bandwidth by increasing the number of memory channels
and/or frequency elevate the power consumption problem. Therefore, further scaling of
GDDR bandwidth is not possible without significantly adding to system energy [113, 1].
Clearly, alternative ways to tackle the memory bandwidth problem are required.
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To mitigate the issues of GDDR, recently, 3D stacked DRAM (Dynamic Random Ac-
cess Memory) technologies such as Hybrid Memory Cubes (HMC) and High Bandwidth
Memory (HBM, HBM2) have been introduced, offering much higher bandwidth and en-
ergy efficiency in a much small form factor compared to GDDR. However, future GPUs
will demand even higher (multiple TB/s) DRAM bandwidth requiring further improve-
ments in the bandwidth. Moreover, 3D stacked memories have their own problems such
as much higher cost, significantly different interfaces, leading to adoption only in the
high-end GPUs. For instance, HBM2 is about 4× more expensive compared to GDDR5
and it requires a different memory controller design. Therefore, the initial use of HBM is
only limited to high-end graphics cards in HPC (High Performance Computing) domain.

This thesis proposes memory compression as an alternative to increase memory band-
width. We note that existing memory compression techniques for GPUs exploit simple
patterns for compression and trade low compression ratios for low decompression la-
tency [6, 130, 26]. As GPUs are less sensitive to latency than CPUs, we explore the
feasibility of a relatively complex memory compression technique which offers high com-
pression ratio and performance gain. This thesis shows that more aggressive entropy
encoding based memory compression technique delivers higher compression ratio and per-
formance gain, provided its key challenges are addressed properly. Memory bandwidth
compression techniques proposed in this thesis are orthogonal to technological improve-
ments such as HBM, HMC and can be employed on top of them to meet the bandwidth
and energy efficiency requirements of future high-throughput accelerators.

While continuous performance scaling of GPUs is desired to meet exascale comput-
ing challenge, seamless user experience, their high power consumption issue needs to
be tackled as well. The high power consumption of GPUs has a significant impact on
their reliability, performance scaling, economic viability, and deployment in a wide range
of applications domains. A significant amount of work has been done by the research
community as well as by the industry, both from the software and hardware perspec-
tive, to increase the energy efficiency of GPUs while continuing its performance scal-
ing [69, 70, 89, 72, 53, 64]. We collect data from data sheets for different generations of
NVIDIA GPUs to study their power and energy efficiency scaling. Figure 1.2 shows the
power and energy efficiency scaling of NVIDIA Desktop GPUs in the last decade. The
figure shows the peak power in watts and energy efficiency as GFLOP/Joule. The key
observations are:

• The peak power of GPUs is in the range of 150-250 W and starting from GTX-780
(Kepler architecture), 250 W seems to be a norm for high-end desktop GPUs.

• While the initial focus of GPU design has been on performance, starting from the
Kepler architecture, GPU design has also focused on energy efficiency. As can
be seen from the figure, the energy efficiency of the Kepler architecture jumped
compared to the energy efficiency of its predecessors.

• The energy efficiency of GPUs improved significantly starting from Kepler due to
enhancements in the architecture such as simplified data-hazard detection in the
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Figure 1.2: Scaling of power and energy efficiency of NVIDIA Desktop GPUs. The left y-
axis shows peak power in watts, while the right y-axis shows energy efficiency
in GFLOP/J. The first number in the bracket shows architecture, while the
second number shows the fabrication process in nanometer (nm).

math pipeline, improved warp scheduler, primary clock for cores instead of 2× the
shader clock. These improvements allowed Kepler to replace several complex and
power-expensive hardware blocks with simpler blocks. Moreover, Kepler used 28
nm process node compared to 40 nm for Fermi.

• In general, recent generations of GPUs have better energy efficiency. For example,
GTX-Titan X (Pascal architecture) is 1.8× more energy efficient compared to GTX-
Titan X (Maxwell architecture). GDDR5X is supposed to be the main contributing
factor besides process scaling and architectural improvements. The latest release of
GTX-Titan X uses GDDR5X, which has 2× more memory bandwidth compared to
its predecessor (GDDR5) and significantly higher energy efficiency. NVIDIA Titan
V (Volta architecture) further improved the energy efficiency by 1.36× compared
to GTX-Titan X (Pascal architecture). HBM2 which has higher bandwidth and
energy efficiency compared to GDDR5X is one of the main contributing factors.

In addition to the theoretical energy efficiency shown in Figure 1.2, we conduct an
energy efficiency study of a large number of GPU kernels (see Chapter 5) and observe
a wide gap between the energy efficiency of the high performance and low performance
kernels. The average energy per instruction for the high performance and low performance
kernels is 0.27 nJ (10-9) and 2.01 nJ for NVIDIA GTX580, respectively. The later is 7.5×

less energy efficient compared to the former, a huge difference which is not favorable
for the future growth of high-performance computing and far away from the exascale
aim of 10 pJ (10-12) per instruction [36]. Moreover, with the benefits of process scaling
coming to an end, achieving higher energy efficiency is now even greater responsibility
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of the GPU architects and programmers. Inherently, GPUs are more energy-efficient
devices [64] compared to CPUs as they are optimized for throughput and performance
per watt. Indeed, theoretical performance per watt of GPUs is much higher than CPUs,
for example, NVIDIA’s GTX 690 has 18.7 GFLOPS/W while Intel’s Haswell i7 4770K has
5.3 GFLOPS/W. However, due to various performance bottlenecks which result in under-
utilization of GPU resources, the achieved performance per watt is often much lower than
the theoretical peak performance. There are several bottlenecks that contribute to low
performance and low energy efficiency such as low occupancy, high memory bandwidth
requirements, control flow divergence, and memory divergence [85, 84, 145, 135, 106, 50].

To enhance the energy efficiency of GPUs, we first need to discern their power consump-
tion at a fine-grained level, understand the bottlenecks which lead to low performance and
low energy efficiency [43, 72, 84] and then propose novel techniques to alleviate these bot-
tlenecks. Therefore, in this thesis, we study the power consumption of GPUs at the
component level, investigate the bottlenecks which cause low performance and energy
efficiency and then propose architectural techniques to enhance performance and energy
efficiency. To conduct architectural and energy efficiency research, cycle-accurate archi-
tectural and power simulators are a necessity as they help to evaluate alternative design
choices and make early high-level design decisions. However, at the start of the thesis,
there was no suitable GPU power simulator capable of conducting this research. Thus,
we first develop a flexible and accurate GPU power simulator, enabling the research con-
ducted in this thesis as well for the wider research community.

In essence, this thesis explores the following research questions:

• How can we develop a power simulator for GPUs that is both flexible as well as
accurate to conduct energy efficiency research?

• What are the bottlenecks that cause low performance and low energy efficiency in
GPUs? And what is the effect of eliminating bottlenecks on performance and energy
consumption?

• What architectural techniques can be employed to improve the performance and
energy efficiency of GPUs?

1.2 Objectives

We seek to tackle the problem of understanding bottlenecks which lead to low performance
and low energy efficiency in GPUs and then improve their performance and energy effi-
ciency. To enable energy efficiency research, we aim to develop a parameterizable power
simulator for GPUs which can accurately estimate the power consumption and empower
design space exploration and architectural research. Concretely, the objectives are:

Objective 1: To develop a flexible and accurate power simulator for GPUs, enabling esti-
mation of power consumption, analysis of energy efficiency, and evaluation of new/existing
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architectural techniques from the energy perspective.

Objective 2: To understand the bottlenecks causing low performance and low energy
efficiency in GPUs, despite having high theoretical peak performance and energy efficiency.

Objective 3: To design new architectural techniques to enhance the performance and
energy efficiency of GPUs.

1.3 Main Contributions

• The first contribution of the thesis is the modeling and estimation of GPU power
consumption by developing a power simulator for GPUs. The power model is based
on a combination of analytical and empirical approaches. The hybrid approach
for power modeling improved flexibility compared to previous approaches which
are mostly empirical and accuracy compared to pure analytical approaches. Our
evaluation on a set of well-known benchmarks shows an average relative error of
11.7% and 10.8% between simulated and measured power for GT240 and GTX580,
respectively. This contribution addresses the first objective of the thesis and results
are published in [99].

• The second contribution is the investigation of bottlenecks that result in low perfor-
mance and low energy efficiency in GPUs. We use the power simulator developed
as a part of the first objective to study the energy efficiency of a wide range of
kernels and show that 69% of the kernels have low performance and low energy ef-
ficiency. The average IPC of the low-performance category kernels is less than 25%
of the peak IPC and average energy per instruction is 7.5× less than the average
energy per instruction of the high-performance category kernels. To investigate the
bottlenecks that lead to low performance and low energy efficiency, we divide the
low-performance kernels into two categories: low occupancy and full occupancy. For
the low occupancy kernels, we find architectural resources that cause low occupancy
and study if increasing occupancy helps in increasing the performance. The results
show that most of the kernels with low occupancy gain in performance and energy
efficiency when occupancy is increased. For the kernels having full occupancy but
still performing low, we show that these kernels are either limited by memory band-
width, low coalescing efficiency or low SIMD utilization. This contribution addresses
the second objective of the thesis and results are published in [84, 88].

• In the third contribution, we use memory-bound benchmarks from bottlenecks in-
vestigation performed in the second contribution and improve their performance and
energy efficiency by increasing the effective off-chip memory bandwidth. We design
a lossless memory compression technique which increases memory bandwidth by
transferring data to/from the off-chip memory in a compressed form. We find that
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the existing memory compression techniques for GPUs exploit simple patterns for
compression and trade low compression ratios for low decompression latency. These
techniques originally targeted CPUs and hence, traded low compression ratios for
lower latency. Based on the evidence that GPUs are less sensitive to latency than
CPUs, we propose the more complex entropy encoding based memory compression
(E2MC) technique for GPUs. We show that entropy encoding based memory com-
pression is feasible for GPUs and delivers higher compression ratio and performance
gain than state-of-the-art compression techniques, provided the key challenges of
probability estimation, appropriate symbol length for encoding, and low decom-
pression latency are addressed properly. The average compression ratio of E2MC
is 53% higher than the state of the art. This translates into an average speedup
of 20% compared to no compression and 8% higher compared to the state of the
art. Energy consumption and energy-delay-product are reduced by 13% and 27%,
respectively. This contribution addresses the third objective of the thesis and results
are published in [85].

• In the previous contribution, we show that memory compression is a promising
approach for reducing memory bandwidth requirements and increasing performance
and energy efficiency, however, we also observe that lossless memory compression
techniques often result in a low effective compression ratio. We analyze reasons
for the low effective compression ratio of several state-of-the-art lossless memory
compression techniques and show the low effective compression ratio is caused by
the large memory access granularity (MAG) exhibited by GPUs. Our analysis of
the distribution of compressed blocks shows that a significant percentage of blocks
are compressed to a size that is only a few bytes above a multiple of MAG, but
due to the restrictions of MAG, a whole burst is fetched from memory. These few
extra bytes significantly reduce the compression ratio and the performance gain that
otherwise could result from a higher raw compression ratio. The fourth contribution
of the thesis is the novel MAG aware selective lossy compression (SLC) technique
for GPUs which increases the effective compression ratio and drives the performance
and energy efficiency further. This is the first study that highlights the importance
of MAG aware approximation. We propose two techniques to implement SLC and
compare their advantages and disadvantages. For a lossy threshold of 16B and 32
MAG, we show an average speedup of 10% normalized to a state-of-the-art lossless
compression technique with a maximum error of 0.64%. The energy consumption
and energy-delay-product are reduced by 8.4% and 18.2%, respectively. We conduct
sensitivity analysis to different MAGs and show an even higher significance of SLC at
a larger MAG. For 64B MAG, we achieve a speedup of up to 35% with a maximum
error of 1.8%. This contribution addresses the third objective of the thesis and
results are published in [87, 83, 86].

The author of the thesis, together with others, published the following papers during
the course of his dissertation:
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1. Sohan Lal, Jan Lucas, Ben Juurlink, “SLC: Memory Access Granularity Aware
Selective Lossy Compression for GPUs”, IEEE International Conference on Design

Automation, and Test in Europe (DATE), 2019, France.

2. Sohan Lal, Ben Juurlink, “A Case for Memory Access Granularity Aware Selective
Lossy Compression for GPUs”, ACM Student Research Competition Poster and

Extended Abstract at IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2018, Japan (Semifinalist).

3. Sohan Lal, Jan Lucas, Ben Juurlink, “SLC: Memory Access Granularity Aware
Lossy Compression for GPUs”, 14th International Summer School on Advanced
Computer Architecture and Compilation for High-Performance and Embedded Sys-

tems (ACACES), 2018, Italy.

4. Jan Lucas, Sohan Lal, Ben Juurlink, “Optimal DC/AC Data Bus Inversion Coding”,
International Conference on Design Automation, and Test in Europe (DATE),

2018, Germany.

5. Sohan Lal, Jan Lucas, Ben Juurlink, “E2MC: Entropy Encoding Based Memory
Compression for GPUs”, IEEE International Conference on Parallel and Distributed

Processing Symposium (IPDPS), 2017, USA.

6. Maurice Peemen, Runbin Shi, Sohan Lal, Ben Juurlink, Bart Mesman, and Henk
Corporaal, “The Neuro Vector Engine: Flexibility to Improve Convolutional Net
Efficiency for Wearable Vision”, International Conference on Design Automation,
and Test in Europe (DATE), 2016, Germany.

7. Sohan Lal, Jan Lucas, Michael Andersch, Mauricio Alvarez Mesa, Ahmed Elhossini,
and Ben Juurlink, “GPGPU Workload Characteristics and Performance Analysis”,
International Conference on Embedded Computer Systems: Architectures, Model-

ing, and Simulation (SAMOS), 2014, Greece.

8. Jan Lucas, Sohan Lal, Michael Andersch, Mauricio Alvarez Mesa, and Ben Juurlink,
“How a Single Chip Causes Massive Power Bills - GPUSimPow: A GPGPU Power
Simulator”, IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS), 2013, USA.

9. Sohan Lal, Jan Lucas, Mauricio Alvarez Mesa, Ahmed Elhossini, and Ben Juurlink,
“Exploring GPGPUs Workload Characteristics and Power Consumption”, 9th Inter-

national Summer School on Advanced Computer Architecture and Compilation for

High-Performance and Embedded Systems (ACACES), 2013, Italy.

10. Jan Lucas, Sohan Lal, Mauricio Alvarez Mesa, Ahmed Elhossini, and Ben Juurlink,
“DART: A GPU Architecture Exploiting Temporal SIMD for Divergent Workloads”,
9th International Summer School on Advanced Computer Architecture and Compi-

lation for High-Performance and Embedded Systems (ACACES), 2013, Italy.
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Table 1.1: Author’s contributions to published papers.

Publication No. Contribution of the author of this thesis

1 Analyzed reasons for the low effective compression ratio of several
state-of-the-art lossless memory compression techniques, quantita-
tively studied the distribution of the compressed blocks and designed
a novel memory access granularity aware selective lossy compression
technique and estimated its area and power overhead.

2 Showed that low effective compression ratio exists in several state-of-
the-art memory compression techniques and made a case for memory
access granularity aware selective lossy compression.

3 Analyzed raw and effective compression ratios of several state-of-the-
art memory compression techniques, showed that they suffer due to
the large memory access granularity and discussed the possibility of
a memory access granularity aware lossy compression.

4 Synthesized hardware implementations of different data bus inver-
sion (DBI) schemes and analyzed their area and power trade-offs.

5 Developed an entropy encoding based memory compression tech-
nique for GPUs, addressed its key challenges and estimated area
and power overhead.

6 Optimized face detection and speed sign detection algorithms for
easy auto-vectorization on ARM processors, simulated optimized
algorithms using GEM5 and McPAT simulators to estimate perfor-
mance, area and power overhead. Analyzed and compared results
with proposed neuro vector engine.

7 Investigated bottlenecks causing low performance and low energy
efficiency in GPUs, analyzed the effect of bottlenecks elimination and
studied correlation between GPU components power consumption
and workload metrics.

8 Developed power models for several GPU components such as shared
memory, off-chip memory, Special Function Units (SFU), caches,
and modified gpgpu-sim to generate activity factors for various com-
ponents.

9 Studied GPU power consumption at components level and investi-
gated their correlation with workload metrics.

10 Investigated alternative memory coalescing possibilities for the
DART architecture compared to a regular GPU architecture.

The publication numbered 8 is a collaborative work between Jan Lucas, the author
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of the thesis, Michael Andersch, Mauricio Alvarez Mesa, and Ben Juurlink. The work
done by Jan Lucas, Michael Andersch, Mauricio Alvarez Mesa, and Ben Juurlink is also
included in the thesis with their permission to provide a full overview and evaluation of the
power simulator. The effort of the author of the thesis in the above-mentioned publications
including the collaborative work is summarized in Table 1.1. The publications numbered
4, 6, and 10 are not referred in the thesis. The complete list of publications is also included
in Chapter 9.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 surveys the related work and highlights
the advances made over the state of the art. Chapter 3 reviews GPU architecture and
provides an overview of data compression in general and memory compression techniques
used as baselines in the thesis in particular. Chapter 4 presents a power simulator for
GPUs. Chapter 5 uses the power simulator to analyze GPU performance bottlenecks.
Chapter 6 proposes an entropy encoding based memory compression technique to reduce
memory bandwidth requirements. Chapter 7 proposes a memory access granularity aware
approximation technique to address the issue of low effective compression ratio. Finally,
Chapter 8 summarizes the key contributions, draw conclusions and suggest future work.
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2 Related Work

In this chapter, we review the work related to this thesis. The related work is divided into
four main categories aligning with the four main contributions of the thesis which also
determines the organization of this chapter. First, Section 2.1 covers the work related to
GPU power modeling and estimation which ranges from pure empirical, pure analytical
to hybrid modeling where empirical and analytical approaches are combined. Second,
the work related to GPU performance bottlenecks and components power consumption is
analyzed in Section 2.2. Third, Section 2.3 surveys the work related to lossless memory
compression techniques for GPUs, highlighting the opportunities and challenges for a
relatively complex memory compression technique. Fourth and last, we review the work
related to approximate computing techniques for GPUs in Section 2.4. Finally, we sum
up the advances made over the state of the art in Section 2.5 and summarize the chapter
in Section 2.6.

2.1 GPU Power Modeling and Estimation

We compare our power modeling work from the perspective of power modeling approach
and methodology employed for its validation. As briefly described above, GPU power
modeling approaches range from pure empirical, pure analytical to hybrid modeling which
combines the bests of both the approaches. The first approach in literature to model
power is the empirical approach which is entirely based on the measurement data obtained
from a particular device. There are several works which empirically model GPU power
consumption [61, 100, 166, 176]. Hong and Kim [61] propose an integrated performance
and power prediction model for a GPU architecture to predict the optimal number of
active processors for a given application. Unlike most previous empirical power models
which require measured execution time, hardware performance counters, their model uses
predicted execution time to estimate dynamic power events. The geometric mean of the
error between predicted and measured power is 2.5% for microbenchmarks and 9.2% for
GPU kernels. Ma et al. [100] present a statistical scheme for analyzing and modeling
the power consumption of GPUs. Based on the measured power consumption, runtime
workload signals such as the percentage of the time when a texture unit is busy, and
performance data, they build a statistical regression model which is capable of dynamically
estimating the power consumption of a GPU based on a subset of workload signals. The
geometric mean of the prediction error is 8.9%. Nagasaka et al. [115] also develop a
statistical power prediction model for GPUs by using performance counters and report
an average error of 4.7%. Wang and Chen [166] also develop a statistical power model for
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GPUs and show that the power consumption is directly proportional to the computational
intensity and the number of active SMs. The average relative error is less than 6%. A
similar work is done by Zhang et al. [176]. While the empirical power models deliver
higher accuracy for the architecture they are designed for, they lack the flexibility to
make accurate predictions for GPUs with different architectural parameters and designs.

The second approach to model power is the analytical approach which is generic and
parameterized. Wang [165] builds a high level, purely analytical power model for the
main functional units of GPUs by integrating gpgpu-sim [15], Wattch [20], and Orion [71].
However, the power model is highly coarse-grained without any details about how GPU-
specific components such as warp control unit, special functions units, coalescing unit
are modeled. Moreover, no discussion of power model validation is presented in the
paper. The power model is used to show that additional cores only decrease the energy
efficiency of GPUs when the gap between the shaders and memory speed increases and
the traditional dynamic voltage frequency scaling schemes could also be applied to GPUs.
While analytical approach generally shows strong correlation between different simulated
and hardware GPU architecture configurations, they typically cannot provide reasonable
absolute accuracy due to the lack of either industrial or measured data. Moreover, it is
not possible to design analytical models for irregular units such as functional units.

The third approach to model power consumption is the hybrid approach which combines
empirical and analytical approaches to deliver reasonably high accuracy and also offers
flexibility for wider applicability. Ramani et al. [133] use hybrid approach to model
GPU power consumption. The limitations of their work are similar to Wang [165]. The
paper lacks information on power models for GPU-specific components and there is no
discussion of the validation of power model and its accuracy. Moreover, they use an in-
house performance simulator. They use the power model to demonstrate the effectiveness
of the framework in exploring how encoding on long buses can save as much as 15-30%
power at medium to high activity levels. Another hybrid and well known power model is
McPAT [92], however, it is used to model CPU power consumption. While the general
design philosophy of McPAT and some structures can be reused for GPU power modeling,
a significant amount of work is needed to add GPU-specific components to it.

A common methodology used to validate power simulators is usually the usage of a
custom designed power measurement setup that can measure the actual power consumed
by the real hardware and then compare the measured power with the estimated power
reported by the power estimation tool. However, in terms of GPU power measurements,
many previous approaches have made strong assumptions about the hardware they mea-
sure, leading to inaccurate measurement methodologies. For example, Hong and Kim [61]
assume a GPU power can be calculated by measuring the power of the entire PC under
load and subtracting it from the power of the PC in idle state. This assumption is highly
naive since the power used by the remaining PC components is usually not constant and
the measurement results will include ATX power supply losses. Large bypass capacitors
inside the ATX power supply prevent the accurate measurement of power for kernels
which run fewer than 50 ms. Other papers [165, 167, 115, 100] use improved measure-

14



2.2 GPU Performance Bottlenecks and Analysis

Table 2.1: Key features of GPUSimPow compared to the state of the art.

Work
Hybrid

approach?
Modeled GPU-specific

components?
Power model

validated?
Measured

all sources?

[61, 100, 166, 176,
165, 167, 115]

✗ X X ✗

Ma et al. [100] ✗ X X X

G. Wang [165] ✗ ✗ ✗ ✗

PowerRed [133] X ✗ ✗ ✗

McPAT [92] X N/A X ✗

GPUWattch [90] X X X X

GPUSimPow [99] X X X X

ment methodologies, but still exhibit multiple weaknesses. To the best of our knowledge,
all these published methodologies either fail to measure all power sources, e.g. they do
not measure the power provided via the graphics card slot (PCI-E) [165, 167] but only
measure the power from the external source, measure only the current and assume con-
stant voltages [115], or use low sampling frequencies that prevent them from measuring
short-term power variations [100, 167].

We develop a GPU power simulator called GPUSimPow [99] by integrating an archi-
tectural simulator called gpgu-sim [15] and heavily modified CPU power simulator called
McPAT [92]. GPUSimPow is not only highly parameterizable but also provides an accu-
rate estimate of static and dynamic power. GPUSimPow has an average relative error of
11.7% and 10.8% between simulated and measured power for GT240 and GTX580, respec-
tively. Our GPU power simulator improves state of the art in several ways. First, we use
hybrid approach that is both architecturally flexible and reasonably accurate. Second,
we develop detailed power models for GPU-specific components. Third, we rigorously
validate our power model by using a custom power measurement setup. Our power mea-
surement setup measures power from all sources and uses high sampling frequency so that
even the short power events can be measured accurately. Table 2.1 lists the key features
of GPUSimPow compared to the state of the art. GPUSimPow and GPUWattch [90] have
the same key features. We published GPUSimPow [99] in April 2013. GPUWattch [90],
a very closely related GPU power simulator, was published in June 2013. A detailed
comparison of these simulators is presented in Section 4.4.3.

2.2 GPU Performance Bottlenecks and Analysis

The work related to GPU performance bottlenecks and analysis is divided into two cat-
egories. First, we review the work done for estimating the power consumption of GPUs
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at components level and their correlation with workload metrics. Second, we survey the
work related to analysis of GPU performance bottlenecks.

There are previous works which estimate GPU power consumption, but they estimate
power consumption at a very coarse-grained level. For example, Ma et al. [100] and
Zhang et al. [176] use statistical analysis to develop a power model for GPUs and report
power consumption of the entire GPU. Gebhart et al. [53] use a high level power model
to estimate the total core power. According to their work, cores consume up to 70% of
total power, but this is not enough to optimize the power consumption as we need to
understand the power consumption at much fine-grained level. Wang [165] reports power
consumption for some components, however, his power model lacks GPU-specific compo-
nents. Moreover, the power model is not validated against measured power. Thus, the
accuracy of the reported results is unknown. Abe et al. [4] also raise the issue of high
power consumption by GPUs and need for energy-efficient GPUs. They provide power
and performance analysis of GPU-accelerated system and show system energy can be
reduced by 28% at performance decrease of within 1% by controlling the voltage and fre-
quency levels of GPUs. In contrast to this, we study GPU power consumption at detailed
component level by using GPUSimPow [99]. The in-depth exploration of GPU power
consumption is enabled by the recent release of GPU power simulators (GPUSimPow [99]
and GPUWattch [90]) which use hierarchical approach to have detailed power models for
GPU components.

Using metrics to understand workload characteristics is well known [73, 25, 57, 22].
Goswami et al. [57] propose a set of microarchitecture agnostic workload metrics to char-
acterize them. They provide workload categorization based on workload subspaces such
as branch and memory divergence. Burtscher et al. [22] study the performance of ir-
regular programs on GPUs. They define two metrics for irregularity called control-flow
irregularity and memory-access irregularity and use these metrics to study how irregular
kernels differ from regular kernels. Che et al. [25] characterize GPU workloads in terms
of architectural, parallelization, and synchronization characteristics. Like Che et al. [25],
Kerr et al. [73] also use several metrics to characterize GPU workloads, however, former
run benchmarks on real hardware while later develop an emulator for NVIDIA parallel
thread execution virtual machine (PTX). All of the above mentioned works use metrics to
study workload characteristics, but none of them study the correlation between workload
metrics and components power. We compute the correlation between workload metrics
and components power to understand the power characteristics of various workloads. In
addition to this, we also quantify the change in components power consumption with the
change in workload characteristics.

Some researchers have used micro-benchmarks to understand the performance as well
as power characteristics of GPUs [176, 105]. Zhang et al. [176] design a set of micro-
benchmarks to study the power consumption of different functional units of a GPU.
Based on those results, they derive instructive principles that can guide the design of
power-efficient high performance computing systems. Mei and Chu [105] study the char-
acteristics of the memory hierarchy using micro-benchmarks. Specifically, they investigate
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Table 2.2: Key features of our approach and state of the art to study GPU components
power consumption, identify performance bottlenecks and performance predic-
tion after bottlenecks elimination.

Components power and
correlation with metrics

GPU performance bottlenecks

Work
Component

level?
Correlation

with metrics?
Identified

bottlenecks?

Performance
simulator for
identification?

Performance
simulator for
prediction?

Energy
analysis?

[100, 176,
4]

✗ ✗ N/A N/A N/A N/A

Blem et
al. [17]

N/A N/A X X ✗ ✗

Our [84] X X X X X X

the structures of GPU cache systems, such as the data cache, the texture cache and the
translation look-aside buffer (TLB) and also investigate the throughput and access latency
of GPU global and shared memory.

Blem et al. [17] characterize a set of benchmarks to find performance bottlenecks and
then predict the performance improvements after mitigating those bottlenecks. We also
investigate performance bottlenecks that cause low performance, but there are key dif-
ferences both in the methodology and performance metrics. First, we use a performance
simulator not only for bottlenecks identification but also for performance prediction. Blem
et al. [17] use analytical model to predict performance, which according to their work has
error in the range -70% to 2×, which is very high and a limitation of their work. Second,
we also analyze low performance workloads from the energy efficiency perspective and pro-
vide the energy reduction when a bottleneck is eliminated. Third, they do not consider
the case that low occupancy can lead to low performance. We show that a large number
of kernels have low occupancy and how increasing the occupancy helps in increasing the
performance and energy efficiency. Table 2.2 summarizes the key features of our approach
and state of the art to study GPU components power consumption, identify performance
bottlenecks and quantify the effect of bottlenecks elimination on performance.

There are some GPU performance analysis studies that are conducted after our work [84].
We summarize the most important ones related to this thesis. Qiumin et al. [171] study
the performance and utilization statistics of the core components of GPUs for graph pro-
cessing applications. They show that graph applications tend to execute kernel and data
transfer more frequently than non-graph applications and suggest several approaches to
optimize GPU hardware for enhancing the performance of graph applications. Madougou
and Nieuwpoort [101] propose a tool for bottlenecks analysis and performance predic-
tion for GPU-accelerated applications. Based on random forest modeling and hardware
performance counters, the proposed tool is used to quickly and accurately evaluate ap-
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plication performance on GPU-based systems for different problem characteristics and
different hardware generations. However, as the tool is based on a statistical approach,
the applicability of the tool is restricted to applications where enough training data is
available. Recently, deep learning models such as convolutional neural networks (CNNs)
have achieved great success in a number of applications such as image classification, speech
recognition and natural language understanding, primarily due to significant increase in
the computational capability of hardware devices. The computational complexity of train-
ing CNNs on large data sets has led to several open-source parallel implementations on
GPUs. Li et al. [93] compare these implementations over a wide range of parameter
configurations, investigate potential performance bottlenecks and point out a number of
opportunities for further optimization. Kim et al. [76] analyze GPU performance charac-
teristics for five popular deep learning frameworks: Caffe, CNTK, TensorFlow, Theano,
and Torch in the perspective of a representative CNN model, AlexNet. They suggest cri-
teria to choose convolution algorithms, study scaling of deep neural networks (DNNs) in
a multi-GPU context and show speedup of up to 2× by just tuning the options provided
by the frameworks.

2.3 Lossless Memory Compression for GPUs

There is a significant amount of prior work for memory compression. Memory compres-
sion has been used to increase cache capacity, reduce memory bandwidth requirement
with/without increasing effective memory capacity. We first review memory compression
work for GPUs and then report more work done for CPUs. Finally, we review the use of
compression for reducing error checking and correcting (ECC) overhead.

GPUs employ compression for color and texture data. ARM Frame Buffer Compression
(AFBC) is a lossless image compression technique and is available on Mali GPUs [11].
AFBC is claimed to reduce the required memory bandwidth by up to 50% for graphics
workloads. AMD and NVIDIA use lossless Delta Color Compression to store image data
as delta from the previous pixel and save bandwidth [68]. Above mentioned techniques
are only applicable for image data and not for general purpose data and to the best of
our knowledge, the micro-architectural details of these techniques are also proprietary.

Recent research has shown that compression can be used for general purpose work-
loads [146, 89, 6, 160, 77]. Sathish et al. [146] use Cache-Packer (C-Pack) [26], a dictio-
nary based compression technique to compress data transferred through memory I/O links
and show performance gain for memory-bound applications. However, they do not report
compression ratios and their primary focus is to show that compression can be applied to
GPUs and not how much can be compressed. Lee et al. [89] use Base-Delta-Immediate
(BDI) compression [130] to compress data in the register file. They observe that the com-
putations that depend on the thread-indices operate on register data that exhibit strong
value similarity and there is a small arithmetic difference between two consecutive thread
registers. Compression of registers enables power saving due to activation of fewer regis-
ters banks. Vijaykumar et al. [160] use underutilized resources to create assist warps that
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can be used to accelerate the work of regular warps. These assist warps are scheduled
and executed in hardware. They use assist warps to compress cache block before writing
to memory and decompress it before placing to cache. In contrast to this, our compres-
sion technique is hardware based and is completely transparent to the warps. The assist
warps may compete with the regular warps and can potentially affect the performance.
Kim et al. [77] propose Bit-plane Compression (BPC) that first uses transformation to
increase the compressibility of the data and then uses either run-length or Frequent Pat-
tern Compression (FPC) [6] to compress the transformed data. The authors show that
transformation results in higher compression ratio.

Most existing memory compression techniques exploit simple patterns for compression
and trade low compression ratios for low decompression latency. For example, FPC [6]
replaces predefined frequent data patterns, such as consecutive zeros, with shorter fixed-
width codes. Frequent patterns are differentiated by a 3-bit prefix. C-Pack [26] exploits
fixed frequently occurring static patterns like FPC and also uses dynamic dictionary
to adapt to other frequently appearing words. BDI compression [130] is based on the
observation that values stored in a cache line have high value similarity and low dynamic
range and therefore, stores one or more values as base and the relative difference between
the values as deltas. While these techniques can decompress with a few cycles, their
compression ratio is low, typically only 1.5×. All these techniques originally targeted
CPUs and hence, traded low compression for lower latency.

As GPUs are less sensitive to latency, we propose a relatively more complex Entropy
Encoding Based Memory Compression (E2MC) technique for GPUs. We address the key
challenges of probability estimation, appropriate symbol length for encoding, and low
decompression latency. We use Huffman coding [150] for entropy encoding. Huffman-
based Statistical Cache Compression (SC2) has been used for CPUs [10], but to the
best of our knowledge no work has used Huffman-based memory compression for GPUs.
Moreover, the differences in CPU and GPU architectures offer new challenges which need
to be tackled as well as new opportunities which can be harnessed. For example, GPUs
use longer cache lines (128B is a typical value) than CPUs (64B is a typical value) which
has implications on compression and decompression latency. SC2 [10] has the highest
compression ratio for 32-bit symbols. In contrast to CPUs, GPUs have been optimized
for FP operations and 32-bit granularity does not work well for GPUs. We show higher
compression ratio and performance gain for 16-bit symbols instead of 32-bit symbols
for E2MC. Due to the differences in cache line size and symbol length for encoding, the
latency requirements of SC2 and E2MC are significantly different. SC2 uses 64B cache lines
and 32-bit symbols, therefore, it only needs to (de)compress 16 symbols whereas E2MC
uses 128B cache lines and 16-bit symbols, it needs to (de)compress 64 symbols (4×).
The higher number of symbols means higher compression and decompression latency for
GPUs. Although GPUs can hide latency to some extent, we show too much increase can
also degrade their performance. Therefore, we reduce the decompression latency of E2MC
by parallel decoding. E2MC results in 53% higher compression ratio and 8% increase in
speedup compared to state of the art and saves 13% energy and 27% EDP compared to
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Table 2.3: Key features of E2MC and state-of-the-art lossless memory compression tech-
niques for GPUs.

Work
Designed

for GPUs?
Employed
on GPUs?

Exploited complex
patterns?

Traded low compression
for low latency?

BDI [130],FPC [6],
C-PACK [26]

✗ X ✗ X

HyComp [9] ✗ ✗ X ✗

BPC [77] X X X X

SC2 [10] ✗ ✗ X ✗

E2MC [85] X X X ✗

no compression. Table 2.3 summarizes the key features of E2MC [85] and state-of-the-art
lossless memory compression techniques for GPUs.

There is more work for cache compression for CPUs [172, 177, 59]. Yang et al. [172]
develop a data compression scheme for use in a first level cache which exploits frequently
accessed values. The authors show that on an average nearly 40%, 52% and 51% of cache
lines of sizes 4, 8 and 16 words respectively can be compressed to at least half of their
sizes by exploiting top 2, 4 and 8 frequent values respectively. An earlier work from
the same authors presents profiling techniques for identifying frequent values [177] where
they found that 10 distinct values occupy over 50% of all memory locations for 6 out of
the 8 SPECint95 benchmarks. Hallnor and Reinhardt [59] propose a uniform compressed
memory hierarchy that increases last-level on-chip cache capacity, off-chip bandwidth, and
main memory size, while avoiding compression and decompression overheads between
levels. The main-memory compressed organization and the compression algorithm are
taken from IBM’s Memory Expansion Technology (MXT) system [3]. Arelakis et al. [9]
propose hybrid cache compression (HyComp) technique for CPUs which improves the
compression ratio by selecting a suitable compression method based on the specific data-
type. HyComp selectively uses either BDI, C-Pack, Huffman encoding [10] or FP-H
method based on type prediction during runtime. FP-H divides a floating-point number
into three fields: Exponent, Mantissa-High, and Mantissa-Low and then employs Huffman
encoding [10] to compress each of these fields in isolation.

Some works also use memory compression to increase the effective capacity along with
reducing memory bandwidth requirements [3, 42, 129, 27, 79, 132]. The main challenge
is to find the starting address of a compressed cache block in the main memory which
depends on the compressed size. The additional overhead to compute the starting ad-
dress of the cache block increases complexity, system cost and latency. IBM MXT [3]
uses a large (32MB) on-chip translation table to store the mapping between original and
compressed addresses, however, this requires significant area and power cost. Ekman and
Stenstrom [42] reduce the latency of calculating the starting address of a cache block in
main memory by speculatively computing the main memory address of every last-level

20



2.4 MAG Aware Approximation for GPUs

cache access in parallel to cache access. However, this also wastes significant amount of
energy as many accesses to last-level cache do not result in a miss. Pekhimenko et al. [129]
propose a framework called linearly compressed pages (LCP) to compute the starting ad-
dress. LCP fixes a target compression ratio for each block so that the starting address can
be located with a simple linear equation. All blocks which cannot be compressed to a fixed
ratio are stored at a reserved location in the same compressed page. Choukse et al. [27]
propose a pragmatic memory compression called Compresso that reduces compressed data
movement in a hardware compressed memory. The authors show Compresso exhibits only
15% compressed data movement accesses, as compared to 63% in an enhanced LCP-based
baseline. Kim et al. [79] propose dual memory compression architecture which uses two
kinds of compression: Lempel-Ziv at 1KB granularity for cold pages and LCP with BDI
for hot pages. It decides between the 2 compression mechanisms in an OS-transparent
fashion. Qian et al. [132] propose compression to increase the capacity of Hybrid Memory
Cubes by having compressed and uncompressed regions per vault.

Since the main memory is prone to errors and failures, large scale systems and critical
servers utilize error checking and correcting (ECC) mechanisms to meet their reliability
requirements. However, such systems need extra space in memory to store ECC metadata
and an extra access to read the metadata which reduces the available space and bandwidth
for actual data. Recent work has shown that by employing simple compression at block
granularity enough space can be created to fetch the ECC metadata along with the
data [78, 127]. The goal of the compression is not to achieve the highest compression
ratio but to create just enough space for metadata. For example, Palframan et al. [127]
show that a block size reduction by 32-bit is enough to fetch the ECC metadata for free.

Hong et al. [62] propose a framework called Attaché that mitigates metadata accesses
to provide a near-ideal speedup. Attaché stores metadata along with the cache block in
memory and uses a predictor in the memory controller to predict the value of metadata.
Attaché reduces 99.997% bandwidth overheads of Metadata accesses.

2.4 MAG Aware Approximation for GPUs

Traditionally, approximate computing has been mainly limited to CPUs and several ap-
proximate computing techniques such as memoization [30], loop perforation [151], task
skipping [108] have been proposed to trade some accuracy for higher performance and
energy efficiency. Recently, approximate computing usage for GPUs has increased as
GPUs have become an essential computational unit in the mainstream computing. To
the best of our knowledge, there is no work directly related to memory access granularity
(MAG) aware approximation, however, approximation has been used for GPUs at soft-
ware, hardware, and hybrid levels [141, 140, 145, 12, 175, 152, 91, 168, 102]. Samadi
et al. [141, 140] use static compilers to automatically generate different versions of GPU
kernels with different aggressiveness. Depending upon the target output quality (TOQ),
a run-time system selects the appropriate version of an approximate kernel and trade-off
accuracy with performance. Arnau et al. [12] propose hardware based memoization tech-
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nique to remove redundant fragment computation for graphical applications in low-power
mobile GPUs. Yazdanbakhsh et al. [175] propose rollback-free value prediction scheme to
reduce long memory latency and memory bandwidth of GPUs. When a safe to approx-
imate loads misses in the cache, the load value is predicted instead of actually fetching
from the off-chip memory. Sutherland et al. [152] use texture cache approximation as
a method to eliminate costly global memory accesses. Sathish et al. [146] use lossless
and lossy memory I/O link compression for GPUs, however, for the lossy compression
they always truncate the least significant bits. Sartori and Kumar [145] use approximate
computing to eliminate the control and memory divergence on GPUs. They use branch
herding to eliminate control divergence by forcing all threads in a warp to take the same
control path and data herding to eliminate memory divergence by forcing each thread
in a warp to load from the same memory block. They use static analysis and compiler
framework to prevent exceptions when control and data errors are introduced, a profil-
ing framework that aims to maximize performance while maintaining acceptable output
quality, and hardware optimizations to improve the performance benefits of exploiting
error tolerance through branch and data herding. They have both software and hardware
based implementation of branch herding. Maier et al. [102] propose a local memory-aware
kernel perforation technique that first skips the loading of parts of the input data from
global memory, and later uses reconstruction techniques on local memory to reach higher
accuracy while having performance similar to state-of-the-art techniques. Traditionally,
approximate computing has been used for applications with high error resilience, however,
recently, approximate computing usage has also started in scientific applications which
have lower error tolerance [91].

In contrast to the above mentioned techniques, we propose a novel MAG aware Selective
Lossy Compression (SLC) technique for GPUs which increases effective compression ratio
and performance gain. SLC exploits the observation that several state-of-the-art lossless
memory compression techniques result in a low effective compression ratio because a
significant percentage of blocks are compressed to a size that is only a few bytes above
a multiple of MAG, but a whole burst is fetched from the memory. SLC selectively
approximates these blocks to increase the effective compression ratio and performance
gain with a very low loss in accuracy.

Approximate computing has some similarities with approximate storage, for example,
both trade-offs accuracy for higher performance. However, there are important differ-
ences, for example, approximate computing deterministically approximates data while
approximate storage retains data with some probability. Some of the important works in
approximate storage can be found here [138, 97, 157, 143], however, a complete discussion
of them is out of the scope of this thesis.

2.4.1 Qualitative Comparison with Lossy Compression Techniques

Although, SLC only selectively approximates blocks, at the end, it is a hardware-based ap-
proximation technique. Warped Approximation [168], RFVP [175], Truffle [44], NPU [45]
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Table 2.4: Key features of SLC and state-of-the-art approximation techniques for GPUs.

Work
Designed

for GPUs?
MAG Aware

approximation?
Toggleable on top of
lossless compression?

[30, 151, 108, 44, 45] ✗ ✗ ✗

[141, 140, 145, 12,
175, 152, 91, 168, 102]

X ✗ ✗

SLC [87] X X X

are other existing hardware-based approximation techniques. While Warped Approxima-
tion has only been studied for GPUs as it exploits intra-warp value similarity prevalent
in GPUs, RFVP has been studied for both CPUs and GPUs. Truffle and NPU have been
evaluated for CPUs. We think a direct comparison of these techniques with SLC is not
viable, however, we present our qualitative perspective.

Warp Approximation [168] dynamically detects intra-warp value similarity using hard-
ware and executes only a single representative thread and uses its value to approximate
the values of other threads in the same warp. Warp Approximation can reduce execu-
tion unit energy by 37% and register file energy by 28%, improving overall GPU energy
consumption by 26% with minimal quality degradation (typically 1%).

RFVP [175] is a rollback-free value prediction scheme which reduces long memory
latency and memory bandwidth by predicting the value of a load instead of actually
fetching from the off-chip memory when a safe to approximate loads misses in the cache.
For GPUs, RFVP improves performance and reduces energy consumption on average
by about 6% with 1% loss in quality. For out-of-order modern CPUs, authors show on
average 8% performance improvement with 0.8% average quality loss on an approximable
subset of SPEC CPU 2000/2006.

Truffle [44] uses disciplined approximate programming to declare which parts of a pro-
gram can be computed approximately and then uses an efficient mapping of disciplined
approximate programming onto hardware. Authors extend ISA that provides approximate
operations and storage and propose microarchitecture design called Truffle that efficiently
supports the ISA extension. Truffle results in 43% reduction in energy consumption for
out-of-order design.

NPU [45] uses program transformation to select and train a neural network to mimic
a region of imperative code. After the learning phase, the compiler replaces the original
code with an invocation of a low-power accelerator called a neural processing unit (NPU)
which provides speedup of 2.3× with quality loss of about 7%.

SLC is orthogonal to above mentioned techniques, for example, Warp Approximation
reduces execution unit and register file energy by power gating, NPU improves perfor-
mance by skipping a region of code and approximating it with a neural network model
whereas SLC reduces GPU energy consumption by reducing memory bandwidth require-
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ments. Although, RFVP also reduces memory bandwidth, it does so by predicting the
values of some of the loads that miss in a cache. SLC can be used on other loads from
memory. In terms of performance, SLC reduces energy consumption by 8.4% and EDP
by 18.2% with mere 0.2% loss in quality normalized to the state-of-the-art lossless com-
pression technique. Table 2.4 highlights the key features of SLC and state-of-the-art
approximation techniques for GPUs.

2.5 Summary of Advances Over State of the Art

This thesis made four main contributions in the direction of GPU power modeling and
estimation, performance bottlenecks analysis, memory compression, and MAG aware ap-
proximation. Below we summarize the advances over state of the art in these directions.

We developed a power simulator for GPUs called GPUSimPow [99]. Our GPU power
simulator advanced state of the art in several ways. First, in contrast to previous pure
empirical approaches [61, 100, 166, 176] and pure analytical approach [165], we used a
hybrid power modeling approach. The hybrid approach improved flexibility compared to
the pure empirical approaches and accuracy compared to the pure analytical approach.
While hybrid power modeling has been used before by some researchers [133, 92], they
either have limitations compared to our approach or not applicable in our case. Ramani
et al. [133] used the hybrid approach to model GPU power, however, they do not provide
information on power models for GPU-specific components and there is no discussion of
the validation of power model and its accuracy. Moreover, they use an in-house architec-
tural simulator. Li et al. [92] also used the hybrid approach, however, they developed a
power simulator for CPUs called McPAT. While our power simulator is also based on the
general design philosophy of McPAT and reused some structures for GPU power modeling,
a significant amount of work was performed to develop GPU-specific components. Sec-
ond, we rigorously validated our power simulator by using a custom power measurement
setup and our validation methodology is more accurate compared to previous approaches
that made strong assumptions about the hardware they measure, leading to inaccurate
measurement methodologies [61]. Compared to other power measurement methodolo-
gies [165, 167, 115, 100], we measured power from all sources and used high sampling
frequency so that even the short power events can be measured accurately.

We studied the energy efficiency of a large number of GPU kernels and investigated
bottlenecks leading to low performance and low energy efficiency. We showed that about
70% of the kernels have low performance and low energy efficiency. We also predicted
the performance improvement when a particular bottleneck is mitigated. Blem et al. [17]
also characterized benchmarks for performance bottlenecks and predicted the performance
improvements after mitigating those bottlenecks, however, there are key differences both
in the methodology and performance metrics. Unlike Blem et al. [17], we used performance
simulator not only for bottlenecks identification but also for performance prediction. Blem
et al. [17] used an analytical model to predict performance that has an error in the range
-70% to 200%, which is very high and a strong limitation of their work. We used gpgpu-
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sim for performance prediction that has an average absolute error of 35% and 62% for
Tesla and Fermi architectures, respectively. The average absolute error is high due to
outliers [49]. The IPC correlation is 98.3% and 97.3% for Tesla and Fermi architectures,
respectively. In addition to performance, we also provided an estimate of the energy
reduction when a bottleneck is eliminated. Furthermore, Blem et al. [17] observed that
low available parallelism is a bottleneck but did not consider the case that even with high
available parallelism, actual parallelism (occupancy) could still be very low that can lead
to low performance. We studied GPU power consumption at detailed components level
while previous work estimated GPU power consumption at very coarse-grained level [100,
176, 53]. For instance, Ma et al. [100] and Zhang et al. [176] reported power consumption
for an entire GPU. Gebhart et al. [53] estimated total core power. While several works
used workload metrics to understand their characteristics [73, 25, 57, 22], none of them
studied the correlation between workload metrics and components power. We showed the
existence of a correlation between workload metrics and components power and quantified
the change in components power consumption with the change in workload characteristics.

State-of-the-art memory compression techniques for GPUs such as FPC [6], C-Pack [26],
BDI [130] were originally targeted for CPUs and hence they exploited simple patterns
for compression to keep the decompression latency low. Based on the observation that
GPUs are less sensitive to latency than CPUs, we proposed a relatively more complex
Entropy Encoding Based Memory Compression (E2MC) technique which can also exploit
complex patterns. We showed E2MC delivers higher compression and performance gain
than the state-of-the-art provided the key challenges of probability estimation, appropri-
ate symbol length for encoding, and low decompression latency are addressed properly.
E2MC delivered 53% higher compression ratio and 8% increase in speedup compared to
the state of the art and saved 13% energy and 27% EDP compared to no compression.
While Huffman-based cache compression (SC2) has been used for CPUs by Arelakis and
Stenstrom [10], to the best of our knowledge no work has used Huffman-based memory
compression for GPUs. Compared to SC2, we showed a higher compression ratio and
performance gain for 16-bit symbols instead of 32-bit symbols. Due to differences in the
CPU and GPU architectures, the decompression latency of E2MC is 4× more. Although
GPUs can hide latency to some extent, we showed too much increase can also degrade
their performance. Therefore, we reduced the decompression latency of E2MC by parallel
decoding with small loss of compression ratio (< 4%).

We showed that memory compression is a promising alternative to increase memory
bandwidth, however, we also observed that state-of-the-art lossless memory compression
techniques including E2MC often have a low effective compression ratio due to large
memory access granularity (MAG) exhibited by GPUs. We further analyzed the MAG
problem and quantitatively showed that low effective compression ratio due to MAG
exists in four state-of-the-art techniques and qualitatively in three more techniques. We
proposed a novel MAG aware Selective Lossy Compression (SLC) technique for GPUs
to increase the effective compression ratio and performance gain. While approximate
computing has been used for GPUs at different levels [141, 140, 145, 12, 175, 152, 91, 168,
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Table 2.5: Summary of advances over the state of the art.

Field State of the art Advances over the state of the art

Power modeling
and estimation

[61, 100, 166,
176, 165, 133,
92]

1. Hybrid power modeling improved flexibility compared
to pure empirical approaches [61, 100, 166, 176] and
accuracy compared to pure analytical approach [165]

2. No reference to power models for GPU-specific compo-
nents and no discussion of power model validation in
the existing hybrid approach [133]

3. Accurate power model validation methodology

Performance bot-
tlenecks

[17, 100, 176,
53, 73, 25, 57,
22]

1. Identified key performance bottlenecks and quantified
the effect of eliminating bottlenecks on performance
and energy consumption

2. Used performance simulator for bottlenecks identifica-
tion as well as for performance prediction unlike [17]

3. Previous work used workload metrics to understand
their characteristics [73, 25, 57, 22], but none of them
studied the correlation between workload metrics and
components power consumption

Memory compres-
sion

[6, 26, 130, 10,
146, 89, 160,
77]

1. Proposed relatively more complex entropy encoding
based memory compression technique (E2MC)

2. E2MC delivered 53% higher compression ratio and 8%
increase in speedup compared to the state of the art

3. Addressed key challenges of entropy encoding for GPUs

MAG aware ap-
proximation

[141, 140, 145,
12, 175, 152,
91, 168, 102,
108, 45, 44]

1. Quantitatively [6, 26, 130, 85] and qualitatively [10, 9,
77] showed that state-of-the-art lossless memory com-
pression techniques suffer due to the large MAG

2. Proposed a novel MAG aware approximation technique

3. First study that highlighted the importance of MAG
aware approximation

4. Speedup of up to 35% with a maximum error of only
1.8% (state of the art treats 10% as acceptable er-
ror [108, 45, 44])

102], to the best of our knowledge no work has used MAG aware approximation. Moreover,
this is the first study that highlighted the importance of MAG aware approximation for
GPUs. SLC provided a speedup of up to 35% with a maximum error of only 1.8%. While
10% is treated as an acceptable average error in several related works [108, 45, 44], the
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average error of SLC is less than 1%.
Table 2.5 succinctly summarized advances made by this thesis in the field of power

modeling and estimation, performance bottlenecks analysis, memory compression and
MAG aware approximation over the state of the art.

2.6 Summary

In this chapter, we reviewed the work related to this thesis and highlighted the advances
made over the state of the art. We first provided a thorough review of GPU power mod-
eling and estimation, including power model validation methodologies used by different
researchers. We then reviewed the work related to GPU performance bottlenecks, com-
ponents power consumption and their correlation with workload metrics. We surveyed
lossless memory compression and approximate computing techniques for GPUs which are
gaining importance due to i) difficulty in the traditional scaling of GDDR bandwidth
ii) tremendous increase in the amount of data that needs to be processed in an energy
efficient way. Finally, we summarized the advances made over the state of the art.

In the next chapter, we will provide an overview of a GPU architecture and data
compression techniques for GPUs. As most of the research in this thesis is conducted using
architectural simulator, we will also briefly discuss and list available GPU simulators.
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3 GPU Architecture and Compression
Overview

In this chapter, we provide an overview of a GPU architecture and common terminology
that will pave the foundation to understand the scientific results in the subsequent chap-
ters. We also provide an overview of data compression which will be useful to understand
the contributions in Chapter 6 and Chapter 7.

This chapter is organized as follows. Section 3.1 briefly discusses the evolution of
general-purpose computing on GPUs. Section 3.2 presents high-level differences between
a multicore CPU and a manycore GPU. Section 3.3 provides an overview of a GPU
architecture including programming models. Section 3.4 gives a short overview of data
compression. Finally, we summarize the chapter in Section 3.5.

3.1 Evolution of General-Purpose Computation on GPUs

Graphics Processing Units (GPUs) were initially designed to accelerate only graphics ap-
plications. The use of GPUs to process general-purpose applications that we traditionally
executed on a central processing unit (CPU) became attractive due to their massive com-
putational power. General-purpose computing on GPUs, commonly known as GPGPU,
started in 2001 with the design of programmable shaders and support for floating-point
operations. However, programming GPUs was not easy and required high effort as com-
putational problems need to be reformulated in terms of graphics primitives. This means
the initial use of GPUs was limited to expert GPU scientists. Programming GPUs became
relatively easy with the removal of complex reformulation effort by the onset of general-
purpose programming languages and APIs (Application Programming Interface) such as
Sh [104] and Brook [21] in 2004. General-purpose computing on GPUs became further
easy after the release of vendor-specific CUDA (Compute Unified Device Architecture) by
NVIDIA in 2006, vendor-independent OpenCL (Open Computing Language) by Khronos
Group, and DirectCompute by Microsoft in 2009. CUDA is proprietary and only sup-
ports NVIDIA GPUs, whereas OpenCL is an open standard. Microsoft’s DirectCompute
is also proprietary and bound to a single operating system. These parallel computing
frameworks and APIs allowed programmers to ignore the underlying graphics concepts
by offering more commonly used general-purpose notions and thus, made GPGPU much
simpler. Since then GPGPU has truly taken-off with its ubiquitous usage in fields such
as digital image processing, scientific computing, bioinformatics, computational finance,
medical imaging, machine learning.
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Figure 3.1: CPU vs. GPU architecture. The figure is based on [80].

3.2 Multicore CPU vs. Manycore GPU

The two main computing styles in the heterogeneous computing are latency-oriented mul-
ticore CPUs and throughput-oriented manycore GPUs. While CPUs have been optimized
for executing serial programs faster, GPUs have been optimized to deliver high through-
put for parallel programs. For example, the peak performance of Intel’s Core i7 8086K
(Coffee Lake-S) is 177.94 GFLOPS, while the peak performance of NVIDIA’s GTX-1080
(Pascal) is 8227 GFLOPS. Both are in the similar price range. The former launch price
was 429$, while the later launch price was 549$.

The main reason for the large performance gap between a manycore GPU and a general-
purpose multicore CPU is the fundamental difference in their design philosophies as shown
in Figure 3.1. A contemporary multicore CPU consists of a few complex cores, with
intricate control logic, multi-level large caches, and off-chip DRAM, while a contemporary
GPU consists of a many simple cores, with simple control logic, one or two-level small
caches, and a high bandwidth graphics DRAM. The complex cores and control logic of
multicore CPUs improve single thread performance by supporting long pipelines with
optimizations such as out-of-order execution, and instruction level parallelism. Moreover,
the large caches ensure that most of the time the data is found close to the cores and
very rarely data needs to be fetched from the off-chip DRAM. GPUs, on the other hand,
have very simple control logic that is shared among several cores. For example, they
have shorter pipelines, no out-of-order execution and speculation. GPUs employ Single
Instruction Multiple Data (SIMD) execution model which means the instruction fetch,
decode, and the issue units are shared among a SIMD unit. As GPUs have simpler front
end and control logic, a large portion of chip area is dedicated to many cores. Thus,
the peak performance of GPUs is far higher than CPUs. GPUs depend upon massive
multithreading to keep the cores busy and deliver higher performance. The massive
multithreading in GPUs makes it very hard to exploit the data locality and caches often
suffer from thrashing [137]. Moreover, the caches in GPUs are much smaller than CPUs.
For instance, L1 data cache per core in Intel’s Core i7 8086K is 32KB, while L1 data cache
per core in NVIDIA’s GTX-1080 is only 384B. Because GPUs are massively multithreaded
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processors and caches often have very low hit rates, they employ high bandwidth GDDR
for off-chip memory instead of DDR to support a large number of threads. A GDDR
is optimized for high throughput, thanks to wide buses, while a DDR is optimized for
latency. Despite massive multithreading and high bandwidth off-chip memory, GPUs
still run slower on some tasks for which CPUs have been optimized. Therefore, CPU-
GPU heterogeneous computing has evolved in the last decade where a computationally
complex part of the execution is offloaded on the GPU and the serial part is executed on
the CPU [164].

3.3 GPU Architecture Overview

Figure 3.2 shows an overview of a typical NVIDIA GPU architecture. It consists of an
array of highly threaded streaming multiprocessors (SM). Each SM consists of a set of
simple cores. For example, Fermi architecture has 32 cores. Each core has a fully pipelined
integer arithmetic unit (ALU) and floating point unit (FPU). In addition, each SM has
four special function units (SFUs) that execute transcendental instructions such as sine,
cosine, reciprocal. The number of cores is fixed in an SM in a given architecture, however,
the number of SMs vary from a few in a low-end GPU to several for a high-end GPU.
All cores in an SM share the same front-end which is responsible for instruction fetch,
decode, and issue. Each SM has a shared memory and L1 cache. All SMs are connected to
a shared L2 cache via an interconnection network. The L2 cache is partitioned into several
banks, typically one bank per memory partition. Finally, the L2 cache is connected to
the off-chip DRAM.

The basic organization is same across different generations of GPU architectures, how-
ever, there are significant changes in the number of cores in an SM and number of SMs in
a GPU. For example, the Fermi architecture has 32 cores in an SM and 16 SMs in total,
while the Kepler architecture has 192 cores and 15 SMs.

3.3.1 SIMT Execution

In a contemporary CPU, a significant amount of area and power are spent to support the
executions of instructions. Each core in a CPU has the overhead of fetching, decoding,
controlling and issuing instructions. This overhead is unnecessary when an application
has significant data level parallelism because the same instruction is executed on different
data. This style of computation is called Single Instruction Multiple Data (SIMD). A
typical GPU architecture exploits data level parallelism to increase the area and power
spent on actual computations than supporting instructions execution. However, instead
of using vector instructions to exploit data level parallelism, a GPU employs multiple
threads where each thread works on different data. Since the pipeline only has a single
instruction, the same instruction is executed by all threads and this style of computation
is called Single Instruction Multiple Thread (SIMT). Threads are typically grouped into
units called warps in NVIDIA terminology and wave front in AMD terminology. A typical

31



3 GPU Architecture and Compression Overview

Figure 3.2: Overview of a contemporary NVIDIA GPU architecture [116]. c© Elsevier
2012

warp consists of 32 threads. The size of a warp is implementation specific and it is
not even part of the CUDA specifications. However, understanding of warps can be
helpful in optimizing the performance of applications. A warp is a unit of scheduling
in an SM and SIMT model is implemented at warp level. A warp executes the same
instruction on different data. However, if needed different threads of a warp can also
execute different instructions, leading to thread divergence. Because of SIMT execution,
different instructions cannot be executed at the same time. Therefore, a thread masking
mechanism is used to mask the threads that are not part of an instruction. Thread
masking leads to idle cores corresponding to the masked threads. Therefore, a programmer
optimizes applications to avoid a situation where different threads need to take different
paths. However, thread divergence cannot be avoided always due to the irregular control
flow of an application. For example, in breadth-first-search, thread divergence may occur.

3.3.2 GPU Memory Hierarchy

GPU memory hierarchy typically consists of a large register file, an on-chip programmer-
managed scratchpad, known as shared memory in CUDA, hardware-managed caches (typ-
ically two levels), and high-bandwidth off-chip DRAM, also known as global memory. In
addition, GPUs employ constant and texture memories for special purposes. Figure 3.3
shows an overview of memory hierarchy of Fermi architecture.
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Figure 3.3: Overview of Fermi architecture memory hierarchy.

Register File: GPUs employ large register files to accommodate a large number of active
threads and support fast context switching. For example, the maximum number of active
threads in a Fermi architecture is 1536 and each thread can use a maximum of 63 registers.
A GPU register file size is even larger than its L1 cache (see Table 3.1). The register file
is multi-banked to provide high-bandwidth and low latency. Because of the large size and
high-bandwidth oriented design, a register file contributes significantly to a GPU power
consumption. For example, the register file power consumption is about 13.4% in GTX
480 [90]. Due to the high significance of the register file on a GPU performance, a lot
of research has been done on the architecture and efficient management of the register
file [103, 67, 110, 154, 153].

Shared Memory: Shared memory is allocated per thread block, so all threads in a thread
block have access to the same memory. A thread block is a programming abstraction that
represents a group of threads that can execute in parallel on different SMs. Shared memory
is managed by a programmer and its efficient utilization depends upon the programmer
and the nature of applications. It is suitable for applications for which data can be shared
between threads of a thread block, for example, parallel reduction, matrix multiplication.
In essence, shared memory acts as a programmer-managed cache as the data loaded
by threads can be accessed by other threads of the same thread block. Similar to the
register file, the shared memory is also banked and the maximum throughput is achieved
when all threads access different banks. However, a conflict happens when two or more
threads access different words in the same bank. The bank conflicts may lead to stall
and performance degradation. Therefore, several techniques have been proposed to avoid
bank conflicts [159, 58]. Shared memory is much faster than the global memory. The
latency is about 100× lower than the latency of accessing the global memory, provided
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there are no bank conflicts between the threads. On devices of compute capability 2.x
and 3.x, each SM has 64KB of on-chip memory that can be partitioned between L1 cache
and shared memory. For devices of compute capability 2.x, there are two settings, 48KB
shared memory / 16KB L1 cache, and 16KB shared memory / 48KB L1 cache. By default
the 48KB shared memory setting is used. Devices of compute capability 3.x allow a third
setting of 32KB shared memory / 32KB L1 cache. The configuration of choice can be set
using a runtime API.

L1 and L2 Data Cache: Traditionally, GPUs only have programmer-managed caches,
however, with the advent of Fermi architecture, GPUs started using hardware-managed
caches. In fact, the hardware-managed caches have accelerated the use of GPUs for general
purpose computing. There are several works which compared the performance of Tesla
and Fermi GPUs and reported that hardware-managed caches play an important role in
higher performance of Fermi GPUs over Tesla GPUs [170, 63, 23]. However, GPU caches
face different design challenges due to their different characteristics than CPU caches.
For instance, write and allocation policies are quite different from CPU caches. L1 data
cache is only write back for local accesses1 and write evict for global accesses whereas in
a CPU we have either write back or write through caches. Accordingly, allocation policy
is usually no write-allocate for global accesses and write-allocate for only local accesses.
The deviation in write and allocation policies is to cater to the different requirements
of GPU workloads and smaller caches. GPU caches are shared by thousands of threads
which make them a scarce resource and a victim of lot of contention. Furthermore, due to
the streaming nature of many GPU applications and smaller cache size, caches can suffer
from thrashing and high miss rate. Therefore, exploiting temporal locality is hard due to
a large number of active threads and smaller caches. In fact, there are some works that
reported negative performance results with caches [66, 134].

Thread-blocks are independent units of scheduling on SMs and a thread-block can be
scheduled on any SM. This feature allows transparent scalability as simply more thread-
blocks can be scheduled in parallel when more SMs are available and vice-versa. As
thread-blocks can be scheduled on any SM, it is very hard to exploit inter-thread block
locality at L1 caches because L1 cache is private to an SM. For example, when two thread-
blocks have inter-thread block locality but they are scheduled on different SMs, there is
no way to exploit inter-thread block locality at L1. L2 cache is useful for exploiting inter-
thread block locality in this case as L2 cache is shared among all SMs. Therefore, we have
a relatively large L2 cache with higher hit rate which helps to filter requests to off-chip
memory. L1 and L2 caches on GPUs are smaller than L1 and L2 caches in CPUs, but
they have high bandwidth.

Global Memory: The off-chip memory, also known as global memory, is the main mem-
ory of a GPU. A high-end GPU has several times the compute performance of a typical

1Local memory is private to each thread and is not visible to other threads.
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CPU, but lacks deep cache hierarchy to support the memory requests. Therefore, com-
pared to a CPU, a much larger fraction of memory requests are serviced by the off-chip
memory. The off-chip memory in GPUs uses wider buses, several memory controllers
to provide high-bandwidth. For example, Fermi has bus width of 384-bit, 6 memory
controllers, and peak memory bandwidth of about 190GB/s.

Instead of standard Double Data Rate (DDR), GPUs deploy Graphic Double Data
Rate (GDDR) for main memory. Although, both DDR and GDDR are designed from the
Synchronous Dynamic-access Memory (SGRAM) and share some features such as double
date rate, they differ significantly from each other. For example, GDDR is designed
for high-bandwidth and DDR is optimized for latency. High bandwidth provided by
successive generations of GDDR (GDDR/2/3/4/5/5X/6) memories has been a key factor
in the performance scaling of GPUs. However, the later generations of GDDR have
issues such as high power consumption, large form factor, difficulty in the scaling of pin
count. The form factor plays an important role in determining the actual size of a GPU
and vendors are struggling to keep GPU size small due to the large form factor of the
GDDR. To mitigate the issues of GDDR, recently, 3D stacked DRAM technologies such
as HMC (Hybrid Memory Cubes), HBM (High Bandwidth Memory) have been developed
which have much smaller form factor and offer higher bandwidth and energy efficiency
compared to GDDR. 3D stacked memories have their own problems such as much higher
cost, significantly different interface, leading to adoption only in the high-end GPUs.
However, these problems are expected to come down once the technology matures.

Local Memory: Local memory is private to a thread and is generally used for temporal
spilling when there are not enough registers to hold all variables of a thread. It is also
used when arrays are declared in a kernel but the compiler is unable to figure out the
right indexing for them. Local memory is not a physical memory but a part of the global
memory and it is cached in L1 and L2 in Fermi and Kepler architectures and only in L2
in Pascal and Maxwell architectures.

Constant Memory: As the name indicates, constant memory is used to hold the con-
stant data of a kernel. Constant memory also resides in the global memory, like the local
memory. However, unlike the local memory, it is not cached in L1 and L2 but in a separate
cache known as constant cache. The constant cache is optimized to broadcast the data
of a single memory address to all threads of a warp at the same time. Constant memory
is fast as long as all threads of a warp access the same address, otherwise the accesses are
serialized. Constant memory is a read-only cache for global memory and is managed by
the compiler.

Texture Memory: Similar to local memory and constant memory, texture memory is
also a part of a global memory, however, it is also buffered in a texture cache which is
specially optimized for 2D spatial locality. Moreover, a GPU provides hardware support
for address calculation for texture accesses, thus, adding extra compute power. Texture

35



3 GPU Architecture and Compression Overview

Table 3.1: Summary of memory hierarchy of NVIDIA’s different architectures.

Arch. Representative
GPU

RF
(KB)

Shared memory
(KB)

L1
(KB)

L2
(KB)

Const
(KB)

Texture
(KB)

BW
(GB/s)

Tesla GTX-8800 64 16 N/A N/A 8 12 86.4

Fermi GTX-580 128 16/48 16/48 768 8 12 197.6

Kepler GTX-780 256 16/32/48 16/32/48 1536 8 48 288.4

Maxwell GTX-Titan X 256 64 24 2058 10 Unified 336.0

Pascal GTX-1080 256 64 48 4096 10 Unified 352.0

Volta TITAN V 256 0/8/16/32/64/96 128 6144 64 Unified 652.8

memory is designed for streaming fetches with a constant latency. A texture cache hit
reduces off-chip memory bandwidth, but not fetch latency [118]. Texture cache is also a
read-only cache and starting from Maxwell, it is unified with L1 data cache.

In summary, GPU memory hierarchy is not so deep but wide and is designed to support
high throughput rather than low latency. GPU design philosophy to hide long latency is
to use fine-grained multi-threading and switch to a different group of threads whenever a
long latency access occurs. In general, efficient use of shared memory, hardware-managed
caches can reduce pressure on the high-bandwidth off-chip memory by reducing traf-
fic. However, if the memory access rate is too high, the memory system cannot service
the memory requests at the required rate, leading to GPU stalls. In general, efficient
utilization of memory bandwidth is a challenge for application developers of throughput-
oriented systems. Moreover, due to high power consumption and physical limitations of
chip-packaging, increasing memory bandwidth by traditional ways of increasing clock-
frequency or pin-count is extremely challenging. Therefore, techniques which can reduce
off-chip memory traffic such as efficient utilization of shared memory, better cache manage-
ment policies, and alternative techniques to increase memory bandwidth such as memory
compression, approximate computing will play an important role to full fill the memory
bandwidth demands of future high throughput systems.

Table 3.1 summarizes the size of register file (RF), shared memory, L1 data cache, L2
data cache, constant cache, texture cache and global memory bandwidth for six genera-
tions of NVIDIA architectures. In Maxwell and Pascal architectures, the texture cache is
unified with L1 data cache. Volta architecture has unified shared memory, L1 data cache
and texture cache. The combined size is 128KB. The size of L1 data cache and texture
cache depends on shared memory configured size.

3.3.3 Programming GPUs

To program massively multi-threaded GPUs, new programming models have been de-
veloped. The two most famous programming models are CUDA [123] and OpenCL [74].
Both CUDA and OpenCL are extensions to C programming language which provide APIs
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and runtime to allow programmers to harness parallelism to achieve higher performance.
There are alternatives to CUDA and OpenCL such as directive based languages, e.g.,
pragmas with C/C++, OpenACC and OpenMP. CUDA is vendor specific and is only
supported by NVIDIA GPUs, while OpenCL is vendor neutral and is supported by all
GPUs, typically including mobile GPUs. OpenCL is a standard programming model de-
veloped by Khronos Group. Thus, an application developed in OpenCL can run without
modification on all processors that support the OpenCL language extensions and API.

✞ ☎

CPU serial code

GPU parallel kernel

kernel1 <<< num_blocks , num_threads >>> (args);

CPU serial code

GPU parallel kernel

kernel2 <<< num_blocks , num_threads >>> (args);
✝ ✆

Listing 3.1: Execution of a CUDA program.

Since GPUs are used as co-processors to accelerate the computationally intensive part
of applications, a typical GPU application has a host code and a device code. The device
code is called kernel and is executed on a GPU. Usually the serial part of an application
is executed on the host and parallel part of the application is executed on the device. The
host code runs on a CPU and is also responsible for allocating memory, transferring data
to the GPU before the start of a kernel execution, and transferring the data back to the
host at the end of a kernel execution. A typical CUDA application execution flow is shown
in Listing 3.1. The execution starts from the host. The execution moves to the device
when a kernel function is launched. When all threads in a kernel finish, the execution
again moves back to the host. The execution continues on the host until another kernel
function is launched. This process continues until the end of an application.

In CUDA, a kernel function specifies the code to be executed by all threads. As all
threads execute the same code, CUDA programming is an example of a popular Single
Program Multiple Data (SPMD) style of programming massively parallel systems. List-
ing 3.3 shows a simple kernel for adding two vectors. A kernel function starts with the
keyword __global__. The keyword means the function is a CUDA kernel and it can be
called from the host to generate a grid of threads to be executed on the device. There are
three other keywords: threadId.x, blockId.x and blockDim.x shown in the listing. These
keywords are built-in variables and refers to hardware registers which help a thread to
identify its coordinate at runtime. threadId.x and blockId.x gives the thread index and
block index, while blockDim.x gives the block dimension. A CUDA programmer only
needs to specify the computation, while threads generation and parallel execution is han-
dled by the runtime and underlying hardware. This helps simplifying the programming
of a GPU. For example, although the vector addition is done in parallel by many threads,
the computation is specified by a simple addition of two vectors as shown in Listing 3.3.
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✞ ☎

int call_kernel (int *A, int *B, int *C, int num_blocks ,

int num_threads ) {

vector_add <<<num_blocks , num_threads >>>(A, B, C);

return 0;

}

✝ ✆

Listing 3.2: Kernel call from host.

✞ ☎

__global__ void vector_add (int *A, int *B, int *C) {

int tid = blockIdx .x* blockDim .x + threadIdx .x;

C[tid] = A[tid] + B[tid ];

}

✝ ✆

Listing 3.3: Kernel definition.

As briefly discussed before, a kernel needs to be launched from the host to execute it
on the device. A simple example to launch a kernel is shown in Listing 3.2. The key
aspect of kernel launch is the thread organization that is specified at the kernel launch
time using the syntax <<< num_blocks, num_threads >>>. For data mapping and
better processing such as scalability, scheduling, threads are grouped into thread blocks.
In the Listing 3.2, num_threads is the number of threads in each thread block. The
number of threads in a thread block is restricted, for example, for Fermi architecture, the
number of threads in a thread block is 512. Threads in the same thread block run on the
same SM and they can communicate via shared memory. As the number of threads in
a thread block is restricted, multiple thread blocks are created to map the computation
that require a large number of threads. The array of thread blocks is called grid. In the
Listing 3.2, num_blocks represents the number of blocks in a grid. Both num_blocks and
num_threads are 3-D variables, enabling different organization of threads according to an
application suitability. The x, y, z co-ordinates of these variables can be accessed using
the built-in variables, for example, the co-ordinates of a thread block are accesses using
threadId.x, threadId.y, and threadId.z.

In this thesis, we use CUDA terminology, however, we briefly discuss OpenCL equivalent
terminology of CUDA to help a reader familiar with OpenCL terminology. Table 3.2 shows
the CUDA and OpenCL terminology for commonly used terms. A thread, warp, thread
block and grid is called work item, wave front, work group and computation domain in
OpenCL. A reader may get confused with the local memory and shared memory terms if
he/she is only familiar with one of the terminologies. In CUDA, shared memory refers to
a small on-chip memory that is shared by threads in a thread block whereas its equivalent
is known as local memory in OpenCL. In CUDA, local memory is the per-thread memory
and its equivalent is known as private memory in OpenCL. Off-chip memory is known
as global memory in both CUDA and OpenCL. A scalar core is equivalent to processing
element while a streaming multiprocessor is equivalent to compute unit in OpenCL.
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Table 3.2: CUDA vs. OpenCL terminology.

CUDA OpenCL CUDA OpenCL

Thread Work item Local memory Private memory

Warp Wave front Shared memory Local memory

Thread block Work group Global memory Global memory

Grid Computation domain Scalar core Processing element

Streaming mul-
tiprocessor

Compute unit - -

3.3.4 GPU Simulators

An architectural simulator is a piece of software that is used to model and predict the
performance of computer devices. gpgpu-sim [15] is the most widely used and accepted
general-purpose computing on GPUs (gpgpu) simulator. gpgpu-sim is a cycle-accurate
simulator which means it simulates a microarchitecture on a cycle-by-cycle basis. A cycle
accurate simulator is much slower than a functional simulator. However, a functional sim-
ulator can only simulate the functional correctness and it has no notion of performance
such as execution time. Barra [31], Ocelot [40], and Multi2Sim [158] are alternative sim-
ulators to gpgpu-sim. Barra is a GPU functional simulator that simulates the native
instruction set of the Tesla architecture. Ocelot [40] is a dynamic compilation framework
designed to map the NVIDIA Parallel Thread eXecution ISA (PTX), an intermediate
language onto diverse multithreaded platforms. Ocelot includes a dynamic binary trans-
lator for PTX to many-core processors that leverages the Low Level Virtual Machine
(LLVM) code generator to target x86 and other ISAs. The dynamic compiler is able to
execute existing CUDA binaries without recompilation. Multi2Sim is an heterogeneous
simulator that could simulate an x86 CPU and an AMD Evergreen GPU in the initial
release. However, it was later extended to support the simulation of ARM, and MIPS
CPUs. Recently, Multi2Sim was again extended to support the simulation of NVIDIA’s
Kepler architecture [56].

Most of the GPU microarchitecture ideas in the last decade have been implemented
and evaluated using gpgpu-sim. It has more than 1100 references to this day which is an
indicator of its popularity. However, gpgpu-sim is also getting out of date because it has
been validated using NVIDIA’s Tesla and Fermi architectures and NVIDIA has released
four more architectures after Fermi and gpgpu-sim is not modified to support them.
Recently, an open source RTL implementation of the AMD Southern Islands GPGPU ISA,
capable of running unmodified OpenCL-based applications was published [16]. However,
not much research has been reported using it until now. Table 3.3 summarizes the key
features of the GPU simulators.
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Table 3.3: Summary of GPU simulators.

gpgpu-sim Barra Ocelot Multi2sim MIAOW

Release date 2009 2010 2010 2012 2015

Platforms NVIDIA NVIDIA NVIDIA AMD AMD

Architectures Tesla, Fermi Tesla ISA PTX ISA Evergreen Southern Islands

Functional only No Yes Yes No No

Cycle accurate Yes No No Yes Yes (RTL level)

3.4 Data Compression Overview

In this section, we provide an overview of data compression and compression techniques
that we use as baselines to compare our proposed memory compression techniques in
Chapter 6 and Chapter 7. Data compression encodes information using fewer bits than the
original representation. Compression can be either lossless or lossy. Lossless compression
identifies the redundant information to reduce the bits required to represent the original
information. As lossless compression only removes the redundant information, the original
information can be retrieved without any loss after decompression. In contrast to lossless
compression, lossy compression also removes less important information and hence, there
is some loss of information.

Most of the real-world data has statistical redundancy, which is exploited by the loss-
less compression techniques to represent data with fewer bits and without any loss of
information. For example, images usually have areas where several pixels have the same
color. For such areas, instead of coding the same color repeatedly n times, the color may
be encoded once along with the count n. Another example of common redundancy is the
bulk initialization of many applications with initial values such as zeros. There are many
techniques to exploit such redundancy present in the data to reduce the number of bits
to store them efficiently.

Lossless compression techniques can be classified into two types: fixed-width coding
(FWC) and variable-width coding (VWC) [77]. FWC compresses fixed-length symbols
by using variable-length output codes. The most frequent symbols are encoded with the
shortest codes to reduce the average number of bits required to store all symbols. For
example, Huffman coding assigns code words depending on the probability of symbols.
The length of an output code is approximately equal to the negative logarithm of its
probability [150]. The maximum compression ratio is bounded by the entropy of input
data. The Shannon entropy [150] of an input set of symbols A = (a1, a2, ..., an) with a
probability of occurrence P = (p1, p2, ..., pn) is defined as:

H(A) = −
n∑

i=1

pi log2 pi (3.1)

40



3.4 Data Compression Overview

Data with lower entropy has better compressibility because a small number of symbols
occurs frequently, whereas data with higher entropy is hard to compress. Compression
also depends on the symbol size. Larger symbols can provide higher compression ratio
because larger symbols can be encoded with fewer bits. Larger symbols are better when
the input data has low entropy, however, larger symbols may also not work when the
entropy is high as it becomes difficult to find redundancy with larger input symbols. For
instance, floating point values have higher entropy compared to integers values. That is
why several compression techniques break the floating point number into different sub-
fields such as mantissa, exponent and compress them separately [9, 29, 55, 156]. In
addition to compressibility, symbol size also determines codewords table size. In general,
the number of entries in a codeword table is equal to 2n, where n is the number of bits in
a symbol. For a large symbol size, for instance 32-bit symbols, the number of entries is
very large and storing all of them is not practical. Therefore, larger symbols present the
challenge to keep the codewords table size reasonable and feasible, making the selection
of an appropriate symbol size an important task in a FWC [85].

VWC uses input symbols of different width to achieve higher compression ratio while
limiting the table size. The run length encoding (RLE) and Lempel-Ziv (LZ) are two
well-known compression methods that use variable width encoding. Typically, VWC
uses either static or dynamic dictionary or a combination of both to store the frequently
occurring patterns and encode them with fewer bits. For example, C-PACK [26] uses a
combination of static patterns and a small dynamic dictionary. Usually, the anticipated
frequent patterns such as consecutive zeros, one byte zero-extended words get static codes,
while a dynamic dictionary helps to compress the not so frequent patterns. A dynamic
dictionary plays an important role in VWC as it captures the spatial locality which is
very difficult to exploit statically. In the next subsections, we provide an overview of
compression techniques used as baseline in this thesis.

3.4.1 Huffman Encoding

Huffman encoding, also known as Huffman compression, is based on the evidence that
not all symbols have same probability. Therefore, instead of using fixed-length codes,
Huffman encoding uses variable-length codes based on the relative frequency of symbols.
A fixed-length code assumes equal probability for all symbols and hence assigns same
length codes to all symbols. For example, ASCII encoding uses 8-bit to encode each
symbol. In contrast to fixed-length codes, Huffman encoding is based on the principle
to use fewer bits to represent frequent symbols and more bits to represent infrequent
symbols. Huffman encoding derives the length of codewords by constructing a Huffman
tree based on the frequency of input symbols.

Figure 3.4 shows a step by step example of constructing a Huffman tree. The input is a
list of symbols sorted in increasing order of their probabilities as shown in Figure 3.4a. In
each step, two nodes with the least probabilities are removed from the list and inserted into
the tree connected to an internal node with frequency equal to the sum of the frequencies
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Symb. Prob.

A 0.40

B 0.25

C 0.20

D 0.10

E 0.05

(a) Input symbols
with probability

DE

E D

Symb. Prob.

A 0.40

B 0.25

C 0.20

DE 0.15

(b) First step

CDE

C DE

E D

Symb. Prob.

A 0.40

CDE 0.35

B 0.25

(c) Second step

BCDE

B CDE

C DE

E D

Symb. Prob.

BCDE 0.60

A 0.40

(d) Third step

Root

A BCDE

B CDE

C DE

E D

(e) Huffman tree

Symb. Code

A 0

B 10

C 110

D 1110

E 1111

(f) Codewords

Figure 3.4: A stepwise example of constructing a Huffman tree.
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of two symbols removed from the list. The internal node is also inserted in the list at
its sorted position. For example, E (0.05) and D (0.10) are the two nodes with least
probabilities as shown in Figure 3.4b. These two nodes are removed and connected to an
internal node DE with frequency 0.15 and the internal node DE is inserted into the list
as shown in Figure 3.4c. The process is repeated until there is only one node left in the
list with frequency equal to the sum of the frequencies of all input symbols. This is the
root node of the Huffman tree. The input symbols are the leaf nodes of the Huffman tree
as shown in Figure 3.4e.

Once a Huffman tree is constructed, a codeword for each symbol is derived by traversing
the tree. To assign codewords, a zero or one is assigned to each branch of the tree. Usually,
0 is assigned to each left branch of the tree and 1 is assigned to each right branch of the
tree. A codeword of a symbol is derived by concatenating the 0’s and 1’s while traversing
a Huffman tree starting from the root node to the leaf node representing the symbol.
For example, the symbol B gets the codeword 10 as we need to take a right branch and
then left branch to reach the leaf node representing symbol B from the root node. The
output of traversing the whole tree gives the codewords for all input symbols as shown in
Figure 3.4f. A Huffman code has a prefix property which means that there is no codeword
which is a prefix of any other other codeword. Moreover, a Huffman code is optimal which
means that there is no other way of assigning codewords with minimal average length.

Shannon’s source coding theorem showed that the smallest possible codeword length
is given by Shannon entropy for a given input symbols with probabilities. For the sym-
bols and codewords shown in Figure 3.4, the Shannon entropy is 2.04 bits per symbol,
whereas the weighted average codeword length is 2.10 bits per symbol. The entropy is
calculated using Equation 3.1. The weighted average codeword length is calculated using
Equation 3.2. li is the length of a Huffman codeword assigned to a symbol ai with prob-
ability pi. We see that the weighted average codeword length is only slightly larger than
the calculated entropy. Therefore, the Huffman code is not only optimal prefix code, but
also very close to the theoretical limit established by Shannon.

L(A) =
n∑

i=1

lipi (3.2)

In general, compression techniques using variable-length codes can provide high com-
pression ratio, but they have certain challenges which need to be addressed [10]. For
instance, symbol length plays an important role as discussed before. To generate Huff-
man codes, we need to find the probability of input symbols. Huffman encoding estimates
the probability of input symbols either statically or dynamically. In static probability es-
timation, an extra pass over the input data is needed to find the probability and the
encoding is done in the second pass. In dynamic probability estimation, the probability
is estimated by sampling the part of input for some time and then encoding is performed
on the remaining input. The trade-offs of static versus dynamic probability estimation
and required sampling duration are discussed in detail in Chapter 6.
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Table 3.4: Frequent Pattern Encoding [6].

Prefix Pattern Encoded Data Size

000 Zero run 3 bits (runs up to 8 zeros)

001 4-bit sign-extended 4 bits

010 One byte sign-extended 8 bits

011 Halfword sign-extended 16 bits

100 Halfword padded with a zero halfword 16 bits (the non-zero halfword)

101 Two halfwords, each a byte sign-extended 16 bits (the two bytes)

110 Word consisting of repeated bytes 8 bits

111 Uncompressed word 32 bits (original word)

3.4.2 Frequent Pattern Compression (FPC)

FPC [6] is a significance-based compression that uses the observation that some data pat-
terns occur more frequently and they can be compressed using fewer bits. A significance-
based compression exploits the observation that most values (e.g., 32-bit integers) can
be stored in a fewer number of bits and instead of storing all 32-bits, it only stores the
required number of least significant bits. For example, many narrow-value integers can be
stored in 4, 8, or 16 bits, but they are normally stored in a full 32-bit word (or 64-bit for
64-bit architecture). The research shows that these values occur frequently, thus, storing
them efficiently can save cache capacity, memory bandwidth etc. Moreover, FPC also
exploits the observation that runs of zeros are very common and stores them only once
along with their count.

FPC compresses data on a word-by-word (32-bit) basis. It stores most frequent pat-
terns using a 3-bit prefix code along with the least significant bits required to represent
the data. Table 3.4 shows the 3-bit prefix for the most frequent patterns. FPC can
compress a 32-bit word that is 4-bit sign-extended to 4 bits, one byte sign-extended or
word consisting of repeated bytes to 8 bits, halfword sign-extended or halfword padded
with a zero halfword or two halfwords (each a byte sign-extended) to 16 bits. In essence,
FPC is a static dictionary based scheme that uses prefix and pre-determined patterns to
achieve compression. An advantage of FPC is low compression and decompression latency
because it exploits simple patterns for compression.

Figure 3.5 shows a simple example of compressing an input of 4 words using FPC. The
first word is a 4-bit sign extended, the second word is a one byte sign-extended, the third
word is a halfword padded with a zero halfword, and the last word consists of repeated
bytes. FPC will store them in a compressed form as shown in Figure 3.5. For example,
the first word is stored as 3-bit prefix and 4 bits of data ((0b001)0xC). The second word
is also stored with a 3-bit prefix and 8-bits of data ((0b010)0x8E) and so on. For this
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0xFFFFFFFC 0xFFFFFF8E 0x00001234 0xFAFAFAFA

(0b001)0xC (0b010)0x8E (0b100)0x1234 (0b100)0xFA

128-bit uncompressed

48-bit compressed

Figure 3.5: An example of FPC technique [144].

0xF786FF01 0xF786FF02 0xF786FF03 0xF786FF04

0xF786FF01 0x00 0x01 0x02 0x03

128-bit uncompressed

64-bit compressed

DeltasBase

Figure 3.6: An example of BDI technique with one base.

simple example, the data can be stored in 48 bits instead of 128 bits.

3.4.3 Base-Delta-Immediate Compression (BDI)

BDI compression [130] is a simple and low latency compression technique for on-chip
caches and memory [160]. BDI compression is based on the observation that values
stored in a cache line have high value similarity and low dynamic range i.e., the relative
difference between the values is small. In such a case, a cache line can be represented
using a common base and small differences as deltas. Instead of a single base, multiple
bases can be used to increase the compression ratio. For example, BDI with a single base
will fail to compress a cache line even if only one of the value cannot fit in the delta. Using
different base values, BDI compression scheme can compress data with different dynamic
ranges. The authors show that two base values work best.

Figure 3.6 shows a simple example of BDI compression using a single base. Although,
the uncompressed values are large, the relative difference is very small. The first value
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Table 3.5: C-PACK Pattern Encoding [26].

Prefix Pattern Encoded Output Codeword Length

00 zzzz (zero word) (00) 2b

01 xxxx (uncompressed word) (01)BBBB 34b

10 mmmm (matched a dictionary entry) (10)bbbb 6b

1100 mmxx (matched 2 bytes with a dictionary entry) (1100)bbbbBB 24b

1101 zzzx (one byte zero-extended) (1100)B 12 b

1110 mmmx (matched 3 bytes with a dictionary entry) (1110)bbbbB 16 b

is chosen as the base and the differences are stored as deltas. As deltas require less
space, we can achieve significant compression. Determining the optimal number of bases
is complicated. A typical implementation of BDI uses two base values: zero and first non
zero value in the input. This simple selection of base values allows parallel decompression
by just adding deltas to base values, resulting in a very low decompression latency.

3.4.4 Cache Packer (C-PACK)

C-PACK [26] is a compression technique that has been used for compression at different
levels in memory hierarchy [146]. C-PACK is a mixture of significance based compression
and dictionary based compression. Like FPC, C-PACK also operates on 4-byte word-
by-word basis and compresses the frequently occurring patterns such as zeros, one byte
sign-extended by fewer bits. In addition to encoding frequently occurring patterns with
fewer bits, it also uses a small dynamic dictionary to compress repeated words including
partial matches. Table 3.5 shows the prefix, the encoded pattern, output codeword and
output length in bits. zzzz, zzzx, and xxxx represent a zero word, a word with one-byte
sign extended, and uncompressed word, respectively. mmmm means a complete match
with a dictionary entry, while mmmx and mmxx mean 3 bytes and 2 bytes matched
with a dictionary entry. C-PACK [26] used 16 entries for the dictionary, thus, an output
codeword has 4-bit for the dictionary index. C-PACK initializes the dictionary to zero
and builds it up during compression.

Figure 3.7 shows a simple example of compression using C-PACK. Figure 3.7a shows the
4 input words. Figure 3.7c shows the contents of the dictionary at the end of compressing
all inputs. The dictionary is initially empty. A value is inserted into the dictionary when
there is no match with the fixed patterns as well as no match with any existing values in
the dictionary and the dictionary is not full. C-PACK uses dictionary size of 16.

Figure 3.7b shows stepwise processing of four input words. The C-PACK works as
follows. The input (0x12345678) is first checked for a frequent pattern match and then
for a dictionary match. As there is neither a pattern match nor a dictionary match, the
word is stored uncompressed with its prefix from the pattern table. The dictionary is
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Figure 3.7: An example of C-PACK [26].

updated with the input word (0x12345678) as shown in Figure 3.7c.

The second input (0x000000AB) matches the pattern zzzx. Thus, the pattern table is
checked for its code. The code along with the unmatched byte is stored. The third input
(0x123456AB) has no match with the static patterns, but it has a 3-byte match with a
dictionary entry. The pattern table is looked for the prefix code. Thus, C-PACK outputs
a combined prefix code, a dictionary index, and an unmatched byte. As C-PACK used
dictionary size of 16, we use 4-bit index in the output codeword whenever a dictionary
match happens. The last input (0xFF777ABC) does not match with any static pattern
as well as any entry in the dictionary. The dictionary is updated with the input word
as shown in Figure 3.7c and the prefix for uncompressed word along with the word is
produced as output.

For decompression, C-PACK needs to rebuild the dictionary. This is done by starting
with a dictionary that is initialized to zero values and then constructing the dictionary
backward as the codewords are processed. An advantage of C-PACK is that it uses
a combination of static patterns and dynamic dictionary, enabling the compression of
frequent patterns found in whole input data as well as the patterns which only repeat in
a single block. In general, a dynamic dictionary based compression technique can exploit
redundancy that is hard to determine statically. However, dictionary based algorithms
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usually have higher compression and decompression latency compared to non-dictionary
based algorithms such as BDI. More detailed information on data compression can be
found here [144].

3.5 Summary

In this chapter, we gave an overview of GPU architecture and data compression for GPUs.
We highlighted the differences between CPU and GPU architectures, briefly discussed
the SIMT execution model and wide memory hierarchy of GPUs. We also provided a
short introduction to GPU programming models and briefly highlighted the key features
of GPU architectural simulators. Finally, we discussed data compression, in particular,
we described the memory compression techniques that we use as baseline techniques to
compare our work presented in Chapter 6 and Chapter 7.

In the next chapter, we will present a novel power simulator for GPUs which is the
first main contribution of the thesis. This work is done in collaboration with others as
described in Section 4.1.
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The work presented in this chapter was previously published: J. Lucas, S.
Lal, M. Andersch, M. Alvarez-Mesa, and B. Juurlink, “How a Single Chip
Causes Massive Power Bills GPUSimPow: A GPGPU Power Simulator,” in
Proceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), c© 2013 IEEE.

In this chapter, we present a novel power simulator for GPUs called GPUSimPow. The
power simulator serves multiple purposes towards conducting the research presented in the
thesis. First, we use GPUSimPow to study the energy efficiency of GPU workloads and
understand bottlenecks that lead to low performance and low energy efficiency. Second,
we use GPUSimPow to estimate the energy benefits of architectural techniques proposed
in the thesis to improve the energy efficiency of GPUs.

4.1 Introduction

With processor design becoming more and more complex and chip manufacturing pro-
cesses getting smaller and smaller, the inability of computer architects to produce working
prototypes of their designs for testing is a more pressing problem than ever before. As
chips are rapidly approaching (and nowadays touching) the power wall, the conventional
design space of a processor architecture has been extended by another dimension: en-
ergy efficiency. To optimize a processor for energy efficiency requires a detailed study of
energy-performance trade-offs in all aspects of the processor design space, including both
architectural and circuit design choices.

Over the past years, it has become apparent that the chips consuming the most energy
are modern GPUs. With GPUs turning into major devices for general-purpose computing,
also known as general-purpose computing on GPUs (GPGPU), more and more vendors
are striving to drive GPUs performance up. The inability to manufacture chips to evaluate
architectural design choices, however, remains a problem as does the looming power wall.

So how do the design of new GPU architectures, the inability to manufacture chips just
for testing, and the requirement to not only estimate a chip’s performance, but also its
power during development come together? On the one hand, if we disregard power and
only consider performance, this question has been answered by several researchers. GPU
architects rely on building cycle-accurate architectural simulators [15, 158] in high-level
languages and evaluate novel designs using these simulators. On the other hand, if we only
consider CPUs, there are several accepted tools and frameworks to model and estimate
power consumption such as Wattch [20]. To the best of our knowledge, however, no one
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ever before combined an architectural GPU simulator with a power model to create a
GPU power simulator.

In this work, we seek to mitigate this issue by designing GPUSimPow, a power simulator
for GPGPU architectures. GPUSimPow is a highly parameterizable simulator that is
able to provide an accurate estimate of area, static power and dynamic power of GPGPU
workloads. With this power simulator, computer architects can evaluate their design
choices early from a power perspective, and programmers can gain significant insights of
their programs (kernels) to optimize power consumption from a software perspective. To
make GPUSimPow flexible enough such that alternative architectural design choices can
be explored while still maintaining a reasonably high accuracy, we model the components
of a GPU architecture in two ways. Regular components such as memories are modeled
analytically using the well-known McPAT [92] tool which is based on CACTI 6.5 [155].
Irregular components such as address generation units (AGUs), special-function units
(SFUs) are modeled empirically by acquiring measurement data from real hardware. We
propose a custom power measurement testbed to validate our proposed power simulator
and derive empirical power models of some GPU components.

In summary, this chapter makes the following main contributions:

• We develop a GPU power simulator that is able to provide an accurate estimate
of the area, static power and dynamic power for GPGPU microarchitectures and
GPGPU kernels. Our evaluation on a set of well-known benchmarks shows an
average relative error of 11.7% and 10.8% between simulated and measured power
for GT240 and GTX580, respectively.

• We use hybrid approach to model power which provides both flexibility and high
accuracy to conduct architectural research from power and energy perspective.

• We propose a novel power measurement testbed to accurately measure GPU power
consumption on real hardware down to the individual kernel.

GPUSimPow was developed jointly by Jan Lucas, the author of this thesis, Michael
Andersch, Mauricio Alvarez Mesa, and Ben Juurlink. Text and figures by Jan Lucas
and Michael Andersch are also included in this thesis with their permission to provide
a full overview and evaluation of the GPUSimPow simulator. Jan Lucas developed a
power model for register file, empirical power models for execution units, core and cluster
power and adapted network-on-chip power model from McPAT. He also developed power
measurement testbed used for the validation of the power simulator and development of
the empirical power models. Michael Andersch developed power models for load-store
unit, texture cache, and warp control unit. The author of this thesis developed power
models for shared memory, off-chip memory, special-function units, coalescing unit, and
caches. In addition, the author also modified architectural simulator, gpgpu-sim [15],
to generate activity factors for various components. Ben Juurlink and Mauricio Alvarez
Mesa supervised the work and helped to improve the quality of the writing.
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This chapter is organized as follows. Section 4.2 presents the detailed design of the
power simulator. Section 4.3 describes the power measurement setup used to validate
the power simulator and derive empirical power models for some GPU components. In
Section 4.4, we present results including a quantitative comparison with GPUWattch [90].
Finally, we summarize the contributions of this chapter in Section 4.5.

4.2 Design of GPUSimPow

GPUSimPow is a power simulator for GPGPU workloads, i.e., given a configuration of a
GPU architecture and a GPGPU kernel written in CUDA [123] or OpenCL [74], GPUSim-
Pow is capable of producing both architectural information such as area, static power and
dynamic power for the executed kernel. The simulator is designed to be flexible regarding
the architecture that is simulated to allow architects to use the simulator as a high-level
tool to explore the design space of a GPU architecture. Therefore, the key parameters of
the simulated architecture are supplied using a simple XML-based interface. For exam-
ple, GPUSimPow is able to coherently simulate an architecture with a varied number of
streaming multiprocessors (SMs).

4.2.1 Power Modeling Approach

In general, the power of switching circuits is described by the well-known Equation 4.1 [92].
The first term is the dynamic power that is spent charging and discharging of the capaci-
tive loads when the circuit switches state. An important factor for estimating the dynamic
power is the activity factor α that describes the percentage of the circuit’s capacitance
being charged during switching. The second term in Equation 4.1 is the short-circuit
power that is consumed when both pull-up and pull-down networks in a CMOS circuit
are on for a short amount of time. Thus, the total power consumed by a circuit during
switching is the sum of the dynamic and short-circuit powers. Finally, the third term in
Equation 4.1 is the static power that is consumed due to the leakage of current in the
transistors. The leakage consists of two types: subthreshold leakage, where a transistor
that is switched off leaks current between its source and drain, and gate leakage, where
current leaks through a transistor’s gate terminal.

Ptotal = αCVdd∆V fclk + VddIshort-circuit + VddIleakage (4.1)

4.2.2 Overview of GPUSimPow

Figure 4.1 shows an overview of GPUSimPow. Structurally, GPUSimPow consists of two
main parts. First, a cycle-accurate GPGPU architectural simulator that simulates a given
kernel and generates activity factors α (utilization information) for all components of a
GPU architecture. Second, a chip representation with a power model for each component
that uses the activity information from the architectural simulator to produce power
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Figure 4.1: Overview of GPUSimPow [99]. c© 2013 IEEE

numbers for a given kernel. From the chip representation, we derive statistics about area,
peak power, leakage power, and short-circuit power.

For the cycle-accurate GPGPU simulator, we employ gpgpu-sim [15] that is modified
to produce activity information for all components of the simulated architecture. gpgpu-
sim has been developed for an architecture that is not equal but comparable to many
present GPUs such as NVIDIA’s Fermi [124] or AMD’s GCN [8]. Further details about
the architecture are given in the next Section 4.2.3.

The chip representation and power model are provided by a heavily modified variant
of McPAT [92] and we call it GPGPU-Pow. McPAT uses three tiers hierarchically mod-
eling to provide a flexible and highly accurate power model for CPUs. The architectural
tier breaks down a processor into major components such as cores, caches, and memory
controllers. The circuit tier maps the architectural components to basic circuit struc-
tures such as arrays or clocking networks and the technology tier provides the physical
parameters such as current densities and capacitances of the circuits. Besides hierarchal
modeling, another advantage of McPAT is its combination of analytical and empirical
models for the individual components. We embrace both the hierarchical as well as the
hybrid nature of McPAT and develop a McPAT-based power model for GPUs. On the
one hand, this requires many modifications to McPAT, as many components that are
present in the CPU architecture such as register alias tables cannot be reused for GPUs,
and various core components of GPU architectures such as stacks to handle thread di-
vergence are not present in CPUs. On the other hand, McPAT enables us to utilize all
the integrated low-level technological information, e.g., to scale a GPU power model for
a specific manufacturing process node, we can use the ITRS (International Technology
Roadmap for Semiconductors) roadmap scaling techniques already present in McPAT.

4.2.3 Modeled Architecture

GPU microarchitecture modeled in our power simulator is comparable to the one mod-
eled in gpgpu-sim to ensure a good “fit” between the performance simulator and power
model. On a high level, it models a single instruction multiple threads (SIMT) architec-
ture that uses a stack-based divergence handling mechanism that is a well representative
of contemporary GPUs.
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Figure 4.2: High-level overview of the modeled architecture.

Figure 4.2 shows a high level overview of the modeled GPU architecture. On a high
level, a GPU chip in our model consists of a Compute Subsystem, Memory Subsystem, and
Off-chip Memory. The compute subsystem contains a set of Streaming Multiprocessors
(SMs) which are the compute horses of a GPU. The main components of the memory
subsystem are Interconnection Network (NoC), L2 Cache, and Memory Controller (MC).
Besides the on-chip components, we also model the Off-chip Memory. GPUs employ
graphics double data rate (GDDR), a special type of DRAM designed for high bandwidth
as Off-chip memory. For NoC, MC, and PCIe, we reuse highly configurable models already
present in McPAT and adjust their parameters to fit the requirements of our model. The
internal structure of the compute subsystem consists of a Warp Control Unit (WCU), a
highly banked register file, a set of SIMD execution units (Integer Units, Floating Point
Units, Special Function Units), and a load/store unit (LDSTU). More details of these
components are presented in the following subsections.

Warp Control Unit

A Warp Control Unit (WCU) represents the front end of a single SM and it is responsible
for keeping the execution back end, i.e., the functional units and the load/store unit
busy with instructions at all times. Thus, a WCU handles thread management (e.g.,
formation of warps from threads and the relation of per-thread control flow under warp
constraints), warp scheduling, warp instruction fetching, decoding, dependency resolution,
and renaming. An overview of the WCU model is depicted in Figure 4.3.

The information needed for each warp to fetch instructions and manage threads of a
warp is contained in a single multi-ported RAM table called Warp Status Table (WST).
The WST contains one entry for each in-flight warp an SM can handle. A round-robin
warp scheduler is modeled to fetch instructions. Such schedulers consist of a set of invert-
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Figure 4.3: Overview of the front end of a GPU called warp control unit in our model [99].
c© 2013 IEEE

ers, a wide priority encoder, and a phase counter. These components have been modeled
from appropriate circuit plans [82] using McPAT’s circuit and technology layers. After
instructions have been fetched from the I-Cache, they are decoded. For this, we reuse the
instruction decoder hardware models already present in McPAT.

GPUs use Single Instruction Multiple Thread (SIMT) execution model which allows
the execution of only single instruction at a time for a warp. As the individual in-flight
threads in a warp can execute different dynamic instruction paths due to branching,
the execution of threads with different program counters (PCs) is serialized. To achieve
this serialization and keep track of the thread IDs that have to execute certain branch
outcomes, the hardware uses a stack memory called the reconvergence stack [32]. For
each individual in-flight warp, the hardware maintains a separate stack. In our model,
a stack consists of tokens, each of which contains an execution PC, a reconvergence PC,
and an active mask for that warp and code block as shown in Figure 4.3.

Once an instruction has been decoded, a WCU places the instruction into an instruc-
tion buffer (IB) slot. An instruction resides in its IB slot until it is ready to execute. An
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instruction is ready to execute if its register dependencies have been resolved (in score-
boarded architectures) or the previous instruction from the same warp has been commit-
ted (in blocking barrel-processing architectures). The instruction buffer is a cache-like
structure that is tagged by the warp ID and has an associativity greater than one, i.e.,
each instruction can be buffered in one of the several slots tagged by its parent warp ID.
For resolving register dependencies, GPUs (e.g., Fermi) use simple approaches based on
scoreboarding [33]. In our model, a scoreboard is a cache-like table tagged by a warp ID.

Register File

The GPU register file model is based on the NVIDIA patent [95] and built from multiple
single ported RAM banks. Operands are collected over multiple cycles to simulate a
multi-ported register file. Different threads will have their registers stored in different
banks. This scheme increases the area density of the register file. A crossbar is used to
connect the different register banks to a set of operand collector units which are two-ported
four-entry register files.

Execution Units

The basic unit of execution in a SIMT unit is a warp which is a group of threads. A
GPU has a set of SIMT units which execute the threads of a warp in lock step. For
example, a SIMT unit in the NVIDIA GT240 has eight floating point units (FPUs), eight
integer units (IUs) and two special function units (SFUs). SFUs execute transcendental
instructions such as sine, cosine, reciprocal, and square root. In our power model, we use
the area numbers published by Sameh et al. [51] for FPUs. We use numbers published
by Caro et al. [38] for power and area of the SFUs with scaling for the desired process
technology. We develop our own measurement based empirical power models for integer
units and floating point units (see Section 4.2.4).

Load/Store Unit

A load-store unit (LDSTU) is functionally responsible for handling instructions that read
or write any kind of memory. In our power model, the LDSTU encapsulates the top-tier
memory structures of an SM, i.e., L1 cache, shared memory (SMEM), constant cache and
L2 cache. In the future variant of the model, the LDSTU will contain the texture caching
subsystem, i.e., texture cache and texture mapping units, as well.

An high-level overview of the LDSTU is depicted in Figure 4.4. As the figure shows,
a memory instruction for an entire warp is first passed to the address generators. Given
base addresses as well as strides and offsets, the address generation unit (AGU) generates
one memory address per thread in the warp. Given reasonable warp sizes of 32/64 threads
in modern architectures, this requires very high bandwidth address generation units that
supply the later stages of the memory subsystem with 32/64 memory addresses each cycle.
We model the complete AGU as an array of parallel high-bandwidth sub-AGUs (SAGU),
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Figure 4.4: High-level overview of the internals of a GPU load/store unit [99]. c© 2013
IEEE

each of which is able to generate 8 memory addresses per cycle [52]. Given the memory
address bundle for all threads in a warp, the address bundle is further analyzed depending
on the type of memory an instruction accesses.

If an instruction accesses constant memory, the addresses are checked for equality. The
number of generated constant cache / constant memory accesses is equal to the number
of different addresses in the address bundle, e.g., if all addresses are equal, the memory
access can be serviced with a single constant memory request, allowing for high-bandwidth
operation. The constant memory is cached in the memory hierarchy [169].

If an instruction accesses global memory, it is first coalesced before passing to the L1/L2
cache/DRAM. The memory coalescing logic is modeled based on a NVIDIA patent [125]
and consists of an input queue, output queue, pending request table, and a finite state
machine. The goal of coalescing is to service the addresses requested by the memory
access in as few memory requests as possible. We find that CACTI cannot be used to
model buffers with a few but very large entries such as the pending request table and
input queue of the coalescer. Therefore, we compute the total amount of bits which must
be held in the coalescing system at any time and then model the required storage using
D Flip Flops.

In several modern GPUs, shared memory and L1 data cache are portions of the same
physical memory structure. The distribution of physical memory between shared memory
and L1 data cache is configurable. Therefore, we model shared memory and L1 data
cache as an integrated structure and convert accesses to shared memory and L1 hits to
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Figure 4.5: High-level overview of the shared memory model.

accesses to same integrated memory structure. Shared memory is used for inter-thread
communication in a thread block. To provide high bandwidth, the shared memory is multi
banked like register file. Figure 4.5 shows the high-level overview of the shared memory
model. Besides the physical memory banks, the shared memory consists of interconnects
for addresses and data, both modeled as crossbars, and a bank conflict checking unit [34].
In Fermi architecture, shared memory has 32 banks with the same number of inputs and
outputs for the crossbars. Shared memory and register file have very similar structure.

L2 cache is shared by all streaming multiprocessors (SMs) and is connected to all SMs
through an interconnection network. We use CACTI to derive an analytical model for
the L2 cache.

Global Memory

The global memory in GPUs has high bandwidth but long latency. The current gener-
ation of GPUs such as Fermi use special high bandwidth Graphics Double Data Rate
Synchronous Graphics Random Access Memory (GDDR5 SGRAM) to implement the
global memory. The power consumed by a typical DDR or GDDR chip is the sum of
background, activate, read/write, termination, and refresh power [107, 65]. We extract
numbers for each of these components from industry data sheets [107, 65], however, data
sheet numbers need to be scaled according to actual usage. For example, the actual read-
/write power depends on the command scheduling, i.e., the percentage of read and write
commands. We extract such activity factors from gpgpu-sim.
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4.2.4 Deriving Power Empirically

We build empirical power models for the Integer Units (IUs) and Floating Point Units
(FPUs) by stressing these units using microbenchmarks and measuring the power using
our custom power measurement setup described in Section 4.3.1. As described earlier
in Section 4.2.3, GPUs employ SIMT execution model to execute single instruction for
multiple threads. We can use this SIMT-style of execution to our advantage by enabling
different numbers of execution units while keeping the activity of all other units, except for
the register files, constant. This way, we can estimate power consumption of the execution
units with reasonably high accuracy. For deriving the power models for both IUs and
FPUs, we launch one thread block for each SM and use 512 threads per block to ensure all
streaming multiprocessors (SMs) and targeted execution units are busy. For stressing the
IUs, we use Linear Shift Feedback Register microbenchmark, while for stressing the FPUs
we use Mandelbrot set iterations. We use loop unrolling to make the loop overhead of our
microbenchmarks negligible. In both the cases, we alternately configure the test kernels
to use 31 enabled threads per warp (config1) and 1 enabled thread per warp (config2).
Both configurations have the same execution time. The energy per instruction (EPI)
can be calculated by using a simple calculation shown in Equation 4.2. We calculate
the power difference between these two kernel launches and divide the result by the
number of SMs (#SM), difference in execution units enabled in an SM (#coresEnabled),
number of executed instructions (#executed_ins) and SMs frequency (fclk) to arrive at
an estimate for the energy used by a single execution unit executing a single instruction.
Our measurements show that integer instructions use approximately 40 pJ per instruction
while floating point instructions use about 75 pJ per instruction. NVIDIA reports 50 pJ
per floating point instruction [72].

EPI = (power_config1−power_config2)/(#SM∗#coresEnabled∗#executed_ins∗fclk)
(4.2)

We develop power models for all components to the best of our knowledge where pub-
licly available information is sufficient. However, there are some components of GPU
architecture such as the raster operations pipelines (ROPs), fixed-function video decoder
where publicly available information is especially scarce. These components also consume
leakage power even if they are not used in GPGPU applications. While we cannot model
such components accurately because of the lack of information, nonetheless, we know
that these components are part of the chip. To be able to account for the amount of
power they contribute, we use our measurement setup to build empirical models of “base
power” for SMs and SMs clusters (called Thread Processing Clusters (TPCs) or, more re-
cently, Graphics Processing Clusters (GPCs) in NVIDIA terminology). These base power
numbers are derived by measuring SM/cluster power and subtracting the power of all
components we know about. Figure 4.6 shows an example of the measurement used to
estimate the cluster power. We execute the same kernel 12 times with the increasing num-
ber of thread blocks and measure the power consumption. We start with one thread block
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Figure 4.6: Power measurement results of GT240 running the same kernel 12 times with
increasing number of thread blocks. GT240 features 12 SMs distributed
equally over 4 SMs clusters [99]. c© 2013 IEEE

and increase the number of thread blocks by one for the next iteration. The figure shows
that increasing the number of thread blocks gradually increases the power consumption.
More interestingly, the figure shows that up to 4 blocks, adding another thread block in-
creases power by a larger margin than beyond 4 blocks. The reason for this is the way the
global scheduler distributes thread blocks among SMs. The global scheduler first assigns
the thread blocks to unoccupied clusters in round robin fashion, i.e., when a second thread
block is added, it is scheduled on an SM in a different cluster than the first one. As we
see from the figure, the activation of such an SMs cluster consumes about 0.692W power.
Once all clusters are activated, in this case four, adding more thread blocks increases
power by a relatively smaller margin. This power is attributed to the activation of an
additional SM. We also notice that the activation of the very first SM/cluster consumes
even more power than the other clusters. This extra power (3.34W) can be attributed to
the activation of the global scheduler which distributes thread blocks to SMs.

4.3 Experimental Setup

To validate GPUSimPow, we compare the power estimated by the simulator with the
real power consumed by the hardware for various GPGPU workloads. In this section,
we describe our experimental setup to estimate and measure power. The custom power
measurement testbed to measure power consumption of real GPUs as well as to derive
empirical power models is explained in Section 4.3.1. The test system configuration is
described in Section 4.3.2 and the benchmarks are presented in Section 4.3.3
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Figure 4.7: Power measurement testbed with GT240 graphics card [99]. c© 2013 IEEE

4.3.1 Power Measurement Testbed

We develop our custom power measurement testbed to validate the power simulator
against real GPUs. The power measurement testbed consists of hardware and software
components. Figure 4.7 shows the hardware part of the setup with NVIDIA GT240 graph-
ics card. The hardware consists of a riser card with 20mΩ probing resistors on the 12V and
3.3V rails to probe voltages and currents going to the GPU via the PCIe slot. NVIDIA
GTX580 graphics card also has two external PCIe power connectors. To measure the
power transmitted via these connectors we inserted 10mΩ probing resistors into the PCIe
power cables going to card. We design a custom signal conditioning board to convert the
voltages into signals that can be easily measured by off-the-shelf data acquisition (DAQ)
hardware. A resistive divider is used to scale the voltages into 0 − 5V range. The voltage
drops over the sensing resistors are amplified and shifted into a usable common mode
range using Analog Devices AD8210 Current Shunt Monitors. After signal conditioning,
the signals are sampled using a NI USB-6210 USB DAQ at a rate of 31.2kHz. Our re-
sistive voltage divider is built from 1% resistors and has a gain accuracy of ±1.7% and
no offset error. The AD8210 has a gain accuracy of ±0.5% and an offset error of ±1mV
at its output. At 12V , this offset error translates to an error of up to 60mW in power
measurements. The error range of signal conditioning and measurement is thus ±1.5% for
currents and ±1.7% for voltages. In the relevant −5 to 5V range, the DAQ has a specified
gain accuracy of 0.0085% and an offset error of 0.1mV . Not taking the small offset errors
into account, overall, our system thus measures power within ±3.2%. We developed a
custom measurement tool that controls the DAQ and calculates power and energy from
the measured voltages and currents. This tool is capable of using a GPU profiler to get
start and end timestamps of the kernels running on the GPU. Using this information and
the measured power waveform, the average power and amount of consumed energy can
be calculated for each kernel execution.
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Table 4.1: Key features of GT240 and GTX580 used for experimental evaluation [99].
c© 2013 IEEE

Feature GT240 GTX580

#SMs 12 16

#Threads per SM 768 1536

#FUs per SM 8 32

Uncore clock 550 MHz 822 MHz

Shader-to-Uncore 2.47× 2×

#Warps in-flight 24 48

Scoreboard × X

L2-$ size × 768KByte

Process node 40nm 40nm

4.3.2 System Configuration

For evaluating GPUSimPow, we choose two different NVIDIA GPU architectures to show
our power simulator configurability. Table 4.1 shows the key parameters of both the GPUs.
GT240 graphics card is based on Tesla architecture and provides a good insight of many
key features of modern GPUs. An initial advantage of using Tesla architecture is that
gpgpu-sim simulator shows the highest correlation to real hardware for such architectures.
GT580 is based on Fermi architecture. GT240 is a low-end graphics card while GTX580
is a high-end enthusiastic market graphics card.

We perform both measurements and simulations for a set of kernels selected from recent
GPGPU benchmark suites (see next Section 4.3.3) for each of the two GPUs presented
in Table 4.1. For each kernel and GPU, we record measured and simulated static and
dynamic power as well as measured and simulated execution time. Table 4.2 shows the
key parameters of the experimental environment used to acquire the results. To measure
the static power, we run the same benchmark at stock frequency and at a 20% lower
frequency. Then, we perform linear extrapolation from the two data points to estimate
the power the chip would consume at a frequency of 0 Hz. As Equation 4.1 shows, there
is no dynamic power consumption at 0 Hz and therefore, the result of the extrapolation
must be equal to the static power of the chip. Unfortunately, this methodology to measure
static power is only possible for the GT240 card because NVIDIA Linux drivers do not yet
support changing the clock speed for the GTX580. Therefore, we measure static power of
the GTX580 by measuring the idle power between two kernel executions and multiplying
it by the ratio between idle power and static power we found on the GT240.
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Table 4.2: Summary of our experimental setup [99]. c© 2013 IEEE

Feature Measurement Simulation

OS Ubuntu 10.10 Ubuntu 10.10

Kernel 2.6.35-22 2.6.35-22

NVIDIA driver 304.43 -

CUDA version 3.1 3.1

gpgpu-sim base version - 3.1.1

McPAT base version - 0.8

4.3.3 Benchmarks

Table 4.3 shows the benchmarks used for the experimental evaluation. The benchmarks
are taken from the popular Rodinia benchmark suite [25], CUDA SDK [123] and gpgpu-
sim [15], covering a wide variety of application domains. As our analysis focuses on the
power consumed by a GPU, we are only interested in the GPGPU kernels present in each
benchmark. The second column of Table 4.3 shows the number of different kernels in each
benchmark. In some benchmarks, there are kernels with very short execution time (less
than 500 µs). Because these kernels are too short for reliable measurements, we modify
such benchmarks to execute the same kernel 100 times. The lower part of Table 4.3 shows
5 more benchmarks included from gpgpu-sim [15]. These benchmarks are included to
expand the comparison space in Section 4.4.3.

4.4 Results

In this section, we present our experimental results. Section 4.4.1 compares simulated
and measured power. Section 4.4.2 shows power profiling capabilities of GPUSimPow.
Section 4.4.3 quantitatively compares GPUSimPow and GPUWattch [90].

4.4.1 Simulated and Measured Power

For each benchmark, we estimate and measure the total power consumed by a GPU for
the execution of each of its kernels. For kernels that are executed multiple times during
one benchmark run, we calculate arithmetic average. In the end, we report simulated and
measured dynamic power for each kernel as well as simulated and measured static power
for the GPU. As static power is consumed regardless of the circuit’s switching activity, it
is same for each kernel.

Table 4.4 shows the estimated static power and area of both GPUs. Using the static
power measurement technique explained in Section 4.3.2, we estimate the static power of
GT240 to be 17.6 W. The card seems to do some power gating to reduce the static power
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Table 4.3: GPGPU benchmarks used for experimental evaluation [99]. c© 2013 IEEE for
the upper half of the table.

Name #Kernels Description Origin

backprop 2 Multi-layer perceptron training Rodinia

heartwall 1 Ultrasound image tracking Rodinia

kmeans 2 k-means clustering Rodinia

pathfinder 1 Dynamic programming path search Rodinia

bfs 2 Breadth-first search Rodinia

hotspot 1 Processor temperature estimation Rodinia

nw 2 DNA sequence alignments Rodinia

matmul 1 Matrix-matrix multiplication CUDA SDK

blackscholes 1 Black-Scholes PDE solver CUDA SDK

mergesort 4 Parallel merge-sort CUDA SDK

scalarprod 1 Scalar product of two vectors CUDA SDK

vectoradd 1 Addition of two vectors CUDA SDK

libor 2 LIBOR swaption portfolio pricing gpgpu-sim

lps 1 3D Laplace solver gpgpu-sim

ray 1 Ray tracing gpgpu-sim

sto 1 Distributed storage systems gpgpu-sim

nn 4 Neural network gpgpu-sim

when no kernel is running on it. When no kernel is running, the card consumes about
15 W. While for some milliseconds before and after the execution of a kernel, the card
consumes about 19.5 W. About 90% of the power consumed by the card in this state thus
seems to be static power. GTX580 is using 90 W in the same state, so we estimate its
static power to be 80 W.

Figure 4.8a shows the total simulated and measured power results for GT240. Each
bar in the figure is divided into two parts. The first part is the static power that is same
for all kernels and the second part is dynamic power that is kernel specific. In general,
the figure shows strong similarity between the measurement and simulation results for
the most benchmarks. For all benchmarks except blackscholes and scalarProd the
simulator overestimates the power consumed by the card. When averaging errors, we
always average the absolute value of errors, so that under- and overestimates can not
cancel out. The average relative error is 11.7% for all kernels. The maximum relative
error of 35.4% occurs in the mergeSort3. This is likely a measurement artifact. The
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Table 4.4: Simulated and measured static power and area of GT240 and GTX580 [99].
c© 2013 IEEE

Static [W] Area [mm2]

GT240
Simulated 17.9 105

Measured 17.6 133

GTX580
Simulated 81.5 306

Measured 80.0 520
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Figure 4.8: Measurement and simulation results for all benchmarks. Bars with the same
benchmark name but different number, e.g., bfs1 and bfs2, correspond to
different kernels of the same benchmark. Each bar shows the total power, i.e.,
the sum of static and dynamic power [99]. c© 2013 IEEE

execution time of the kernel is short (1 ms) and the benchmark could not be changed to
call it multiple times because the kernel does in-place processing of its data.
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The simulator slightly overestimates the power consumed by the chip. This trend is
mostly caused by the overestimation of simulated dynamic power as the simulated static
power is just 0.3W (1.7%) larger than the measured static power. Not considering static
power, the average relative error for dynamic power is 28.3%. The estimated chip area is
smaller than the actual chip area (105.0mm2 vs. 133mm2).

Figure 4.8b shows the results of our experiments for GTX580. We again notice strong
similarity between simulated and measured power. This also shows that our empirically
derived models also work well on GTX580 even though they are obtained using the GT240.
The average relative error for GTX580 is 10.8%. scalarProd is the kernel with the largest
relative error (25.2%) for GTX580. The average relative error for the dynamic power on
GTX580 is 20.9%. The estimated static power of GTX580 is 81.5 W which is very close
to the measured static power from the real hardware (80 W). As explained in Section
4.3, we could not use measurements at different clock speeds for GTX580 to measure
its static power. As a result, we use a different method to measure the static power of
GTX580. The better match between the measured static power and the simulated static
power could be a result of the more accurate static power estimate by GPUSimPow or it
could be caused by the different methodology we used for GTX580.

4.4.2 Power Profiling

While an accurate estimate of the total power consumption is useful, the distribution of
power consumption over the individual components even matters more. As GPUSim-
Pow contains power models for the internals of each SM, interface and controller on a
GPU, it automatically produces detailed power statistics for these internals. Therefore,
it is possible to generate a power profile for a particular benchmark that breaks the
overall power down to individual components. Table 4.5 shows such a power profile for
the blackscholes benchmark. Please note that the table does not include the power
consumed by the external DRAM (4.3 W).

The top part of the table shows both static and dynamic power for the top-level com-
ponents of GT240. It can be seen that by far the largest fraction of the total power is,
as one would expect, consumed by the SMs (82.2%). Previous researchers have reported
similarly high power consumption by SMs [53]. Gebhart et al. [53] estimate the total
SMs power to be 70% of the entire chip. According to the output of GPUSimPow, the
next most power consuming component is the network on chip (7.3%), followed by the
memory controller (6.1%) and PCIe controller (4.1%). Note that some of the GPU com-
ponents such as the global scheduler, video decoder are not modeled in detail due to lack
of publicly available information. Therefore, the power consumed by these components is
included in the (per-core) undifferentiated core and base power.

The bottom part of Table 4.5 shows the power consumed by the individual components
of a single SM. Overall, an SM consumes 2.31 W. As the table shows, surprisingly, a large
fraction of the total power is attributed to the SM base power (8.6%) and undifferentiated
core (38.3%). While the former includes all the per-core components we could only model
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Table 4.5: blackscholes power breakdown on the entire GT240 GPU (top) and on a
single SM (bottom) [99]. c© 2013 IEEE

Static [W] Dynamic [W] Percent

GPU

Overall 17.934 19.207 100.0

SMs 15.393 15.132 82.2

NoC 1.484 1.229 7.3

Memory Controller 0.497 1.753 6.1

PCIe Controller 0.539 0.992 4.1

SM

Overall 1.283 1.031 100.0

Base Power 0.000 0.199 8.6

WCU 0.042 0.089 5.7

Register File 0.112 0.173 12.3

Execution Units 0.009 0.556 24.4

LDSTU 0.234 0.014 10.7

Undifferentiated Core 0.886 0.000 38.3

empirically due to the lack of information (see Section 4.2.4), the latter includes a per-
core fraction of the global GPU components that could only be modeled empirically.
As we have no detailed power models for components included in the undifferentiated
core, we cannot generate any activity factors for them in gpgpu-sim and thus the entire
power consumption of the undifferentiated core is attributed to static power. Taking base
power and undifferentiated core aside, the most power is consumed by the execution units
(24.4%). After the execution units, the next most power is used in the register file (about
12.3%). This number has been confirmed by previous research [53]. As one would expect
from a SIMD architecture, the smallest part of the SM power is consumed by the front end
of the GPU, i.e, the warp control unit (5.7%). GPUSimPow enables even more detailed
analysis, e.g., investigating the power consumed by the different memories in the warp
control unit or investigating the power impact of code sections with branch divergence on
each hardware unit in detail. For reasons of conciseness, however, no such investigations
are presented in this chapter.

4.4.3 GPUSimPow vs. GPUWattch

GPUSimPow [99] was published in April 2013. A very closely related GPU power simula-
tor called GPUWattch [90] was published in June 2013. Like GPUSimPow, GPUWattch
is also designed by integrating gpgpu-sim [15] with a heavily modified variant of Mc-
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Figure 4.9: GPUSimPow vs. GPUWattch.

PAT [92]. GPUWattch also adds GPU-specific components such as streaming multipro-
cessor pipeline, register file, shared memory to McPAT and adapts a few components
already present in McPAT such as memory controller, NoC to GPU requirements. Thus,
both GPUSimPow and GPUWattch have a similar design philosophy, warranting a com-
parison between them.

In order to quantitatively compare GPUSimPow and GPUWattch, we simulate a set
of benchmarks using both the simulators and note simulated power. We also measure
power consumed on real hardware by using our custom power measurement testbed. Fig-
ure 4.9 shows the simulated power reported by GPUSimPow and GPUWattch as well as
the measured power for GTX580 for a set of kernels. Figure 4.9 shows that in general
GPUSimPow follows the measured power more closely than GPUWattch. GPUSimPow
has an average relative error of 10.8%, while GPUWattch has an average relative error
of 20.5%. Figure 4.9 uses more benchmarks than the results presented in Section 4.4.1
because we pick additional benchmarks to expand the comparison space. From the re-
sults shown in Figure 4.9, we conclude that in general, both the simulators follow the
measured power trend, however, GPUSimPow is more accurate than GPUWattch. Unfor-
tunately, it is very hard to pinpoint which GPU components are modeled more accurately
in GPUSimPow than GPUWattch or vice versa because it is tough to accurately validate
component-level power. However, both the simulators validate static and dynamic power
consumption of GPUs under test and GPUSimPow estimates static power more accurately
than GPUWattch. GPUSimPow is validated against GTX580 which is a Fermi architec-
ture, while GPUWattch is validated against GTX480 which is also a Fermi architecture.
GPUSimPow estimates the static power of GTX580 to be 81.5 W, while the measured
power is 80 W. GPUWattch estimates the static power of GTX480 to be 41.9 W, while
the measured power is 59 W. The relative error is only about 2% for GPUSimPow, while
it is about 29% for GPUWattch.
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4.5 Summary

In this chapter, we presented a novel power simulator for GPUs called GPUSimPow that
can provide an accurate estimate of the area, static power and dynamic power. We
designed GPUSimPow by integrating a modified version of gpgpu-sim, a cycle-accurate
architectural simulator for GPUs, and a heavily modified McPAT, a power simulator for
CPUs. We used hybrid approach for power modeling that improved flexibility compared
to empirical approaches and accuracy compared to analytical approach. We validated
the power simulator by using a highly accurate custom power measurement testbed. Our
evaluations on a set of well-known benchmarks showed that GPUSimPow has an average
relative error of 11.7% and 10.8% between the simulated power and measured power for
GT240 and GTX580, respectively. As GPUSimPow is highly configurable, programmers
and computer architects can accurately estimate the power consumed by different designs
without building an actual chip, thereby enabling architectural design space exploration
from power and energy perspective.

The component level power profiling capabilities of GPUSimPow demonstrated its us-
ability not only for estimating the total power consumption but also down to the detailed
individual components. These power profiles can be used to drive power optimizations.
In its current state, GPUSimPow is a very useful tool to gain valuable insights into where
power is consumed in a GPU. However, as the power breakdown revealed, a large fraction
of the simulated power is currently attributed to components that are not modeled in
detail, i.e., the “undifferentiated core” due to the lack of available information. More
research needs to be done for creating accurate models of these components.

In the next chapter, we will use GPUSimPow to study the performance and energy
efficiency of GPU kernels. We will identify bottlenecks that lead to low energy efficiency
in GPUs. We will also study the power consumption of a GPU at components level and
study the correlation between components power consumption and workload metrics.
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Performance Bottlenecks

The work presented in this chapter was previously published: S. Lal, J. Lu-
cas, M. Andersch, M. Alvarez-Mesa, A. Elhossini, and B. Juurlink, “GPGPU
Workload Characteristics and Performance Analysis,” in Proceedings of the
IEEE International Conference on Embedded Computer Systems: Architec-
tures, Modeling, and Simulation (SAMOS), c© 2014 IEEE.

In this chapter, we study the energy efficiency of a wide range of GPGPU kernels and
investigate the bottlenecks that lead to low performance and low energy efficiency. We
use the power simulator presented in the last chapter to study energy efficiency. We also
study GPU power consumption at the components level and investigate their correlation
with workload metrics.

5.1 Introduction

GPUs are massively multi-threaded, throughput oriented devices that employ a large
number of parallel threads to achieve high throughput. The peak throughput of GPUs
is a magnitude higher than CPUs. The higher throughput also comes with higher power
consumption. However, GPUs are more energy-efficient devices [64] compared to CPUs,
as performance per watt of GPUs is much higher than CPUs. For example, NVIDIA’s
GTX 690 has 18.7 GFLOPS/W (single precision) while Intel’s Haswell i7 4770K has
5.3 SP GFLOPS/W (single precision). However, due to various performance bottlenecks
which result in under-utilization of resources, the achieved performance per watt of GPUs
is often much lower than what could be gained theoretically. There are several factors
that contribute to low performance such as low occupancy, limited memory bandwidth,
control flow divergence, and memory divergence [85, 145, 135, 106, 50].

To create energy-efficient techniques at the architectural level, we need to gain GPU
power consumption knowledge at a fine-grained level and understand the bottlenecks that
lead to low performance and low energy efficiency [43, 72]. Therefore, in this chapter we
study GPU power consumption at the components level for a diverse set of workloads
and investigate the bottlenecks which cause low performance and low energy efficiency.
We also explore the correlation between workload metrics such as IPC, SIMD utilization
and components power consumption to understand how workload characteristics affect
power consumption. Moreover, we study workload characteristics at a kernel level instead
of a benchmark level because kernels from the same benchmark might have completely
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different characteristics.

To investigate the bottlenecks for low performance, we divide the low-performance
kernels into two categories: low occupancy and full occupancy. The low occupancy kernels
are further divided into different categories depending on the resources their occupancy is
limited by. We increase the occupancy of each category by increasing the corresponding
resources and study if high occupancy helps in achieving higher performance and energy
efficiency. We show that increasing the occupancy helps in increasing performance and
energy efficiency for most of the kernels, but just increasing occupancy is not enough to
achieve desired performance. We also analyze full occupancy kernels and study if they
are limited by memory bandwidth, low coalescing efficiency, or low SIMD utilization.

In summary, we make the following contributions in this chapter:

• We study the energy efficiency of a wide range of kernels and show that most kernels
have low performance and low energy efficiency.

• We divide the kernels into high performance and low performance categories and
further investigate the bottlenecks of low-performance category.

• We show that increasing occupancy does help to increase performance and energy
efficiency of low occupancy category.

• We also analyze kernels having full occupancy but still performing low and study
if these kernels are limited by memory bandwidth, low coalescing efficiency or low
SIMD utilization.

• We study power consumption at the components level and show the most power
consuming components in each category.

• We also show the existence of a correlation between workload metrics and compo-
nents power consumption.

The chapter is organized as follows. Section 5.2 presents GPU energy efficiency and our
bottlenecks investigation methodology. In Section 5.3, we explain experimental setup.
Section 5.4 presents investigation results. Finally, we summarize the contributions of this
chapter in Section 5.5.

5.2 Performance Bottlenecks Investigation Methodology

In this section, we first study the energy efficiency of a large number of kernels and
then provide an overview of our methodology to investigate bottlenecks that cause low
performance and low energy efficiency.
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Figure 5.1: Energy efficiency for a set of kernels on GTX580 [84]. c© IEEE 2014

5.2.1 GPU Energy Efficiency

GPUs are energy-efficient devices at full utilization. This is demonstrated by the inclusion
of GPUs in all the top ten supercomputers in the green 500 list [2]. However, due to
various bottlenecks which result in under-utilization of resources, the performance per
watt of GPUs is much lower than what could be gained at full utilization. Energy per
instruction (E/I) and IPC per watt (IPC/W) are metrics often used to study the energy
efficiency of GPU workloads. Figure 5.1 shows the E/I (nJ) and IPC/W against IPC for
several kernels. Each point represents a kernel. For a description of benchmarks please
refer to Section 5.3.3. The figure shows that the E/I increases with the decrease in IPC
which results in low energy efficiency for kernels with low IPC. The exact cut for low IPC
may be a point of open discussion, but the trend shows that the lower IPC results in
lower energy efficiency. For this study, we classify the kernels with IPC >50.5% of peak
IPC into high performance (HP) category and kernels with IPC <= 50.5% of peak IPC
into low performance (LP) category. We choose the cut at 50.5% instead of 50% because
there is one kernel with IPC 50.5% and it lies closer to LP category than HP category.
The peak IPC is 1024 (#SM×#FU per SM×2 = 16×32×2 = 1024) for the simulated
GPU configuration described in Table 5.2. There is a factor of 2 in the formula because
gpgpu-sim simulates a full warp at half frequency [15].

The average E/I for the HP and LP category is 0.27 nJ and 2.01 nJ, respectively. The
later is 7.5× less energy efficient compared to former, a huge difference which is not good
for the future growth of high performance computing. For example, to build an exascale
machine (a billion billion calculations per second) in a power budget of 20MW requires
an energy per instruction of 10 pJ [36].

The HP and LP categories have 21 and 47 kernels, respectively and the average IPC
for the former is 741 and 250 for the later, which is less than 25% of the peak IPC.
Surprisingly, more than 69% of the kernels belong to the LP category. Blem et al. [17]
also notice that over half of the benchmarks they study have IPC less than 40% of the peak
IPC for Tesla C1060. The figure also shows that the IPC/W decreases with the decrease
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Table 5.1: Resource constraint for full occupancy [84]. c© IEEE 2014

Resource Max Required for full occupancy

CTA limit 8 Min 192 threads/CTA

Registers 32K Max 21/thread

Shared memory 48KB Max 6KB/CTA

in IPC. The average IPC/W for HP and LP category is 4.61 and 1.65, respectively. Thus,
the LP category has low performance and energy efficiency. In the following section, we
describe our methodology to investigate bottlenecks for low performance.

5.2.2 Methodology

GPUs are high throughput devices and use a large number of threads to hide the long
latency of operations. The number of threads allocated to a streaming multiprocessor
(SM) of a GPU is noted by a metric called occupancy. It is defined as a ratio of threads
allocated to an SM and the maximum number of threads that can be allocated to an
SM. A certain minimum occupancy, which may vary from kernel to kernel depending
on ILP, the ratio of arithmetic to memory operations, etc., is necessary to hide latency
and to achieve high throughput. The occupancy depends on parallelism in a kernel, the
resources requested by the kernel and the resources available on the GPU. We do not
consider those kernels for low-performance analysis which do not have enough parallelism
and hence also do not have enough threads to fill all the SMs. We argue that although it
might be possible to get higher performance with lower occupancy [161], for this study,
we consider the case where parallelism is not an issue but other architectural resources
are the bottleneck to higher performance and energy efficiency. The resources requested
by a kernel are allocated at CTA (Cooperative Thread Array in NVIDIA terminology.
A CTA is also known as a thread block.) granularity and at least one CTA needs to be
allocated for a GPU to work. A CTA is a group of concurrent threads that execute the
same program and may cooperate via shared memory to compute results. A GPU may
have low occupancy because it does not have the required resources to allocate enough
CTAs to fully occupy the GPU. Table 5.1 shows the resource constraint for full occupancy
on NVIDIA’s GTX580 which can hold a maximum of 1536 threads per SM. Any kernel
which has less than 192 threads/CTA or requires more than 21 registers/thread or more
than 6KB shared memory/CTA cannot have full occupancy. For example, assume a kernel
has CTA size of 64 threads. The maximum number of threads that can be assigned to
an SM, in this case, is 512 (CTA Size × the hardware limit for the maximum number of
CTAs that can be allocated), resulting in occupancy of only 0.33 (512/1536). Thus, the
occupancy can be limited by CTAs limit, registers usage, and shared memory usage.

Figure 5.2 shows an overview of the methodology used to investigate bottlenecks. As

72



5.3 Experimental Setup

Kernels

LP category HP category

Low occupancy Full occupancy

Limited by

CTA limit

Limited by

registers

Limited by

shared memory
Limited by

bandwidth

Limited by

SIMD utilization

Limited by coa-

lescing efficiency

Figure 5.2: Bottlenecks investigation methodology.

described in Section 5.2, we study the energy efficiency of a large number of kernels and
divide them into LP and HP categories. We do not further investigate HP category
because we only focus on the LP category. As shown in Figure 5.2, we divide the LP
category kernels into two categories for further analysis: low occupancy and full occupancy.
The low occupancy category kernels have occupancy <1 and full occupancy category
kernels have occupancy = 1. Low occupancy can restrict the latency hiding capabilities
of a GPU and hence can restrict the performance as well. We investigate the effect
of increasing the occupancy on performance and energy in Section 5.4.3. We further
classify the low occupancy kernels depending on the resources they are limited by. As the
occupancy can be limited by CTAs limit, registers usage, and shared memory usage, the
low occupancy category kernels are further classified into three categories: 1) limited by
CTA limit, 2) limited by registers, and 3) limited by shared memory.

The full occupancy category kernels have maximum number of threads that can be
assigned to an SM, but they are still performing low. In this case, the most likely bottle-
necks are high bandwidth utilization, low SIMD utilization, and low coalescing efficiency.
Therefore, we further classify the full occupancy category kernels into three categories: 1)
limited by bandwidth, 2) limited by SIMD utilization, and 3) limited by coalescing effi-
ciency. We investigate if any of them is a bottleneck for high performance in Section 5.4.4.

5.3 Experimental Setup

5.3.1 Simulator

We use GPUSimPow [99] for simulating different benchmarks. The simulator has an
average relative error of 11.7% and 10.8% between simulated and measured power for
GT240 and GTX580, respectively. For more information regarding the power simulator,
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Table 5.2: Baseline simulator configuration [84]. c© IEEE 2014

Parameter Value Parameter Value

#SMs 16 Shared memory/SM 48KB

SM freq (MHz) 822 L1 $ size/SM 16KB

Max #Threads per SM 1536 L2 $ size 768KB

Max #CTA per SM 8 # Memory controllers 6

Max CTA size 512 Memory type GDDR5

#FUs per SM 32 Memory clock 2004 MHz

#Registers/SM 32K Memory bandwidth 192.4 GB/s

please refer to [99]. We use GPUSimPow to simulate a GPU similar to NVIDIA GTX580.
Table 5.2 summarizes the baseline configuration for the simulator.

5.3.2 Evaluated GPU Components

Table 5.3 shows the list of GPU components evaluated for the power consumption. The
table also shows a short description of each component. We divide the GPU power
consumption into components such that it is neither too coarse grained nor too fine
grained. For more details of the components, their subcomponents and power models
please refer to Chapter 4.

5.3.3 Benchmarks

Table 5.3.3 shows the benchmarks used for evaluation. The benchmarks selection includes
benchmarks from the popular Rodinia benchmark suite [25] and CUDA SDK [123]. Our
benchmarks selection also covers benchmarks recommended by Goswami et al. [57] and
an internally developed motion compensation kernel for H264 [163].

5.3.4 Workload Metrics

We use several workload metrics to study the performance characteristics as in [57, 73].
Table 5.5 shows the set of metrics selected for studying the performance characteristics
of workloads. A short description of each metric is also given in the table.

The SIMD Utilization is calculated by the equation given below.

SIMD Utilization =
n∑

i=1

Wi.i/
n∑

i=1

Wi (5.1)

where, n is the warp size, Wi = Number of cycles when a warp with i active threads is

74



5.4 Results

Table 5.3: GPU Components evaluated for power consumption and correlation [84].
c© IEEE 2014

Component name Abbrev. Description and subcomponents, if any

Register file RF A GPU register file contains multiple SRAM banks,
crossbar, and operand collectors.

Execution units EU Execution units consist of integer units, floating point
units, and special function units.

Warp control unit WCU It is the front end of a GPU and contains warp sta-
tus table, instruction buffer, reconvergence stack, and
scoreboard as subcomponents.

Load store unit LSU It handles load and store requests to memory subsys-
tem and it contains memory coalescer, bank conflict
checker, shared memory, L2 cache, constant cache,
and texture cache.

Base power BP It is the power consumed when an SM is activated.

Clusters power CP It is the power consumed when a cluster is activated.

Network on chip NoC It connects SMs to global memory.

Memory controller MC The current generation of GPUs such as Fermi use
64-bit memory controllers.

Global memory GM It is the off-chip memory and current generation of
GPUs such as Fermi use GDDR5.

Total Power TP It is the power consumed by all GPU components.

scheduled on a SIMD unit.

5.4 Results

We first present results for the correlation between components power consumption and
workloads metrics in Section 5.4.1. We then discuss components power consumption for
the low performance and high performance categories in Section 5.4.2. The bottlenecks in-
vestigation results for the low and full occupancy categories are presented in Sections 5.4.3
and 5.4.4, respectively.
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Table 5.4: GPGPU benchmarks used for experimental evaluation [84]. c© IEEE 2014

Name Abbrev. #Kernels Description Origin

backprop BP 2 Multi-layer perceptron training Rodinia

bfs BFS 2 Breadth-first search Rodinia

b+tree BT 2 Graph search Rodinia

cfd CFD 4 Computational fluid dynamics Rodinia

heartwall HW 1 Ultrasound image tracking Rodinia

hotspot HS 1 Processor temperature estimation Rodinia

kmeans KM 2 k-means clustering Rodinia

lavaMD MD 1 Molecular dynamics Rodinia

leukocyte LC 3 Microscopy video tracking Rodinia

mummergpu MUM 2 Pairwise local sequence alignment Rodinia

pathfinder PF 1 Dynamic programming path search Rodinia

srad_v1 SRAD1 6 Speckle reducing anisotropic diffusion Rodinia

srad_v2 SRAD2 2 Speckle reducing anisotropic diffusion Rodinia

similarityScore SS 17 Similarity score calculation Rodinia

blackscholes BS 1 Black-Scholes PDE solver CUDA SDK

binomialOptions BN 1 Binomial options pricing CUDA SDK

convolutionSep CS 2 Convolution CUDA SDK

fastWalshTransform FWT 3 Fourier transform CUDA SDK

histogram HG 4 Histograms for analysis CUDA SDK

mergesort MS 4 Parallel merge-sort CUDA SDK

monteCarlo MC 2 Monte carlo numerical solver CUDA SDK

scalarprod SP 1 Scalar product of two vectors CUDA SDK

scan SCAN 3 Parallel prefix sum CUDA SDK

transpose MT 8 Computation of matrix transpose CUDA SDK

vectoradd VA 1 Addition of two vectors CUDA SDK

storegpu STO 1 Distributed storage systems Third party [5]

H264 MCO 2 H264 video decoding Wang et al. [163]

5.4.1 Correlation

We calculated the Pearson correlation coefficient between the workload metrics and com-
ponents power consumption for all kernels. The Pearson correlation coefficient is a mea-
sure of linear dependence between the two variables and it varies between -1 and 1. The
higher absolute value of correlation coefficient means strong linear dependence between
the metric and the corresponding component. The negative value means there is an in-
verse dependence. Since the static power is caused by leakage currents and it does not
depend on the workload characteristics, but only on an architecture where the workload

76



5.4 Results

Table 5.5: Workload metrics with short description [84]. c© IEEE 2014

Workload metric Abbrev. Description

Instructions per cycle IPC Instructions per cycle.

Arithmetic instructions AI Ratio of arithmetic instructions to total instructions.

Branch instructions BI Ratio of branch instructions to total instructions.

Memory instructions MI Ratio of memory instructions to total instructions.

Bandwidth utilization BW Ratio of bandwidth utilized and bandwidth available.

Coalescing efficiency CE Ratio of global memory instructions and global mem-
ory transactions.

SIMD utilization SU Average utilization of an SM’s core for issued cycles.
It does not include the cycles for which pipeline is
stalled and cannot issue instructions.

Pipeline stalled PS The fraction of total cycles for which pipeline is stalled
and cannot not issue instructions.

Active warps AW Number of active warps per SM.

Table 5.6: Pearson correlation coefficient between workload metrics and components
power consumption.

RF EU WCU BP LSU CP NoC MC GM TP

IPC 0.95 0.92 0.80 0.46 0.26 0.46 -0.06 -0.12 -0.13 0.69

AI 0.29 0.42 0.15 0.07 -0.18 0.07 0.02 -0.02 -0.01 0.23

BI -0.29 -0.32 -0.25 -0.41 -0.16 -0.41 -0.18 -0.20 -0.21 -0.40

MI -0.14 -0.25 -0.02 0.17 0.29 0.17 0.07 0.12 0.12 -0.02

BW -0.09 -0.08 0.27 0.44 0.33 0.44 0.47 0.98 1.00 0.54

CE 0.22 0.29 0.24 0.17 0.29 0.17 -0.10 0.28 0.26 0.31

SU 0.30 0.35 0.41 0.46 0.32 0.46 0.27 0.15 0.15 0.45

PS -0.92 -0.86 -0.72 -0.29 -0.18 -0.29 0.16 0.23 0.24 -0.56

AW 0.54 0.52 0.86 0.63 0.36 0.63 0.32 0.36 0.37 0.77

is executed, therefore, we only consider dynamic power for studying the correlation in this
section and components power consumption in Section 5.4.2.

Table 5.6 shows the correlation coefficient between workload metrics and components
power consumption. The table shows that IPC has strong correlation with RF (0.95), EU
(0.92), and WCU (0.80) which means changes in IPC are strongly correlated to changes in
the power consumption of these components. The metrics related to types of instructions
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Table 5.7: Components dynamic power consumption (W) [84]. c© IEEE 2014

RF EU WCU BP LSU CP NoC MC GM

HP 11.3 20.2 16.2 3.8 0.6 13.1 2.3 4.2 8.3

LP 4.3 7.0 11.2 3.8 0.9 13.0 4.8 7.8 14.4

(AI, BI, and MI) do not have strong correlation with any of the components, but shows
some expected trends. For example, AI has positive correlation with RF (0.29), EU (0.42),
WCU (0.15), but it has negative correlation with MC (-0.02). BW utilization has very
strong correlation with MC (0.98) and GM (1.0) which means the power consumption of
MC and GM is strongly depended on BW utilization. PS is almost inverse of IPC for
all components. This means we can choose just one of them. AW has strong correlation
to WCU (0.86) which shows more active warps will consume more power in this unit.
In general, the strong value of correlation coefficient between a workload metric and a
component power means it is possible to predict the value of one from the other.

5.4.2 Components Power Consumption

Table 5.7 shows components average dynamic power consumption in watts for the HP
and LP categories. The average dynamic power consumption of HP and LP categories is
80.0 W and 67.2 W, respectively.

The table shows a significant change in components power consumption across the two
categories. The EU (25.3%), WCU (20.3%), and CP (16.3%) are the three most power
consuming components for HP category and together consume about 62% of the total
power. The next most power consuming component is the RF (14.0%). Since these
components have a higher usage for kernels with high IPC, these components consume
more power. It is interesting to know that the power consumed by the EU (10.4%),
WCU (16.6%), and RF (6.4%) is far less for LP category compared to HP category.
The largest fraction of power is consumed by the GM (21.4%) in the LP category. The
CP and BP power consumption is the same in both categories because the activation
power is always consumed in both categories. The NoC and MC consume more power
in LP category because of increased activity of these units. In summary, we see that the
power distribution is different across the two categories and the most power consuming
components change across the two categories of the workloads.

5.4.3 Low Occupancy

In this section, we present bottlenecks investigation results for low occupancy category.
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Table 5.8: Kernels limited by CTA limit [84]. c© IEEE 2014

Kernel IPC Power (W) Energy (mJ) CTA size Occupancy

BS 387.5 167.9 188.1 128 0.67

CS1 339.8 147.3 261.7 64 0.33

CS2 339.8 152.9 260.7 128 0.67

MS1 448.5 154.5 297.8 128 0.67

MC1 502.2 167.1 3.4 128 0.67

SS1 134.2 129.7 2.0 128 0.67

MCO1 446.9 141.2 52.5 64 0.33

Limited by CTA Limit

Table 5.8 shows kernels whose occupancy is limited by the maximum limit of CTAs. The
table shows the kernel, IPC, power, energy consumption, CTA size, and occupancy. The
IPC for this category varies from 134.2 to 502.2 and the average IPC is 371.3, which is
even less than 37% of the peak IPC. The table also shows that the occupancy varies from
0.33 to 0.67.

Table 5.8 shows that the smallest CTA size is 64 threads for the convolution kernel
(CS1), and the chroma (MCO1) kernel of H264. These kernels require 24 CTAs per SM
to have full occupancy (24×64 = 1536 which is the maximum number of threads that can
be allocated to an SM of NVIDIA GTX580). However, GTX580 has maximum limit of
8 CTAs. Thus, we increase the maximum number of CTAs from 8 to 24 in two steps to
increase the occupancy.

Figure 5.3 shows IPC, power, energy, EDP normalized to baseline, and occupancy
when the CTA limit is increased to 16 and 24. The figure also shows the geometric mean
(GMEAN) of all kernels in the category. The average increase in IPC and power is 6% and
4%, respectively, when the CTA limit is increased to 16. The average energy consumption
and EDP is decreased by 5% and 16%, respectively. The largest gain is 53% increase in
IPC and 26% decrease in energy consumption for the MCO1 kernel. All kernels except BS
either gain in IPC or have the same IPC. The reason for the decrease in IPC of BS kernel
is that BS has high bandwidth utilization (74%) and the increase in occupancy adds to
the already existing high bandwidth contention, and hence, IPC decreases. Figure 5.3a
shows that the kernels CS1, CS2, and MCO1 still have occupancy <1, and thus, these
kernels can gain from further increase in CTA limit. However, CS2 is now limited by
shared memory and just increasing the CTA limit further will not help increasing the
occupancy. We call such a kind of bottleneck as second-order bottleneck. Second order
bottlenecks may occur after the elimination of first-order bottlenecks.

Figure 5.3b shows the IPC, power, energy, EDP, and occupancy when the CTA limit
is increased to 24. Only the occupancy of the MCO1 and CS1 kernels increases further
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(a) Maximum number of CTAs = 16
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(b) Maximum number of CTAs = 24

Figure 5.3: IPC, power, energy, EDP, and occupancy of kernels limited by CTA limit [84].
c© IEEE 2014

because all other kernels either already have full occupancy or show second-order bottle-
necks after the CTA limit was increased to 16. The average increase in IPC and power
is 9% and 6% over the baseline while the average decrease in energy consumption and
EDP is 6% and 16%, respectively. The kernel CS1 now also has a second-order bottleneck
of shared memory. The shared memory per SM is increased to 96KB to eliminate the
second-order bottleneck of CS1, CS2.

Figure 5.4 shows that the kernels CS1 and CS2 also have full occupancy after the
elimination of second-order bottleneck. Figure 5.4 does not show the kernels which already
have full occupancy after the CTA limit is increased to 24. The average increase in IPC
of CS1 and CS2 is 13% while the average reduction in energy consumption is 12% after
the elimination of second-order bottleneck. At full occupancy, the average increase in
IPC and power for the category is 11% and 7%, respectively. The average reduction in
energy consumption and EDP is 9% and 23% compared to the baseline. The kernels MC1
and SS1 does not gain in performance even at full occupancy. MC1 is limited by memory

80



5.4 Results

C
S1

C
S2

G
M

EAN
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d

ra
ti
o

IPC Power Energy EDP Occupancy

0.0

0.5

1.0

1.5

2.0

O
c
c
u
p
a
n
c
y

Figure 5.4: IPC, power, energy, EDP, and occupancy after the elimination of second-order
bottleneck. These kernels were originally limited by CTA limit [84]. c© IEEE
2014

Table 5.9: Kernels limited by registers [84]. c© IEEE 2014

Kernel IPC Power(W) Energy(mJ) Registers/CTA Occupancy

BP2 517.7 176.9 30.0 5.5K 0.83

HW 407.6 148.5 3124.4 14.0K 0.67

HS 493.5 154.5 41.9 8.5K 0.50

LC1 271.6 129.8 13283.5 16.0K 0.21

MUM1 26.9 146.8 714.0 6.0K 0.83

bandwidth and SS1 has a very low coalescing efficiency (6.7%) and hence, these kernels do
not gain from the increased occupancy. MC1 gains from increase in memory bandwidth
as shown in Section 5.4.5.

Limited by Registers

Table 5.9 shows the kernels whose occupancy is limited by registers. The table shows the
kernel, IPC, power, energy consumption, registers used per CTA, and occupancy. The
IPC in this category ranges from 26.9 to 517.7 and the average IPC is 343.4 which is
33.5% of the peak IPC. The table shows that the occupancy of these kernels varies from
0.21 to 0.83.

The kernel LC1 has the lowest occupancy and it requires 16K registers per CTA. The
LC1 has 320 threads per CTA and requires 4.8 (1536/320 ) CTAs to reach full occupancy.
However, the allocation of threads is done at CTA granularity, thus, the SM can hold a
maximum of 4 CTAs in this case. The total number of registers required for 4 CTAs is
64K. However, we only present the results upto 56K registers because at this point all
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(b) Registers = 48K
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(c) Registers = 56K

Figure 5.5: IPC, power, energy, EDP, and occupancy of kernels limited by registers [84].
c© IEEE 2014

kernels either have full occupancy or a second-order bottleneck.
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Figure 5.5 shows IPC, power, energy, EDP and occupancy when the number of registers
per SM is increased to 40K, 48K, and 56K. The baseline configuration has 32K registers.
Figure 5.5a shows that the kernels BP2 and MUM1 reach full occupancy after increasing
the number of registers to 40K. The largest increase in IPC is 52% for the LC1 kernel,
with the corresponding 28% decrease in energy consumption. The average increase in IPC
and power is 11% and 3%, respectively, while the average decrease in energy consumption
and EDP is 7% and 17%, respectively. The kernel HW reaches full occupancy when
the number of registers is further increased to 48K, but HS and LC1 kernels are still
limited by registers and have occupancy less than 1 as shown in Figure 5.5b. The average
increase in IPC and power is 10% and 3%, respectively, while the average decrease in
energy consumption and EDP is 6% and 15%, respectively.

The average increase in IPC and power consumption is 15% and 5%, respectively when
the number of registers is further increased to 56K as shown in Figure 5.5c. The average
decrease in energy consumption and EDP is 9% and 21%, respectively. The largest gain
is 85% increase in IPC and 37% decrease in energy consumption for the LC1. Since the
kernels BP2, MUM1, and HW already have full occupancy at 40K registers, these kernels
do not gain from the increase in registers. The figure shows that all kernels except LC1
have full occupancy. At this point, the occupancy of LC1 is 0.63 and is also limited by
a second-order bottleneck of shared memory. Hence, we further increase registers size to
64K and also shared memory to 64KB to eliminate the second-order bottleneck of LC1.
The LC1 reaches its maximum achievable occupancy of 0.83 and continues to gain from
increased occupancy. At full occupancy, the average increase in IPC and power for the
category is 15% and 5%, respectively and the average reduction in energy consumption
and EDP is 9% and 21% compared to the baseline. The kernels MUM1 and HW does
not gain in performance even at full occupancy. MUM1 has high BW utilization (77.2%),
low CE (14.9%) and low SU (52.2%) and it gains from increase in memory bandwidth as
shown in Section 5.4.5. HW also has low CE (48.4%) and SU (79.6%).

Limited by Shared Memory

There is only one kernel (STO) which is limited by shared memory. STO is used to
accelerate a set of hashing functions used in distributed storage systems. The IPC, power,
energy, CTA size, shared memory per CTA, registers per CTA, and occupancy is 405.7,
133.8 (W), 51.6 (mJ), 128, 15.9KB, 4.2K, and 0.25, respectively. The IPC is well below
the peak IPC and the occupancy is only 25%.

The reason for the low occupancy is that STO is using almost 16KB shared memory
per CTA. Since the baseline GPU has 48KB shared memory, no more than 3 CTAs can
be allocated simultaneously. Moreover, the CTA size is only 128 which means STO also
needs 12 CTAs to achieve full occupancy. Also, STO needs 4.2K registers per CTA.
Therefore, at some point, STO will be limited by both CTA and registers limit when the
shared memory is increased.

Figure 5.6 shows the change in performance of STO when the shared memory is in-
creased to 96KB and 144KB, respectively. There is a 49% increase in IPC and a 26%
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Figure 5.6: IPC, power, energy, and occupancy of STO kernel limited by shared memory.
The first two groups of bars show the results after the elimination of first-
order bottleneck, while the third group of bars shows the results after the
elimination of second-order bottlenecks [84]. c© IEEE 2014

reduction in energy consumption when the shared memory size is increased to 96KB. The
occupancy is doubled to 0.5. There is only a slight increase in occupancy (0.58) when
the shared memory is further increased to 144KB because STO is now limited by second-
order bottleneck of registers. To eliminate the second-order bottlenecks, the number of
CTAs is increased to 12, shared memory to 192KB, and registers to 56K (12, 192KB,
56K). Figure 5.6 also shows the performance of STO kernel when all second-order bottle-
necks are eliminated to achieve full occupancy. At full occupancy, the STO kernel gained
85% increase in IPC with just 21% more power consumption. Moreover, we have 35%
reduction in energy consumption and 65% less EDP compared to the baseline.

Multiple Bottlenecks

There are two kernels (MCO2 and MD) which are limited by multiple bottlenecks to
begin with. MCO2 is a luma kernel of motion compensation part of H264 decoder and it
is limited by CTA limit and shared memory. The IPC, power, energy, CTA size, shared
memory per CTA and occupancy of MCO2 is 365.6, 135.6 (W), 183.0 (mJ), 64, 6KB,
and 0.33, respectively. The kernel has low IPC as well as low occupancy and needs 24
CTAs and 144KB shared memory to have full occupancy. Figure 5.7 shows the results of
the MCO2 kernel when the number of the CTAs is increased to 16 and shared memory
is increased to 96KB (16, 96K). The number of the CTAs is further increased to 24 and
shared memory to 144KB (24, 144K) to have full occupancy. At full occupancy, the IPC
is increased by 39% with 8% more power consumption and energy consumption and EDP
is decreased by 22% and 44%, respectively.

MD is used to calculate the physical movements of molecules and atoms and is limited
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Figure 5.7: IPC, power, energy, EDP and occupancy of the MCO2 kernel limited by CTA
limit and shared memory [84]. c© IEEE 2014

by shared memory and registers. The IPC, power, energy, CTA size, shared memory
per CTA, registers per CTA, and occupancy of MD is 142.7, 138.9 (W), 24937.0 (mJ),
128, 7.1KB, 4.62K, and 0.5, respectively. We increase the shared memory to 64KB and
registers to 48K to increase the occupancy. The occupancy increases to 0.67, but there is
no gain in IPC. MD is now limited by second-order bottleneck of CTA limit. We further
increase shared memory to 96KB, registers to 56K, and number of CTAs to 12 to have full
occupancy. At full occupancy, the IPC and power consumption is increased by 2% and
5%, respectively. The energy and EDP also increase by 3% and 1%, respectively, which
shows MD does not gain from the increased occupancy. Further investigation reveals MD
has very low coalescing efficiency (13%) which could limit its performance.

5.4.4 Full Occupancy

Table 5.10 shows the kernels having full occupancy but low performance. The table shows
kernel, IPC, power, and energy consumption of these kernels. The IPC in this category
ranges from 8.0 to 468.5. The average IPC is 208.2 which is less than 21% of the peak
IPC. Since all kernels in this category have full occupancy, increasing occupancy is not a
solution. We analyze if bandwidth utilization (BW), coalescing efficiency (CE), or SIMD
utilization (SU) is a bottleneck for low performance of these kernels.

Figure 5.8 shows the percentage of BW, CE and SU for the full occupancy kernels.
The high BW utilization, low CE, or low SU can severely limit the performance of GPU
kernels [85, 106, 50, 145]. We see that most of the kernels have at least one problem.
Figure 5.8 shows that the kernels CFD1, CFD2, CFD3, FWT1, FWT2, KM1, KM2,
MUM2, SP, SCAN1, SCAN2, SRAD1_1, SRAD1_2, SRAD1_4, and VA have high BW
utilization and these kernels could be performing low due to high bandwidth demands.

Figure 5.8 shows that the kernels HG3 (3%), KM2 (6%), MUM2 (4%), SCAN3 (5%)
and MT2 (11%) have very low CE. Also kernels BT1, BT2, BFS1, SCAN1, SCAN2,
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Table 5.10: Kernels with full occupancy and low performance [84]. c© IEEE 2014

Kernel IPC Power (W) Energy (mJ) Kernel IPC Power (W) Energy (mJ)

BT1 432.8 144.7 133.5 SCAN2 286.7 161.1 96.3

BT2 467.0 149.4 123.6 SCAN3 8.0 116.6 10.10

BFS1 21.8 149.9 195.2 SRAD1_1 331.0 163.0 17.1

BFS2 276.5 151.8 10.0 SRAD1_2 370.1 170.3 9.3

CFD1 62.3 144.1 16.7 SRAD1_3 273.1 122.6 9.0

CFD2 184.5 156.6 4.7 SRAD1_4 148.1 148.6 5.9

CFD3 71.0 141.9 5.9 SRAD2_1 304.7 154.0 467.7

FWT1 100.1 154.4 189.7 SRAD2_2 167.0 137.2 452.8

FWT2 264.5 168.4 79.6 MT1 359.9 154.8 3.6

HG3 55.9 125.1 9.4 MT2 46.3 128.2 16.2

KM1 468.5 181.7 741.0 MT3 417.3 156.8 3.5

KM2 11.0 153.2 2216.5 MT4 165.8 134.1 6.6

MUM2 35.6 152.0 681.4 MT5 320.1 152.9 3.5

SP 182.3 141.5 20.7 MT6 144.9 132.5 6.8

VA 171.9 147.4 11.5 MT7 155.8 133.1 6.9

SCAN1 120.4 158.0 57.2 MT8 238.7 151.1 3.1
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Figure 5.8: Bandwidth utilization (BW), Coalescing efficiency (CE), and SIMD utilization
(SU) of full occupancy kernels [84]. c© IEEE 2014

SRAD1_1, SRAD1_2, SRAD1_3, SRAD2_1, SRAD2_2, MT1, MT3, MT4, MT5, MT6,
MT7, and MT8 have less than 100% CE. We think low CE could be a reason for their
low performance. As low CE results in more than one memory transaction for each
memory access from a warp, resulting in higher pressure on the memory subsystem that
could lead to contention and longer latency, and thus, can limit the performance. For
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example, a coalescing efficiency of 3% means that each memory access from a warp is fully
divergent and results in 32 memory transactions, injecting 32× more memory requests in
the memory subsystem.

Another factor that could also effect the performance of full occupancy kernels is low
SU. The low SU is caused by branch divergence that leads to underutilized SIMD cores
and low performance. Unlike high BW and low CE, which are indicators that these
factors could limit the performance, SU is a more direct measure of bottleneck because
low SU directly implies low performance. For example, a kernel having 50% SU can never
have IPC more than 50% of the peak IPC. Figure 5.8 shows that kernels BFS1 (30.3%)
and MUM2 (35.5%) have very low SU and kernels BT1, BT2, BFS2, HG3, SP, SCAN1,
SCAN2, SCAN3, SRAD1_3, SRAD2_1, SRAD2_2 have less than 100% SU. The figure
also shows that some kernels such as BFS1, MUM2, SRAD1_3 have multiple bottlenecks
(high BW, low CE, or low SU) and hence, these kernels could have low performance due
to the combined effect.

To determine if high BW or low CE is actually limiting the performance of full occu-
pancy kernels or not, we perform following experiments. For testing if memory bandwidth
is a bottleneck or not, we increase the memory bandwidth and study its effect on perfor-
mance. For testing if low CE is a bottleneck or not, we simulate a system with perfect
coalescing and study its effect on performance.

Limited by Memory Bandwidth

Figure 5.9 shows IPC, power, energy and EDP of the full occupancy category kernels
normalized to the baseline when memory bandwidth is increased by 2×. We double the
memory bandwidth by doubling the DRAM frequency, incrementing 33.3% at a time
and study the change in performance at each increment. The baseline configuration has
memory bandwidth of 192.4 GB/s. Thus, we increase memory bandwidth to 255.9 GB/s,
319.4 GB/s, and 384.8 GB/s in three steps. Figure 5.9a shows IPC, power, energy, and
EDP of full occupancy kernels when the memory bandwidth is increased to 255.9 GB/s.
The average increase in IPC is 18% with 5% more power consumption. Moreover, we
see a 11% average reduction in energy consumption and 25% less EDP compared to
the baseline. Figure 5.9b shows that kernels gain performance from further increase in
memory bandwidth. The average increase in IPC is 30% with only 9% increase in power
consumption, while the average decrease in energy consumption and EDP is 16% and 36%
compared to the baseline. Figure 5.9c shows that most of the kernels continue to gain
from increase in memory bandwidth. The average increase in IPC and power consumption
is 38% and 12%, respectively, while the average decrease in energy consumption and EDP
is 19% and 41%, respectively at 384.8 GB/s. The kernels BT1, BT2, HG3, SCAN3, and
SRAD1_3 gain very low (average 1.3%) from the increase in memory bandwidth because
these kernels have low BW utilization (average 13%), low CE (average 39%), and low SU
(average 88%).
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(b) Bandwidth = 319.4 GB/s
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Figure 5.9: IPC, power, energy, and EDP of full occupancy kernels when memory band-
width is increased by 2× in three increments [84]. c© IEEE 2014
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Figure 5.10: IPC of low CE kernels with perfect coalescing.

Limited by Coalescing Efficiency

To get an estimate of the performance loss due to low CE, we modify gpgpu-sim to have
perfect coalescing so that one memory transaction is generated for each warp when the
data size is less than or equal to 32-bit or half-warp when the data size is 64-bit. This gives
us an estimate of the possible performance gain in case all memory accesses were perfectly
coalesced under the assumption that this can be done at the hardware or application
level. For instance, recent work has shown that coalescing efficiency can be improved
by using compiler-assisted tools, kernel fusion, optimized data layout [47, 7, 96, 162].
Figure 5.10 shows normalized IPC of the low CE kernels with perfect coalescing over
the baseline configuration. The figure shows that the kernels HG3 (9.2×), KM2 (9.0×),
SCAN3 (12.1×), and MT2 (8.2×) can gain very high from perfect coalescing. MUM2 gains
less because it also has very low SU (35.5%) and high BW utilization (77%). The average
estimated increase in IPC is 2× for all kernels, which shows that low CE is a serious
performance bottleneck. As low CE effects different levels of the memory hierarchy and
system resources, the overall estimated performance gain could be a cumulative effect
of, for example, decrease in L1 and L2 cache miss rate, reduce NoC traffic, less memory
bandwidth requirements, less queuing etc. It remains a future work to quantify the exact
gain from different sources.

5.4.5 Performance at the Combined Configuration

In Section 5.4.3 and Section 5.4.4, we presented bottleneck investigation category-wise.
Ideally, we would build a GPU with enough resources so that all kernels achieve optimal
performance. Practically, however, it is impossible to build such a GPU due to the area
and power demands of the combined resources. Thus, we need to find a design point which
provides benefits to most of the kernels. In this section, we evaluate such a design point.
We use the following greedy approach: For each category of kernels, we find an optimal
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Table 5.11: EDP optimal point for each category [84]. c© IEEE 2014

Category Optimal Point

Limited by CTA limit CTA = 16

Limited by registers Registers = 56K

Limited by shared memory Shared memory = 96KB

Multiple bottlenecks CTA = 24, shared memory = 144KB

Full occupancy Memory bandwidth = 384.8 GB/s

BS
C
S1

C
S2

M
S1

M
C
1

SS1

M
C
O
1

G
M

EAN
0.0

0.5

1.0

1.5

2.0

N
o
rm

a
liz

e
d

ra
ti
o

IPC Power Energy EDP Occupancy

0.0

0.5

1.0

1.5

2.0

O
c
c
u
p
a
n
c
y

Figure 5.11: IPC, power, energy, EDP, and occupancy of kernels limited by CTA limit at
the combined configuration [84]. c© IEEE 2014

point using maximum reduction in EDP as the selection criterion. We consider category-
wise results up to the first-order bottlenecks. Table 5.11 shows the EDP optimal point for
each category. Then, we combine category EDP optimal points to derive the combined
configuration (CTA = 24, registers = 56K, shared memory = 144KB, memory bandwidth
= 384.8 GB/s). We choose a larger value of a resource when the resource is common
but has different values in two categories to keep the category-wise gains unaffected. For
example, the number of CTAs is 16 in CTA limited category and 24 in multiple bottlenecks
category and we choose CTAs to be 24 for the combined configuration. This approach
may result in a suboptimal solution, however, it allows us to evaluate the effect of all
modifications on various categories.

Figure 5.11 shows the performance of kernels limited by CTA at the combined config-
uration. The average increase in IPC and power is 31% and 18%, respectively, while the
average reduction in energy consumption and EDP is 15% and 39%, respectively. The
increase in performance and energy reduction is higher than the category level and is
mainly due to the elimination of second-order bottlenecks and increased bandwidth.

Figure 5.12 shows the performance of kernels limited by registers at the combined
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Figure 5.12: IPC, power, energy, EDP, and occupancy of kernels limited by registers at
the combined configuration [84]. c© IEEE 2014

configuration. The average gain in IPC is 36% which is higher than the average gain at
the category level (15%). The average reduction in energy consumption and EDP is 15%
and 37% which is also higher than the category-wise gain. The higher gain in performance
and energy reduction at the combined configuration shows the registers limited kernels
also gain from the increased bandwidth.

In limited shared memory category, STO kernel has 56% increase in IPC and 26%
decrease in energy consumption compared to the baseline at the combined configuration.
In the multiple bottlenecks category, MD kernel does not gain in IPC even at the combined
configuration due to low CE and the performance of MCO2 kernel is the same as at the
category level because it has low BW utilization (3.5%) and hence does not benefit from
increased bandwidth at the combined configuration.

We also conducted experiments for full occupancy category kernels at the combined
configuration. The average gain in IPC for the full occupancy kernels at the combined
configuration is 38% which is identical to the gain at the category level. This shows that
kernels in this category do not gain from other architectural changes made to increase
the occupancy. This is expected as this category already had enough threads due to full
occupancy. The average reduction in energy consumption and EDP is 18% and 40%,
respectively, which is slightly less than the reduction at the category level. This is caused
by the increase in static power due to the increased size of other architectural components
such as registers, shared memory.

indicated by higher average IPC (405.1). peak IPC.

Table 5.12 shows components dynamic power consumption for LP kernels at the baseline
(LP old), combined configuration (LP new) and the ratio between them. The component
power consumption of RF (48%), EU (35.0%), WCU (13%), LSU (48%), NoC (39%), MC
(39%), and GM (57%) increased compared to the baseline. This is because the bottlenecks
elimination resulted in better utilization of resources which is indicated by higher average
IPC (35.5%) compared to the baseline. The power consumption of BP and CP remains
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Table 5.12: Components dynamic power consumption (W) for LP category kernels at
the baseline (LP old), combined configuration (LP new) and their ratio [84].
c© IEEE 2014

RF EU WCU BP LSU CP NoC MC GM

LP old 4.3 7.0 11.2 3.8 0.9 13.0 4.8 7.8 14.4

LP new 6.4 9.5 12.6 3.7 1.4 13.0 6.7 10.8 22.6

Ratio 1.5 1.4 1.1 1.0 1.5 1.0 1.4 1.4 1.6

almost the same because the activation power consumption remains the same.

5.5 Summary

In this chapter, we studied the energy efficiency of several kernels (68) and classified them
into HP and LP categories depending on the IPC. The HP and LP categories have 21
and 47 kernels, respectively. The average IPC for the former is 741 and 250 for the later,
which is less than 25% of the peak IPC of the simulated GPU. Surprisingly, more than
69% of the kernels belong to LP category. The average energy per instruction for the HP
and LP category is 0.27 nJ and 2.01 nJ, respectively. The later is 7.5× less energy efficient
compared to the former, a huge difference that is an obstacle for the future growth of high
performance computing and far away from the exascale aim of 10 pJ per instruction.

We also studied the power consumption of GPUs at the component level for the two
categories. The distribution of the power consumption is different across the two cate-
gories. For example, for kernels in the HP category, EU (25.3%), WCU (20.3%), and CP
(16.0%) are the three most power consuming components and together consume about
62% power. For kernels in the LP category, GM (21.4%), CP (19.3%), and WCU (16.6%)
are the three most power consuming components.

To investigate the performance bottlenecks of LP category, we divided the LP category
kernels into low occupancy (15 kernels) and full occupancy (32 kernels) categories. We
further categorized the low occupancy category kernels into different categories depending
on the resource their occupancy is limited by. We increased the occupancy by increasing
the resource limiting the occupancy. The results showed that most of the kernels with low
occupancy gain in performance and energy efficiency when the occupancy increased. For
example, at full occupancy, the average increase in IPC, the average reduction in energy
consumption and EDP is 11%, 9% and 23%, respectively, for the CTA limited kernels.
The average increase in IPC, the average reduction in energy consumption and EDP is
15%, 9% and 21%, respectively, for the registers limited kernels. The results showed that
high occupancy is an important factor for both high performance and energy efficiency
but occupancy alone is not sufficient to achieve the desired performance.

We further showed that full occupancy kernels have low performance either due to high
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BW utilization or low CE or low SU. The full occupancy kernels on an average have 38%
increase in IPC, 19% decrease in energy consumption and 41% reduction in EDP at 2× the
bandwidth compared to the baseline. The results showed that bandwidth optimization
techniques will significantly increase the performance. We also showed that many kernels
in the full occupancy category are severely limited by low CE and perfect coalescing could
increase the average performance by 2×. The kernels with low CE can also gain from the
memory bandwidth optimizations techniques because low CE exerts high pressure on the
memory subsystem by injecting several memory requests per warp.

Ideally, we would build a GPU with enough resources so that all kernels achieve optimal
performance, however, practically it is impossible to build such a GPU. Thus, we derived
an architectural configuration that benefits most of the kernels by combining the EDP
optimal point for each category. The results showed further gain in performance and
reduction in energy consumption at this configuration compared to the baseline. At the
architectural point, 12 kernels achieved IPC greater than 50.5% of the peak IPC.

In the next chapter, we will propose an entropy encoding based memory compression
technique for GPUs to reduce memory bandwidth requirements. We will discuss and
address the challenges of an entropy encoding based memory compression for GPUs.
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The work presented in this chapter was previously published: S. Lal, J. Lucas,
and B. Juurlink, “E2MC: Entropy Encoding Based Memory Compression for
GPUs,” in Proceedings of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), c© 2017 IEEE.

In the last chapter, we studied the energy efficiency of GPU workloads and showed that
there are several workloads with low performance and low energy efficiency that can gain
from the increase in memory bandwidth. In this chapter, we propose an entropy encoding
based memory compression technique to increase the memory bandwidth. We discuss and
address the key challenges of an entropy encoding based memory compression for GPUs.

6.1 Introduction

GPUs are high throughput devices which use fine-grained multi-threading to hide the long
latency of accessing off-chip memory [72]. GPUs use single instruction multiple thread
(SIMT) execution model to execute a group of threads concurrently. The grouping of
threads into fixed size batch is called a warp in NVIDIA terminology or a wavefront in
AMD terminology. A GPU warp scheduler chooses a new warp from a pool of ready
warps if the current warp is waiting for data from memory. This is effective for hiding the
memory latency and keeping the cores busy for compute-bound benchmarks. However,
for memory-bound benchmarks, all warps are usually waiting for data from memory and
performance is limited by off-chip memory bandwidth. Performance of memory-bound
benchmarks increases when additional memory bandwidth is provided. Figure 6.1 shows
the speedup of memory-bound benchmarks when the off-chip memory bandwidth is in-
creased by 2×, 4×, and 8×. The average speedup is close to 2×, when the bandwidth is
increased by 8×. An obvious way to increase memory bandwidth is to increase the num-
ber of memory channels and/or their speed. However, technological challenges, cost, and
other limits restrict the number of memory channels and/or their speed [113, 1]. More-
over, research has already shown that memory is a significant power consumer [90, 99, 84]
and increasing the number of memory channels and/or frequency elevates this problem.
Clearly, alternative ways to tackle the memory bandwidth problem are required.

A promising technique to increase the effective memory bandwidth is memory compres-
sion. However, compression incurs overheads such as (de)compression latency which need
to be addressed, otherwise the benefits of compression could be offset by its overhead.
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Figure 6.1: Speedup with increased memory bandwidth [85]. c© 2017 IEEE

Fortunately, GPUs are not as latency sensitive as CPUs and they can tolerate latency
increases to some extent. Moreover, GPUs often use streaming workloads with large
working sets that cannot fit into any reasonably sized cache. The higher throughput of
GPUs and streaming workloads mean bandwidth compression techniques are even more
important for GPUs than CPUs. The differences in the GPU and CPU architecture offer
new challenges which need to be tackled and new opportunities which can be harnessed.

Most existing memory compression techniques exploit simple patterns for compression
and trade low compression ratios for low decompression latency. For example, Frequent-
Pattern Compression (FPC) [6] replaces predefined frequent data patterns, such as con-
secutive zeros, with shorter fixed-width codes. C-Pack [26] utilizes fixed static patterns
and dynamic dictionaries. Base-Delta-Immediate (BDI) compression [130] exploits value
similarity. While these techniques can decompress with few cycles, their compression ra-
tio is low, typically only 1.5×. All these techniques originally targeted CPUs and hence,
traded low compression for lower latency.

As GPUs can hide latency to a certain extent, more aggressive entropy encoding based
data compression techniques such as Huffman compression seems feasible. While entropy
encoding could offer higher compression ratios, these techniques also have inherent chal-
lenges which need to be addressed. The main research questions are 1) How to estimate
probability? 2) What is an appropriate symbol length for encoding? And 3) How to
keep the decompression latency low? In this chapter, we address these key challenges and
propose to use the Entropy Encoding based Memory Compression (E2MC) for GPUs.

We use both offline and online sampling to estimate probabilities and show that small
online sampling results in compression comparable to offline sampling. While GPUs can
hide a few tens cycles of additional latency, too many can still degrade their perfor-
mance [126]. We reduce the decompression latency by decoding multiple codewords in
parallel. Although parallel decoding reduces the compression ratio because additional
information needs to be stored, we show that the reduction is not much as it is mostly
hidden by the memory access granularity (MAG). MAG is the amount of data read from
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or written to a memory by a single read or write command and it is a multiple of burst
length and bus width. For example, MAG for GDDR5 is 32B resulting from burst length
of 8 and bus width of 32-bit.

As GPUs are high throughput devices, the compressor and decompressor should also
provide high throughput. Therefore, we also estimate the area and power needed to meet
the high throughput requirements of GPUs.

In summary, we make the following contributions in this chapter:

• We propose an entropy encoding based memory compression technique for GPUs
that delivers higher compression ratio and performance gain than state-of-the-art
techniques.

• We address the key challenges of probability estimation, choosing a suitable symbol
length for encoding, and low decompression latency by parallel decoding with a
small loss of compression ratio.

• We provide a detailed analysis of the effects of memory access granularity on the
compression ratio.

• We analyze the high throughput requirements of GPUs and provide an estimate of
area and power needed to support such high throughput.

This chapter is organized as follows. In Section 6.2, we present E2MC in detail. Sec-
tion 6.3 explains the experimental setup and experimental results are presented in Sec-
tion 6.4. Finally, we summarize the contributions of this chapter in Section 6.5.

6.2 Huffman-based Memory Bandwidth Compression

First, we provide an overview of a system with entropy encoding based memory compres-
sion (E2MC) for GPUs and its key challenges and then in the subsequent sections address
these challenges in detail.

6.2.1 Overview

Figure 6.2 shows an overview of a system with main components of the E2MC technique.
The memory controller (MC) is modified to integrate the compressor, decompressor and
metadata cache (MDC). Depending on the memory request type, either it needs to pass
through the compressor or it can directly access the memory. A memory write request
passes through the compressor while a read request can bypass the compressor. The MDC
is updated with the size of the compressed block and finally the compressed block is writ-
ten to memory. A memory read request first accesses the MDC to determine the memory
request size and then fetches that much data from memory. (De)compression takes place
in the MC and is completely transparent to the L2 cache and the streaming multiproces-
sors. The compressed data is stored in the DRAM. However, the goal is not to increase
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Figure 6.2: System overview with compression components.

the effective capacity of the DRAM (Dynamic Random Access Memory) but to increase
the effective off-chip memory bandwidth similar to [146]. Hence, a compressed block is
still allocated the same size in DRAM, although it may require less space. Like [160],
E2MC requires compression when the data is transferred from CPU to GPU to initialize
the MDC. As the (de)compressors are integrated in the MC, data is compressed while
transferring from CPU to GPU and vice versa.

6.2.2 Huffman Compression and Key Challenges

Huffman compression is based on the evidence that not all symbols have same probabil-
ity. Instead of using fixed-length codes, Huffman compression uses variable-length codes
based on the relative frequency of different symbols. A fixed-length code assumes equal
probability for all symbols and hence assigns same length codes to all symbols. Fixed
length codes are not the best choice when a data stream contains symbols with highly
variable frequency. In contrast to fixed-length codes, Huffman compression is based on
the principle to use fewer bits to represent frequent symbols and more bits to represent
infrequent symbols. On average, a variable length code needs less number of bits and
hence are quite useful to achieve compression. In general, compression techniques based
on variable-length codes can provide high compression ratio, but they also have high over-
head in terms of latency, area, and power [10]. Moreover, to achieve high compression
and performance, certain key challenges should be addressed.

The first challenge is to find an appropriate symbol length (SL). The choice of SL is a very
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Figure 6.3: Compression ratio for different symbol lengths [85]. c© 2017 IEEE

important factor as it affects compression ratio, decompression latency and hardware cost.
We evaluate the trade-offs of using different SLs (4, 8, 16, 32-bit). The second challenge
is accurate probability estimation. We perform both offline and online sampling of data to
estimate the probability of symbols and show that it is possible to achieve compression
ratio comparable to offline sampling with small online sampling. The third important
factor is low decompression latency, which affects the performance gain. We reduce the
decompression latency by decoding in parallel. In the following sections, we discuss these
challenges in detail.

6.2.3 Choice of Symbol Length

We encode with different SLs of 4, 8, 16, and 32-bit and evaluate their trade-offs to
make sure that not only the compression ratio but other aspects are also compared.
Figure 6.3 shows the compression ratio for different SLs (see Section 6.3 for details of
benchmarks). It can be seen that 16-bit encoding yields the highest compression ratio for
GPUs. This result is in contrast to [10] where it was shown that 16 and 32-bit encodings
yield almost same compression ratio for CPUs. The next highest compression ratio is
provided by 8-bit symbols. For some benchmarks (TP, MUM, SPMV), 8-bit encoding
offers the highest compression ratio. GPUs often operate on FP values, but INT values
are also not uncommon. Most of the benchmarks in MARS [46] and Lonestar [81] suites
are INT. Often smaller symbols are more effective for FP, while longer symbols are more
effective for INT and on average 16-bit symbols provide good trade-off for both.

6.2.4 Probability Estimation

Figure 6.4 shows the different phases of an entropy encoding based compression technique.
In the probability estimation phase, frequencies of the different symbols are collected.
Based on frequencies, variable-length codes are assigned to different symbols. In the
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Probability
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Code

Generation

Compression

Figure 6.4: Phases of entropy encoding based compression [85]. c© 2017 IEEE

final phase, compression takes place. Accurate probability estimation is one of the key
components of entropy based compression. Therefore, in our proposed E2MC technique
we use both offline probability estimation where we estimate the probability of symbols
offline, and online probability estimation where we sample the probability of symbols
during runtime.

Offline Probability Estimation We simulate all benchmarks and store their load and
store data in a database. Then we profile the database offline to find the probability of
symbols. Offline probability estimate is the best estimate we can have. In Section 6.4
it is shown that offline probability yields the highest compression ratio. However, offline
probability can only be used if approximate entropy characteristics of a data stream are
known in advance.

Online Probability Estimation One of the drawbacks of an entropy based compression
techniques is that they may require online sampling to estimate the frequency of symbols
if entropy characteristics are not known in advance. The sampling phase is an additional
overhead as during sampling no compression is performed. Fortunately, our experiments
show that it is possible to achieve compression ratio comparable to offline probability with
a very short online sampling phase at the start of the benchmarks.

During the sampling phase every memory request is monitored at the memory controller
to record unique values and their count. We use a value frequency table (VFT) similar
to [10] to store unique values and their count. For 4 and 8-bit SLs, we store all values
as there are only 16 and 256 possible values. However, for SLs of 16 and 32-bit we only
store the most frequent values (MFVs) and use them to generate codewords as the total
number of values is very large and storing all of them is not practical.

There are two key decisions to make regarding online sampling. First, what is the
suitable number of MFVs? More MFVs may help to encode better for some benchmarks,
however, more MFVs increase the cost of the hardware. Figure 6.5a shows the compression
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(a) Compression ratio with different number of MFVs.
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(b) Compression ratio with different sampling durations.

Figure 6.5: Online sampling decisions [85]. c© 2017 IEEE

ratio for different numbers of MFVs relative to 1K MFVs. It shows that the compression
ratio does not increase much with the number of MFVs, only 1% on average. Only for some
benchmarks (FWT, TP, SCAN, SPMV), more MFVs give slightly higher compression
ratio, FWT being the highest gainer (6%). Hence, we choose 1K MFVs to construct
encoding. In some cases (PVR, MUM), the compression ratio can even decrease with
the increase in MFVs as the length of the prefix which is attached to each uncompressed
symbol can increase. For example, for the MUM benchmark, the prefix is 3-bit long for
2K MFVs and 4-bit long for 4K MFVs. Thus, the compression ratio is lower for 4K MFVs
compared to 2K MFVs. Please refer to Section 6.2.4 for more details.

The second decision is: what is the best sampling duration? Figure 6.5b shows the
compression ratio for sampling durations of 1M, 10M, 20M, 30M, 40M, 50M and 100M
instructions relative to sampling duration of 1M instructions. The unit of sampling is
millions of instructions. It shows that sampling for 20M instructions yields the highest
compression ratio. Hence, we choose 20M instructions for online sampling. The longer
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sampling duration can improve probability estimation, however, there is a trade-off be-
tween compression ratio and improved probability estimation as no compression is done
during sampling duration. Thus, we notice low compression ratio for sampling durations
longer than 20M instructions.

Codeword Generation After the sampling phase, code generation takes place. Instead of
classic Huffman coding, canonical Huffman coding [148] is used because it is fast to decode
as the codeword length is enough to decode a codeword. In canonical Huffman coding,
codewords of the same length are consecutive binary numbers. To generate canonical
Huffman codewords (CHCs), first classic codewords are generated by building a Huffman
tree using a minimum heap data structure as described in [139] and then symbols are
sorted according to their code lengths. The first symbol is assigned a codeword of all
zeros of length equal to the original SL. The next codeword is just the consecutive binary
number if the SL is the same. When a longer codeword is encountered, the last canonical
codeword is incremented by one and left shifted until its length is equal to the original SL.
The procedure is repeated for all symbols. For example, assume we have three symbols
(A = (11)2, B = (0)2, C = (101)2) with classic Huffman codewords. To convert them
to canonical, we first sort symbols according to code length (B = (0)2, A = (11)2, C
= (101)2) and then the first symbol (B) is assigned code (0)2. The CHC for the next
symbol A is (10)2 which is obtained by incrementing the last codeword by one and then
left shifting to match the original code length of A. Similarly, CHC for C is (110)2.

To ensure that unnecessarily long codewords are not generated, we assign a minimum
probability to each symbol such that no codeword is longer than the predetermined max-
imum length. Our experiments show that there are only a few symbols which have
codewords longer than 20-bit for SL 16 and 32-bit. Hence, we adjust the frequency so
that no symbol is assigned a code longer than 20-bit. Similarly, for SL 4 and 8-bit we fix
the maximum codeword length to 8 and 16-bit, respectively. Finally, all symbols that are
not in MFVs are assigned a single codeword based on their combined frequency and this
codeword is attached as a prefix to store all such symbols uncompressed. Since we only
need probability estimation and code generation in the beginning, both of these steps can
be done in software.

6.2.5 Low Decompression Latency

As already explained, GPUs are high throughput devices and less sensitive to latency than
CPUs. However, large latency increases can also affect GPU performance. Figure 6.6a
and 6.6b shows the speedup when compression and decompression latency is decreased
from 80 cycles to 0 cycles, respectively. It can be seen that there is a small speedup
(geometric mean of 1%) when the compression latency is decreased to 0 cycles. However,
there is a significant speedup (geometric mean of 9%) when the decompression latency is
decreased to 0 cycles. The speedup is more sensitive to decompression latency because
warps have to stall for loads from memory, while stores can be done without stalling.
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(a) Effect of compression latency on speedup.
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(b) Effect of decompression latency on speedup.

Figure 6.6: Effect of latency [85]. c© 2017 IEEE

The results clearly show the importance of low decompression latency. Thus, we perform
parallel decoding to decrease the decompression latency as explained in Section 6.2.10.

6.2.6 Memory Access Granularity and Compression

GPUs employ GDDR (Graphics Double Data Rate) as main memory because GDDR
provides higher bandwidth due to large memory access granularity (MAG). MAG is the
amount of data read from or written to a memory by a single read or write command.
MAG is a product of the burst length and bus width. The burst length is decided by
DRAM technology and it directly determines the MAG size. Table 6.1 shows the burst
length for different generations of GDDR. The burst length has increased over the gener-
ations to support high data transfer rates.

MAG is an important factor for memory compression as it affects the minimum amount
of data that can be fetched from memory. Since it is only possible to fetch in the multiple
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Table 6.1: Burst length across generations of GDDR [85]. c© 2017 IEEE

GDDR Generation Burst Length GDDR Generation Burst Length

GDDR1 2 GDDR5X 8/16

GDDR2 4 GDDR6 16

GDDR3/4/5 8 - -

of a MAG, for a compression ratio (CR) that is not an exact multiple of a MAG, more
data is fetched from memory than what is actually needed. Assuming a MAG of 32B
which is the case for GDDR5/5X/6, for a block that is compressed from 128B to 65B
(raw CR of 1.97), the actual amount of fetched data is 96B (3× 32B). Thus, while the
raw CR looks very close to 2, the effective CR is only 1.33. Therefore, due to low effective
compression ratio, the performance gain could be significantly less than otherwise possible
from high raw compression ratio. We assume MAG is 32B for this study.

6.2.7 Compression Overhead: Metadata Cache

To save memory bandwidth as a result of compression, we need to only fetch the com-
pressed 32B bursts from a DRAM. Therefore, the memory controller needs to know how
many bursts to fetch for every memory block. For GDDR5, the number of bursts varies
from 1 to 4. Similar to previous work [146, 160], we store 2- bit for every memory block as
metadata. For a 32-bit, 4GB DRAM with block size of 128B, we need 8MB of DRAM for
storing the metadata. However, we cannot afford to access the metadata first from DRAM
and then issue a memory request for the required number of bursts. This requires two
accesses to DRAM and defeats the purpose of compression to save memory bandwidth.
Therefore, like previous work [146, 160], we cache the most recently used metadata in a
cache. We use a small 8KB 4-way set associate cache to store the metadata. The 2-bit
stored in the metadata are also used to determine if the block is stored (un)compressed.
The value (11)2 means the block is stored uncompressed.

6.2.8 Huffman Compressor

Figure 6.7 shows an overview of the Huffman compressor. It can be implemented as a
small lookup table (c-LUT) that stores codewords (CWs) and their code lengths (CLs) as
shown in Figure 6.7a. The maximum number of CWs is 2N , where N is the SL. As the
maximum number of CWs is only 16 and 256 for SLs 4 and 8-bit, we store all CWs in
a c-LUT and index it directly using symbol bits. However, for SLs 16 and 32-bit such a
lookup table is not practical and instead we store 1K MFVs as discussed in Section 6.2.4.
We use an 8-way set associative cache to implement c-LUT for 1K MFVs. The cache is
indexed by lower 7-bit of a symbol.
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Figure 6.7: Huffman compressor [85]. c© 2017 IEEE

For SLs 4 and 8-bit, we build different Huffman trees corresponding to different symbols
in a word and thus, also use multiple c-LUTs, one corresponding to each tree. For example,
for SL 8-bit, we use 4 c-LUTs for the four different symbols in a word. We assume a word
size of 32-bit for our study.

Once we obtain a CW from c-LUT, we need to place it together with other CWs.
Figure 6.7b shows how the CWs are placed together. We use an intermediate buffer of 2×

maxCL as buffer length (BL), where maxCL is the maximum code length. To place a CW
at its right position, first the CW is extended to match BL and then the extended CW
is left shifted by BL − WP − CL using a barrel shifter, where WP is the current write
position in the buffer. Finally, the shifted CW is bitwise ORed with the intermediate
buffer and WP is incremented by CL. When WP ≥ maxCL, compressed data, equal to
maxCL, is moved from the intermediate buffer to the final buffer. The intermediate buffer
is left shifted by maxCL and WP is decremented by maxCL. Our RTL synthesis shows
that placing the CWs together takes more time than getting CW and CL from c-LUT. The
sum of the lengths of all CWs of a block determines if a block is stored (un)compressed.
When the sum is ≤ 96B, a block is stored compressed, otherwise uncompressed. Please
refer to Section 6.2.6 to understand the reason to choose compressed size ≤ 96B to decide
if a block is stored (un)compressed.

6.2.9 Huffman Decompressor

Figure 6.8 shows an overview of the Huffman decompressor. Our design is based on
the Huffman decompressor as proposed in [10], which mainly consists of a barrel shifter,
comparators, and a priority encoder to find the CW and CL. We use a buffer of length 2×

maxCL to store part of the compressed block. We use buffer length of 2× maxCL instead
of maxCL as in [10] for two reasons. First, we can continue decoding without shifting
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Figure 6.8: Huffman decompressor [10, 85]. c© 2017 IEEE

data every cycle from the compressed block to the buffer. Second, it helps to define a
fixed-width interface (maxCL in this case) to input compressed data instead of every cycle
shifting a different number of bits, equal to the matched CL. A pointer (bufPos) which
initially points to the end of the buffer is used to track the filled size of the buffer. To find
a CW, comparison is done in parallel between all potential CWs and the First Codewords
(FCWs) of all lengths. The FCWs of all lengths are stored in a table. A priority encoder
selects the first CW which is ≥ FCW of length l and ≤ FCW of length l +1. The selected
CW is extended by padding zeros to match the maxCL. An offset which depends on the
CL and is calculated during code generation is subtracted from CW to obtain the index for
the De-LUT. The barrel shifter shifts the buffer by CL and the bufPos is decremented by
CL. When bufPos ≤ maxCL, the remaining compressed data of length maxCL is shifted
into the buffer from the compressed block and bufPos is incremented by maxCL.

Although symbols are stored in consecutive locations in the De-LUT, canonical CWs
of different CLs are not consecutive binary numbers. Therefore, the De-LUT cannot be
indexed directly using the CW to obtain the decoded symbol. We need to subtract an
offset from the CW to find the index. These offsets are calculated during code generation.
For example, assume we have three symbols with canonical Huffman codewords (CHCs)
(B = (0)2, A = (10)2, C = (110)2). The symbol B will be stored at index 0 in the De-LUT,
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Figure 6.9: Structure of a compressed block [85]. c© 2017 IEEE

so it has offset 0. However, A will be stored at index 1, so it has offset 1 ((10)2-(01)2).
Similarly, C will be stored at index 2 and it has offset 4 ((110)2-(010)2). The maximum
number of offsets is equal to maximum number of CWs of different lengths. Both offset and
FCW tables are read and writable so that they can be changed for different benchmarks.
We use multiple decompressor units for different symbols in a word for SLs 4 and 8-bit.

6.2.10 Parallel Decoding and Memory Access Granularity

As the compressed data needs to be decompressed before it can be used and decompres-
sion incurs high latency which can degrade the performance. Thus, we need to decode in
parallel to reduce the decompression latency. Unfortunately, Huffman decoding is serial
as the start of the next CW is only known once the previous CW has been found. Serial
decoding requires high latency which can limit the performance gain. One way to par-
allelize Huffman decoding is to explicitly store pointers to CWs where we want to start
decoding in parallel in the compressed block itself. The number of pointers depends on
the number of required parallel decoding ways (PDWs).

Figure 6.9 shows the structure of a compressed block. It consists of n − 1 pointers (P2,
P3, ..., Pn) for n PDWs, and the compressed data. Each pointer consists of N bits where
2N is the block size in bytes. For example, for a 128B block, 7-bit are needed for each
PDW. The starting codewords for parallel decoding are byte-aligned while compressing
them. These pointers are overhead and hence will reduce compression ratio. However,
the effective loss in compression ratio is usually much lower due to the aforementioned
memory access granularity (MAG). Most blocks are compressed to a size that allows
adding extra bits for parallel decoding without reducing their compression ratio at the
MAG. Our experiments show that even with 4 PDWs where we store 21 extra bits (3∗7)
in the compressed block, there is either no or small loss in compression ratio. We analyze
the loss in compression and the number of PDWs needed in Section 6.4.2 and 6.4.4.

6.2.11 GPU High Throughput Requirements

To gain from memory compression, the throughput (bytes (de)compressed per second) of
the compressor and decompressor should match the full compressed memory bandwidth
(BW). Suppose we can obtain a maximum compression of 4×, then the compressor and
decompressor throughput has to be 4 times the GPU BW to fully utilize the compressed
BW. Unfortunately, a single (de)compressor unit cannot meet such high throughput.
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Table 6.2: Frequency, bandwidth, area, and power of a single unit of compressor and
decompressor [85]. c© 2017 IEEE

Compressor Decompresor

SL
(Bits)

Freq
(GHz)

BW
(GB/s)

Area
(mm2)

Power
(mW)

Freq
(GHz)

BW
(GB/s)

Area
(mm2)

Power
(mW)

4 1.67 0.84 0.02 1.43 1.11 0.56 0.01 5.12

8 1.54 1.54 0.08 4.01 0.91 0.91 0.04 11.91

16 1.43 2.86 0.11 5.47 0.80 1.60 0.07 11.89

32 1.43 5.72 0.17 9.34 0.80 3.20 0.12 14.30

Table 6.3: #units, area, and power to support 4× 192.4 GB/s [85]. c© 2017 IEEE

Compressor Decompresor GTX580

SL
(Bits)

Units
(#)

Area
(mm2)

Power
(W)

Units
(#)

Area
(mm2)

Power
(W)

Area
(%)

Power
(%)

4 464 7.9 0.7 692 10.3 3.6 3.4 1.7

8 252 20.3 1.0 424 18.1 5.0 7.3 2.5

16 136 14.6 0.7 240 16.4 2.8 5.8 1.5

32 68 11.5 0.6 120 14.3 1.7 4.9 0.9

Table 6.2 shows the frequency, BW, area, and power of a single compressor and de-
compressor unit as reported by Synopsis design compiler for different SLs. The BW of
NVIDIA GTX580 is 192.4 GB/s (32.1 GB/s per memory controller). However, the com-
bined throughput of the compressor and decompresor for any SL is far less than 4× 32.1
GB/s. For example, the combined throughput of the SL 16-bit is only 4.46 GB/s. Clearly,
a single (de)compressor unit is not enough and we need multiple units.

Table 6.3 shows the total number of compressor and decompressor units needed to
support 4× 192.4 GB/s and the corresponding area and power. The n parallel decoding
ways (n PDWs) utilize n decompressors from these total numbers of units to decode a
single block in parallel. This only decreases decompression latency and does not add up
to the total number of required units. Thus, no further multiplication of the numbers
shown in Table 6.3 is required for n PDWs.

Table 6.3 also shows the total area and power needed as percentage of the area and
peak power of the GTX580. A single (de)compressor unit requires less area and power
for smaller SLs. However, the total area and power needed to support the GTX580 BW
is much higher for smaller SLs as more units are required to meet the BW. We have
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Table 6.4: Baseline simulator configuration [85]. c© 2017 IEEE

Parameter Value Parameter Value

#SMs 16 L1 $ size/SM 16KB

SM freq (MHz) 822 L2 $ size 768KB

Max #Threads per SM 1536 # Memory controllers 6

Max #CTA per SM 8 Memory type GDDR5

Max CTA size 512 Memory clock 1002 MHz

#FUs per SM 32 Memory bandwidth 192.4 GB/s

#Registers/SM 32K Burst length 8

Shared memory/SM 48KB Bus width 32-bit

smaller area and power for SL 4-bit because the c-LUT and De-LUT have very small
number of entries (16). In general, the area numbers are likely higher than expected
because the memory design library does not have exact memory designs needed to design
(de)compressor and we have to combine smaller designs to get the required size. We
believe that a custom design will be denser and will need less area. We find that none of
the related work discussed throughput requirements of GPUs.

6.3 Experimental Setup

6.3.1 Simulator

We use gpgpu-sim v3.2.1 [15] and modify it to integrate BDI, FPC and E2MC. We con-
figure gpgpu-sim to simulate a GPU similar to NVIDIA’s GF110 on the GTX580 card.
The baseline simulator configuration is summarized in Table 6.4. For more information
regarding the simulator, please refer to [15].

Table 6.5 shows the (de)compressor latencies used to evaluate BDI, FPC, and E2MC.
For E2MC, we evaluate four designs of SLs 4, 8, 16, and 32-bit denoted by E2MC4, E2MC8,
E2MC16, and E2MC32, respectively. The latencies of BDI and FPC are obtained from
published papers [130] and [6]. For E2MC, we write RTL for the compressor and decom-
pressor designs and then synthesize using Synopsis design compiler version K-2015.06-SP4
at 32nm process node to accurately estimate the frequency, area, and power. The com-
pressor is pipelined using two stages. The first stage fetches the CW and CL from the
c-LUT, while the second stage combines CWs together. We find that the critical path
delay is in the second stage of the compressor. The decompressor is pipelined using three
stages. The first stage finds a CW, the second stage calculates the index for the De-LUT
using CW and offsets, and the De-LUT is accessed in the third stage to get the decoded
symbol. We find that the critical path delay is in the first stage of the decompressor. In
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Table 6.5: Compressor and decompressor latency in cycles [85]. c© 2017 IEEE

BDI FPC E2MC4 E2MC8 E2MC16 E2MC32

Compressor latency 1 6 154 84 46 24

Decompressor latency 1 10 233 143 82 42

E2MC, one symbol can be (de)compressed in a single cycle of frequency listed in Table 6.2.
The frequency is calculated using critical path delay. However, the DRAM frequency is
1002 MHz for GTX580. We scale the (de)compressor frequency and then count the num-
ber of cycles needed to (de)compress a memory block of size 128B. Furthermore, for each
PDW, we assume the decompressor latency is decreased by the same factor.

For estimating the energy consumption of the different benchmarks, GPUSimPow [99]
is modified to integrate the power model of the compressor and decompressor. The power
numbers obtained by RTL synthesis are used to derive power models for the compressor
and decompressor. Unfortunately, we do not have power models for BDI and FPC and
therefore, we cannot estimate their energy consumption. Thus, we only provide energy
estimate for E2MC.

6.3.2 Benchmarks

Table 6.6 shows the benchmarks used for evaluation. We include benchmarks from the
popular CUDA SDK [123], Rodinia [25], Mars [46], Lonestar [81], SHOC [37], gpgpu-
sim [15]. The lower part of Table 6.6 shows 7 compute-bound benchmarks that we
use for sensitivity analysis in Section 6.4.5. The benchmarks either belong to single-
precision/double-precision floating point (FP), integer (INT), unsigned character (U8),
or mixed (Mixed) category depending upon their data types. We modified the inputs
of SCAN and FWT benchmarks as the original inputs were random which are not suit-
able for any compression technique. We use SCAN for stream compaction which is an
important application and FWT to transform Walsh functions.

6.4 Experimental Results

To evaluate the effectiveness of E2MC, we compare compression ratio (CR) and perfor-
mance of E2MC for SLs 4, 8, 16, and 32-bit with BDI and FPC. We provide two kinds of
compression ratios, raw CR and CR at memory access granularity (MAG). The raw CR
is the ratio of the total uncompressed size to total compressed size. For CR at MAG, the
total compressed size is calculated by scaling up the compressed size of each block to the
nearest multiple of MAG and then adding all the scaled block sizes.

First, we present CR results using offline and online probability estimation and discuss
CR and parallel decoding trade-off. We then compare the speedup of E2MC with BDI and
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Table 6.6: Benchmarks used for experimental evaluation [85]. c© 2017 IEEE for the upper
half of the table.

Name Abbreviation Data Type Origin

convolSeparable CS Single-precision FP CUDA SDK

fastWalshTrans FWT Single-precision FP CUDA SDK

libor LIB Single-precision FP CUDA SDK

transpose TP Single-precision FP CUDA SDK

scan SCAN INT CUDA SDK

PageViewCount PVC INT MARS

PageViewRank PVR INT MARS

backprop BP Single-precision FP Rodinia

bfs BFS1 INT Rodinia

heartwall HW Mixed Rodinia

kmeans KM1 Mixed Rodinia

mummergpu MUM INT Rodinia

bfs BFS2 INT Lonestar

sssp SSSP INT Lonestar

spmv SPMV Mixed SHOC

storegpu STO INT [5]

StringMatch SM Mixed MARS

WordCount WC Mixed MARS

lavaMD MD Mixed Rodinia

pathfinder PF INT Rodinia

nn NN Single-precision FP gpgpu-sim

ray RAY Mixed gpgpu-sim

FPC and show the importance of decoding in parallel. Finally, we present the sensitivity
analysis of compute-bound benchmarks to E2MC and study the energy efficiency of E2MC.

6.4.1 Compression Ratio using Offline Probability

Figure 6.10a depicts the raw CR of BDI, FPC, and E2MC with offline probability. It
shows that on average E2MC provides higher CR than BDI and FPC for all SLs. The
geometric mean of the CR of E2MC for SLs 4, 8, 16 and 32-bit is 1.55×, 1.80×, 1.97×,
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(b) Compression ratio at MAG.

Figure 6.10: Compression ratio of BDI, FPC and E2MC [85]. c© 2017 IEEE

and 1.76×, respectively, while that of BDI is only 1.44× and FPC is 1.53×. This shows
that entropy based compression techniques provide higher CR than simple compression
techniques such as BDI and FPC whose CR is limited. E2MC16 yields the highest CR
which is 53% and 42% higher than the CR of BDI and FPC respectively.

As discussed in Section 6.2.6, data from memory is fetched in the multiple of MAG.
Figure 6.10b shows the CR of BDI, FPC and E2MC when this is taken into account. We
see that the CR of all three techniques at MAG is less than the raw CR. However, the
CR of E2MC is still higher compared to BDI and FPC. The geometric mean of the CR of
E2MC for SLs 4, 8, 16 and 32-bit is 1.36×, 1.53×, 1.62×, and 1.45×, respectively, while
the CR of BDI is only 1.24× and the CR of FPC is 1.34×. We see that E2MC16 also
yields the highest CR at MAG. So, we select E2MC16 for further analysis.

To obtain an estimate how close E2MC16 is to the optimal CR, we calculate upper
bound on CR using Shannon’s source coding theorem [150]. The average optimal CR for
SL 16-bit is 2.61×, which means there is a gap of 64% that could be further exploited.
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Figure 6.11: Compression ratio of E2MC16 with parallel decoding [85]. c© 2017 IEEE

However, we think further improving the compression ratio of E2MC16 to narrow the gap
with optimal CR is difficult as compression is data dependent.

6.4.2 Compression Ratio and Parallel Decoding Trade-off

As shown in Section 6.2.5, low decompression latency is important for achieving high
performance. To reduce the decompression latency we decode in parallel as discussed in
Section 6.2.10. However, parallel decoding is not for free as it decreases the CR. Hence,
the number of parallel decoding ways (PDWs) needs to be selected in a way such that the
performance gain is maximal and the loss in CR is minimal.

Figure 6.11a shows that the CR decreases slightly when the number of PDWs increases.
However, we will see in Section 6.4.4, the performance increases with the number of PDWs
as the decompression latency decreases. Moreover, we see from Figure 6.11a that the CR
of E2MC16 even for 8 PDWs is still much higher than the CR of BDI and FPC.
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We have seen that parallel decoding causes loss in CR. However, the loss in CR at
MAG is much lower than the loss in raw CR as shown in Figure 6.11b than Figure 6.11a.
For example, there is 9% loss in raw CR with 4 PDWs, while at MAG it is only 4%. The
reason for lower CR loss at MAG is that at MAG we usually need to fetch some extra
bits to meet the MAG requirements. Using these extra bits to store offsets for parallel
decoding does not cause loss in CR. This is not always true, therefore, we see some loss
in CR even at MAG.

6.4.3 Compression Ratio using Online Sampling

As discussed in Section 6.2.4 online sampling is needed to estimate probability if entropy
characteristics are not known in advance. Figure 6.12a shows the CR for online sampling
size of 20M instructions. We choose 20M instructions for online sampling as it gives
the highest CR as shown in Figure 6.5b and we only sample at the beginning of each
benchmark. The CR of E2MC16 is 1.79×, which is 35% and 26% higher than the CR of
BDI and FPC, respectively. However, as expected the CR with online sampling is lower
by 18% on average than that of offline sampling.

Figure 6.12b shows the CR with online sampling at MAG. The CR of E2MC16 at MAG
is 1.52×, which is still 28% and 18% higher than BDI and FPC, respectively. The CR
results show that it is possible to achieve reasonably higher CR with small online sampling.
However, the CR at MAG with online sampling is 10% lower than offline sampling.

6.4.4 Speedup

We first establish an upper bound on the speedup assuming favorable conditions and then
use realistic conditions to study the actual gain. Figure 6.13a shows the speedup of BDI,
FPC, and E2MC16 when offline probability is used and the (de)compression latency is
only one cycle for all techniques. BDI and FPC achieve an average speedup of 12% and
16%, respectively, while the average speedup of E2MC is 16%, 21%, 23%, and 16% for
SLs 4, 8, 16, and 32-bit, respectively. The speedup is due to the decrease in DRAM
bandwidth requirement which is reciprocal of the achieved compression ratio.

Figure 6.13b and Figure 6.13c shows the speedup of BDI, FPC and E2MC16 for offline
and online sampling with realistic latencies as shown in Table 6.5. For E2MC we only
show speedup in detail for SL 16-bit with 1 to 8 PDWs. A brief discussion of the speedup
for SL 4, 8, and 32-bit is presented later in the section. We see that the speedup is less for
FPC and E2MC16 using realistic latencies. However, the speedup of BDI does not change
as actual latency is also single cycle. The speedup of E2MC16 with offline probability
(13%) is equal to the speedup of FPC (13%) and even slightly less with online probability
(11%) when no parallel decoding is used, even though the CR of E2MC16 is much higher
than that of FPC. This is because without parallel decoding the decompression latency of
E2MC16 is 82 cycles, which is much higher than the decompression latency of FPC which
is 10 cycles. The speedup increases when we increase the PDWs from 1 to 4 because each
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(b) Compression ratio at MAG.

Figure 6.12: Compression ratio of BDI, FPC and E2MC16 for online sampling size of 20M
instructions [85]. c© 2017 IEEE

PDW decreases the decompression latency by half. However, each PDW also decreases
the CR as we need to store the offsets for parallel decoding and hence there is a trade-off
between the CR and performance gain. Figure 6.13b shows that there is no further gain
in performance from 4 PDWs to 8 PDWs. This is because the increase in performance due
to further decrease in latency is nullified by the decrease in CR. Hence, to achieve higher
speedup for E2MC16 we not only need higher CR but also the decompression latency has
to be reasonably low.

Figure 6.13a shows that the average speedup of E2MC for SL 8-bit with single cycle
latency is much higher than the speedup of BDI and FPC and close to the speedup for
SL 16-bit. The speedup for SLs 4 and 32-bit is also higher or equal to BDI and FPC.
However, when actual latency is used the average speedup is much lower. The average
speedup of E2MC for SLs 4, 8-bit with 8 PDWs and for SL 32-bit with 4 PDWs is 2%,
14% and 15% respectively. The reason for low speedup for SLs 4, and 8-bit is their high
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Figure 6.13: Speedup of BDI, FPC and E2MC [85]. c© 2017 IEEE

decompression latency.
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Figure 6.14: Sensitivity analysis of compute-bound benchmarks.

We see that both offline and online sampling results in higher performance gain for
E2MC16 than BDI and FPC, provided decompression latency is reduced by parallel de-
coding. The geometric mean of the speedup of E2MC16 with 4 PDWs is about 20% with
offline probability and 17% with online probability. The average speedup is 8% higher
than the state of the art with offline and 5% higher with online sampling.

6.4.5 Sensitivity Analysis to Compute-bound Benchmarks

We conduct sensitivity analysis to verify that E2MC increases performance of the memory-
bound benchmarks without hurting the performance of the compute-bound benchmarks.
The compute-bound benchmarks have low bandwidth utilization and they either do not
gain or gain very small from the increase in bandwidth. We select such compute-bound
benchmarks and compress them using E2MC16. Figure 6.14 shows the results of com-
pressing compute-bound benchmarks for E2MC16 for different PDWs. Figure shows that
these benchmarks do not gain from E2MC16 and also their performance do not degrade.
Only the performance of STO reduces by 4% for 1 PDW as decompression latency is high
for 1PDW, however, on average there is only 1% reduction in performance for 1 PDW.
Moreover, we propose to use 4 PDWs and we notice no decrease in performance of the
compute-bound benchmarks at 4 PDWs.

6.4.6 Effect on Energy

Figure 6.15 shows the reduction in energy consumption and energy-delay-product (EDP)
over no compression for E2MC16 for offline and online sampling. On average there is 13%
and 27% reduction in energy consumption (E-OFF) and EDP (EDP-OFF) respectively,
for offline sampling and 11% and 24% reduction in energy consumption (E-ON) and EDP
(EDP-ON) respectively, for online sampling. E2MC16 reduces the energy consumption
by reducing the off-chip memory traffic and total execution time. We show energy and
EDP of E2MC only over no compression due to lack of power models for BDI and FPC.
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Figure 6.15: Energy and EDP of E2MC16 for offline and online sampling over baseline [85].
c© 2017 IEEE

6.5 Summary

In this chapter, we proposed an entropy encoding based memory compression (E2MC)
technique for GPUs that delivered higher performance and energy efficiency compared to
the state-of-the-art. Most of the previous compression techniques were originally proposed
for CPUs and hence, they traded low compression ratio for low decompression latency by
exploiting simple patterns for compression. As GPUs are less sensitive to latency than
CPUs, we studied the feasibility of a relatively more complex entropy encoding based
memory compression technique that has higher potential for compression, but also higher
latency. We showed that E2MC delivered higher compression ratio and performance gain
than state-of-the-art, provided the key challenges of probability estimation, appropriate
symbol length for encoding and decompression with reasonably low latency are addressed
properly. E2MC with offline sampling resulted in 53% higher compression ratio and 8%
increase in speedup compared to the state-of-the-art techniques and saved 13% energy
and 27% EDP compared to no compression. Online sampling resulted in 35% higher
compression ratio and 5% increase in speedup compared to the state of the art and saved
11% energy and 24% EDP compared to no compression.

We also provided an estimate of the area and power needed to meet the high through-
put requirements of GPUs. We showed that area and power overhead of the E2MC is
acceptable with respect to GTX580. For E2MC16, the area and power overhead is 5.8%
and 1.5% of the area and power of GTX580, respectively. We think the area numbers are
likely higher than expected and a custom design will be denser and will need less area.

A problem that we observed with all the three lossless compression techniques (FPC,
BDI, and E2MC) is that their compression ratio at memory access granularity (MAG),
which is the effective compression ratio by which the memory bandwidth effectively im-
proves, is much lower than the raw compression ratio. The effective compression ratio is
low because the data can only be fetched in a multiple of MAG, however, a memory block
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is not always compressed to an exact multiple of MAG. Therefore, we end up fetching
more data than needed in order to meet the MAG restrictions.

In the next chapter, we will propose a MAG aware selective lossy compression tech-
nique to increase the effective compression and performance gain further. The selective
approximation can be toggled on top of a lossless compression depending on an application
performance requirement and error tolerance.
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Compression Technique

The work presented in this chapter was partially published: S. Lal, J. Lucas,
and B. Juurlink, “SLC: Memory Access Granularity Aware Selective Lossy
Compression for GPUs,” in Design, Automation and Test in Europe, DATE,
EDAA, 2019.

In the last chapter, we observed that lossless memory compression techniques have low
effective compression ratio due to large memory access granularity (MAG). The effective
low compression ratio reduces performance gain that otherwise could result from a higher
raw compression ratio. In this chapter, we propose the novel MAG aware selective lossy
compression (SLC) technique to increase the effective compression ratio and performance
gain. We propose two techniques to implement SLC and present their trade-offs.

7.1 Introduction

Memory compression has been demonstrated as a promising alternative to increase mem-
ory bandwidth [26, 146, 160, 77, 85], however, memory compression techniques often
exhibit a low effective compression ratio. The main reason for the low effective compres-
sion ratio is the large memory access granularity (MAG) exhibited by GPUs due to wide
bus width and large burst length. For example, MAG of GDDR5/5X/6 is 32B resulting
from 32-bit bus width and 8 burst length. MAG is the amount of data read from or
written to a memory by a single read or write command. MAG reduces the compression
ratio as data can only be fetched in a multiple of MAG but a compressed block is often
not a multiple of a MAG. For example, for a compressed size of 36B, we fetch 64B. Thus,
a compression ratio that seems close to 4× (3.6×, assuming a typical block size of 128B in
current GPUs) is actually only 2×. This leads to a significant difference between the raw
and effective compression ratio actually gained by a system. The raw compression ratio
is calculated without considering MAG, while the effective compression ratio is calculated
by scaling up the compressed size to the nearest multiple of a MAG.

Figure 7.1 shows the raw and effective compression ratios of Base Delta-Immediate
(BDI) [130], Frequent-Pattern Compression (FPC) [6], C-PACK [26], and Entropy Encod-
ing Based Memory Compression (E2MC) [85] techniques for memory-bound benchmarks
included from CUDA SDK [123], Rodinia [25], and AxBench [173]. More details about
the benchmarks and experimental setup can be found in Section 7.4. The geometric mean
(GM) of the effective compression ratio of BDI, FPC, C-PACK and E2MC is 22%, 19%,
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Figure 7.1: Raw and effective compression ratio of BDI, FPC, C-PACK and E2MC using
MAG of 32B.

18%, and 23% less than the GM of the raw compression ratio, respectively. The low
effective compression ratio reduces performance benefits, otherwise possible from a higher
raw compression ratio.

Interestingly, our study of the distribution of compressed blocks (presented in Sec-
tion 7.2.2) shows that a significant percentage of compressed blocks have only a few bytes
above a multiple of MAG. With the goal to reduce the compressed size by these extra
bytes, we propose the novel MAG aware Selective Lossy Compression (SLC) technique for
GPUs. The key idea of SLC is that when a lossless compression yields a compressed size
with a few bytes above MAG, we use lossy compression to approximate these few bytes
such that the compressed size is a multiple of MAG. This way, we selectively introduce a
small approximation error, however, we significantly increase the compression ratio. For-
tunately, there are several GPU applications that are inherently error-resilient to some
extent and small approximation will not degrade their output quality to an unacceptable
level [141, 45]. Considering that E2MC provides the highest compression ratio and per-
formance gain, we choose E2MC as the baseline lossless compression technique for SLC.
However, SLC is not limited to E2MC, but can also be applied to other lossless memory
compression techniques.

We propose two techniques for implementing SLC and compare their advantages and
disadvantages. A key challenge of SLC is to find the number of symbols needed to be
approximated to decrease the compressed size to a multiple of MAG. Since it is not trivial
to find the symbols that contribute extra bytes, one simple way is to approximate the
whole block. Our first method approximates the whole block using quantization, and
we call this technique as Quantization-based SLC (QSLC). An advantage of QSLC is
that quantization error is uniformly distributed across all symbols of a block. However,
a disadvantage of QSLC is that it does not guarantee that the quantized block will be
an exact multiple of MAG after the quantization. Our second method determines the
number of symbols needed to be approximated to decrease the compressed size by extra
bytes and then only approximate these symbols and not the whole block. The second
method uses a tree structure to select the symbols for approximation and we call this
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technique as Tree-based SLC (TSLC). TSLC guarantees that approximated blocks are
an exact multiple of MAG, however, this method may result in a slightly higher error as
it uses truncation for approximation. Fortunately, we show that the error is not much
as we only need to approximate a few symbols and value similarity-based prediction to
reconstruct the approximated symbols works quite well. For a lossy threshold of 16B,
SLC provides a speedup of up to 17% with < 1% average error.

In summary, we make the following contributions in this chapter:

• We quantitatively show that low effective compression ratio due to MAG exists in
four state-of-the-art techniques and qualitatively in three more.

• We propose the novel MAG aware Selective Lossy Compression (SLC) technique
and show a significant performance gain with an acceptable and low accuracy loss.

• We propose two techniques to implement SLC and present their trade-offs.

• This is the first study that highlights the importance of MAG aware compression
by quantitatively studying the distribution of compressed blocks above MAG.

• A sensitivity analysis to different MAGs shows an even higher significance of SLC
at larger MAG.

• We implement hardware and show the area and power cost of SLC is only 0.0015%
and 0.0008% of GTX580.

This chapter is organized as follows. In Section 7.2, we further motivate the problem.
In Section 7.3, we present SLC in detail. Section 7.4 explains the experimental setup and
experimental results are presented in Section 7.5. In Section 7.6, we discuss the relevance
of SLC with emerging DRAM technologies and sector cache. In Section 7.6.2, we conduct
sensitivity analysis to different MAG sizes. Finally, we summarize the contributions of
this chapter in Section 7.7.

7.2 Motivation

We first show that more memory compression techniques suffer due to large MAG and then
study the distribution of compressed blocks to make a case for MAG aware approximation.

7.2.1 Qualitative Analysis of More Compression Techniques

Figure 7.1 quantitatively showed that four state-of-the-art memory compression tech-
niques suffer due to MAG. There are three other techniques: SC2 [10], HyComp [9] and
BPC [77] that can also be applied for memory compression. SC2 [10] is a statistical
cache compression technique and is similar to E2MC [85] because both are based on Huff-
man encoding. The former is proposed for CPUs, while the later is proposed for GPUs.
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Table 7.1: Summary of qualitative analysis of memory compression techniques.

Work Qualitative analysis Suffers due to MAG?

SC2 [10] Similar to E2MC [85], already shown to suffer X

HyComp [9]
Based on SC2 [10] and BDI [130], already shown to

suffer
X

BPC [77]
Based on FPC [6] and C-PACK [26], already shown

to suffer
X

Therefore, SC2 will suffer due to MAG. HyComp is a hybrid compression method which
improves the compression ratio by selecting a suitable compression method based on the
specific data-type. HyComp will also suffer from MAG as two (BDI and SC2) out of
the four compression methods that HyComp selectively uses are already shown to suffer.
The third method called FP-H divides a floating-point number into three fields: Expo-
nent, Mantissa-High, and Mantissa-Low and then employs SC2 to compress each of these
fields in isolation that means FP-H will also suffer from MAG. BPC stands for bit plane
compression that uses transformation to increase the compressibility and then uses either
run-length or frequent pattern encoding to compress the transformed data. While trans-
formation increases compressibility, BPC will still suffer from MAG as both the run length
and frequent pattern encodings exploit patterns similar to FPC and C-PACK which are
already shown to suffer in Figure 7.1. Therefore, several memory compression techniques
suffer from MAG. Table 7.1 summarizes the qualitative analysis.

7.2.2 Distribution of Compressed Blocks at MAG

Figure 7.2 shows the distribution of compressed blocks at MAG when E2MC [85] is used
for compression of different benchmarks detailed in Section 7.4.2. We assume a MAG of
32B and a block size of 128B, which are typical values in current GPUs. The x-axis shows
the number of bytes above a multiple of MAG. 0B on the x-axis means a compressed
block size is a multiple of MAG i.e. 32B, 64B, or 96B. For simplification, all blocks with
a compressed size < 32B are also included in the 0B origin. 32B on the x-axis represents
the percentage of uncompressed blocks. The left y-axis shows the percentage of blocks
and the right y-axis shows the number of samples. The number of samples shows the
number of times a certain percentage of blocks e.g. 20% are compressed with a certain
number of bytes e.g. 4B above a multiple of MAG for all benchmarks.

Figure 7.2a shows the distribution of compressed blocks for a single benchmark nn.
There are about 22% of blocks with a compressed size 6 12B above a multiple of MAG and
about 45% of blocks with a compressed size 6 16B above a multiple of MAG. Figure 7.2b
shows a heat map plot of the distribution of compressed blocks for all benchmarks. We
see that all blocks are not compressed to a multiple of MAG and the distribution does not
favor any specific size above a multiple of MAG. This is also expected as the probability
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Figure 7.2: Distribution of compressed blocks above MAG.

that a compressed block will be an exact multiple of a MAG is far less than not an
exact multiple of MAG. Ideally, for a high effective compression ratio, all blocks should
be compressed to 0B above a multiple of MAG. However, we see there is a significant
percentage of blocks that are not compressed to an exact multiple of MAG, but a few
bytes above a multiple of MAG. As explained before, there is no way to just fetch these
extra bytes, but we have to fetch a whole 32B burst, causing a low effective compression
ratio. Nevertheless, these few extra bytes present an opportunity to achieve high effective
compression ratio at low accuracy loss by selective approximation.

7.3 Selective Lossy Compression

In this section, we first provide an overview of a system employing Selective Lossy Com-
pression (SLC) and then present architectural details of SLC.
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Figure 7.3: Overview of a system with compression components.

7.3.1 Overview of a System with SLC Components

Figure 7.3 shows an overview of a system with main components of SLC technique. The
system overview is similar to E2MC as described in Chapter 6. The main difference is
that the compressor and decompressor shown in Figure 7.3 also implement SLC on top
of E2MC. As indicated by the green color, the memory controller (MC) is modified to
integrate the compressor, decompressor, and metadata cache (MDC). As the memory
controller needs to fetch only the required number of bursts which can vary from 1 to 4
for every compressed block, we store 2-bit in MDC similar to previous work [146, 85, 160].
Data transfer to and from DRAM is in compressed form with (de)compression taking
place in the MC and compression is completely transparent to the L2 cache and the
streaming multiprocessors (SM). Similar to E2 MC, the data is stored in the compressed
format in the DRAM and goal also remains the same to increase the effective off-chip
memory bandwidth and system efficiency and not to increase the effective capacity of
the DRAM, similar to [146, 85]. Hence, a compressed block is still allocated the same
size in DRAM similar to E2MC, although it may require less space. Moreover, a block
is marked decompressed as soon as we decompress the required number of symbols to
recover the original block and the extra data that is fetched due to MAG is meaningless
and not interpreted. To decrease latency and reduce performance degradations normally
resulting from the overhead of compression and decompression techniques, SLC inherits
several novel techniques such as parallel decoding and pipelined design from E2MC as
explained in Chapter 6.
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Figure 7.4: Overview of selective lossy compression.

7.3.2 SLC Architecture

Figure 7.4 shows an overview of the SLC technique. Basically, SLC is a budget-based
compression technique which allows selection between different compression modes de-
pending upon comp size, bit budget, extra bits, and a threshold. SLC selectively uses a
combination of lossless and lossy compression modes. The key idea of SLC is that when
lossless compression yields a compressed size (comp size) that is a few bytes (extra bits1)
above a multiple of MAG, lossy compression is used to approximate these extra bits such
that the compressed size is a multiple of MAG. Thus, SLC retains the quality of a lossless
compression when the compressed size is a multiple of MAG or the extra bits are above
MAG, however, when the compressed size is not a multiple of MAG and extra bits are
within the threshold, lossy compression is used to achieve the desired compression.

The bit budget is a multiple of MAG and in our case, it is either 32B, 64B, 96B, or 128B.
When the comp size of a block is more than its uncompressed size, the block is always
stored uncompressed and in this case, the bit budget is 128B. Since it is not possible to
fetch less than 32B from memory, we also use lossless compression when the compressed
size is less than 32B and in this case, the bit budget is also 32B. The extra bits are the
number of bits above the bit budget and the threshold is the number of bits defined by

1We refer to size above MAG as extra bits instead of extra bytes while explaining SLC in detail as a
compressed size is not always a multiple of a byte. Extra bytes is used in other places for readability.
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7 MAG Aware Selective Lossy Compression Technique

the user that can be safely approximated.

Once we know the comp size, we check if it is equal to bit budget. We use lossless
compression when the comp size is equal to bit budget. When the comp size is not equal to
bit budget, we use lossy compression if the extra bits 6 threshold and lossless compression
if the extra bits > threshold. A block may be stored uncompressed when the extra bits >

threshold. In nutshell, based on a bit budget, extra bits, and a threshold, SLC selects an
appropriate compression mode.

We know how many bytes (extra bits) are above a MAG, but the problem is that these
extra bits are codewords and not symbols. The challenge here is to find the number
of symbols that need to be approximated to decrease the compressed size by extra bits
such that the new compressed size is a multiple of MAG. We propose two techniques to
approximate extra bits and evaluate their trade-offs. As it is not trivial to find the symbols
that contribute these extra bits, one simple way is to approximate a whole block when
lossy compression mode is selected. Our first method does that using quantization and
we call this technique as Quantization-based SLC (QSLC). In our second method, we first
determine the number of symbols needed to be approximated to decrease the compressed
size by extra bits and then only approximate these symbols and not the whole block. The
second method uses a tree structure to select the symbols for approximation and we call
this technique as Tree-based SLC (TSLC). We first describe how we compute comp size,
bit budget, extra bits, and threshold in the next Section 7.3.3 and then explain the two
methods in detail in Section 7.3.5 and Section 7.3.4, respectively.

7.3.3 Compressed Block Size, Bit Budget, and Extra Bits

To use SLC, the first thing that we require is the compressed block size (comp size) that
would result if only lossless compression is used. However, we cannot wait for a lossless
compression to compress a block and then decide which compression mode to use as
compression incurs long latency. Although GPUs can hide compression latency, too much
increase can also start degrading their performance [85]. Fortunately, we only need to
know the comp size and not the compressed block to choose a compression mode and the
comp size can be easily calculated by just adding all code lengths. As explained by Lal
et al. [85], obtaining codewords and code lengths from Huffman compressor table is much
faster than placing the codewords together. There are different ways to sum these code
lengths such as using an accumulator or a parallel tree adder. We use an accumulator for
QSLC and a parallel tree adder for TSLC for the reasons described in Section 7.3.5. RTL
synthesis details to obtain the comp size are described in Section 7.4.1.

Once the comp size is known, bit budget of a block can be computed. The bit budget
is the closest multiple of MAG that is less than or equal to the comp size. The possible
values of bit budget are 32B, 64B, 96B, or 128B. The bit budget is dynamically calculated
for each block from its compressed size. Since it is not possible to fetch less than 32B
from memory, bit budget is also 32B when the compressed size is less than 32B. The extra
bits are simply calculated by subtracting the bit budget from the comp size.
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Figure 7.5: Huffman compressor with extra table for quantization.

7.3.4 Quantization-based SLC

Quantization-based SLC (QSLC) uses quantization to implement the lossy compression
mode. We use the compressor and decompressor proposed by Lal et al. [85] as base designs
and adapt them to implement QSLC. QSLC uses two Huffman tables for compression. A
Huffman table is a small lookup table that stores codewords (CWs) and their code lengths
(CLs). The table is indexed by a symbol to get its CW and CL. The first table is a normal
Huffman table as used by Lal et al. [85] for lossless compression. The second table is a
quantized Huffman table that stores quantized codewords (QCWs) and their code lengths
(QCLs). This table is built in a similar way to the first table except that the symbols are
quantized before generating the codewords. More details about the generation of Huffman
codewords can be found in [85]. We quantize the least significant bits as they introduce the
least error and vary the number of quantization bits (4, 8, 12, and 16-bit). Our baseline
E2MC uses 16-bit symbols, thus, we only quantize the first symbol of a 32-bit word. The
quantized Huffman table is used for the lossy compression mode and the normal Huffman
table is used for the lossless compression mode. The quantized symbols are expected to
generate smaller codewords compared to no quantization as several unquantized symbols
will be quantized to a single symbol with higher probability and thus, a quantized symbol
gets smaller codeword.

The base Huffman decompressor is also modified to implement QSLC. The main modi-
fication is the addition of second decompressor lookup table (De-LUT) to store the quan-
tized symbols along with unquantized symbols and some arbitration logic to select the
appropriate De-LUT.

An advantage of QSLC is that we do not need to find the number of symbols needed to
be approximated to reduce the compressed size to a multiple of MAG and quantization
error is uniformly distributed across an approximated block. A disadvantage of QSLC is
that it does not guarantee that a quantized block will be an exact multiple of MAG and a
slightly higher hardware overhead if 4 or 8-bit QSLC is used as detailed in Section 7.3.9.
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Figure 7.6: Tree-based SLC.

7.3.5 Tree-based SLC

In this method, we first determine the number of symbols needed to be approximated
to reduce the compressed size to a multiple of MAG and then only approximate these
symbols and not the whole block. We use a parallel tree adder to add all code lengths of
a block to find the compressed size (comp size) and intermediate sums of the code lengths
to select the symbols for approximation as shown in Figure 7.6. The last node of the tree
contains the comp size that is used to find the bit budget and extra bits as described in
Section 7.3.3. A parallel tree adder could also be used for QSLC to know the compressed
size of a block, however, an accumulator is sufficient and cheaper in hardware as QSLC
does not need intermediate sums of code lengths. The use of intermediate sums of the
code lengths to select the symbols for approximation is explained below.

When the lossy compression mode is selected, the extra bits are compared with the
intermediate sums at all levels in parallel as shown in Figure 7.6. The output of these
comparisons is written to a bit vector. It may happen that we do not find any sub-block
with compressed size (intermediate sum) ≥ extra bits at some levels. The output of the
comparison stage is all zeros for these levels. In the sub-block selection stage, priority
encoders are used to output the indices of the first sub-block with sum ≥ extra bits for
each level of the tree. Finally, a sub-block (sub_block_to_approx) with compressed size
≥ extra bits from the lowest level (approx_level) is selected for approximation as at this
level we need to approximate the fewest symbols. As the sub_block_to_approx is selected
in parallel, the latency is fixed regardless of the approximated level. The latency overhead
is described in Section 7.4. Once sub_block_to_approx is selected, the start symbol for
approximation is obtained by: sub_block_to_approx ×2approx_level.

An optimization that will likely result in slightly less error is to find all the sub-blocks
with compressed size > extra bits and then select the smallest, however, that would require
more comparisons. A further optimization that can save comparisons at the sub-block
selection stage is to first estimate the approximation level (est_approx_level) using the
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7.3 Selective Lossy Compression

Algorithm 1 Estimated approximation level

1: procedure ApproxLevel(bit_budget, extra_bits, num_symb)
2: avg_comp_size_per_symb = (bit_budget + extra_bits)/num_symb
3: num_symb_to_approx = extra_bits/avg_comp_size_per_symb
4: if num_symb_to_approx < 1 then
5: num_symb_to_approx = 1
6: end if
7: est_approx_level = log

2
(num_symb_to_approx)

8: end procedure

pseudo Algorithm 1 and then only compare the extra bits at levels ≥ est_approx_level
in parallel. As shown in pseudo algorithm, first the average compressed size per symbol
(avg_comp_size_per_symb) is computed as shown in line 2 and then the estimated
number of symbols needed to be approximated (num_symb_to_approx) as shown in
line 3. The log of the number of symbols to approximate (num_symb_to_approx) gives
the estimated approximation level (est_approx_level) as shown in line 7.

During the decompression of a block, we check if the symbol being decoded is approx-
imated or not. When the symbol being decoded is not approximated, we decompress it
normally as in [85], otherwise, we predict its value as described in Section 7.3.6.

7.3.6 Value Similarity-based Prediction

In TSLC, we simply truncate the symbols selected for approximation during compression
that guarantees the desired compression, however, this method may result in a higher error
due to truncation. To reduce the error resulting from truncation, we predict the value of
approximated symbols during decompression. The challenge in designing a predictor for
GPUs is that a single memory request is a SIMD load that produces values for all threads
in a warp and a multi-value predictor will be quite expensive accounting that there are
many active warps in a GPU. Fortunately, the research has shown that SIMD loads in
GPUs exhibit high value similarity [141, 175] and our experimental results also reveal the
same. While a SIMD load fetches several data elements for a warp, adjacent threads in a
warp operate on values that have significant value similarity, for example, adjacent pixels
of an image. This implies that even a very simple value replication could also provide a
reasonable accuracy for the predicted symbols. Considering that we only need to predict
a few symbols of a block and adjacent threads have significant value similarity, we decide
to use a simple value similarity-based prediction scheme. The prediction works as follows.
While decoding an approximated block, we use the value of the first symbol of the block
being decoded as its predicted value when the first symbol itself is not approximated and
the value of the first non-truncated symbol when the first symbol itself is approximated.
In terms of decompressor hardware change, we only need to generate the index of the
predicted value when an approximated symbol is decoded.

While there are exact value predictors [54, 131] and stride predictors [147, 41] with
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m ss len pdp Compressed data
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Figure 7.7: Structure of a compressed block.

trade-offs in terms of accuracy and complexity, we opt for the very simple prediction
scheme due to its negligible hardware cost and reasonable accuracy for our use case.

7.3.7 TSLC Optimization

TSLC may approximate significantly more bits than needed to reduce the compressed
size to a multiple of MAG due to coarse intermediate sums at middle levels in the tree.
This can happen as a node at level l+1 has a sum of two times the nodes at level l as
shown in Figure 7.6 and when we cannot find a sub-block with compressed size ≥ extra
bits at level l, we move to level l+1 and it may be the case that the largest sub-block at
level l is only a few bits less than the extra bits. The experiments show that a significant
unneeded approximation may happen at the middle levels (3 and 4). The high unneeded
approximation does not happen at lower levels (< 3) as the intermediate sums are smaller
and it also does not occur at higher levels (> 4) because we can mostly find a sub-block
to approximate at the middle levels. To reduce the unneeded approximation, we further
optimize TSLC by adding a few extra intermediate nodes at the middle levels. We add 8
and 4 extra nodes to have less coarse sums at levels 3 and 4, respectively, which originally
have 16 and 8 nodes. We can further optimize by having even fine-grained sums, however,
that will require more hardware resources.

7.3.8 Structure of a Compressed Block

Figure 7.7 shows the structure of a compressed block which consists of a header and
compressed data. The header information is needed to decompress a block. The header
consists of 1-bit (m) to indicate the compression mode that could be either lossless or
lossy, 6-bit to store the first approximated symbol index (ss), 4-bit to store the number of
approximated symbols (len), and 3 parallel decoding pointers (pdp) for 4 parallel decoding
ways (PDWs). Our experiments show that the maximum number of the approximated
symbols is 16, thus we need 4-bit to store the len. SLC uses 4 PDWs to reduce the
decompression latency as we show the highest performance gain for 4 PDWs in Chapter 6.
Each pointer consists of N bits, where 2N is the block size in bytes. The ss and len fields
are only needed for TSLC and not for QSLC as later approximates the whole block. No
header is needed as in the baseline [85] when a block cannot be compressed.
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Table 7.2: Frequency, area, and power of TSLC and QSLC.

Compressor Decompresor

Technique Freq
(GHz)

Area
(mm2)

Power
(mW)

Freq
(GHz)

Area
(mm2)

Power
(mW)

TSLC 1.43 0.00830 1.620 0.80 0.00030 0.210

QSLC-4b 1.43 0.15000 4.200 0.80 0.05200 1.230

QSLC-8b 1.43 0.09000 2.800 0.80 0.02600 0.910

QSLC-12b 1.43 0.00350 1.150 0.80 0.00370 0.600

QSLC-16b 1.43 0.00070 0.240 0.80 0.00001 0.001

7.3.9 Hardware Implementation and Overhead

To estimate the frequency, area and power overhead of the proposed SLC techniques,
we implement TSLC and QSLC in RTL and then synthesize the designs using Synopsis
design compiler version K-2015.06-SP4 targeting 32 nm technology node. Table 7.2 shows
the frequency and the additional hardware overhead of extending E2MC with TSLC and
QSLC with the different number of quantization bits. We only present synthesis results
for one variation of TSLC (optimized TSLC with prediction) as the differences are in-
significant. The area and estimated power of QSLC-4b and QSLC-8b are higher than the
TSLC as QSLC requires additional SRAM tables to store the quantized codewords and
the quantized symbols for decompression lookup to implement lossy compression mode.
The overhead decreases for higher quantization as the number of quantized symbols and
codewords decreases. More importantly, both the area and power overhead of TSLC and
QSLC are very small with respect to the GTX580, which has 540 mm2 area and 240
W power consumption. The area and power cost of the TSLC is about 0.0015% and
0.0008% of GTX580, while the area and power cost of the QSLC-12b is about 0.0013%
and 0.0007% of GTX580. TSLC adds 5.6% of the area of E2MC, while QSLC-12b and
QSLC-16b only add 4.7% and 0.5% of the area of E2MC, respectively.

7.3.10 Safe to Approximate Loads and Approximation Threshold

Figuring out which loads and stores can be approximated is an important initial step for
any approximation technique as not all variables and operations can be approximated.
For example, loads that affect critical data segments, pointer addresses, array indices, or
branch conditions cannot be safely approximated as they may result in segment faults
or executions that are completely unacceptable. As the previous research has shown
that safety is a semantic property of the program [128, 142] and to identify whether a
load or a region of a program is safe to approximate or not, it requires programming
language support. Moreover, it is a common practice that a programmer annotates the
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loads or code regions with the support of programming language [174, 44, 175, 168, 146].
Similar to previous work, SLC also requires programmer annotations to find the loads
that can be safely approximated. However, instead of burdening a programmer with the
task of identifying individual loads, we propose a model that is much easier to use for
a programmer, cheaper to implement in the hardware and well suited for programming
GPUs. In our model, a programmer specifies if a memory region is safe to approximate
during memory allocation by using an extended cudaMalloc() API as shown in Listing 7.1.
We extend gpgpu-sim by implementing the extended version of cudaMalloc(). The address
returned by the extended cudaMalloc() and size of the memory allocation is used to
determine if a load is safe to approximate or not. Therefore, we model a solution similar
to a memory type range register. For the benchmarks used in this chapter, we exclude
memory regions which can cause a catastrophic failure such as segmentation fault etc.
Table 7.4 also lists the number of approximated memory regions for each benchmark.

In a real GPU, the safe to approximate status of a given address can also be deter-
mined by using an extra status bit in a page table or an extra bit of a physical address.
All the three methods have their own advantages and disadvantages in terms of ease of
implementation, cost, and flexibility. However, in terms of performance, we only expect
minor differences. Since the regular gpgpu-sim does not model a GPU MMU or TLBs,
the memory type range register solution was easier to implement in gpgpu-sim by using
internal data structures. However, a GPU architect can choose the method that is most
suitable for the given design. In general, the most flexible solutions such as a status bit in
a page table or an extra address bit within the physical address have a higher overhead.
For example, to set a bit in the page table requires some help from the OS and passing the
information to the memory controller. A single memory type range register is sufficient
when the memory is allocated contiguously, otherwise, it requires multiple memory type
range registers. For simplicity, we assume contiguous memory allocation for modeling
memory type range register solution in gpgpu-sim. Moreover, we think that the memory
is often allocated contiguously in GPUs. For example, as shown by Ausavarungnirun et
al. [13], GPU applications perform most of their memory allocation en masse (i.e., they
allocate a large number of base pages at once) and an intelligent memory allocation policy
can ensure that base pages that are contiguous in virtual memory are allocated to con-
tiguous physical memory pages. We think that such smart policies can further simplify
approximation control integration.

✞ ☎

cudaMalloc (void ** devPtr , size_t size , bool safeToApproximate ,

size_t threshold )

✝ ✆

Listing 7.1: Extended API

Likewise, a programmer needs to specify a lossy threshold that satisfies the target
output quality and maximizes the benefits of SLC. From the programmer’s perspective,
the lossy threshold is a knob that enables the evaluation of trade-off between performance

134



7.4 Experimental Setup

Table 7.3: Baseline simulator configuration.

Parameter Value Parameter Value Parameter Value

#SMs 16 L1 $ size/SM 16 KB Memory type GDDR5

SM freq (MHz) 822 L2 $ size 768 KB Memory clock 1002 MHz

Max #Threads/SM 1536 #Registers/SM 32 K Memory bandwidth 192.4 GB/s

Max #CTA/SM 8 Shared memory/SM 48 KB Burst length 8

Max CTA size 512 # Memory controllers 6 Bus width 32-bit

gain and quality. The lossy threshold can be specified by the programmer or statically
determined by profiling. We experiment with different lossy thresholds of 8B, 16B, 24B,
representing extra bytes above MAG.

The goal of this work is to show the benefits of MAG aware selective approximation
and to achieve this goal, we use well-known coarse-grain annotation of loads. However, a
more fine-grained annotation with the support of programming language can be used. For
example, Truffle [44] uses disciplined approximate programming for annotation, proposes
ISA extensions which allow a compiler to convey what can be approximated and then
maps ISA to approximation-aware micro-architecture. Moreover, other approximation
frameworks such as Green [14] which provides statistical guarantees on the quality of
service, Rumba [75] which dynamically detects and corrects large errors can be integrated
into SLC. However, this is beyond the scope of this work.

7.4 Experimental Setup

7.4.1 Simulator

We use gpgpu-sim v3.2.1 [15] and modify it to integrate BDI, FPC, C-PACK, E2MC
and SLC techniques. We configure gpgpu-sim to simulate a GPU similar to NVIDIA’s
GTX580. The baseline simulator configuration is summarized in Table 7.3, which is
similar to Chapter 6. More details of the simulator can be found in [15].

For our baseline lossless compression E2MC, we use 16-bit symbols, 4 PDWs to reduce
the decompression latency and online sampling size of 20 million instructions as they
provide the highest compression ratio and performance gain [85]. We synthesize RTL
designs of E2MC, TSLC, and QSLC to accurately estimate their frequency as described
in Section 7.3.9. It takes 46 cycles to compress and 20 cycles to decompress a block for
the baseline lossless compression. As we only need to know the compressed block size
to select a compression mode, we read all code lengths of a block from the compressor
table and add them. We assume a block size of 128B and 16-bit symbols, therefore, a
total of 64 code lengths need to be read. RTL synthesis shows that it only takes 0.18
ns to get a code length from the compressor table, which means that all code lengths of
a block can be fetched in about 12 cycles at 1002 MHz and it requires another 2 cycles
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Table 7.4: Benchmarks used for experimental evaluation.

Name Short Description Input Error Metric #Approx. Regions

JM Intersection of two tri. [173] 400 K tri. pairs Miss rate 6

BS Options pricing [123] 4 M options MRE 4

DCT Discrete cosine transform [123] 1024×1024 image Image difference 2

FWT Fast walsh transform [123] 8 M elements NRMSE 2

TP Matrix transpose [123] 1024×1024 matrix NRMSE 2

BP Perceptron training [25] 64 K elements MRE 6

NN Nearest neighbors [25] 20 M records MRE 2

SRAD1 Anisotropic diffusion [25] 1024×1024 image Image difference 8

SRAD2 Anisotropic diffusion [25] 1024×1024 image Image difference 6

to add all the code lengths to obtain the compressed block size and select a sub-block
for approximation. Thus, TSLC and QSLC need 60 cycles to compress a block. Due to
very simple additional decompression logic, a block in SLC can be decompressed in the
same number of cycles as in E2MC. For estimating the energy consumption of different
benchmarks, GPUSimPow [99] is modified to integrate the power models of the compressor
and decompressor for E2MC, TSLC, and QSLC. The power numbers obtained from RTL
synthesis are used to derive the power models for the compressors and decompressors.

7.4.2 Benchmarks

Table 7.4 shows the benchmarks used for the evaluation of SLC technique. We include
memory-bound and amenable to approximation benchmarks from CUDA SDK [123], Ro-
dinia [25], and AxBench [173], covering a diverse range of applications. We use speedup
and application specific error metrics to explore the trade-off between performance and
accuracy which commensurates with previous work [175, 44, 168, 45]. We use mean rel-
ative error (MRE) for applications that produce numeric outputs and Normalized Root
Mean Square Error (NRMSE) that process images or belong to a signal processing do-
main. JM finds the intersection between triangles and we use miss rate to report the
fraction of incorrect decisions.

7.5 Experimental Results

First, we evaluate the speedup and error of TSLC and QSLC normalized to E2MC and
then present the results for bandwidth, energy, and energy-delay-product (EDP) reduc-
tions due to TSLC and QSLC. We conduct the above mentioned experiments with a 16B
lossy threshold. Finally, we study the sensitivity of TSLC and QSLC to different lossy
thresholds, MAG sizes, and block sizes.
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Figure 7.8: Speedup and error for TSLC.

We present results for three variations of TSLC. The first variation is called TSLC-
SIMP, where we simply truncate the selected symbols during compression and replace
them with zero values during decompression. The second variation is called TSLC-PRED;
in this variation, we truncate the selected symbols during compression and use value
similarity-based prediction during decompression. The third variation is called TSLC-
OPT, where in addition to prediction, we further optimize TSLC-PRED by adding few
extra nodes at middle levels of the tree. This helps to reduce the error by decreasing
unneeded approximation. We present four variations of QSLC for four quantization levels
(4, 8, 12 and 16-bit). We provide speedup and application specific error (see Table 7.4)
for individual benchmark and geometric mean (GM) of the speedup of all benchmarks.

7.5.1 Speedup

Figure 7.8 and Figure 7.9 show speedup and error for TSLC and QSLC respectively, nor-
malized to E2MC [85]. Figure 7.8a shows that all three variations of TSLC provide higher
speedups compared to E2MC. The maximum speedup is about 17% for DCT and the
minimum speedup is about 5% for FWT and BP. The geometric mean of the speedup
is 9%, 9.8%, 9.7% for TSLC-SIMP, TSLC-PRED, and TSLC-OPT, respectively. There
is only slight variation in the average speedup of the three schemes which is expected
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Figure 7.9: Speedup and error for QSLC.

because all of them roughly approximate the same number of blocks by the same amount.
However, a slight variation in speedup occurs due to the differences in the way the three
schemes perform compression and decompression. All the three schemes truncate during
compression, however, TSLC-OPT may truncate slightly less number of symbols. Dur-
ing decompression, TSLC-SIMP uses zeros for approximated symbols, TSLC-PRED and
TSLC-OPT employ prediction, but the number of predicted symbols may differ. Thus,
due to above mentioned differences, a decompressed block may differ from one scheme to
another. Because of the differences in the decompressed blocks, the further compressibil-
ity of these blocks and the blocks which depend on them may differ and hence we see
slight variations in the speedups of the three schemes.

Figure 7.8b shows error for different variations of TSLC. The error reduces from TSLC-
SIMP to TSLC-PRED. TSLC-SIMP has the highest error among the TSLC schemes
due to truncation of the selected symbols. We see that the error reduces significantly
for TSLC-PRED which shows that the value similarity-based prediction works quite well.
Our results commensurate with previous work on value similarity-based prediction [24, 54].
The error reduces further for TSLC-OPT because it reduces unneeded approximation by
adding a few extra nodes in the tree. The error is < 3% except for JM (7.3%) and
BS (4.4%) when TSLC-OPT is used and for TP (0.05%), SRAD1 (0.001%), SRAD2
(0.001%) is extremely low. The reason for slightly high error (miss rate) for JM is that
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it finds an intersection between two triangles and outputs a boolean that may flip due
to approximation. In general, the error is much lower than 10% that is treated as an
acceptable error in several related works [108, 45, 44]. In addition to application-specific
error, we also calculated mean relative error for individual benchmark which enables
averaging the error across all benchmarks. For TSLC-OPT, the geometric mean of the
mean relative error for all benchmarks is 0.99%.

Figure 7.9a and Figure 7.9b show speedup and error of QSLC for 4, 8, 12, and 16-bit
quantization. The geometric mean of the speedup is 2%, 4.8%, 8.5%, and 10.1% for 4, 8,
12, and 16-bit quantization, respectively. In general, the error is quite low which ranges
from a minimum of 10-7% for nn with 4-bit quantization to the maximum of 0.64% for
BS with 16-bit quantization. Both the speedup and error increase with the increase in
the number of quantization bits which is expected because more blocks get compressed
to a multiple of MAG when the number of quantized bits is increased. The results are
interesting as it is possible to achieve a maximum speedup of up to 17% and an average
speedup of more than 10% with 0.64% maximum loss in the accuracy. Similar to TSLC,
we also calculated mean relative error for individual benchmark to calculate average error
across all benchmarks. The geometric mean of the mean relative error for all benchmarks
is 0.0006%, 0.004%, 0.04%, and 0.2% for 4, 8, 12, and 16-bit quantization, respectively.

The average speedup of QSLC with 12-bit quantization (8.5%) and 16-bit quantization
(10.1%) is close to the average speedup of TSLC (9.5%). As discussed before, QSLC does
not guarantee that a compressed block will be a multiple of MAG after approximation,
however, from the comparison of TSLC and QSLC speedups, we can infer that 12-bit and
16-bit quantizations are roughly approximating the same number of blocks to a multiple
of MAG as TSLC.

The main reason for differences in speedup and error between TSLC and QSLC is
that both techniques compress blocks differently. TSLC only approximates the selected
symbols while QSLC approximates the whole block. While TSLC introduces relatively
high error due to truncation which is significantly reduced with a simple value similarity-
based prediction, QSLC results in relatively less error as only the least significant bits
are quantized. In summary, we show that both TSLC and QSLC provide significant
performance gain with a very small and acceptable loss in accuracy.

7.5.2 Bandwidth and Energy Reduction

Figure 7.10 and Figure 7.11 show bandwidth, energy, and energy-delay-product (EDP)
reductions normalized to E2MC for TSLC and QSLC, respectively. The reduction in off-
chip memory bandwidth, energy, and EDP results from the increased effective compression
ratio due to the use of SLC. Figure 7.10a and Figure 7.11a show the reduction in memory
bandwidth normalized to E2MC for TSLC and QSLC, respectively. The geometric mean
of the reduction in memory bandwidth is about 14% for all three variations of TSLC.
For QSLC, the geometric mean of the reduction in memory bandwidth is 2%, 8.6%,
14.2%, and 15.8% for 4, 8, 12, and 16-bit quantization, respectively. The reduction
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Figure 7.10: Bandwidth, energy, and EDP reduction for TSLC.

in bandwidth, which is a reciprocal of the compression ratio, is due to the increase in
the effective compression ratio resulting from saving 32B burst transactions. Again, we
observe that TSLC and QSLC with 12-bit quantization have nearly the same bandwidth
reductions which commensurate with the speedup results presented in Section 7.5.1. The
results show a relatively higher decrease in bandwidth for some benchmarks such as DCT,
however, there is not that much increase in speedup. This is because some loads can be
more performance critical than others [175]. Thus, we can have lower gain in performance
in some cases, although there is a higher reduction in bandwidth that still can be useful.
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Figure 7.11: Bandwidth, energy, and EDP reduction for QSLC.

For example, modern GPUs support concurrent execution of kernels and the reduction
in bandwidth requirements of one kernel offers a higher share of bandwidth to other
concurrently running kernels. Moreover, the bandwidth reduction can also decrease the
memory power consumption even when there is no increase in speedup.

Figure 7.10b and Figure 7.10c show the reduction in energy and EDP normalized to
E2MC for TSLC. The geometric mean of the reduction in energy consumption and EDP
is about 8.3% and 17.5% for TSLC. Figure 7.11b and Figure 7.11c show the reduction in
energy and EDP normalized to E2MC for QSLC. The geometric mean of the energy and
EDP reductions is 2.0%, 6.0% for 4-bit, 4.0%, 10.0% for 8-bit, 7.2%, 16% for 12-bit, and
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Figure 7.12: Energy reduction of the memory system and rest of the GPU.

8.4%, 18.2% for 16-bit quantizations, respectively. The reduction in energy and EDP is
nearly equal to TSLC for 16-bit quantization. SLC reduces the energy consumption by
reducing the off-chip memory traffic and total execution time.

7.5.3 Energy Breakdown

Figure 7.12 shows the separate energy reduction of the memory system (off-chip memory,
memory controller along with the integrated compressor and decompressor) and rest of
the GPU normalized to E2MC. We only show results for TSLC-OPT and QSLC-16b
for brevity. For TSLC-OPT, the average energy reduction of the memory system (Mem-
TSLC-OPT) and rest of the GPU (Rest-TSLC-OPT) is 10.1% and 7%, respectively, while
it is 10.6% and 7% for QSLC-16b. The memory system has higher energy reduction
compared to the rest of the GPU due to the direct affect of the reduced off-chip memory
traffic, while the rest of the GPU gains from the overall performance improvement.

7.6 Sensitivity Analysis and Discussion

7.6.1 Performance and Accuracy Trade-off with Lossy Threshold

Lossy threshold is a knob to trade-off accuracy for performance. Figure 7.13 shows the
change in speedup and error for lossy thresholds of 8B, 16B, and 24B. We only show results
for TSLC-OPT and QSLC with 16-bit quantization as they have similar performance with
a 16B threshold. The numbers in the legends of Figure 7.13 indicate the lossy threshold
in bytes. The speedup and error increase with the increase in threshold which is expected
as more number of blocks get compressed to a multiple of MAG. The results show that
even for a small lossy threshold (8B), we can get an average speedup of 4% (and up to
13%) with < 0.3% loss in accuracy (and maximum of 3.4%) for TSLC-OPT and 3.8%
(and up to 12%) for maximum of 0.24% loss in accuracy for QSLC. In general, QSLC has
almost equal or better speedup at lower error compared to TSLC-OPT. For instance, for
a lossy threshold of 24B, the average speedup is 15.5% (and up to 30%) with a maximum
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Figure 7.13: Accuracy and performance trade-off.

of only 1.35% loss in accuracy for QSLC. For the same threshold, the average speedup
is 12.5% (and up to 24%) with a maximum of only 8.7% loss in accuracy for TSLC-
OPT. Thus, performance can be increased by increasing the lossy threshold, apparently
at relatively higher error. However, as different applications have different error tolerance,
an appropriate threshold can be selected depending upon the performance requirements
and error tolerance.

7.6.2 SLC Sensitivity to MAG

Figure 7.14 shows the raw and effective compression ratio for different MAGs when E2MC
is used. The geometric mean (GM) of the effective compression ratio is 1.41, 1.31, 1.16 for
MAG of 16B, 32B, and 64B, respectively. The effective compression ratio decreases with
the increase in MAG because the probability decreases where a compressed block size can
be an exact multiple of a MAG, thereby increasing the importance of SLC technique even
more. Figure 7.14 shows only one bar for the raw compression ratio as it remains the
same across different MAGs.

Figure 7.15 shows the speedup and error when SLC is used for different MAGs of 16B,
32B, and 64B. We only show the results for QSLC-16b for brevity. We set the lossy
threshold to half of the corresponding MAG for this experiment as one threshold across
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Figure 7.14: Raw and effective compression ratio for different MAGs for E2MC.
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Figure 7.15: Speedup and error for different MAGs when SLC is used.

different MAGs is not suitable. For example, a lossy threshold of 16B for MAG of 16B
will always approximate blocks to a lower multiple of a MAG. Moreover, a 16B threshold
might be small for a 64B MAG. Therefore, we set the lossy threshold to half of the
corresponding MAG.

The geometric mean of the speedup is 8%, 10%, and 9% for MAG of 16B, 32B, and 64B,
respectively. There are few interesting observations from the results. First, we observe
that SLC provides speedup across different MAGs and we can achieve speedup as high
as 35%. Second, we observe large variations in the speedup for 64B MAG compared to
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16B and 32B. We have a high speedup of 35% for NN, 20% for SRAD1, 25% for TP,
while there is no speedup for BS, DCT, BP for 64B MAG. This is mainly because there
is low probability where the effective compression ratio can be greater than 1.0 (≤ 64B)
for MAG of 64B, while there is much higher probability for MAG of 32B and 16B. For
example, for NN, SRAD1, TP, the losslessly compressed size of most of the blocks is
above 64B and SLC exploits that to increase the effective ratio and performance gain. In
contrast, the compressed size of most of the blocks is already below 64B for DCT, BP
and above 96B for BS, thus, there is no opportunity for SLC to improve the performance
further. Like speedup, we have higher variations in the error for 64B MAG, for example,
relatively higher error for NN, SRAD1, and TP. DCT has zero error for 64B MAG because
no block is approximated. The error ranges from zero to maximum of 1.8%. We observe
that, on one hand, a larger MAG results in a higher difference between the raw and
effective compression which presents an opportunity for SLC, on the other hand, a larger
MAG also has lower probability where a compressed block can be a multiple of MAG.

7.6.3 SLC Sensitivity to Block Size

To conduct sensitivity analysis to different block sizes, we perform experiments for the
baseline E2MC and SLC with block sizes of 128B, 256B, 512B using MAG of 32B. The GM
of the raw compression ratio for E2MC is 1.54, 1.57, 1.58 and the effective compression
ratio is 1.31, 1.45, 1.47 for the block size of 128B, 256B, and 512B, respectively. We
notice that for a larger block size the difference between the raw and effective compression
ratio shrinks, leading to relatively higher compression ratio. The reason for the smaller
difference with a larger block size is two-fold, first, there is a smaller number of blocks
that need to be compressed and second, a larger block has a higher probability to be a
multiple of MAG compared to a smaller block size. For example, assume there are two
compressed blocks with a size of 36B each. This will result in four MAG fetches for a block
size of 128B, while only 3 for a block size of 256B, assuming the same compressibility for
the two consecutive smaller blocks and one larger block.

Our compression technique operates at the granularity of L2 cache line size as that is
the size of memory requests processed by the memory controller. Thus, for conducting
the block size sensitivity analysis, we increase L2 cache line size and reduce the number
of sets to keep the L2 cache size the same for different block sizes. The compression and
decompression latency is also adjusted accordingly to the block size. Figure 7.16 shows the
change in speedup and error for different block sizes for SLC using 32B MAG. The average
speedup slightly decreases due to the reduced gap between effective and raw compression
ratio, however, the decrease in speedup is rather small. Moreover, for some benchmarks,
the speedup is even higher compared to a smaller block size. This is likely caused by the
change in cache configuration. For example, performance even without compression for
the block size of 256B and 512B is on an average 15% and 70% slower compared to the
block size of 128B. We also conduct experiments with 4× and 8× L2 cache size, however,
the trend remains the same as it is not completely possible to isolate the effects of cache
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Figure 7.16: Speedup and error for different block sizes for SLC using 32B MAG.

configuration change. In general, a bigger block size can reduce the difference between
raw and effective compression ratio, however, as long as a large MAG exists we can use
SLC to gain performance. Figure 7.16b shows that, in general, the error for a larger block
size is slightly lower which is kind of expected due to less approximation.

7.6.4 SLC in the Presence of a Sectored L2 Cache

Traditionally, GPU memory hierarchy used coarse-grained memory accesses to exploit
spatial locality, maximize peak bandwidth, simplify control, and reduce cache meta-data
storage. However, coarse-grained memory accesses waste off-chip memory bandwidth and
limit the energy efficiency of GPUs for irregular applications by over-fetching unnecessary
data [136]. The size of a coarse-grained memory access is normally equal to a cache
line size. To curtail the over-fetch, contemporary GPUs use sector caches, for example,
NVIDIA introduced sectored L2 cache for Fermi architecture with a sector size of 32B. In
a sector cache, a cache line consists of multiple sectors with provision to fetch individual
sectors. For example, Fermi has 128B cache line size for L1 and L2 caches, however, it is
possible to have 32B transactions when the L1 caching is disabled. Taking a step further,
NVIDIA’s Maxwell and Pascal architectures use sector cache for both L1 and L2 caches.
The cache line size is still 128B, however, now it consists of four 32B sectors. Assuming
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Table 7.5: Memory access granularity.

Generation Bus Width Burst Length MAG Mode

GDDR5 32b 8 32B -

GDDR5X

32b 16 64B QDR mode

32b 8 32B DDR mode (like GDDR5)

2×16b 16 32B 2×32B (independent) in pseudo mode

GDDR6 16b 16 32B -

HBM1 128b 2 32B -

HBM2
128b 2 32B Legacy mode

2×64b 4 32B 2×32B (independent) pseudo channel mode

a coalesced access with each thread operating on 4B data, 128B are fetched from off-
chip memory, apparently as 4 sectors. On an uncoalesced L1 or L2 miss or when each
thread is operating on less than 4B data, only requested 32B sectors are loaded from L2
or off-chip memory, thus, reducing waste of memory bandwidth. The point here is that
even with a sectored L2 cache, memory requests mostly consist of multiple sectors and a
lossless memory compression technique reduces the number of 32B sectors fetched from
memory by compressing them into fewer sectors. However, when compressed size is not
an exact multiple of sectors, whole last sector is fetched even when only a few bytes are
actually needed. The goal of our proposed SLC technique is to selectively approximate
such memory requests to save a whole 32B sector fetch. Thus, even in the presence of
sector caches, SLC saves 32B transactions from memory. An optimization that can be
incorporated in SLC is the bypassing of memory requests whose size is only one sector as
in this case it is not possible to fetch less than a sector from off-chip memory. We assume
a sector size is equal to MAG.

7.6.5 SLC and 3D Stacked DRAM

High bandwidth provided by Graphics Double Data Rate (GDDR) memories has been
a key enabler of the continuous performance scaling of GPUs. Successive generations
of GDDR memories have increased overall memory bandwidth primarily by using wider
memory interfaces and increasing frequency of off-chip signaling. However, further scal-
ing of GDDR bandwidth is not possible without adding to system energy. Recently, 3D
stacked DRAM technologies such as Hybrid Memory Cubes (HMC) and High Bandwidth
Memory (HBM, HBM2) have been introduced, offering higher bandwidth and energy effi-
ciency in a small form factor compared to GDDR. However, future GPUs will demand even
higher (multiple TB/s) DRAM bandwidth requiring further improvements in the band-
width. Memory bandwidth compression techniques including SLC, E2MC are orthogonal
to these technological improvements and can be employed on top of them to meet the
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bandwidth and energy efficiency requirements of future high-throughput accelerators.

Table 7.5 shows the MAG for contemporary GDDR and HBM. Table 7.5 shows that
32B is the most widely supported MAG. Only GDDR5X provided 64B MAG, however, it
also supports 32B MAG as well. GDDR6 again fully supports 32B MAG. The reasons for
keeping the 32B MAG seems to be that some parts of the micro-architecture have been
optimized for it and keeping the same access granularity enables GPU architectures that
are optimized for one GDDR generation to transition to next generation with minimal
effort. With HBM also supporting 32B MAG shows that 32B MAG is going to be the
most widely used access granularity even in near future. However, SLC is not tied to any
MAG and its significance increases with the increase in MAG size.

7.7 Summary

In this chapter, we showed that lossless memory compression techniques often exhibit a low
effective compression ratio due to large MAG. We studied the distribution of compressed
blocks and observed that a significant percentage of blocks are compressed to a size
that is only a few bytes above a multiple of MAG, but a whole burst is fetched from
memory, leading to low effective compression ratio and reduced performance gain. With
the goal to increase the effective compression ratio and keep the approximation error
low, we proposed a novel MAG aware Selective Lossy Compression (SLC) technique for
GPUs. SLC appropriately selected between lossless and lossy compression modes, mostly
retained the quality of a lossless compression and intelligently traded small accuracy for
higher performance. We proposed TSLC and QSLC to implement SLC and compared
their advantages and disadvantages. For a lossy threshold of 16B and 32 MAG, TSLC-
OPT resulted in an average speedup of about 10% (up to 17%) normalized to a state-of-
the-art lossless compression technique with an average error of < 1%, while QSLC with
16-bit quantization also achieved an average speedup of 10% with an average error of only
0.2% (maximum error of 0.64%). Energy consumption and EDP are reduced by 8.3% and
17.5% using TSLC and 8.4% and 18.2% using QSLC, respectively. Furthermore, an energy
breakdown analysis showed memory system has higher energy reduction compared to the
rest of the GPU due to the direct affect of the reduced off-chip memory traffic.

We also conducted sensitivity analysis to different MAGs and showed an even higher
significance of SLC at larger MAG. For 64B MAG, we showed a speedup of up to 35%
with maximum error of 1.8%. In general we observed that, on the one hand, a larger MAG
results in a higher difference between the raw and effective compression which presents
an opportunity for SLC, on the other hand, a larger MAG also has less probability where
a compressed block can be a multiple of MAG. We also conducted sensitivity analysis to
different block sizes and showed that a bigger block size can reduce the difference between
raw and effective compression ratio, however, as long as a large MAG exists we can use
SLC to gain performance.

We estimated the area and power overhead of SLC and showed that it is feasible and
very low with respect to GTX580. For example, the area and power cost of the TSLC is
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about 0.0015% and 0.0008% of the total area and power consumption of GTX580, while
the area and power cost of the QSLC-12b is about 0.0013% and 0.0007% of GTX580,
respectively. TSLC added 5.6% of the area of E2MC, while QSLC-12b and QSLC-16b
only added 4.7% and 0.5% of the area of E2MC, respectively.

In the next chapter, we will summarize the key contributions of the thesis and draw
conclusions. We will also present possible directions to extend the work in the future.
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In this chapter, we summarize the contributions of each chapter, conclude the thesis and
suggest possible directions for future work.

8.1 Summary of Contributions

This thesis addressed GPU power modeling and energy efficiency problems from different
perspectives. In Chapter 1, we stated motivation, articulated objectives and briefly de-
scribed the main contributions of the thesis. In Chapter 2, we thoroughly reviewed the
work related to this thesis and presented advances over the state of the art. In Chapter 3,
we provided an overview of a GPU architecture including programming models and sim-
ulators. We also presented an overview of data compression. In particular, we described
state-of-the-art memory compression techniques that were used as baselines in Chapter 6
and Chapter 7.

In Chapter 4, we designed GPUSimPow, a power simulator for GPU architectures.
GPUSimPow is a highly parameterizable simulator that is able to provide an accurate es-
timate of area, static power as well as dynamic power consumption of GPGPU workloads
running on GPUs. The simulator not only provides an estimate of the total power con-
sumption but also provides an estimate of the power consumption down to the individual
component level. To develop GPUSimPow, we integrated a modified version of gpgpu-sim,
a cycle-accurate architectural simulator for GPUs and a heavily modified McPAT, a CPU
power simulator. Although McPAT includes detailed power models for several microar-
chitectural components, many GPU components were either not present or considerably
different compared to CPUs. Therefore, we added and adapted several important compo-
nents in McPAT to more accurately represent the underlying GPU microarchitecture. We
used a hybrid power modeling approach improving flexibility compared to pure empirical
approaches and accuracy compared to pure analytical approaches. We also developed a
custom power measurement testbed to validate the power simulator and derive measure-
ment based power models for some components.

In summary, we made the following key contributions in Chapter 4:

• We developed a GPU power simulator that is able to provide an accurate estimate
of the area, static power as well as dynamic power for GPU architectures. Our
evaluation of the power simulator on a set of well-known benchmarks showed an
average relative error of 11.7% and 10.8% between simulated and measured power
for GT240 and GTX580, respectively.
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• We used a hybrid power modeling approach which provides both flexibility and high
accuracy to conduct architectural research from power and energy perspective.

• We designed a novel power measurement testbed to validate the power simulator by
accurately measuring GPU power consumption.

In Chapter 5, we used GPUSimPow to study the energy efficiency of a wide range of ker-
nels. We divided the kernels into high performance and low performance categories. The
kernels with IPC greater than 50.5% of the peak IPC were classified as high performance,
otherwise low performance. We showed that 69% (47 out of 68 kernels) of the kernels have
low performance and low energy efficiency. The average IPC of the low-performance cat-
egory kernels is less than 25% of the peak IPC and average energy per instruction is 7.5×

less than the average energy per instruction of the high-performance category kernels. We
investigated the bottlenecks that lead to low performance and low energy efficiency by
dividing the low performance kernels into two categories: low occupancy (15 kernels) and
full occupancy (32 kernels). For the low occupancy category, we showed a significant gain
in performance and energy efficiency when occupancy is increased. At full occupancy,
the average increase in IPC, the average reduction in energy consumption and EDP is
11%, 9%, and 23%, respectively, for the CTA limited kernels. The average increase in
IPC, the average reduction in energy consumption and EDP is 15%, 9%, and 21%, re-
spectively, for the registers limited kernels. The results showed that high occupancy is an
important factor for both high performance and energy efficiency. For the kernels having
full occupancy but still performing low, we showed that these kernels are either limited
by memory bandwidth, low coalescing efficiency or low SIMD utilization. Moreover, we
showed a variation in the distribution of power consumption across the two categories.
For example, for kernels in the high-performance category, EU (25.3%), WCU (20.3%),
and CP (16.0%) are the three most power consuming components and together consume
about 62% of the power. For kernels in the low-performance category, GM (21.4%), CP
(19.3%), and WCU (16.6%) are the three most power consuming components. Further-
more, we also investigated the correlation between components power consumption and
workload metrics and showed the existence of the correlation.

In summary, we made the following contributions in Chapter 5:

• We studied the energy efficiency of a wide range of kernels and exposed that most
kernels have low performance and low energy efficiency.

• We studied GPU power consumption at the component level for the high perfor-
mance and low performance categories and reported the most power consuming
components. We also investigated the correlation between components power con-
sumption and workload metrics and showed the existence of the same.

• We showed that increasing occupancy does help to increase performance and energy
efficiency of low occupancy category, however, occupancy alone is not sufficient to
achieve the desired performance.
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• We also analyzed kernels having full occupancy but still performing low and showed
that several of these kernels are limited by memory bandwidth, low coalescing effi-
ciency or low SIMD utilization. We further showed that full occupancy kernels can
benefit from increased memory bandwidth and improved coalescing efficiency.

One of the main conclusions from the performance bottlenecks study in Chapter 5 is
that despite GPU possessing much higher memory bandwidth compared to CPU, several
kernels are limited by memory bandwidth and optimizations in the memory hierarchy
are needed to drive the performance and energy efficiency further. Moreover, the kernels
with low coalescing efficiency will also gain from the memory bandwidth optimizations
because low coalescing efficiency exerts high pressure on the memory subsystem by inject-
ing several memory requests per warp. Therefore, in Chapter 6, we proposed a memory
compression technique to increase the effective memory bandwidth of GPUs. We ob-
served that the existing memory compression techniques for GPUs (FPC, C-Pack, BDI)
exploit simple patterns for compression and trade low compression ratio for low decom-
pression latency. As GPUs can hide latency to a certain extent, we proposed the more
aggressive Entropy Encoding Based Memory Compression (E2MC) technique for GPUs.
We addressed the key challenges of probability estimation, appropriate symbol length for
encoding, and reasonably low decompression latency. One of the drawbacks of entropy-
based compression techniques is that they may require online sampling to estimate the
frequency of symbols if entropy characteristics are not known in advance. Fortunately,
our experiments showed that it is possible to achieve a compression ratio comparable to
the one achieved by offline probability with a very short online sampling phase at the
start of the benchmarks. We experimented with different symbol lengths and showed
that 16-bit symbols yield the highest compression ratios for GPUs. Furthermore, to re-
duce the decompression latency, we used parallel decoding to decode multiple codewords
in parallel. Although parallel decoding reduced the compression ratio due to additional
metadata, we showed that the loss in compression ratio is not much as it is mostly hidden
by the memory access granularity (MAG). We also estimated the area and power needed
to meet the high throughput requirements of GPUs.

In summary, we made the following contributions in Chapter 6:

• We proposed an entropy encoding based memory compression technique for GPUs
that delivered higher compression ratio and performance gain than state-of-the-art
techniques.

• We addressed the key challenges of probability estimation, appropriate symbol
length for encoding, and low decompression latency.

• E2MC with offline sampling resulted in 53% higher compression ratio and 8% in-
crease in speedup compared to the state of the art and saved 13% energy and 27%
EDP compared to no compression. Online sampling resulted in 35% higher com-
pression ratio and 5% increase in speedup compared to the state of the art and
saved 11% energy and 24% EDP compared to no compression.
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• We analyzed the high throughput requirements of GPUs and provided an estimate
of area and power needed to support such high throughput. For E2MC16, the
area and power overhead is 5.8% and 1.5% of the area and power of GTX580,
respectively. We think the area numbers are likely higher than expected because
the available memory design library does not have exact components needed to
design the (de)compressor and we have to combine smaller components to get the
required size. We think that a custom design will be denser and will need less area.

• We also provided a detailed analysis of the effects of memory access granularity on
the compression ratio.

In Chapter 6, we observed that lossless memory compression techniques often result
in a low effective compression ratio due to the large memory access granularity (MAG)
exhibited by GPUs. In Chapter 7, we further analyzed the reasons for the low effective
compression ratio by quantitatively studying the distribution of compressed blocks above
MAG. We showed that a significant percentage of blocks are compressed to a size that is
only a few bytes above a multiple of MAG, but due to the restrictions of MAG, a whole
burst is fetched from memory. With the goal to reduce the compressed size by these extra
bytes, we proposed the novel MAG aware Selective Lossy Compression (SLC) technique for
GPUs which uses approximation techniques to increase the effective compression ratio and
drive the performance and energy efficiency further. SLC appropriately selects between
lossless and lossy compression modes, mostly retains the quality of a lossless compression
and intelligently trades small accuracy for higher performance. We proposed TSLC and
QSLC to implement SLC and presented their trade-offs. We conducted sensitivity analysis
to different MAGs and showed an even higher significance of SLC at larger MAG. We
concluded that, on one hand, a larger MAG results in a higher difference between the raw
and effective compression which is an opportunity for SLC, on the other hand, a larger
MAG also has less probability where a compressed block can be a multiple of MAG. We
also conducted sensitivity analysis to different block sizes and showed that a bigger block
size can reduce the difference between raw and effective compression ratio, however, as
long as a large MAG exists we can use SLC to gain performance.

In summary, we made the following contributions in Chapter 7:

• We analyzed reasons for the low effective compression ratio of several state-of-the-
art memory compression techniques and quantitatively showed that the low effective
compression ratio due to large MAG exists in four techniques and qualitatively
showed in three more.

• We proposed a novel MAG aware selective lossy compression technique for GPUs
and designed two techniques to implement SLC and presented their trade-offs. For
a lossy threshold of 16B and 32 MAG, TSLC resulted in an average speedup of 10%
(up to 17%) normalized to a state-of-the-art lossless compression technique with
an average error of < 1%, while QSLC with 16-bit quantization also achieved an
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average speedup of 10% with an average error of only 0.2%. Energy consumption
and EDP are reduced by 8.3% and 17.5% using TSLC and 8.4% and 18.2% using
QSLC with 16-bit quantization, respectively

• This is the first study that highlights the importance of MAG aware compression
by quantitatively studying the distribution of compressed blocks above MAG.

• We also conducted a sensitivity analysis to different MAGs and showed an even
higher significance of SLC at a larger MAG. For 64B MAG, we achieved a speedup
of up to 35% with a maximum error of 1.8%.

• We implemented hardware and provided an estimate of the area and power overhead
of SLC compared to GTX580. The area and power cost of the TSLC is about
0.0015% and 0.0008% of the total area and power consumption of GTX580, while
the area and power cost of the QSLC-12b is about 0.0013% and 0.0007% of GTX580,
respectively. TSLC adds 5.6% of the area of E2MC, while QSLC-12b and QSLC-16b
only add 4.7% and 0.5% of the area of E2MC, respectively.

8.2 Conclusions

The tremendous computing power of GPUs have made them popular accelerators but their
high power consumption and low energy efficiency under low utilization is a challenge.
Indeed, with the end of Denard scaling and energy efficiency taking over as the main design
metric, specialized hardware accelerators such as GPUs are key to achieve higher energy
efficiency by mapping different parts of an application to the best-suited accelerator.
The high-performance demands have influenced the design of GPUs to be optimized
for higher performance per watt, even at the cost of large power consumption. Not all
applications, however, can utilize all available resources due to various bottlenecks such
as data dependencies, low occupancy, high bandwidth requirements, thus, reducing the
achieved performance per watt.

This thesis investigated bottlenecks causing low performance and low energy efficiency
in GPUs and then proposed architectural techniques that significantly improved the per-
formance and energy efficiency. To enable the energy efficiency research for GPUs, we
first developed a flexible and accurate power simulator. The power simulator (presented
in Chapter 4) in its current state is a very useful tool for GPU architects to explore the
design space from a power perspective and GPU programmers to gain valuable insights
into where power is consumed from a software perspective. The component level power
profiling capabilities of the power simulator demonstrated its usability not only for esti-
mating total power consumption but also down to the detailed individual components.
As the power breakdown revealed, however, a large fraction of the estimated power is cur-
rently attributed to components that are not modeled in detail, named “undifferentiated
core” in the thesis, due to the lack of the available information. More research needs to
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be done for creating accurate models of these components to further increase the usability
and accuracy of the simulator.

The energy efficiency study in Chapter 5 revealed that a large number of GPU kernels
have low performance and low energy efficiency. The average energy per instruction for
the high performance and low performance category is 0.27 nJ and 2.01 nJ, respectively.
The later is 7.5× less energy efficient compared to the former, a huge difference which
is not favorable for the future growth of high performance computing and far away from
the exascale aim of 10 pJ per instruction. The bottlenecks investigation revealed that
there are several bottlenecks such as low occupancy, high memory bandwidth utilization,
low coalescing efficiency that lead to low performance and energy efficiency. We conclude
that increasing the occupancy helps in increasing the performance and energy efficiency for
most of the kernels, but just increasing occupancy is not enough to achieve the maximum
performance. For example, the average increase in instructions per cycle, the average
reduction in energy consumption and energy-delay-product is 11%, 9%, and 23%, respec-
tively, for a sub-category of low occupancy kernels when its occupancy is increased. This
work also showed that many kernels despite having full occupancy have low performance.
Further investigation revealed that several of these kernels are memory-bound and can
gain significantly from the increase in memory bandwidth.

To provide high bandwidth, traditionally, GPUs deploy GDDR memory which has been
a key enabler of the continuous bandwidth and performance scaling, however, the later
generations of GDDR have issues such as high power consumption, large form factor, and
difficulty in the scaling of pin count, thereby limiting the traditional scaling of GDDR
bandwidth. The latter part of the thesis showed that memory compression is a promis-
ing alternative to traditional ways of increasing memory bandwidth. Alternative ways
of increasing memory bandwidth will play a significant role in scaling the performance
and energy efficiency of GPUs, especially based on the evidence that further scaling of
GDDR bandwidth is not possible without adding significantly to system energy. Based
on the observation that GPUs are less sensitive to latency compared to CPUs, this thesis
proposed an entropy encoding based memory compression technique (E2MC) for GPUs
which can exploit relatively complex patterns compared to existing techniques for GPUs
(presented in Chapter 6). We showed that entropy encoding based memory compression
technique delivers higher compression ratio and performance gain than state-of-the-art
techniques, provided the key challenges of probability estimation, appropriate symbol
length for encoding, and reasonably low decompression latency are addressed properly.
On average, E2MC delivered 53% higher compression ratio and 8% higher speedup than
the state of the art and reduced energy consumption and energy-delay-product by 13%
and 27%, respectively, compared to no compression. We also observed that lossless mem-
ory compression techniques often result in a low effective compression ratio due to the
large memory access granularity (MAG) exhibited by GPUs.

In Chapter 7, we explored the use of approximate computing techniques to mitigate
the MAG problem. Our analysis of the distribution of compressed blocks showed that a
significant percentage of blocks are compressed to a size that is only a few bytes above
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a multiple of MAG, leading to low effective compression ratio. To increase the effective
compression ratio, we proposed a novel MAG aware selective lossy compression (SLC)
technique for GPUs. SLC delivered a significant gain in performance (up to 17%) nor-
malized to a state-of-the-art lossless compression technique with a maximum error of
0.64% (< 1% on average) and reduced energy consumption and EDP by 8.4% and 18.2%,
respectively. The sensitivity analysis to different MAGs showed an even higher signifi-
cance of SLC at a larger MAG. For 64B MAG, we achieved a speedup of up to 35% with a
maximum error of 1.8%. Our work is the first detailed study that illustrated the effects of
the large MAG on effective compression ratio and demonstrated the importance of MAG
aware approximation techniques. We think that this work will spark more research in this
direction. A disadvantage of SLC is that it introduces approximation errors, however, not
all applications are error-tolerant. Therefore, we designed SLC in such a way that it can
be easily toggled on top of a lossless compression technique depending on an application
performance requirements and error tolerance.

Although this thesis focused on GPUs, some of the techniques presented are generic and
applicable to CPUs as well. The memory compression technique presented in Chapter 6
and MAG aware approximation presented in Chapter 7 are equally important for CPUs
and can also be applied to them.

8.3 Future Work

This thesis contributed significantly to GPU power modeling, bottlenecks investigation
and alternative techniques to increase effective memory bandwidth, leading to improved
performance and energy efficiency. However, there are several possible directions to extend
the research further.

• First, the GPU power simulator can be improved by adding more detailed power
models for some components. The power simulator reports power distribution over
different components of the GPU, however, as power breakdown revealed, a large
fraction of the estimated power is currently attributed to components that are not
modeled in detail, called “undifferentiated core” in the thesis, due to the lack of
the available information. Further research needs to be done for creating accurate
models of these components. Moreover, the simulator was tested using real power
measurements for NVIDIA GT240 and NVIDIA GTX580 which are based on Tesla
and Fermi architectures. The simulator can be extended with new components to
accurately model the architecture of newer GPUs such as Maxwell, Pascal, Volta.

• Second, GPU performance bottlenecks analysis showed that low coalescing efficiency
can severely limit the performance and energy efficiency of GPUs. Further research
is needed to ascertain the exact bottlenecks that low coalescing efficiency creates at
different levels in memory hierarchy and any opportunities for micro-architectural
changes that could benefit the kernels suffering from very low coalescing efficiency
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can be explored. In this regard, micro-benchmarking can be used to pinpoint the
bottlenecks. Also, architectural techniques such as dynamic granularity memory
system which supports coarse-grained and fine-grained memory accesses could be
explored to improve the performance.

• Third, E2MC used single encoding at the beginning of a benchmark. This assumes
that compressibility of the data does not change over the execution of an application
which is not always true. Thus, it would be interesting to study the effect of mul-
tiple encodings on compression in the future. Furthermore, we showed that E2MC
is feasible for off-chip memory compression, however, caches have tighter latency
requirements than off-chip memory. It would also be intriguing to see if E2MC can
be extended to other levels of the memory hierarchy.

• Fourth, SLC helped to tackle the MAG problem, but it introduced approximation
errors. There are several applications, for instance, graph-based applications which
cannot tolerate even small errors, but they also suffer due to MAG. Further possi-
bilities to reconstruct the approximated bytes losslessly or determining when these
extra bytes are not required at all will significantly increase the value of the pro-
posed technique. For instance, even for a memory divergence benchmark, a full
cache line is fetched, however, mostly a full cache line is not used. Furthermore, the
possibilities of adopting existing lossless memory compression techniques to MAG
size can be investigated.

• MAG also offers other opportunities for optimizations such as MAG aware error
correcting code (ECC) support. ECC provides higher reliability for applications
that are sensitive to data corruption, however, ECC bits use bandwidth otherwise
available to user data. As we have seen that losslessly compressed size is not always
an exact multiple of MAG and extra bytes are fetched as data can only be fetched
in the multiple of MAG. ECC overhead can be reduced by piggybacking ECC bits
along with compressed data.
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