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ABSTRACT The development of intelligent radios in wireless applications is mainly driven by the growing
need for higher data rates, along with constrained spectrum resources. An intelligent radio is one that
can autonomously assess the communication environment and automatically update the communication
parameters to achieve optimal performance. The problem of determining the type of space-frequency
block coding (SFBC) for orthogonal frequency division multiplexing (OFDM) transmissions is one of
the main tasks of an intelligent receiver. Previous approaches to this problem are restricted to uncoded
communications; nevertheless, existing systems typically utilize error-correcting codes. This study develops
a maximum-likelihood (ML) classifier that discriminates among SFBC-OFDM signals using the soft outputs
of a channel decoder. The mathematical analysis shows that the maximization of the likelihood function can
be carried out by employing an iterative expectation-maximization (EM) procedure. A channel estimator is
also included in the proposed classifier as a vital step. The findings show that the classification performance
of the proposed algorithm is considerably better than the classical classifiers reported in the literature, at the
cost of an acceptable increase in computing complexity.

INDEX TERMS Signal classification, SFBCs, EM algorithm.

I. INTRODUCTION
The analysis of a received signal with the aim of determining
its parameters is commonly referred to as signal classification
(SCL). This is a fundamental process of intelligent radios
that adjust their broadcast settings based on channel circum-
stances [1]. SCL algorithms are used to retrieve these settings
from the received signal as a feasible alternative of send-
ing those attributes via separate routes. This maximizes the
transmission data rate and conserves spectral resources while
maintaining a target quality of service. Historically, SCL has
been utilized in the military to detect and analyze unknown
signals originating from unfriendly transmissions. The advent
of intelligent radios has heightened further curiosity in SCL
within the framework of civilian implications [2].

There has been a significant amount of research on SCL
for single-input single-output systems over single-carrier
(SC) and multi-carrier (MC) broadcasts. This encompasses
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a variety of classification problems such as modulation
types [3]–[6], error-correcting codes [7], [8], and SC against
MC emissions [9], [10]. Recently, the configuration of space
block coding (SBC) has become one of the most important
signal parameters that needs to be estimated for multi-input
multi-output (MIMO) systems [11]. Numerous studies have
been addressed this problem for single-carrier and multi-
carrier systems. Maximum-likelihood (ML) and feature-
based (FB) are two of the most common strategies for signal
classification. Under the hypothesis that multiple signals are
received, the former strategy computes the probability func-
tion of the received signal, and the choice is taken relying
on this function’s maximum. The ML solution is optimum in
terms of enhancing the probability of classification accord-
ing to detection theory, but at the expense of computing
complexity. The FB strategy bases its classification judg-
ment on the contrasts in the features of the candidate sig-
nals. This kind of feature exhibits distinct properties for
each individual signal and is often picked on an as-needed
basis.
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An ML method is designed for blind space-time block
codes (STBC) classification, knowing synchronization and
channel characteristics [12]. Correlation functions are used
to recognize STBC signals using a binary search tree algo-
rithm [13]. Second-order cyclostationarity [14] and fourth-
order moment [15] are utilized to differentiate between
STBC signals in the presence of various transmission impair-
ments. Classification algorithms in [16] are suggested to
discriminate between Alamouti (AL) and spatial multiplex-
ing (SM) STBC signals over frequency-selective fading chan-
nels. Binary hypothesis tests are sketched in [17]–[19] to
identify STBC signals over orthogonal frequency-division
multiplexing (OFDM) transmissions. Recent years have seen
a rise in the use of deep learning in signal classification
systems [20]. A potential weakness of these algorithms is
that they need a vast volume of data for training to operate
properly. Gathering training data from a source isn’t always
an option. An illustration of this may be found in military
classification systems. Classifiers have the additional draw-
back of often being implemented on small portable devices
with little processing power. As a consequence, if retraining
becomes required, it will be very challenging. This highlights
the need for non-deep learning classification algorithms.

To the best of the author’s knowledge, all the previously
reported studies are devoted to uncoded emissions running in
a blind context. However, existing systems typically utilize
error-correcting codes and adopt reference signals (pilots)
to ensure stable communications. While blind approaches
are appropriate for military use, civilian applications need
the use of both blind and data-aided techniques [1]. In this
work, we introduce a new approach to classify SBC signals
taking benefits of the existence of error-correcting codes.
More specifically, we focus on classifying space-frequency
block coding (SFBC) signals for OFDM transmissions.
The main contributions of this work lie in the following
aspects.

1) Error-correcting codes have been intensively studied
for MIMO-OFDM communication systems. Examples
include low-density parity-check (LDPC) codes [21],
turbo codes [22], and convolutional codes [23]. They
also have been adopted in many practical MIMO-
OFDM systems such as 5G, LTE, WiMAX, and
IEEE 802.11x WiFi systems [24]. In the previ-
ously mentioned works, the primary purpose of using
error-correcting codes is to correct errors caused by
noise and/or to further improve the estimation accuracy
of channel and synchronization parameters. This work
is the first of its kind in exploring the capability of error-
correcting codes to classify between different types of
SFBC-OFDM signals.

2) The soft information of a channel decoder is employed
repeatedly to enhance the classification performance
of the proposed method using ML principles and an
expectation-maximization (EM) technique [25]. Fur-
thermore, in the event that channel state information
is not obtainable at the receiver, we offer a channel

estimationmethod to be implemented into the proposed
classifier.

3) The proposed classification algorithm runs with any
error-correcting code as long as its decoding process
is soft-decision based [26].

4) The proposed classification algorithm is broad in
the sense that it can be used with any number of
space-frequency codes with no code parameters lim-
its. Four codes are provided as examples for the
sake of conceptual clarity and simulations. These
codes include AL and SM codes which have been
adopted in several wireless standards, such as 5G,
LTE, WiMAX, and IEEE 802.11x WiFi systems [24].
It is worth mentioning that many research works
in the literature classify only between AL and SM
codes [15], [16], [18], [19], [27].

5) It is well known that most wireless transmissions
rely on pilots to estimate synchronization and chan-
nel parameters [24]. We utilize these pilots to provide
initial estimates of the first iteration. In this context,
we refer to the proposed classification algorithm as a
semi-blind procedure. The proposed iterative algorithm
has the advantages of both blind and data-aided tech-
niques in the sense that it has magnificent classification
performance with a minor throughput loss. The key
idea is that the output information of a channel decoder
is exploited to compute the a posteriori expectations of
the transmitted symbols, which are employed as if they
were pilot symbols.

The work is structured as follows. The signal model and
problem formulation are described in Section II. The ML
classification algorithm is created in Section III. Simulation
results are presented in Section IV. Finally, the study is
concluded in Section V.

II. SIGNAL MODEL AND PROBLEM FORMULATION
SFBC-OFDM signals are considered with N subcarriers,
ν cyclic prefix (CP) samples, F transmit antennas, and a
single receive antenna. The conceptual block diagram of a
transmitter is presented in figure 1. A sequence of infor-
mation bits is protected by a channel encoder and an inter-
leaver. A digital modulator maps the coded bits into data
symbols, belonging to an M -point constellation �. A few
pilots are stacked with data symbols forming a vector A =[
a0, a1, · · · , aNd−1

]
of length Nd . Here, there are no con-

straints on the type of channel coding, interleaver, map-
ping strategy, pilots distribution, and constellation set �.
The elements of the vector A are further split into several
blocks of length P. Using a predefined F × Q code matrix
C
(
a(p)

)
, the encoder of SFBC spans the pth block, a(p), over

Q adjacent subcarriers to be sent via F transmit antennas. For
illustration, the code matrices of SM(P = 2,Q = 1,F = 2),
AL(P = 2,Q = 2,F = 2), SF3(P = 3,Q = 4,F = 3), and
SF4(P = 4,Q = 8,F = 4) are [28]

C (SM) (a = [a0 a1]) = [a0 a1]T , (1a)
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FIGURE 1. Block diagram of a SFBC-OFDM transmitter.

C (AL) (a = [a0 a1]) =
[
a0 a1
−a∗1 a∗0

]T
, (1b)

C (SF3) (a = [a0 a1 a2]) =


a0 a1 a2
−a∗1 a∗0 0
a∗2 0 −a∗0
0 −a∗2 a∗1


T

,

(1c)

C (SF4) (a = [a0 a1 a2 a3])

=



a0 a1 a2 a3
−a1 a0 −a3 a2
−a2 a3 a0 −a1
−a3 −a2 a1 a0
a∗0 a∗1 a∗2 a∗3
−a∗1 a∗0 −a∗3 a∗2
−a∗2 a∗3 a∗0 −a∗1
−a∗3 −a∗2 a∗1 a∗0



T

, (1d)

where T and ∗ refer to the matrix transpose and complex
conjugate operations, respectively. In (1a)-(1d), we omit the
block index p for notation convenience. At each transmit
antenna branch, a vector u(f ) of length N is constructed
by concatenating all the outputs of SFBC encoder, where
N = QNd

P . Then, an OFDM symbol is created by using an
N -point inverse fast Fourier transform (IFFT), and the last ν
samples are appended as a cyclic prefix. Mathematically, the
nth time-domain sample broadcasted from the f th transmit
antenna is expressed as

s(f )(n)=
1

√
N+ν

N−1∑
k=0

u(f )(k)ej2πnk/N , n = 0, · · ·,N+ν −1

(2)

where u(f )(k) is the kth element of the vector u(f ). It is
worth noting that the samples s(n) for n = 0, · · · , ν − 1
constitute the cyclic prefix part of the OFDM signal. Here,
we take advantage of the IFFT algorithm’s cyclic shift
feature, which demonstrates that s(n) = s(N + n) [18],
[29]. Denoting β as the employed SFBC type, where β ∈
{SM, AL, SF3, SF4}, we attach β to the transmit vector s(f )

to emphasize that its structure is dependent on β. The trans-
mission matrices of those codes are shown in (1a-1d). The
transmit signal s(f )(β) =

[
s(f )(0), · · · , s(f )(N+ν −1)

]
is

subject to the adverse effect of an L-path channel model,
h(f ) =

[
h(f )(0), · · · , h(f )(L − 1)

]
. Accordingly, the received

signal can be expressed in vector notation as

r =
F−1∑
f=0

s(f )(β) ? h(f ) + n, (3)

where ? denotes the convolution operation and n is the addi-
tive white Gaussian noise (AWGN) vector. Using the received
signal r, our aim is to determine the type of the transmit SFBC
signal by exploiting the presence of error-correcting codes.

III. ML CLASSIFICATION ALGORITHM
For the sake of mathematical simplicity, we represent (3) in
matrix notation as

r =
F−1∑
f=0

S(f )(β)h(f ) + n, (4)

where S(f )(β) is an (N + L − 1) × L matrix
with its element at row w1 and column w2
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being given as

S(f )w1,w2
=

{
s(f ) (w1−w2) for w1 = 0, · · · ,N + L−1
0 for w2 = 0, · · · ,L−1,w1≥w2,

(5)

and s(f ) (w1 − w2) is the (w1 − w2)th element of the vec-
tor s(f )(β). There are several methods for performing lin-
ear convolution of (3), including graphical and numerical
approaches. The matrix multiplication employed in (4) is
one of those approaches that has been widely utilized in the
wireless communications literature [29]. A more compact
form of (4) is given as

r = S(β)H+ n, (6)

where S(β) =
[
S(0)(β), · · · ,S(F−1)(β)

]
and H =[

h(0), · · · ,h(F−1)
]T
.

The ML estimate of β can be expressed as

β̂ = argmax
β

log Pr (r|S(β),H) , (7)

and

Pr (r|S(β),H) ∝ exp
(
−‖r− S(β)H‖2 /σ 2

n

)
, (8)

where ‖·‖ refers to the norm operation. Since the receiver
has no prior knowledge about the transmission matrix and
channel conditions, a direct design of a ML algorithm proves
infeasible. In practice, theML estimates of S(β) andH can be
calculated by using an EM-based iterative procedure which
involves two steps: the expectation (E-step) and the maxi-
mization (M-step).

The E-step computes the conditional expectation of the
log-likelihood function of [r,S(β)] with respect to S(β) given
the ith estimates of the unknown parameters. Mathematically,
we write

E
(
β,H

∣∣∣β̂(i), Ĥ(i)
)
=E

[
log Pr

(
r,S(β)

∣∣∣r, β̂(i), Ĥ(i)
)]

=

∫
S(β)

log Pr
(
r,S(β)

∣∣∣r, β̂(i), Ĥ(i)
)

×Pr(S(β)
∣∣∣r, β̂(i), Ĥ(i))dS(β), (9)

where E[.] denotes the statistical average operation. Using (8)
into (9) with ignoring the irrelevant factors of ‖r‖2 and σ 2

n
that have no influence on the optimization task, the E-step is
expressed as

E
(
β,H

∣∣∣β̂(i), Ĥ(i)
)
∝ −HH3(β)H+ 2<

{
rH8(β)H

}
,

(10)

where (·)H is the Hermitian transpose of a matrix, <{·} is the
real part of a complex number,

3(β) =
∫
S(β)

SH (β)S(β)Pr(S(β)
∣∣∣r, β̂(i), Ĥ(i) )dS(β), (11)

and

8(β) =
∫
S(β)

S(β)Pr(S(β)
∣∣∣r, β̂(i), Ĥ(i))dS(β). (12)

The M-step updates the estimates as[
β̂(i+ 1), Ĥ(i+ 1)

]
= argmax

β,H
E
(
β,H

∣∣∣β̂(i), Ĥ(i)
)
.

(13)

To simplify the implementation of the two-dimensional opti-
mization problem shown in (13), we consider the following
approach. For each value of β, H is updated by maximiz-
ing (10) as

Ĥ(i+ 1, β) = (3(β))−1 (8(β))H r. (14)

Using (10) and (14) into (13), the updated value of β is
expressed as

β̂(i+ 1) = argmax
β

{
−ĤH (i+ 1, β)3(β)Ĥ(i+ 1, β)

+ 2<
{
rH8(β)Ĥ(i+ 1, β)

}}
. (15)

The final channel update is

Ĥ(i+ 1) = Ĥ(i+ 1, β̂(i+ 1)). (16)

The following practical issues are of interest:
1) Based on (2), one can show that

E
[
s(f )(n)

∣∣∣r, β̂(i), Ĥ(i)
]

=
1

√
N + ν

N−1∑
k=0

E
[
u(f )(k)

∣∣∣r, β̂(i), Ĥ(i)
]
ej2πnk/N ,

(17)

where

E
[
u(f )(k)

∣∣∣r, β̂(i), Ĥ(i)
]

=

∑
$∈�

$Pr(u(f )(k) = $
∣∣∣r, β̂(i), Ĥ(i) ). (18)

In practice, at the receiver, E
[
s(f )(n)

∣∣∣r, β̂(i), Ĥ(i)
]
can

be used to create the matrix of 8(β), instead of the
unknown transmitted sample s(f )(n). In addition, due
to the presence of an interleaver, 3(β) can be easily
computed as 8H (β)8(β).

2) As observed from (18), computing Pr(u(f )(k) =
$

∣∣∣r, β̂(i), Ĥ(i) ) is crucial for the proposed classifier.
This probability can be estimated from the channel
decoder outputs of any error-correcting coding sys-
tem, provided that the decoder is able to produce
soft information outputs. More details on this issue
are provided in [30]. The key question is how the
decoding mechanism works with various SFBC sig-
nals. We develop two execution possibilities for that
kind of challenge. A design principle of parallelism
is adopted as shown in figure 2 where each decoding
process is associated with a particular SFBC signal. Bit
metric computations shown in figure 2 are conducted as
reported in [31]. The iterative feedback is provided to
the channel estimators via these processes. This means
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FIGURE 2. The conceptual block diagram of the first proposed receiver structure.

that each estimator serves a specific possible SFBC
signal. The proposed SFBC classifier makes a final
judgment on the transmit SFBC signal throughout the
last round, and then the soft outputs supplied by the
relevant decoder are exploited to retrieve the trans-
mitted information. Current technology seems to be
appropriate for this approach, with great achievements
in the creation of parallel decoders [32]. The second
technique is characterized as a sequential combination
of the channel estimator, the SFBC classifier, and the
decoding process that continually swaps their outputs
as indicated in figure 3. When the suggested SFBC
classifier alters its selection during the loops, the
decoding process should be rebooted to modify its a
prior knowledge. Additional memory is necessary for
storing and retrieving the decoder outputs to shorten
the execution time of this scheme. This enables a
fast update for the decoding process when switching
between various SFBC signals.

3) The presented algorithm’s computing cost is mea-
sured in terms of the number of floating operations
(flops), with the multiplication and addition of two
complex-valued numbers taking 6 and 2 flops, respec-
tively [33], [34]. Furthermore, we claim that the mul-
tiplication of two complex-valued matrices with sizes
ϑ1 × ϑ2 and ϑ2 × ϑ3 demands 8ϑ1ϑ2ϑ3 flops, the
addition of two complex-valued matrices, each has size
of ϑ1 × ϑ2 involves 2ϑ1ϑ2 flops, and the inverse of a
complex-valued matrix with size ϑ2 × ϑ2 necessitates

ϑ3
2 flops. Applying these findings into (14) and (15),

we can show that the required number of floating-point
operations (flops) per iteration is given by

ρ =
∑

F∈{2,2,3,4}

24L2F2(N + ν + L − 1)+ 4L3F3.

(19)

A comparison between the proposed algorithm and
the state of art algorithms in terms of computational
complexity, delay, and requirement of training mode
is presented in Table 1. Here, Z is the number of
receive antenna elements, ϒ is the number of OFDM
symbols, and X is the duration of an OFDM symbol.
One observes that the computational complexity of the
proposed algorithm is higher than others. However, the
proposed algorithm’s practical implementation looks
to be feasible with the advanced technologies. As an
example, Altera’s 14 nm Stratix 10 FPGA series can
generate up to 10 Teraflops per second [35]. For numer-
ical illustration, consider N = 512, L = 6, ν = 7, and
a processor of 10 Teraflops per sec then ρ = 20.5(10)6

flops. This requires a processing time of 2.05µsec
which appears negligible for practical applications.
In addition, the proposed algorithm is superior to others
in terms of delay. This is because the proposed algo-
rithm relies on one OFDM symbol; however, the others
need ϒ OFDM symbols. For example, the algorithm
in [27] needs at least 500 OFDM symbols in order to
provide a satisfactory performance. Also, the proposed
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FIGURE 3. The conceptual block diagram of the second proposed receiver structure.

algorithm does not require a training mode which is
needed for machine learning algorithms. As indicated
in [36], a large number of samples is required to train
the reported support vector machine algorithm. Fur-
thermore, the proposed algorithm is capable of oper-
ating with either a single or multiple antenna receiver,
while others request a multi-antenna receiver. More-
over, the proposed algorithm surpasses its competitors
in terms of classification performance by a substan-
tial margin as shown in the next section. It should
be noted that there has been supplemental complex-
ity involved in the proposed receiver in the form of
hardware components needed for adopting a bank of
channel decoders, as implied in the first approach, or a
storage memory, as clarified in the second alternative.

4) The first round of estimations is acquired from (15)
and (16) by using a couple of pilot symbols with
the unknown data symbols being replaced with zeros.
With iterations, the soft outputs produced by the
channel decoder is exploited to deliver Pr(u(f )(k) =
$

∣∣∣r, β̂(i), Ĥ(i) ) which is used to derive the proposed
classifier.

IV. SIMULATION RESULTS
Monte Carlo simulations are carried out to evaluate the clas-
sification performance of the proposed algorithm. Unless
otherwise, we consider an OFDM system with N = 512 and
ν = 7. The subcarriers are modulated by 512 data symbols,
each of which is chosen at random from a 16-QAM constel-
lation. The SFBC set under consideration is {SM, AL, SF3,
SF4}. In addition, a turbo code is employed with rate 1/3,
including two recursive systematic convolutional encoders
with 16-state, rate 1/2, and generator polynomials of (31)8
and (33)8 [37]. Scattered pilots of size 16 symbols are adopted
to initialize the proposed classifier. The wireless connection
between each broadcast and receive antenna is assumed to
be frequency-selective with a length of L = 6 and a power
delay profile being given as σ 2

h (l) = η exp(−l/6), where η
is selected such that each sub-carrier has the same level of
energy [30]. The probability of false classification Pf is used
as a performance measure,

Pf = 1− [Pr (SM |SM )+ Pr (AL |AL )

+ Pr (SF3 |SF3 )+ Pr (SF4 |SF4 )] . (20)

Figure 4 illustrates the performance of the proposed classi-
fier as a function of signal-to-noise ratio (SNR) at different
iterations. The proposed classifier has a significant classifi-
cation performance improvement with iterations. At the first
iteration, the proposed classifier has limited performance in
categorizing the SFBC signals. This is because we rely on a
few pilot data symbols. Starting from the second iteration, the
proposed classifier exploits the soft information produced by
the channel decoder to refine the classification process. The
results agree with the theoretical findings that with iterations,
the outputs of the channel decoder become more authentic,
improving the classification performance. It is worth men-
tioning that the proposed algorithm iterates until the estimates
have converged or a certain stopping criterion has been met.
With the aid of figure 5, which shows the classification
performance as a function of iteration number, one observes
that there is no notable progress beyond iteration five.

Figure 6 shows the classification performance of the pro-
posed algorithm in two scenarios at 16-QAM and 64-QAM
modulation formats. Here, the number of iterations has been
set at five. The first scenario assumes having perfect knowl-
edge about the channel parameters, while the second one
relies on the proposed channel estimator shown in (16).
We note that the difference between the two scenarios is
less than 1 dB. This confirms the success of the proposed
receiver design. It is vital to note that having less than 1 dB
between ideal and real estimators is widespread in coded
communications as reported in [38].

Figure 7 illustrates the classification performance of
the proposed algorithm for different modulation formats
including 16-QAM, 64-QAM, 256-QAM, 512-QAM, and
1024-QAM, at SNR = 20 dB. The results indicate that the
usage of the higher-order modulation format results in a
degradation in the classification performance. This is because
the soft information outputs of the channel decoder are less
reliable with having a higher-order modulation format which
in turn limits the achievable classification performance.

In order to simplify the mathematical developments,
we discussed the proposed algorithm in the case of having
a single receive antenna element. However, the proposed
algorithm can be easily extended to any number of receive
antenna elements. The difference is the computations of the a
posteriori expectations of the transmitted symbols in the case
of having multiple receive antenna elements. For more details
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TABLE 1. A comparison between the proposed algorithm and the state of art algorithms. Here, ϒ = 50, Z = 2, N = 512, ν = 7, and card(τ ) = 7. τ is a time
lag vector as defined in [27].

FIGURE 4. Pf as a function of SNR.

FIGURE 5. Pf as a function of iteration number.
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FIGURE 6. Pf with and without channel knowledge.

FIGURE 7. Pf at different modulation formats, SNR = 20 dB.

on these computations, we refer to [33]. Figure 8 shows
the classification performance with a receiver equipped with
Z = 1, 2, and 3 antenna elements, and the number of
iterations is five. Also, we show the performance in the
case of employing another recursive systematic convolutional
code with rate 1/2, 16-state, and a generator polynomial
of (31)8 [37]. Moreover, we illustrate the performance of
the algorithms reported in [27], [36], [39] for the sake of

comparison. The results show that the classical classifiers
are not able to achieve a satisfactory performance even at
high values of SNR. This is because they were designed
to operate blindly without the help of pilots symbols. It is
well-known that blind classification algorithms suffer from
shortened classification performance, even with increasing
the number of the processed samples. However, pilots-based
classification algorithms provide outstanding classification
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FIGURE 8. Pf in conjunction with turbo and convolutional codes at different receive antenna
elements, Z .

performance at the cost of shortened throughput. In the sense
that it has impressive classification performance with a small
throughput loss, the proposed algorithm has the advantages
of both blind and data-aided techniques. The central idea is
to use the output information of a channel decoder to com-
pute the a posteriori expectations of the transmitted symbols,
which are then adopted as pilot symbols.

Also, the classification performance improves with
increasing Z . This is because the reliability of the a posteriori
expectations of the transmitted symbols enhances as Z grows.
If both codes have the same settings for code rate and con-
straint length, it is well-known that turbo codes provide more
accurate a posteriori expectations of the sent symbols than
convolution codes [37]. Because of this, findings show that
the turbo code outperforms the convolutional code, as seen in
the results.

V. CONCLUSION
The classification of SFBC signals was discussed for OFDM
transmissions in the context of error-correcting codes. Start-
ing from the ML principles, we derived a classification algo-
rithm using an EM procedure. The outputs of a channel
decoder were iteratively utilized to improve the classifica-
tion performance of the proposed algorithm. Additionally,
we develop a channel estimation approach to supply the
proposed classifier. The results indicated that the proposed
classifier achieved superiority compared to the traditional
classifiers reported in the literature in terms of classification
performance and delay at the cost of an acceptable increase
in computational complexity. The proposed algorithm has
shown to be an efficient technique for SFBC classification

in MIMO systems; nevertheless, more study is essential to
adapt the algorithm to massive MIMO technology.
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