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Abstract: Let f be a self-dual Hecke-Maass eigenform for the group SL3(Z). For % < 0 < 1 fixed we define
m(o) (= 2) as the supremum of all numbers m such that

T
j IL(s, HImdt <0 TV,
1

where L(s, f) is the Godement-Jacquet L-function related to f. In this paper, we first show the lower bound
of m(o) for % < 0 < 1. Then we establish asymptotic formulas for the second, fourth and sixth powers of
L(s, f) as applications.
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1 Introduction

Let f be a self-dual Hecke-Maass eigenform for the group SL3(Z) of type v = (a, ). Then the Langlands’
parameters for f are

p=a+28-1, p@=a-B, pB)=1-2a-4.
It is known that f has the following Fourier-Whittaker expansion:

A s
fa= > Y ZMW;(M((V) (1’)2 v, wl,l),

yeU @ N\ sh@ymaingo MMl

where U, = {(é T)}, Wi(z, v, lpu) is the Jacquet-Whittaker function, 1/)1,1 is a character of U3(R), M =

diag(m|n|, m, 1) and As(m, n) are the Fourier coefficients of f. The function Wj(z, v, ¥, ,) represents an ex-

ponential decay in y, and y, for

1 X x3)\(W>
z= 1 x3 no|
1 1
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From Kim and Sarnak [1] and Sarnak [2] we know that

Af(m, n) < |mnlii+e.

From [3], the Rankin-Selberg theory shows that

> |Af(m, )P <5 N.

mn?<N
Due to Af(m, n) = Af(n, m), then

Y |As(m,m) < N 1.1)

m?n<N

also holds, where f is the contragredient form of f. According to these estimates, we have
|Ag(m, 1)I?
— <

Ar(1, n)|?
Y <logN, ) LAC10l < logN. (1.2)
n

m<N n<N
As in [4] and [5], the Godement-Jacquet L-function associated with f is defined as
S Ar(1, n)
Ls.f)= Yy 12—

n=1

, for Rs > 1.

This L-function has a standard functional equation and analytic continuation to an entire function on
complex plane C. Due to the fact that f is a Hecke eigenform, the Fourier coefficients are multiplicative
and the L-function has an Euler product (see [5, pp. 173-174]), for Rs > 1,

L(s,f) =[] - AL, p)p~s + As(p, Dp> - p)7.
p

Then the L-function associated with the dual Maass form f takes the form

~ S Ar(n, 1
1.y = YA Y _a - A, o + A0, = - poy,
n=1 p

We write s = ¢ + it and suppose that% < 0 < 1is fixed. Let m(0) (= 2) be the supremum of all numbers
m (> 2) such that

T

IIL(s,f)I'"dt < T, (13)
1

where the «-constant may depend on L(s, f) and €. Naturally, we want to seek lower bounds for m(o),
which occurs frequently in applications. In the cases of full modular group SLy(Z) and the congruence
group, many scholars have obtained lot of results (e.g., see [6—25], etc.).

In this paper, we focus our attention on the Hecke-Maass eigenforms for the group SL3(Z). In this
situation, for one thing, we do not know whether the Ramanujan conjecture is true; for another, the square
and fourth mean value estimates of L(s, f) are weaker than ones over SL,(Z). Our results are as follows.

Theorem 1. Let m(o) for each % < 0 < 1 be defined by (1.3). Then we have

43 - 20)

"% S0 -0

(1.4)

From Theorem 1 we can get the following corollary immediately.
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Corollary. We have

m(g)zz, o LA ULEA I R EC Ao TR
3 90 90

Remark. Due to the fact that L(s, f) is an L-function of degree 3, then Perelli’s mean value theorem [26]
shows that, for % <o <1landT = 1 uniformly,

T
IlL(U + it,f )lzdt < Tmax(B(l—U),l)Jrs’
1

which implies

T
J|L(0 + it, f)]Pdt < T+¢ (% <0< l).

1

Thus, we restrict the range of ¢ in Theorem 1 into % <o<1.

As applications of Theorem 1, we can establish the asymptotic formulas for the second, fourth and sixth
powers of L(s, f).

Theorem 2. For any € > 0 and ¢ fixed, we have

J.lL(a T it, f)Pdt = TZ|Af(1 mpn2 + 0(T"3+), (1.5)
n=1
T
+69 I
I|L(0 it Pl = T JAy » AL P + o(T”z o ) (1.6)
1 n=1
I|L(0 L it, f)ledt = TZ|Af « A+ Af(1, n)Pn% + O(T”E - ff”*f), (1.7)
n=1

where As x Ar(1,n) = ¥ Ar(1, m)As(1, 1) is the Dirichlet convolution of As(1, n) with itself. The asymptotic

formulas (1.5), (1.6) and (1.7) follow for Z<o<l, 3= F <0 <1and 2481 /481 < 0 < 1, respectively.
90

Notation. Throughout this paper, the letter € stands for a sufficiently small positive number, and the value
of € may change from statement to statement.

2 Some lemmas

In order to prove Theorems 1 and 2, we first introduce some lemmas.

Lemma 2.1. Let T < t < 2T and k > 1 be a fixed integer. Then for% < 0 <1, we have
log?T
|IL(o +it, f)F <1+ 1ogT j

~log?T

k
+it+iv,f)| e Mdv.

L(o -

logT
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Proof. The proof of this lemma is similar to [27, Lemma 7.1], and we just need to use the following

functional equation:
Gu(S)L(s, f) = G,(1 - LA - 5, ] ),

where

Gv(s):n_gzsr(s+l—2a—ﬁ)r(s+a—ﬁ)r(s—1+tx+2ﬁ),

2 2 >
GV(S)=T[‘328F(S+1_a_zﬁ)r(s_“+ﬁ)r(5—1+2a+ﬁ),
2 2 5

in place of the functional equation of {(s).

Lemma 2.2. For m = m(0),

T
j|L(a T it, F)"Odt « TV
1

is equivalent to

Y IL(o + ity, f M@ « T,

r<R
where

t.e[T,2T) forr=1,...,R; |t, —t]| =10g*T for 1<r#s<R.

Proof. Let
L(0 + ity, f) = max|L(o + it, f )|, I,=[2T - mlog*T,2T - (m - 1)log*T],
tely

(2.1)

(2.2)

(2.3)

where m = 1, 2,...,[T log™ T]. Denote by {t,} either of the sets {t,} or {t,m,_1}. Then the t,’s satisfy (2.3) and

_(m- 4
2T [tlog=T] 2T-(m-1)log"T

JlL(o +it, fHIM@dt <« Z J IL(0 + ity, f)|"@dt
T

m=1

2T-mlog*T
[tlog™T]
< ) L0 + ity, f"@log" T
m=1
<« T,

And then replacing T by %, %, ... and adding we can get (2.1). On the other hand, by Lemma 2.1, we have

log?T m(o)
Y L(0 + ity, f)I"@dt <« R + 1ogT ). j L(O‘ - + it + iv,f) dv
r<R r<R log?T log T
t,+log?T m(o)
<R+logT ) ffo- L +it, f de
e logT
=" t,—log?T
2T+1og?T m(0)
<« Tlog™T + logT I Lo - +it, f dt
logT

< T1+e’

which implies (2.1).
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Lemma 2.3. We suppose that% < 0 < 1is fixed and
R <« T1+ey-mlo), (2.4)
where for t, defined by (2.3) we have
Lo +it,, )| = V=T (r=1,2,...,R), (2.5)
which is equivalent to

Y IL(o + ity, )@ « T,

(2.6)
r<R
Proof. We suppose that (2.6) is true and let {1, ..., ty g} be the subset of {t,} such that
IL(o +ity;, I 2V (j=1,...,R).
Then from (2.6) we have
RV™® < Y |L(0 + ity, /M@ « T,
r<R
thus for R; = R, (2.4) holds.
Inversely, we let (2.4) hold and denote by ty 4, ..., ty,gv) those of the points 4, ..., tz for which
V<|L(o+ity, )l <2V (j=1,...,R(V)).
For each V, we have O(logT) choices. And from the following Lemma 2.6, we take V = Ts(lf), V= 2*@#,
V = 227°%”, ... Then we can obtain
Y L(o + ity, HI"Odt « RTE+ ) ) (V)™ « RT® + ) T « T+,
r<R V j<R(V) v
O

Lemma 2.4. Let t; <---< tg be real numbers such that t, € [T,2T] for r=1,...,R; |t, — t;| = log*T for
1<r+s<R.If

T¢E<x V<

Z a(n)n"”“r

M<n<2M

) (2.7)

where Y, la(m)P < M for1 <« M < T¢ (C > 0), then we have
R <« Te(M* 2072 4+ TVH(@), (2.8)

where

3-40’
10
7-80’
L, <0< —, (2.9)
15 - 160 14 15

98 .. 13 57
< <

31-320" 15 62
5

1-0

f(o) =1

.. 57
, f —<o0<1-¢.
f62

Proof. We can get this lemma by following a similar argument to [6, Lemma 8.2] replacing a(n) <« M¢ by
Yaepla(mP? < M, O
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Lemma 2.5. [27, Theorem 5.2] Let ay, ..., ay be arbitrary complex numbers. Then

T
0

and the above formula remains also valid if N = oo, provided that the series on the right hand side of the
aforementioned formula converge.

2

Z annit

n<N

dt=T Z la, P + O( Z n|an|2):

n<N n<N

Lemma 2.6. [28, Corollary 1.2] Let% < 0 <1 be fixed, we have

5

|L(o + it, f)| < |t [¢(-9)+e,

Lemma 2.7. For any € > 0, we have

2
dt <« T1*e,

L z+1't,f
{5e1)
2o

Proof. The first result is a general result of Perelli [26], which we can also get from Lemma 2.5 with m = 3

4
dt « T+,

O e O —

and o = % in Liu and Zhang [29]. From Lemma 2.6 and the first result, we can easily get the second
result. o

Lemma 2.8. For t, satisfying (2.3), we have
2 .
D L(§ +it,, f)

r<R
2 .
L(E + zt,,f)

r<R
Proof. Following a similar argument of Lemma 2.2, with the help of Lemma 2.7 we can obtain this lemma.
O

2
dt < T1*¢,

4
17
dt <« Tiz*,

Lemma 2.9. [27, Lemma 8.3] Let F(s) be regular in the region © : a < 0 < f,t > 1 and let F(s) < eCt’ for
s € ®. Then for any fixed ¢ > 0 and a« < y < 3, we have

B-y y-a
faf 2T B-a

T 2T
f F(y + iH)adt < I|F(a +iOpede + 1 I|F(ﬁ +iOlde + 1
2 1 1

In the following two lemmas, though the definitions of ¢,(m) and ,(n) are different from ones in
Lemmas 2.11 and 2.12 of [18], we still can get these two lemmas by following similar arguments, respectively.

Lemma 2.10. Let ¢,(n) be the arithmetic function generated by L(s, f)X, that is
QM) = Ar = - = Ar(1, n).

k times

(2.10)

Then we have

Y o) < x5, Y @2(n) < xI*E.

n<x nsx
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Lemma 2.11. Let 0 < 6§ < % be a fixed constant and

Py () - Z pme D), T<nc< T2,
n=ml
l’bk(n) = m<T,I<T

Py (), n> T2

Then we have

Y YHnn 2% = 0Q1).

n>T

3 Proofs of Theorems 1 and 2

3.1 Proof of Theorem 1

In this section, we restrict the range of 0 into % < 0 < 1and shall give lower bounds for m(o) by establishing
formulas of type
R < Ty,
Recalling Mellin’s formula
2+ico
e = (2mi)! I T(w)x“dw(x > 0). (3.1
2-ico
Taking x = ; and multiplying (3.1) by Ar(1, m)Ar(1, ny)n;°n;®, where n = mn, and summing over n, we can

obtain

2+ico

020:[ z Ar(1, m)ArQ, nz))e?ns = (2mi)! '[ YT(w)L(s + w, f)?dw. (3.2
n=1\n=nmmn, 2 Mo

Shifting the line of integration in (3.2) to Rw = % - 0, we encounter a simple pole at w = 0 with residue
L(s, f)? and get, as Y — oo,

D ( > A1, nAs(, nz)]e‘x"zn‘s +0o(1) = L(s, f)? + (2mi)! I YT(W)L(s + w, fYdw. (33

n<Y log?Y \ n=nn, 2
S)fiw-g—a

The integral part of (3.3) for which Jw > log?T is o(1) as T — oo by Stirling’s formula. Then let s = ¢ + it,
and thus for each t, we have

log2T 2
Lo +it, <1+ | Y Ap(1, n)Ar(1, mp) |le o i | 4 I ys—o L(g + it + iv,f) e Vidy.
n<Y log?Y \ n=njn, log?T 3
(3.4)
Combining (2.5) with (3.4), we can obtain
<l ) [ Y AL AL, "2)]9;}"0“’
n<Y log?Y \ n=nyn,
(3.5)

< logT max
Mg%Y log2Y

z ( Z Af(L nl)Af(l, nz))egnoit,

M<n<2M \ n=mn,




1014 — Jing Huang et al. DE GRUYTER

or
2

V2 < Y30 , (3.6)

2 .
L(E + it/ f)

where V > T¢ and ¢, is defined as

2 .
L(§ +it), f

L(% + it + iv,f)‘.

) = max
~log? T<v<log?T

For convenience, denote by R/ and R, those points which satisfy (3.5) and (3.6), respectively.
Recalling (1.1), we know that Lemma 2.4 is valid. We first consider R/. By Lemma 2.4, we have

R} < 10gY x TE(MZ-2V-4 + TV-¥©@) « TE(Y>- 20V + TV @), (3.7)

While for Ry, by Lemma 2.8, Hélder’s inequality and (3.6), we can obtain

2

Ry < Yiov2y L(3 +it], f) < Y5-oy-2Tve (3.8)
r<R; 3
and
2 2 2 2 /l 17
Ry < Y579V z L(— + it,',f) < Y5 OV2R, 2T % ¢, (3.9)
r<R} 3
For (3.8), if we take Y = Vi Ta%, then we have
R <Rl + B < TV 2074 4 TVH© 4 Y3-oy2710e) « To(VaTE5 + TV-H). (3.10)
For (3.9), if we take Y = Tls7, then we have
R<R +R < TS(YZ-Zﬂv-4 + TVH© 4 Yé‘-20v—4T1§) < TE(V-‘*TE’-E?G + TV‘zf(")>. (3.11)
Therefore, combining (3.10) with (3.11) we have
R < TS(TV*Zf(") b VSR TES + V*“Tlal*%"). (3.12)

We assume that the second and the third terms in (3.12) do not exceed TV™ and TV, for values x and y
which can be determined by Lemma 2.6, then we can obtain

4(3 - 20) 7-30
X ——m———F—, Yy ———.
51 - o)(4 - 30) 51 - o)

Thus, we have
R « T1+ey—=

with

. min(zf(o), 4(3 - 20) 7-30 )

51 - 0)(4 - 30)” 5(1 — )
For% <0 <1- ¢, we always have

43-20) _7-30
51-0)4-30) 51-0)

Recalling the value of f(0) in Lemma 2.4, we can take

4(3 - 20)

2
=—— "  Z<0o<l-=s
51 - o)(4 - 30) 3

Thus, we complete the proof of Theorem 1.
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3.2 Proof of Theorem 2

In this section, we give the proof of Theorem 2 by following a similar argument to [6, Theorem 2]. Let oy
denote the infimum of all numbers o for which

T
f|L(o +it, PrdE < TV
1

holds for any € > 0, where k > 1 is a fixed integer, % <o <L
Writing s = ¢ + it, we have

T T 2 T 2
_[|L(a+it, FPXdE = _[ Y g (mmoit| dt+ 0 f L(o + it, f)—(Zng(n)n‘“"") al, 6B
1 1 n<T 1 n<T

where ¢, (n) is given by Lemma 2.10.
Combining Abel’s summation formula with Lemmas 2.5 and 2.10, we can obtain

|

2

Z (pk(n)n’g’it

n<T

dt =T ) @X(mn? + O( D (pkz(n)nlz") = TOZO:(pkz(n)n*Z‘f + O(T>20+€), (3.14)

n<T n<T n=1

Let

2
F(o +it,f) =X +it, f) - (z (pk(n)noit) ]

n<T

And applying Lemma 2.9 withg=1,a =0+ 6,8=1+ 6,y = 0, where0 < § < %is a fixed constant which
may be chosen arbitrarily small, for fixed k we have

B-o _1+6-0 1-0

= < + 62
B-a«a 1- 0% 1-o0y

and

a—a_a—a,?—6<a—0,§‘
B-a 1-0f 1-o0;

Recalling the definition of o;, by Lemma 2.5 we have

2T 2T 2T 2
f F(a + it, f)ldt < J_lL(a,f T+ 6+ it e + I Y @ (%571t | dt « TV 4 T2-%ire o T145,
1 1

n<T

Moreover,

0 2
FB+it,f) =) @y(mn-5-it ( > <Pk(n)n15i’] = Y Y (myn -5,
n=1 n<T n>T
where 1, (n) is given by Lemma 2.11.
By Lemma 2.5, Lemma 2.10 and Holder’s inequality, we can obtain

1
2T 2 2

or
I|F(B +it, f)|dt < T> I Z P (=07 | dt [ <« T2,
1 1

n>T
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Thus, Lemma 2.9 shows
2T .
O'*O'k

;
le(U +it, f)ldt < T(“&)(l ot Z)*@_

Note that

1-0
(1+5)(1

1 o -0 2-0-0;
62| + k< k+g

2-20; 2-20;

holds for any € > 0 if § = 6(¢) is sufficiently small. Noting that for the exponent of the O-term in (3.14),
we have

2-0-0%

2-20< ——— <1
2 - 20%

Thus,

JlL(o +it, Hde =T Z(pkz(n)n*w + Rk, 0; T),

n=1

and for fixed o satisfying oy < 0 < 1, we have

2-0-0f

R(k, 0;T) < T 2% *©

From Theorem 1 we have

5 2
‘L(E + it,f) dt < T1*¢,

— C—

4

(33 V69 + it, f) dt < T1*e,

'j[ (101

Recalling the definition of oy, we can take o7 = %, g, =
Theorem 2 immediately.

I

6
dt « T+,

33-69 101 - 481 . .
3({_ and o3 = T , from which we can obtain
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