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Power of QTL detection using association tests
with family controls
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The power of testing for a population-wide association between a biallelic quantitative trait locus and a
linked biallelic marker locus is predicted both empirically and deterministically for several tests. The tests
were based on the analysis of variance (ANOVA) and on a number of transmission disequilibrium tests
(TDT). Deterministic power predictions made use of family information, and were functions of population
parameters including linkage disequilibrium, allele frequencies, and recombination rate. Deterministic
power predictions were very close to the empirical power from simulations in all scenarios considered in
this study. The different TDTs had very similar power, intermediate between one-way and nested ANOVAs.
One-way ANOVA was the only test that was not robust against spurious disequilibrium. Our general
framework for predicting power deterministically can be used to predict power in other association tests.
Deterministic power calculations are a powerful tool for researchers to plan and evaluate experiments and
obviate the need for elaborate simulation studies.
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Introduction
Geneticists have been successful in mapping genes under-

lying rare, monogenic disorders with clear patterns of

Mendelian inheritance.1 – 3 However, mapping genes un-

derlying complex traits, such as common multifactorial

diseases, has been more difficult.4,5 Genes can be mapped

via linkage or association tests. Although both strategies

exploit the cosegregation of markers with phenotypes,

there are some striking differences between them. For

example, in humans, genome-wide searches may require

testing 30 000–500 000 single-nucleotide polymorphisms

(SNPs) to detect significant associations, compared to 200–

400 microsatellites in a linkage analysis.6 – 8 Moreover,

theoretical work suggests that finding associations between

markers and complex diseases is more powerful than

searching for linkage, even if many SNPs have to be tested

and significance thresholds are raised to compensate for

multiple testing.9 However, not all association tests are

robust to spurious associations.10 This explains why

association tests using family controls, such as the

transmission/disequilibrium test (TDT), have been

favoured over association tests using random controls, for

example, case-control, because the former are robust to

spurious associations caused by population stratification,

or recent admixture.11 – 13

Power studies of association tests will help researchers to

design appropriate experiments, and to choose the most

powerful test for the analysis of data. In this study, we

investigate the power of association tests for quantitative

traits, with and without family controls. Allison14 pro-

posed five TDTs (TDTQ1 – Q5) for analysing quantitative

traits under different ascertainment conditions, and we

have included the most powerful, TDTQ5, in this study.

Long and Langley15 compared the power of five random

controls association tests and the TDTQ5, and found that

TDTQ5 was always the least powerful test. Nevertheless,
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these authors acknowledged that under population stratifi-

cation, the type-I error rate of association tests using

random controls can rise above the nominal level set for

the experiment. Xiong et al16 proposed the TDTG, an

extension of Allison’s TDTQ1 that accounts for any number

of sibs per family, families with one or two heterozygous

parents, and any number of alleles at the marker locus.

They found that TDTG is more powerful than TDTQ1, the

Haseman–Elston linkage test,17 and an extreme discordant

sib pair test.16 Lastly, Rabinowitz18 developed a TDT

(referred to here as TDTR) to model explicitly the correla-

tion between a quantitative trait and marker segregation.

In this study, several tests of association have been

compared in terms of power, both empirically and

deterministically. Our deterministic approximation for

predicting power was based on the calculation of noncen-

trality parameters (NCPs).19 The accuracy of this metho-

dology, which can be used to predict power of other

association tests, was validated via simulation.

Materials and methods
Definition of the evaluated association tests

The power of five tests to detect both linkage and/or

association between a marker locus and a Quantitative

Trait Locus (QTL) was studied empirically (simulations)

and deterministically (calculation of NCP). Table 1 shows

all the tests used in this study: the one-way analysis of

variance (one-way ANOVA), the nested analysis of variance

(nested ANOVA), the TDTQ5, the TDTR, and the

TDTG.14,16,18,20 A general deterministic method for pre-

dicting power at a linked marker is proposed in this study,

and implementation examples are given for one-way

ANOVA, TDTR, and TDTQ5. The one-way ANOVA test uses

a sample of unrelated individuals who have been both

genotyped and phenotyped, whereas the other four tests

use the same but with the inclusion of the genotypes of the

parents. Recombination rate and linkage disequilibrium

were denoted c and D, respectively.

One-way ANOVA The one-way ANOVA contrasts marker

genotype means among the progeny. This is the simplest

and the most powerful test of association, although it is

prone to high type-I error rates in the presence of spurious

association, viz. disequilibrium without linkage.15 This is

so because the null hypothesis (H0) being tested by one-

way ANOVA is no association, regardless of linkage. There-

fore, H0 could be rejected when testing unlinked marker

loci ðc ¼ 1
2Þ if there was a sufficiently strong population-

wide association (Da0). This lack of robustness is common

to tests that do not use family controls, for example, case–

control studies.12,13 The test statistic follows an F2,n’-3

distribution under H0, given a total sample size n0 and three

different genotype groups.20 The sum of squares between

genotype groups, after subtracting the overall mean effect,

reflects differences between marker genotypes. Hence, a

significant statistic suggests greater differences between

genotypes than would be expected under the assumption

of linkage equilibrium between the QTL and the marker.

Under the alternative hypothesis (H1) of association, the

distribution of the test statistic is a noncentral F with NCP

equal to l0, or a noncentral w2
2;l0

=2 for large n.

Nested ANOVA A way of overcoming the lack of robust-

ness of one-way ANOVA is to contrast marker genotype

means of progeny within parental types, using a nested

ANOVA design.20 Parental type represents a particular

combination of parental marker genotypes, and family

type a particular combination of marker genotypes across

all family members (Table 2). Thus, the H0 being tested by

Table 1 Main features of the tests compared in this study assuming family trios

Abbreviation Testing H0 Reference

One-way ANOVA Genotype effects Association 20
TDTQ5 Genotype effects after correcting for parental type effects Linkage and association 14
TDTR Allele–phenotype correlation Linkage and association 18
TDTG Allele means difference Linkage and association 16
Nested ANOVA Genotype effects within parental type Linkage and association within parental type 20

Table 2 Probability of each family type given a biallelic
marker and assuming Hardy–Weinberg equilibrium

FT PT Child Probability

1 MM�MM MM PM
4

2 MM�Mm MM 2PM
3 Pm

3 Mm 2PM
3 Pm

4 MM�mm Mm 2PM
2 Pm

2

5 Mm�Mm MM PM
2 Pm

2

6 Mm 2PM
2 Pm

2

7 mm PM
2 Pm

2

8 Mm�mm Mm 2PMPm
3

9 mm 2PMPm
3

10 mm�mm mm PM
4

FT: family Type, PT: parental Type; PM (Pm): frequency of allele M (m).
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nested ANOVA is no association within parental types. There

must be at least two progeny with different marker

genotypes within each parental type for there to be a

contrast; therefore, only those families with at least one

heterozygous parent, that is, informative families, are used.

This type of family ascertainment increases the degrees of

freedom (df) between groups and reduces the df within

groups, resulting in a loss of power compared to one-way

ANOVA. The appropriate F-test in nested ANOVA is a ratio

of between to within genotype mean squares within

parental types. The test follows an Fa,b distribution under

H0, where a ¼
Pg

i¼1 ngi � 1, and ngi is the observed number

of genotypes within parental type i, g the observed number

of parental types, and b¼n–(aþ g), where n is the number

of informative families.

TDTQ5 The original statistic for TDTQ5 is ½ðSSF � SSRÞ=2	=
½ðSST � SSFÞ=ðn � 5Þ	, where SST is the total sum of squares,

SSR is the sum of squares explained by a reduced model that

fits an overall mean and two (out of three) informative

parental types as fixed factors, and SSF is the sum of squares

explained by a full model that fits, in addition to the

reduced model, two more fixed factors to estimate additive

and dominant effects.14 The total number of informative

families is n. TDTQ5 is testing whether a significant amount

of phenotypic variation can be explained by marker

genotypes in the progeny, over and above the variation

already explained by parental type. TDTQ5 follows an F2;n�5

distribution under H0 if residuals are normally distributed,

or w2
2=2 for large n. Under H1, TDTQ5 follows a noncentral

F2;n�5;lQ5
, or a noncentral w2

2;lQ5
=2 for large n, with NCP lQ5.

The TDTQ5 is equivalent to a two-way ANOVA with a cross-

classified design where the factors are parental type and

progeny marker genotype (Appendix B).

TDTR

Although Rabinowitz18 derived a NCP, he used parameters

not included in his simulations, leading to some confusion

in interpreting and calculating lR. Therefore, we developed

a neater NCP for TDTR. The TDTR is calculated as T=sT for a

biallelic marker. T measures the strength of the covariance

between the transmission of a marker allele, from hetero-

zygous parents to progeny, and the phenotype of progeny,

and sT is the standard deviation of T. We will next describe

TDTR in detail, as this information will be needed for

further statistical developments. The numerator is

T ¼
Pn

i ðyi � �yyÞwi , where yi is the phenotype of the ith

child, �yy is the overall mean (or the mean among

informative families), and wi are weights given to each

family type (Table 3). The sum is over n informative and

unrelated family trios randomly drawn from a population.

The variance of T is s2
T ¼ 1

4

Pn
i ðyi � �yyÞ2hi where hi is the

number of heterozygous parents in the family (Table 3).

Under H0, TDTR follows a tn�1 distribution, so (TDTR)2

follows an F1,n�1 distribution. Under the alternative

hypothesis, (TDTR)2 follows a noncentral F with NCP lR,

or a noncentral w2
1;lR

for large n.

TDTG The last test being considered is TDTG.16 For a

biallelic marker TDTG ¼ ð�yyM � �yymÞ2= 1
nM

þ 1
nm

� �
s2 where �yyM

ð�yym) is the mean among progeny having inherited allele M

(m) from heterozygous parents, and nM (nm) is the number

of times allele M (m) is transmitted. The variance of

ð�yyM � �yymÞ is

1

nM
þ 1

nm

� �
s2

where

s2 ¼

P2n

k¼1

½ðyMk � �yyMÞ2 þ ðymk � �yymÞ2	

nM þ nm � 2

and yMk is the phenotype of the child of the kth parent. The

latter sum is over the 2n parents in a sample of n family

trios. If all family members are Mm heterozygous, then the

same information is included in both allele categories. For

a normally distributed trait and large n, TDTG follows a w2
1

distribution under H0. The asymptotic distribution under

H1 is a noncentral w2
1;lG

with NCP lG.

Empirical power

Power was calculated empirically as the proportion of

significant results out of 1000 analyses of independent data

sets, simulated under specific combinations of parameter

values. Each sample consisted of n¼200 unrelated family

trios (father, mother, and a single child). The frequencies of

the positive allele (Q) from a biallelic QTL were pQ¼ [0.5,

0.3, 0.1], and the same frequencies were assigned to allele

M from a biallelic marker linked to the QTL. The

recombination rates between the marker and the QTL were

c¼ [0, 0.1, 0.3, 0.4, 0.5]. QTL and marker genotypes were

generated for all individuals. Phenotypes were generated

Table 3 Variables in TDTR

FT t w h Effect

1 * 0 0 b1

2 1 1/2 1 b2

3 0 �1/2 1 b3

4 * 0 0 b4

5 1 1 2 b5

6 * 0 2 b6

7 0 �1 2 b7

8 1 1/2 1 b8

9 0 �1/2 1 b9

10 * 0 0 b10

FT: family type; t is 1(0) if a parent Mm transmits M(m), or * if the
family is uninformative; w¼S het(t–1/2), sum over both parents; het
is 1(0) if a parent is Mm(not Mm); Effect: Expected marker effect
within families; h: number of heterozygous parents.
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only for the progeny by adding a normally distributed error

with variance s2
e ¼ 1, plus �1

2 ;0, or 1
2 for QTL genotypes qq,

qQ, or QQ, respectively. Neither dominance nor polygenic

effects were simulated. The level of association between

allele Q at the QTL and allele M at the marker was given

by the standardised linkage disequilibrium parameter

D0 ¼ ½0; 1
2;1	.

21

Deterministic power

We have developed a compound method with two parts

for predicting power of association tests deterministi-

cally. The first part consisted in calculating the

expected effect of marker genotypes as functions of

underlying QTL genotypes, conditional on population

parameters and family type. This part can be used to

predict power in other association tests, in addition to the

ones in this study. The second part consisted in calculating

the NCP as a function of marker contrasts specific to each

test.

Expected marker effects Consider the 10 different

family types at a biallelic marker (Table 2), and let Xj be a

vector with the marker genotypes of child, father, and

mother in a family of type j, for example, X1¼ [MM, MM,

MM]. Let Gi denote the ith QTL genotype of the child, that

is, G1¼QQ, G2¼Qq, and G3¼qq. The expected phenotype

(y) of a child given the ith family type, assuming no

dominance, is

E½yjXi	 ¼ a½PðG1jXiÞ � PðG3jXiÞ	 ð1Þ
where a is the effect of substituting allele q for Q, assumed

to be 1
2 . The conditional probabilities P(G1|Xi) and P(G3|Xi)

can be calculated using Tables W1–W4, available on the

web (www.nature.com/ejhg/5201042).22,23 For example,

the probability of QTL genotype QQ given X1 is

PðG1jX1Þ ¼
PðG1 \ X1Þ

PðX1Þ
¼ h2

1p2
M

p4
M

¼ h2
1

p2
M

where PðG1 \ X1Þ is the joint probability of QTL genotype

QQ in the child and marker genotype MM in all members

of the family, P(X1) is the probability of family type 1

(Table 2), and h1 is the probability of drawing haplotype

QM from the population which, assuming random mating

and no segregation distortion, is h1 ¼ hQM ¼ pQ pM þ DQM :

(Note: DQM¼D0Dmax, and if D040 then Dmax¼min{pq pM,

pQpm}.)24 The joint probability PðG1 \ X1Þ can be obtained

from Table W4 by multiplying the third and the sixth

columns and adding up all. The conditional probabilities

P[Gi|Xj], for i¼1, 2, 3 and j¼1y10, are all summarised in

Table 4.

Noncentrality parameters (NCP) The NCP for the

one-way ANOVA (lO) can be obtained applying the

formula25

lO � B0X0XB

s2
e

¼
P

m2
i ni

s2
e

ð2Þ

The sum in Equation (2) is over all three marker genotype

classes, the vector B0 contains the three marker genotype

means ½mMM ; mMm; mmm	, and X0X is a matrix with diagonal

elements ½nMM ; nMm;nmm	 and zeroes elsewhere, where ni

is the sample size corresponding to marker genotype i.

Equation (2) represents the sum of squares due to both the

marker locus and the sample mean (m). The appropriate lO

can be obtained after subtracting from Eq. (2) the sum of

squares due to the sample mean, that is, n0m2, where

n0 ¼ nMM þ nMm þ nmm . When testing the QTL (ie condi-

tioning on c¼0, D0 ¼1, and pQ¼ pM), and assuming no

Table 4 Conditional QTL genotype probabilities in a child, given the family type (FT), and population parameters D, c, PM,
Pm, PQ, and Pq

FT QQ Qq qq

1 h1
2 / pM

2 2 h1h3/pM
2 h3

2/pM
2

2 h1(h1pm�cD)/pM
2 pm [2h1h3pm+(h1�h3)cD]/pM

2 pm h3(h3pm+cD)/pM
2 pm

3 h1(h2pM+cD)/pM
2 pm [pM (h1h4+h2h3)+cD(h3-h1)]/pM

2 pm h3(h4pM–cD)/pM
2 pm

4 h1h2 /pMpm (h1h4+h2h3)/pMpm h3h4/pMpm

5 [(h1pm–cD)/(pMpm)]2 2[h1h3pm
2 +cD(h1-h3)pm–c2D2]/(pMpm)2 [(h3pm+cD)/(pMpm)]2

6 [h1h2pMpm+c(1-c)D2]/(pMpm)2 [(h1h4+h2h3)pMpm–2c(1�c)D2]/(pMpm)2 [h3h4pMpm+c(1�c)D2]/(pMpm)2

7 [(h2pM+cD)/(pMpm)]2 2[h2h4pM
2 +cD(h4–h2)pM–c2D2]/(pMpm)2 (h4pM–cD)2/(pMpm)2

8 h2(h1pm�cD)/(pMpm
2 ) [(h1h4+h2h3)pm+cD(h2�h4)]/(pMpm

2 ) h4(h3pm+cD)/(pMpm
2 )

9 h2(h2pM+cD)/(pMpm
2 ) [2pMh2h4�(h2–h4)cD]/(pMpm

2 ) h4(h4pM�cD)/(pMpm
2 )

10 h2
2/pm

2 2h2h4/pm
2 h4

2/pm
2

D: linkage disequilibrium; c: recombination rate; pM(pm): frequency of marker allele M (m); pQ (pq): frequency of QTL allele Q (q); h1, h2, h3, h4:
frequencies of haplotypes QM, Qm, qM, and qm, respectively, where, h1¼ pQpM+D; h2¼ pQpm�D; h3¼ pqpM�D; and h4¼ pqpm+D.
Note that, for example, to calculate the second row of probabilities, we divide by pM

2 pm instead of by 2pM
2 pm(see Table 2) as we consider one FT,

MM�Mm, but not the reciprocal Mm�MM.
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dominance, Eq. (2) simplifies to

lO ¼ n0 s
2
QTL

s2
e

ð3Þ

where s2
QTL ¼ 2pQpqa2.26

In Appendix B, we have shown that TDTQ5 is equivalent

to a two-way ANOVA analysis, where data are modelled

fitting parental type and progeny genotype as fixed factors,

in addition to m. Taking this equivalence into account, the

NCP lQ5, derived in Appendix A, is

lQ5 ¼

P10

i¼1

b2
i niIi �

P6
j¼1

F2
j fjIj

s2
e

ð4Þ

where bi is the expected marker genotype effect in progeny

of family type i (Table 3), ni is the number of type i families,

Ii(j) is an indicator variable that takes the value 1 when the

family is informative (viz. at least one heterozygous

parent), and 0 otherwise, Fj is the mean value of the jth

parental type, and fj the number of j parental types. Eq. (4)

measures, in s2
e units, the amount of total sum of squares

explained by the marker, after subtracting the parental type

effect. When testing the QTL, Eq. (4) reduces to

lQ5 ¼ n
s2

QTL

2s2
e

¼ lO

2
ð5Þ

The NCP for TDTR (lR) is approximately

lR 
 ½p2
Mðb2 � b3Þ þ pMpmðb5 � b7Þ þ p2

mðb8 � b9Þ	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

npMpm

s2
e þ s2

QTL

s
ð6Þ

(Appendix C). When testing the QTL, Eq. (6) simplifies

to

lR 
 a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npQpq

s2
e þ s2

QTL

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2 þ 2s2
e

.
s2

QTL

vuut ð7Þ

Finally, the NCP for TDTG (lG) is16

lG 
 n
½ð1 � 2cÞDa	2

pMpmðs2
e þ s2

QTLÞ
ð8Þ

where n is the number of informative families.

When testing the QTL in family trios, the appropriate

NCP is16

lG ¼ n

2

s2
QTL

s2
e þ s2

QTL=2
¼ n

1 þ ð2s2
e =s

2
QTLÞ

ð9Þ

The differences between the four NCPs lO, lQ5, lG, and lR

are easily appreciated in Table 5, for both large and small

sample sizes. In all cases, the QTL allele frequency and

effect size only affect l through the QTL variance.

Results
Empirical versus deterministic power

We have developed formulae to calculate NCPs for one-way

ANOVA (lO), TDTQ5 (lQ5), and TDTR (lR), assuming that

Table 5 Noncentrality parameters (l) given c¼0 and
D0 ¼1, and distribution under H0 for small and large sample
sizes

aNoncentrality parameter Small sample Large sample

lO ¼ n0s2
QTL=s

2
e F2, n’ – 3 w2

2=2

lQ5 ¼ ns2
QTL=2s2

e F2, n – 5 w2
2=2

lR ¼ ns2
QTL=2ðs2

e þ s2
QTLÞ t2

n�1 w2
1

lG ¼ ns2
QTL=ð2s2

e þ s2
QTLÞ t2

n�1 w2
1

alo: one-way ANOVA, lQ5: TDTQ5, lR: (TDTR)
2, lG: TDTG; n0(n): total

number of (informative) family trios; s2
QTL : QTL variance; s2

e : error
variance.
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Figure 1 Empirical (lines) versus deterministic (points)
power for one-way ANOVA, TDTQ5, and TDTR, across c
and three allele frequencies: 0.5 (circles), 0.3 (triangles),
and 0.1 (squares). D0 was averaged out.
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the sample consists of family trios. Once these l’s are

obtained, power can be calculated from the appropriate

noncentral distributions. Xiong et al16 derived the equa-

tion for the NCP of TDTG (lG). Figure 1 shows that

predictions of power using our deterministic method

(lines) match very well the simulation results (points).

Power is shown as a function of c for three different allele

frequencies denoted with circles (p¼0.5), triangles

(p¼0.3), and squares (p¼0.1), while averaging out D0.

The NCP of nested ANOVA can also be calculated following

this method; however, simulation results showed that

nested ANOVA is the least powerful method by far, and

therefore we concentrated on deriving the other NCPs. In

addition to the close match between deterministic and

empirical power, two other features in Figure 1 are worth

mentioning. First, power decayed more when p dropped

from 0.3 to 0.1, than when it dropped from 0.5 to 0.3. This

is because the loss of information is relatively more

important in the former than in the latter drop. Second,

TDTQ5 was less powerful than TDTR, whereas the contrary

was true in Table 6. This can be explained by the fact that,

in Figure 1, TDTQ5 was implemented as described by

Allison,14 that is, using only informative families, and

estimating both additive and dominant effects. The NCP

lQ5 was obtained assuming this model. However, the power

of TDTQ5 increases when the dominant parameter need not

be estimated.

Power ranking with more powerful models via
simulations

The power of TDTQ5 increases after removing the dom-

inance parameter from the model when it is redundant,

that is, the QTL has additive effects only. A further

improvement in power, albeit slight, can be achieved by

using all six parental types, whether informative or not. In

doing so, TDTQ5 follows an F1,n0-4 distribution under H0, as

opposed to an F2,n-5, where n0 (n) is the total number of

(informative) families. Likewise, one-way ANOVA can

become more powerful, fitting a simple regression line

across genotypes to estimate additive QTL effects. Thus,

one-way ANOVA will be distributed as F1,n0-2 under H0, as

opposed to F2,n0-3. All other tests remained unchanged, and

power was estimated for all via simulations.

Table 6 shows empirical power across tests, focusing on

each parameter at a time (c, p or D0), averaging across the

other two parameters. The ranking of the tests in terms of

power was the same across scenarios: first the one-way

ANOVA, followed by TDTQ5, TDTG, and TDTR (the last two

with similar power), and lastly nested ANOVA. Table 6(a)

shows power of the tests for a given c, averaging across

values of D0 and p. The last row in Table 6(a) corresponds to

the empirical type-I error for each test, ie, c¼1
2. The one-way

ANOVA was the only test for which the empirical error

exceeded the nominal 5%. This is caused by the fact that

one-way ANOVA is testing whether D0 is significantly

different from zero, regardless of c.15 Power declined

steadily as c increased, because the amount of s2
QTL

explained by the marker decreased as interloci distance

increased.

Table 6(b) shows power for a given D0, averaging across

values of p and c. The power of one-way ANOVA reached

B72% when D0 ¼1, being approximately twice as powerful

as the TDTs. Undoubtedly, if spurious association is not an

issue, significant extra power can be obtained by testing

genotype differences directly, as opposed to using robust

tests. All tests showed B5% type-I error when D0 ¼0, even

for c¼0.

Finally, Table 6(c) shows power for a given p, averaging

across values of c and D0. Power decays as allele fre-

quency becomes more extreme because (1) there are

less informative families, and (2) the proportion of

informative families with two heterozygous parents

decreases. The first point directly causes a reduction

in sample size. The second point means that less s2
QTL

is available to TDTs. TDTs owe their robustness to

the fact that they use only within-family genetic variation,

which is greater in families with two heterozygous

parents. These results contrast with those of Allison,14

who concluded that power increases as p decreases.

However, Allison14 kept s2
QTL constant, so as p became

more extreme, the QTL effect, and the mean difference

between marker genotypes, increased, resulting in more

powerful contrasts.

Table 6 Empirical power (%) of tests per single para-
meter

One-way
ANOVA

TDTQ5 TDTG TDTR Nested
ANOVA

(a) Averaging across D0 and p
c
0 46.5 39.2 38.4 39.7 28.5

0.1 42.8 31.4 29.3 28.4 20.7
0.2 37.6 22.4 19.2 19.6 13.5
0.3 33.3 13.5 11.8 10.9 8.4
0.4 26.7 7.8 6.8 6.4 6.1
0.5 20.5 5.5 5.4 4.8 4.9

(b) Averaging across c and p
D0

1 71.9 38.6 35.5 34.1 25
0.5 27.2 15 14 13.1 9.2
0 5 5.1 5.2 4.7 5.2

(c) Averaging across D0 and c
p

0.5 41.4 23.6 21.9 21.4 15.8
0.3 38.6 21.7 19.9 19.5 14.1
0.1 24.1 13.3 12.9 11.1 9.6

c: recombination rate; D0: standardised linkage disequilibrium; p:
frequency of alleles Q and M (assumed equal).
The sample consisted of 200 unrelated family trios. The QTL effects
were 0, 1

2 , or 1 for qq, qQ, or QQ genotypes, respectively.
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Discussion
A comprehensive review of methodology developed in the

1990s provided more than 60 references of association tests

for monogenic diseases with Mendelian inheritance, and

only about a dozen references of association tests for complex

diseases.27 Nevertheless, complex diseases are by far the

commonest human ailments; for example, infectious and

parasitic diseases, psychiatric disorders, and cardiovascular

diseases affect B44% of the world population, compared to

just 0.05% of Caucasians being affected by cystic fibrosis, the

commonest of the monogenic diseases.28,29

TDTs are increasingly used to identify QTLs underlying

complex diseases because they can be more powerful than

other tests, for example, linkage analysis, when markers

are tightly linked to responsible QTLs, and because they

are robust to spurious associations generated by common

demographic events such as population stratification and/

or admixture.8,10

We have developed and verified deterministic power

calculations for a range of association tests for quantitative

traits, that is, three TDTs and two ANOVAs, and shown

how the power depends on the effect of a QTL, the

recombination rate between a QTL and a marker, and the

amount of linkage disequilibrium between marker and

QTL. In this study, we have assumed that both loci were

biallelic, and shared the same allele frequencies. Moreover,

we considered a continuously distributed trait genetically

determined by a single additive QTL, without polygenic

component or dominance. This simplistic scenario was

chosen to facilitate the derivation of NCPs for predicting

power. Nonetheless, we recognise that a more comprehen-

sive picture of the properties of these tests requires analyses

of more realistic situations, for example, including dom-

inance and polygenic effects, which is possible within the

framework presented here.

The deterministic method proposed in this study con-

sists in deriving NCPs (l’s) as functions of marker genotype

contrasts specific to each test. These l’s can subsequently

be used to obtain power. A common feature across all l’s

was the use of expected marker genotype means, condi-

tional on family information, under the assumptions of

random mating and no segregation distortion. The marker

effects were functions of the standardised linkage disequi-

librium (D’), the recombination rate (c), the allele frequen-

cies (pQ, pM), and the size of the QTL (a). Allison14 derived

lQ5 for TDTQ5 when the marker is the trait locus, and we

have obtained an alternative prediction of lQ5 for any

recombination rate, and linkage disequilibrium in the

parent population.

Power was also predicted empirically via stochastic simula-

tions, and results confirmed the accuracy of our deterministic

predictions. The advantages of deterministic over stochastic

methods are (1) ease of implementation, (2) instant predic-

tions, and (3) direct appreciation of the relationship between

population parameters and power. However, deriving NCPs

becomes cumbersome in complex scenarios. Thus, in these

cases, empirical simulations are invaluable.

The tests ranked as follows in terms of power. The one-

way ANOVA was the most powerful test of association

across all scenarios, but also the only test not robust to

spurious disequilibrium. The TDTs had similar, and inter-

mediate, power. However, we showed how to increase the

power of TDTQ5 compared to the original version, if there

is no dominance. Lastly, the nested ANOVA was the least

powerful test of association.

The power of TDTQ5 may have been previously over-

emphasised because complete linkage and linkage disequi-

librium between marker and QTL were assumed, and

family trios were sampled from a population of informative

families.14 This sampling scheme means that the variance

explained by the QTL is larger in the sample of informative

trios than in the population at large, which would include

both informative and noninformative families, and led to

the counter-intuitive conclusion that the more extreme

the allele frequency, the higher the power of TDTQ5 to

detect associations. In addition, Allison’s14 comparison

between TDTQ5 and the Haseman–Elston linkage test17

favours TDTQ5 because this is a test for association, and a

perfect association was assumed, whereas the Haseman-

Elston test is for linkage.

In summary, a new and accurate deterministic method

has been developed to predict the power of QTL detection

for TDTs and ANOVAs, as a function of population

parameters. We have obtained specific formulae for the

NCPs of the tests, when the marker is the QTL, as functions

of sample size and QTL heritability. The method contains a

general part (Table 4) that can be used to calculate NCPs for

other association tests. Moreover, our method can also

model dominant QTL effects, and a polygenic component.

Extensions to cope with multiallelic markers are theoreti-

cally possible, although future association studies in

human populations are more likely to employ vast arrays

of SNPs than multiallelic markers.30,31 Therefore, further

developments of these approaches ought to be directed to

coping with the problem of simultaneous testing of several

loci, and the study of haplotypes.
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3 Hastbäcka J, de la Chapelle A, Mahtani MM et al: The diastrophic
dysplasia gene encodes a novel sulfate transporter: positional
cloning by fine-structure linkage disequilibrium mapping. Cell
1994; 78: 1073–1087.

4 Terwilliger JD, Weiss KM: Linkage disequilibrium mapping of
complex disease: fantasy or reality? Curr Opin Biotech 1998; 9:
578–594.

5 Schork NJ, Cardon LR, Xu X: The future of genetic epidemiology.
Trends Genet 1998; 14: 266–272.

6 Kruglyak L: Prospects for whole-genome linkage disequilibrium
mapping of common disease genes. Nat Genet 1999; 22: 139–144.

7 Ott J: Predicting the range of linkage disequilibrium. Proc Natl
Acad Sci USA 2000; 97: 2–3.

8 Neale MC, Cherny SS, Sham PC et al: Distinguishing population
stratification from genuine allelic effects with MX: association of
ADH2 with alcohol consumption. Behav Genet 1999; 29: 233–243.

9 Risch N, Merikangas K: The future of genetic studies of complex
human diseases. Science 1996; 273: 1516–1517.

10 Wright AF, Carothers AD, Pirastu M: Population choice in mapping
genes for complex diseases. Nat Genet 1999; 23: 397–404.

11 Spielman RS, McGinnis RE, Ewens WJ: Transmission test for linkage
disequilibrium: the insulin gene region and insulin-dependent
diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–516.

12 Clayton D: Population association; in Balding DJ, Bishop M,
Cannings C (eds) Handbook of statistical genetics. New York: John
Wiley & Sons Ltd., 2001, pp 519–540.

13 Schork NJ, Fallin D, Thiel B et al: The future of genetic case–
control studies; in Rao DC, Province MA (eds): Genetic dissection of
complex traits (Advances in genetics, Vol 42). US: Academic Press,
2000, pp 191–212.

14 Allison DB: Transmission-disequilibrium tests for quantitative
traits. Am J Hum Genet 1997; 60: 676–690.

15 Long AD, Langley CH: The power of association studies to detect
the contribution of candidate genetic loci to variation in
complex traits. Genome Res 1999; 9: 720–731.

16 Xiong MM, Krushkal J, Boerwinkle E: TDT statistics for mapping
quantitative trait loci. Ann Hum Genet 1998; 62: 431–452.

17 Haseman JK, Elston RC: The investigation of linkage between a
quantitative trait and a marker locus. Behav Genet 1972; 2: 3–19.

18 Rabinowitz D: A transmission disequilibrium test for quantitative
trait loci. Hum Hered 1997; 47: 342–350.

19 Sham PC, Cherny SS, Purcell S, Hewitt JK: Power of linkage versus
association analysis of quantitative traits, by use of variance-
components models, for sibship data. Am J Hum Genet 2000; 6:
1616–1630.

20 Sokal RR, Rohlf FJ: Biometry. New York US: WH Freeman and
Company, 1995.

21 Lewontin RC: On measures of gametic disequilibrium. Genetics
1988; 120: 849–852.

22 Jayakar SD: On the detection and estimation of linkage between a
locus influencing a quantitative character and a marker locus.
Biometrics 1970; 26: 451–464.

23 Hill AP: Quantitative linkage: a statistical procedure for its
detection and estimation. Ann Hum Genet 1975; 38: 439–449.

24 Weir BS: Genetic data analysis II. Sunderland, US: Sinauer
Associates, Inc. 1996.

25 Searle SR: Linear models. New York: John Wiley & Sons, 1971.
26 Falconer DS, Mackay TFC: Introduction to quantitative genetics.

England: Longman Group Ltd, 1996.
27 Zhao H: Family-based association studies. Stat Methods Med Res

2000; 9: 563–587.
28 The World Health Report. Part three: statistical annex. WHO, 1999,

www.who.int/whr/1999/en/report.htm.
29 Underwood JCE: Genetic and environmental causes of disease; in

Underwood JCE (ed): General and systematic pathology. London
Churchill Livingstone, 1996, pp 31–60.

30 Weiss KM, Terwilliger JD: How many diseases does it take to map
a gene with SNPs? Nat Genet 2000; 26: 151–157.

31 Miller RD, Kwok PY: The birth and death of human single-
nucleotide polymorphisms: new experimental evidence and
implications for human history and medicine. Hum Mol Genet
2001; 20: 2195–2198.

32 Lynch M, Walsh B: Genetics and analysis of quantitative traits.
Sunderland, US: Sinauer Associates, Inc., 1998.

Appendix A
The NCP (l) of two-way ANOVA can be expressed as25

l ¼ ðK0BÞ
0
½K0ðX0XÞ�1K	�1ðK0BÞ

s2
e

ðA1Þ

Let se
2 be unity. Let B0 be the vector [m, f1, f2, f3, g1, g2, g3] of

parameters in the model, where m is the sample mean, fi is

the mean of the ith parental type, and gj the mean of the

jth marker genotype across all parental types. Let K be a

matrix of parameter contrasts reflecting the H0 being

tested; for example, if H0: g1¼ g2 and g2¼ g3, then

K0 ¼ 0 0 0 0 1 �1 0
0 0 0 0 0 1 �1

� 


The matrix X0X is

n:: n1: n2: n3: n:1 n:2 n:3

n1: n1: 0 0 n11 n12 n13

n2: 0 n2: 0 n21 n22 n23

n3: 0 0 n3: n31 n32 n33

n:1 n11 n21 n31 n:1 0 0
n:2 n12 n22 n32 0 n:2 0
n:3 n13 n23 n33 0 0 n:3

2
666666664

3
777777775

where nij is the number of records in the ith family and jth

marker genotype class. X0X is a matrix of order 7 and rank

5; hence, there are seven unknowns and only five df. An

appropriate generalisation of X0X is obtained deleting the

first row and column, hence setting m¼0, and the last row

and column, hence setting g3¼0.25 Let G be the reduced

X0X matrix. This G matrix can be partitioned as follows:

G ¼ G11 G12

G21 G22

� 

¼

n1: 0 0 n11 n12

0 n2: 0 n21 n22

0 0 n3: n31 n32

n11 n21 n31 n:1 0
n12 n22 n32 0 n:2

2
66664

3
77775

Then, if C¼G�1, K*0 is the matrix K0 with the first and last

columns deleted, and B* is the vector B with the first and

last elements deleted, then

l ¼ ðK� 0B�Þ0C�1
22 K�B� ðA2Þ

where C22 ¼ K�CK� ¼ ðG22 � G21G�1
11 G12Þ�1 and ðK� 0B�Þ0 ¼

½g1 � g2; g2	 When testing the QTL, Eq. (A2) gives

l ¼
X3

j

n:jg
2
j �

X3

i

P3
j

nijgj

 !2

ni:
ðA3Þ

where the first part of (A3) corresponds to the sum of

squares due to genotype, and the second part

- - - - - - - - - - - - - - - - - - -

-
-

-
-

-
-

-
-

-

-
-

-
-

- - - - - - - - -
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of (A3) corresponds to the sum of squares due to parental

type.

However, it is a linked marker, rather than the QTL, what

usually is being tested. Thus, Eq. (A3) needs to accom-

modate this fact. Using Tables 2 and 3 in the Materials and

Methods section, the new l can be written as

l ¼
X10

i¼1

b2
i niIi �

X6

j¼1

F2
j fjIj ðA4Þ

where bi is the expected marker genotype effect among

progeny in the ith trio class, ni the number of trios in class

i, Ii(j) an indicator variable equal to 1 if the trio is

informative and 0 otherwise. Table A1 shows Fj, the mean

value of the jth parental type, and fj, the number of these

parental types.

It is also possible to use all trios, thus setting Ii(j)¼1 for all

i (j), without increasing the type-I error rate. By doing so,

power increases slightly, through augmenting the residual

df, and ascertainment of informative families becomes

unnecessary.

This method of obtaining l can be applied to derive the

NCP for nested ANOVA; however, the algebra becomes

more tedious. Finally, the NCP lO can be derived through

Eq. (3), although a simpler method was described in the

Materials and Methods section.

Appendix B
Let us consider two fixed effects, a and b, where a could

represent the factor parental type, and b could represent

the genotype of the progeny. Thus, the model can be

written as yij¼ mþ aiþ biþ eij, which corresponds to a two-

way ANOVA model without interaction. We will now show

that the original statistic F2,n�5 for TDTQ5

14 is equivalent to

the F-ratio for testing the effects of b after having corrected

for the effects due to m and a, using the previous model.

For a constant k ¼ 2=n � 5, we can see that

kF2;n�5 ¼ SSF � SSR

SST � SSF

¼
ðSSm þ SSa þ SSb � SSm � SSmÞ

�
SST

1 � ðSSm þ SSa þ SSbÞ=SST
¼

R2
bjm;a
R2

e

ðB1Þ

where SSma and SSmab are the sum of squares explained by a

model that fits m and a, and by a model that fits m, a, and b,

respectively; SST is the total sum of squares; and R2
bjm;a and

R2
e are the proportions of the total variance explained by b,

after taking into account the effects of m and a, and the

proportion of unexplained variance, respectively. The null

hypothesis of interest is whether factor b explains a

significant amount of phenotypic variance over and above

the amount explained by m and a jointly. The F-ratio that

appropriately reflects this null hypothesis is given in

Eq. (B1).

Appendix C
Let assume T is a random variable following a t-distribu-

tion, and let sT be the standard deviation of T. A first-order

Taylor’s approximation for l is l ¼ EðT=sTÞ 
 E½T 	=E½sT 	.32

In order to derive E[T] and E½sT 	, we used the probabilities

of the 10 different types of trios and the expected effects of

marker genotypes in the progeny contained in Tables 2

and 3. Hence, conditional on pM, pQ, c, and D0, E½T 	 ¼ E�
½
Pn

i ðyi � �yyÞwi	, and because all family trios are independent

(ie unrelated) E½T 	 ¼ NE½ðy � �yyÞw	, where y, the phenotype,

and w, a weighting factor, are expectations for a single

trio (Table 3). Thus, the expected value of the numerator

of TDTR is approximately E½T 	 ¼ NpMpm½p2
Mðb2 � b3Þ þ pM

pmðb5 � b7Þ þ p2
mðb8 � b9Þ	 . When analysing the QTL, and

assuming no dominance, the previous equation simplifies

to E½T 	 ¼ NpQpqa.

The expected variance of T, E½s2
T 	, is the same regardless

of whether the locus being tested is the QTL or a marker.

Equation (A1.23a) in Reference32 is E½
ffiffiffi
v

p
	 
 ffiffiffiffiffi

mv
p � s2

vm
�3=2
v =

8, which reduces to E½
ffiffiffiffiffiffi
s2

T

q
	 


ffiffiffiffiffiffiffiffiffiffiffi
E½s2

T 	
q

if the second term

can be ignored. Hence, E½s2
T 	 ¼ E½1=4

Pn
i ðyi � �yyÞ2Hi	 ¼

1=4E½ðy � �yyÞ2H	 and, as the expectation of a random

variable X given another random variable Y is E½X	 ¼
E½E½XjY		 , E½ðy � �yyÞ2H	 ¼

P2
H¼0 HPHEðy � �yyÞ2 ¼ pMpmðs2

eþ
s2

QTLÞ. Finally, dividing E[T] by
ffiffiffiffiffiffiffiffiffiffiffi
E½s2

T 	
q

we obtain
E½TDTR	 ¼ lR 
 ½p2

Mðb2 � b3Þ þ pMpmðb5 � b7Þ þ p2
mðb8 � b9Þ	ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NpMpm=s2
e þ s2

QTL

q
.

Table A1 Family mean (Fi) and number (fi)

i Fi fi

1 b1 n1

2 (b2+b3)/2 n2+n3

3 b4 n4

4 b6/2+(b5+b7)/4 n5+n6+n7

5 (b8+b9)/2 n8+n9

6 b10 n10
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