
Power of Randomization in Automata on
Infinite Strings

A. Prasad Sistla

October 12, 2009

Joint work with Rohit Chadha and Mahesh Viswanathan

OutLine

Automata on Infinite Strings

Probabilistic Automata on Finite Strings

Probabilistic Buchi Automata

Finite State Probabilistic Monitors

Expressiveness results for FPMS

Decidability and Complexity results for FPMs

Decidability and Expressiveness for PBAs

Hierarchical PBAs

Automata on Infinite Strings (Rabin, Buchi, Muller,
McNaughton)

I Finite State Automata on Finite Strings:
DFA ≡ NFA ≡ RExprs

I Buchi Automata (BA) on Infinite Strings:
A = (Σ,Q, δ,q0,F)

I Σ — input alphabet
I Q — automaton states
I δ ⊆ Q × Σ× q — transition relation
I q0 — start state
I F ⊆ Q — accepting set

Automata on Infinite Strings (Rabin, Buchi, Muller,
McNaughton)

I Finite State Automata on Finite Strings:
DFA ≡ NFA ≡ RExprs

I Buchi Automata (BA) on Infinite Strings:
A = (Σ,Q, δ,q0,F)

I Σ — input alphabet
I Q — automaton states
I δ ⊆ Q × Σ× q — transition relation
I q0 — start state
I F ⊆ Q — accepting set

Buchi Automata
I A run r on an infinite input a = a0, ...ai , ... is a sequence

(r0, ..., ri , ...) such that r0 = q0 and (ri ,ai , ri+1) ∈ δ for i ≥ 0.

I r is accepting if some accepting state appears infinitely
often.

I L(A) is the set of inputs on which A has an accepting run.
I An example BA: Accepts strings in which every a is

eventually followed by b.

Buchi Automata
I A run r on an infinite input a = a0, ...ai , ... is a sequence

(r0, ..., ri , ...) such that r0 = q0 and (ri ,ai , ri+1) ∈ δ for i ≥ 0.
I r is accepting if some accepting state appears infinitely

often.

I L(A) is the set of inputs on which A has an accepting run.
I An example BA: Accepts strings in which every a is

eventually followed by b.

Buchi Automata
I A run r on an infinite input a = a0, ...ai , ... is a sequence

(r0, ..., ri , ...) such that r0 = q0 and (ri ,ai , ri+1) ∈ δ for i ≥ 0.
I r is accepting if some accepting state appears infinitely

often.
I L(A) is the set of inputs on which A has an accepting run.

I An example BA: Accepts strings in which every a is
eventually followed by b.

Buchi Automata
I A run r on an infinite input a = a0, ...ai , ... is a sequence

(r0, ..., ri , ...) such that r0 = q0 and (ri ,ai , ri+1) ∈ δ for i ≥ 0.
I r is accepting if some accepting state appears infinitely

often.
I L(A) is the set of inputs on which A has an accepting run.
I An example BA: Accepts strings in which every a is

eventually followed by b.

NonDet BA Vs. Det BA

NonDet BA is more powerful than Det BA. The following BA has
no equivalent Det BA.

Accepts strings in which eventually only a appears.

NonDet BA Vs. Det BA

NonDet BA is more powerful than Det BA. The following BA has
no equivalent Det BA.

Accepts strings in which eventually only a appears.

Rabin Automata

I Rabin Automaton (RA): the acceptance set is of the form
{(L1,U1), ..., (Lk ,Uk)} where Li ,Ui ⊆ Q.

I A run r is accepting if for some i , no state in Li appears
infinitely often and some state in Ui appears infinitely often.

I DetRA ≡ NonDetRA ≡ NonDetBA
I DetRA ≡ ω-Regular languages
I Det-ω-Regular langs = Langs recognized by Det BA.
I Fact: ω-Regular Langs = Boolean closure of Det-ω-Regular

Langs.
I Applications: Verification of concurrent programs,

decision procedures for logics: Linear Temporal Logic,
S1S, Theory of Linear order, etc.

Rabin Automata

I Rabin Automaton (RA): the acceptance set is of the form
{(L1,U1), ..., (Lk ,Uk)} where Li ,Ui ⊆ Q.

I A run r is accepting if for some i , no state in Li appears
infinitely often and some state in Ui appears infinitely often.

I DetRA ≡ NonDetRA ≡ NonDetBA
I DetRA ≡ ω-Regular languages
I Det-ω-Regular langs = Langs recognized by Det BA.
I Fact: ω-Regular Langs = Boolean closure of Det-ω-Regular

Langs.
I Applications: Verification of concurrent programs,

decision procedures for logics: Linear Temporal Logic,
S1S, Theory of Linear order, etc.

Rabin Automata

I Rabin Automaton (RA): the acceptance set is of the form
{(L1,U1), ..., (Lk ,Uk)} where Li ,Ui ⊆ Q.

I A run r is accepting if for some i , no state in Li appears
infinitely often and some state in Ui appears infinitely often.

I DetRA ≡ NonDetRA ≡ NonDetBA
I DetRA ≡ ω-Regular languages

I Det-ω-Regular langs = Langs recognized by Det BA.
I Fact: ω-Regular Langs = Boolean closure of Det-ω-Regular

Langs.
I Applications: Verification of concurrent programs,

decision procedures for logics: Linear Temporal Logic,
S1S, Theory of Linear order, etc.

Rabin Automata

I Rabin Automaton (RA): the acceptance set is of the form
{(L1,U1), ..., (Lk ,Uk)} where Li ,Ui ⊆ Q.

I A run r is accepting if for some i , no state in Li appears
infinitely often and some state in Ui appears infinitely often.

I DetRA ≡ NonDetRA ≡ NonDetBA
I DetRA ≡ ω-Regular languages
I Det-ω-Regular langs = Langs recognized by Det BA.
I Fact: ω-Regular Langs = Boolean closure of Det-ω-Regular

Langs.

I Applications: Verification of concurrent programs,
decision procedures for logics: Linear Temporal Logic,
S1S, Theory of Linear order, etc.

Rabin Automata

I Rabin Automaton (RA): the acceptance set is of the form
{(L1,U1), ..., (Lk ,Uk)} where Li ,Ui ⊆ Q.

I A run r is accepting if for some i , no state in Li appears
infinitely often and some state in Ui appears infinitely often.

I DetRA ≡ NonDetRA ≡ NonDetBA
I DetRA ≡ ω-Regular languages
I Det-ω-Regular langs = Langs recognized by Det BA.
I Fact: ω-Regular Langs = Boolean closure of Det-ω-Regular

Langs.
I Applications: Verification of concurrent programs,

decision procedures for logics: Linear Temporal Logic,
S1S, Theory of Linear order, etc.

Decision Problems

I Emptiness: Given BA A, check if L(A) 6= ∅. It is in
NLOGSPACE and hence is in P.

I Universality; Given a BA A, check if L(A) = Σω. It is
PSPACE-complete.

I Language Containment; Given a BAs A,B, check if
L(A) ⊆ L(B). PSPACE-complete.

Decision Problems

I Emptiness: Given BA A, check if L(A) 6= ∅. It is in
NLOGSPACE and hence is in P.

I Universality; Given a BA A, check if L(A) = Σω. It is
PSPACE-complete.

I Language Containment; Given a BAs A,B, check if
L(A) ⊆ L(B). PSPACE-complete.

Decision Problems

I Emptiness: Given BA A, check if L(A) 6= ∅. It is in
NLOGSPACE and hence is in P.

I Universality; Given a BA A, check if L(A) = Σω. It is
PSPACE-complete.

I Language Containment; Given a BAs A,B, check if
L(A) ⊆ L(B). PSPACE-complete.

OutLine

Automata on Infinite Strings

Probabilistic Automata on Finite Strings

Probabilistic Buchi Automata

Finite State Probabilistic Monitors

Expressiveness results for FPMS

Decidability and Complexity results for FPMs

Decidability and Expressiveness for PBAs

Hierarchical PBAs

Probabilistic Finite string Automata (PFA) (Rabin)

I A = (Σ,Q, δ,q0,F).
I δ : Q × Σ×Q → [0,1] so that

∑
q′ δ(q,a,q′) = 1.

I For a ∈ Σ∗, PrOfAccA(a), called the probability of
acceptance of a— is the probability that A is in some state
in F after the input a.

I L> 1
2
(A) = {a ∈ Σ∗ : Pr(a) > 1

2}.

I L> 1
2
(A) can be a non-regular set (Rabin 1960s).

I Determining non-emptiness of L> 1
2
(A) and L≥ 1

2
(A) are

undecidable. Both are R.E.-complete. (Paz 1971, Soloma
1973).

Probabilistic Finite string Automata (PFA) (Rabin)

I A = (Σ,Q, δ,q0,F).
I δ : Q × Σ×Q → [0,1] so that

∑
q′ δ(q,a,q′) = 1.

I For a ∈ Σ∗, PrOfAccA(a), called the probability of
acceptance of a— is the probability that A is in some state
in F after the input a.

I L> 1
2
(A) = {a ∈ Σ∗ : Pr(a) > 1

2}.

I L> 1
2
(A) can be a non-regular set (Rabin 1960s).

I Determining non-emptiness of L> 1
2
(A) and L≥ 1

2
(A) are

undecidable. Both are R.E.-complete. (Paz 1971, Soloma
1973).

Probabilistic Finite string Automata (PFA) (Rabin)

I A = (Σ,Q, δ,q0,F).
I δ : Q × Σ×Q → [0,1] so that

∑
q′ δ(q,a,q′) = 1.

I For a ∈ Σ∗, PrOfAccA(a), called the probability of
acceptance of a— is the probability that A is in some state
in F after the input a.

I L> 1
2
(A) = {a ∈ Σ∗ : Pr(a) > 1

2}.

I L> 1
2
(A) can be a non-regular set (Rabin 1960s).

I Determining non-emptiness of L> 1
2
(A) and L≥ 1

2
(A) are

undecidable. Both are R.E.-complete. (Paz 1971, Soloma
1973).

Probabilistic Finite string Automata (PFA) (Rabin)

I A = (Σ,Q, δ,q0,F).
I δ : Q × Σ×Q → [0,1] so that

∑
q′ δ(q,a,q′) = 1.

I For a ∈ Σ∗, PrOfAccA(a), called the probability of
acceptance of a— is the probability that A is in some state
in F after the input a.

I L> 1
2
(A) = {a ∈ Σ∗ : Pr(a) > 1

2}.

I L> 1
2
(A) can be a non-regular set (Rabin 1960s).

I Determining non-emptiness of L> 1
2
(A) and L≥ 1

2
(A) are

undecidable. Both are R.E.-complete. (Paz 1971, Soloma
1973).

Probabilistic Finite string Automata (PFA) (Rabin)

I A = (Σ,Q, δ,q0,F).
I δ : Q × Σ×Q → [0,1] so that

∑
q′ δ(q,a,q′) = 1.

I For a ∈ Σ∗, PrOfAccA(a), called the probability of
acceptance of a— is the probability that A is in some state
in F after the input a.

I L> 1
2
(A) = {a ∈ Σ∗ : Pr(a) > 1

2}.

I L> 1
2
(A) can be a non-regular set (Rabin 1960s).

I Determining non-emptiness of L> 1
2
(A) and L≥ 1

2
(A) are

undecidable. Both are R.E.-complete. (Paz 1971, Soloma
1973).

OutLine

Automata on Infinite Strings

Probabilistic Automata on Finite Strings

Probabilistic Buchi Automata

Finite State Probabilistic Monitors

Expressiveness results for FPMS

Decidability and Complexity results for FPMs

Decidability and Expressiveness for PBAs

Hierarchical PBAs

Probabilistic Buchi Automata (PBA) (Baier et al 2007)
I A = (Σ,Q, δ,q0,F). δ defines probabilities on transitions

as in the case of PFAs.
I Consider a ∈ Σω.

I Let Inf (F) ⊆ Qω be the set of sequences having some
state of F appearing infinitely often.

I Define PrOfAccA(a) to be the probability that a run of A on
a is in Inf (F).

I Example. Σ = {0,1}.

Probabilistic Buchi Automata (PBA) (Baier et al 2007)
I A = (Σ,Q, δ,q0,F). δ defines probabilities on transitions

as in the case of PFAs.
I Consider a ∈ Σω.

I Let Inf (F) ⊆ Qω be the set of sequences having some
state of F appearing infinitely often.

I Define PrOfAccA(a) to be the probability that a run of A on
a is in Inf (F).

I Example. Σ = {0,1}.

Probabilistic Buchi Automata (PBA) (Baier et al 2007)
I A = (Σ,Q, δ,q0,F). δ defines probabilities on transitions

as in the case of PFAs.
I Consider a ∈ Σω.

I Let Inf (F) ⊆ Qω be the set of sequences having some
state of F appearing infinitely often.

I Define PrOfAccA(a) to be the probability that a run of A on
a is in Inf (F).

I Example. Σ = {0,1}.

Probabilistic Buchi Automata (PBA) (Baier et al 2007)
I A = (Σ,Q, δ,q0,F). δ defines probabilities on transitions

as in the case of PFAs.
I Consider a ∈ Σω.

I Let Inf (F) ⊆ Qω be the set of sequences having some
state of F appearing infinitely often.

I Define PrOfAccA(a) to be the probability that a run of A on
a is in Inf (F).

I Example. Σ = {0,1}.

Formal defn. of Acceptance Probability

I Fix a ∈ Σω. Define the probability space (Qω,∆, φ) where
∆ is the event space and φ is the probability measure on it.

I ∆ is the σ-algebra generated by the sets Su = uQω for
u ∈ Q∗.

I Definition of φ: Fix any u = (r0, .., rm).
If r0 = q0 then
φ(Su) = δ(r0,a0, r1,)× ...δ(ri ,ai , ri+1)× ...δ(rm,am, rm+1).
If r0 6= q0 then φ(Su) = 0.

I PrOfAccA(a) = φ(Inf (F)). (Note Inf (F) ∈ ∆).

Formal defn. of Acceptance Probability

I Fix a ∈ Σω. Define the probability space (Qω,∆, φ) where
∆ is the event space and φ is the probability measure on it.

I ∆ is the σ-algebra generated by the sets Su = uQω for
u ∈ Q∗.

I Definition of φ: Fix any u = (r0, .., rm).
If r0 = q0 then
φ(Su) = δ(r0,a0, r1,)× ...δ(ri ,ai , ri+1)× ...δ(rm,am, rm+1).
If r0 6= q0 then φ(Su) = 0.

I PrOfAccA(a) = φ(Inf (F)). (Note Inf (F) ∈ ∆).

Formal defn. of Acceptance Probability

I Fix a ∈ Σω. Define the probability space (Qω,∆, φ) where
∆ is the event space and φ is the probability measure on it.

I ∆ is the σ-algebra generated by the sets Su = uQω for
u ∈ Q∗.

I Definition of φ: Fix any u = (r0, .., rm).

If r0 = q0 then
φ(Su) = δ(r0,a0, r1,)× ...δ(ri ,ai , ri+1)× ...δ(rm,am, rm+1).
If r0 6= q0 then φ(Su) = 0.

I PrOfAccA(a) = φ(Inf (F)). (Note Inf (F) ∈ ∆).

Formal defn. of Acceptance Probability

I Fix a ∈ Σω. Define the probability space (Qω,∆, φ) where
∆ is the event space and φ is the probability measure on it.

I ∆ is the σ-algebra generated by the sets Su = uQω for
u ∈ Q∗.

I Definition of φ: Fix any u = (r0, .., rm).
If r0 = q0 then
φ(Su) = δ(r0,a0, r1,)× ...δ(ri ,ai , ri+1)× ...δ(rm,am, rm+1).

If r0 6= q0 then φ(Su) = 0.

I PrOfAccA(a) = φ(Inf (F)). (Note Inf (F) ∈ ∆).

Formal defn. of Acceptance Probability

I Fix a ∈ Σω. Define the probability space (Qω,∆, φ) where
∆ is the event space and φ is the probability measure on it.

I ∆ is the σ-algebra generated by the sets Su = uQω for
u ∈ Q∗.

I Definition of φ: Fix any u = (r0, .., rm).
If r0 = q0 then
φ(Su) = δ(r0,a0, r1,)× ...δ(ri ,ai , ri+1)× ...δ(rm,am, rm+1).
If r0 6= q0 then φ(Su) = 0.

I PrOfAccA(a) = φ(Inf (F)). (Note Inf (F) ∈ ∆).

Formal defn. of Acceptance Probability

I Fix a ∈ Σω. Define the probability space (Qω,∆, φ) where
∆ is the event space and φ is the probability measure on it.

I ∆ is the σ-algebra generated by the sets Su = uQω for
u ∈ Q∗.

I Definition of φ: Fix any u = (r0, .., rm).
If r0 = q0 then
φ(Su) = δ(r0,a0, r1,)× ...δ(ri ,ai , ri+1)× ...δ(rm,am, rm+1).
If r0 6= q0 then φ(Su) = 0.

I PrOfAccA(a) = φ(Inf (F)). (Note Inf (F) ∈ ∆).

OutLine

Automata on Infinite Strings

Probabilistic Automata on Finite Strings

Probabilistic Buchi Automata

Finite State Probabilistic Monitors

Expressiveness results for FPMS

Decidability and Complexity results for FPMs

Decidability and Expressiveness for PBAs

Hierarchical PBAs

Finite State Probabilistic Monitors (FPM)
I A FPM is a PBA with a designated reject state, an

absorbing state. All other states are accepting states. Let
PrOfRejA(a) = 1− PrOfAccA(a).

I Any input a ∈ {0,1}ω is the binary representation of a
number val(a) ∈ [0,1].

I Observe PrOfRejB(a) = val(a).

Finite State Probabilistic Monitors (FPM)
I A FPM is a PBA with a designated reject state, an

absorbing state. All other states are accepting states. Let
PrOfRejA(a) = 1− PrOfAccA(a).

I Any input a ∈ {0,1}ω is the binary representation of a
number val(a) ∈ [0,1].

I Observe PrOfRejB(a) = val(a).

Finite State Probabilistic Monitors (FPM)
I A FPM is a PBA with a designated reject state, an

absorbing state. All other states are accepting states. Let
PrOfRejA(a) = 1− PrOfAccA(a).

I Any input a ∈ {0,1}ω is the binary representation of a
number val(a) ∈ [0,1].

I Observe PrOfRejB(a) = val(a).

Applications

I As monitors for monitoring safety as well as some liveness
properties.

I Modeling open systems that can fail.

I Model checking safety properties of open finite state
probabilistic programs.

Applications

I As monitors for monitoring safety as well as some liveness
properties.

I Modeling open systems that can fail.

I Model checking safety properties of open finite state
probabilistic programs.

Applications

I As monitors for monitoring safety as well as some liveness
properties.

I Modeling open systems that can fail.

I Model checking safety properties of open finite state
probabilistic programs.

Properties of Infinite Executions

I Language C ⊆ Σω is a safety property, if it is limit closed.
That is, for any a ∈ Σω, if prefixes(a) ⊆ (Prefixes(C)) then
a ∈ C.
Example: Set of sequences in which every 1 is preceded
by 0.

I Only Safety properties can be monitored using
deterministic monitors.

I C ⊆ Σω is an almost safety property if it is a countable
union of safety properties.
Example: Set of sequences in which 1 appears at least 3
times.

Properties of Infinite Executions

I Language C ⊆ Σω is a safety property, if it is limit closed.
That is, for any a ∈ Σω, if prefixes(a) ⊆ (Prefixes(C)) then
a ∈ C.
Example: Set of sequences in which every 1 is preceded
by 0.

I Only Safety properties can be monitored using
deterministic monitors.

I C ⊆ Σω is an almost safety property if it is a countable
union of safety properties.
Example: Set of sequences in which 1 appears at least 3
times.

Properties of Infinite Executions

I Language C ⊆ Σω is a safety property, if it is limit closed.
That is, for any a ∈ Σω, if prefixes(a) ⊆ (Prefixes(C)) then
a ∈ C.
Example: Set of sequences in which every 1 is preceded
by 0.

I Only Safety properties can be monitored using
deterministic monitors.

I C ⊆ Σω is an almost safety property if it is a countable
union of safety properties.
Example: Set of sequences in which 1 appears at least 3
times.

Monitoring Non-safety Properties

The following FPM monitors (i.e., accepts) the set of sequences
in which 1 appears eventually. Not a safety property!

Monitoring Non-safety Properties

The following FPM monitors (i.e., accepts) the set of sequences
in which 1 appears eventually. Not a safety property!

Classes of Monitorable Languages

Consider an alphabet Σ and a language L ⊆ Σω.
I L is Monitorable with Strong Acceptance if there is a FPM
A such that L is the set of strings rejected by A with
probability 0. MSA is the class of all such languages.

I L is Monitorable with Weak Acceptance if there is a FPM A
such that L is the set of strings rejected by A with
probability < 1 ,i.e., accepted with non-zero prob. MWA is
the class of all such languages.

I L is Monitorable with Strict Cut-off if there is a FPM A such
that L is the set of strings rejected by A with probability
< 1

2 . MSC is the class of all such languages.

I L is Monitorable with Non-strict Cut-off if there is a FPM A
such that L is the set of strings rejected by A with
probability ≤ 1

2 . MNC is the class of all such languages.

Classes of Monitorable Languages

Consider an alphabet Σ and a language L ⊆ Σω.
I L is Monitorable with Strong Acceptance if there is a FPM
A such that L is the set of strings rejected by A with
probability 0. MSA is the class of all such languages.

I L is Monitorable with Weak Acceptance if there is a FPM A
such that L is the set of strings rejected by A with
probability < 1 ,i.e., accepted with non-zero prob. MWA is
the class of all such languages.

I L is Monitorable with Strict Cut-off if there is a FPM A such
that L is the set of strings rejected by A with probability
< 1

2 . MSC is the class of all such languages.

I L is Monitorable with Non-strict Cut-off if there is a FPM A
such that L is the set of strings rejected by A with
probability ≤ 1

2 . MNC is the class of all such languages.

Classes of Monitorable Languages

Consider an alphabet Σ and a language L ⊆ Σω.
I L is Monitorable with Strong Acceptance if there is a FPM
A such that L is the set of strings rejected by A with
probability 0. MSA is the class of all such languages.

I L is Monitorable with Weak Acceptance if there is a FPM A
such that L is the set of strings rejected by A with
probability < 1 ,i.e., accepted with non-zero prob. MWA is
the class of all such languages.

I L is Monitorable with Strict Cut-off if there is a FPM A such
that L is the set of strings rejected by A with probability
< 1

2 . MSC is the class of all such languages.

I L is Monitorable with Non-strict Cut-off if there is a FPM A
such that L is the set of strings rejected by A with
probability ≤ 1

2 . MNC is the class of all such languages.

Classes of Monitorable Languages

Consider an alphabet Σ and a language L ⊆ Σω.
I L is Monitorable with Strong Acceptance if there is a FPM
A such that L is the set of strings rejected by A with
probability 0. MSA is the class of all such languages.

I L is Monitorable with Weak Acceptance if there is a FPM A
such that L is the set of strings rejected by A with
probability < 1 ,i.e., accepted with non-zero prob. MWA is
the class of all such languages.

I L is Monitorable with Strict Cut-off if there is a FPM A such
that L is the set of strings rejected by A with probability
< 1

2 . MSC is the class of all such languages.

I L is Monitorable with Non-strict Cut-off if there is a FPM A
such that L is the set of strings rejected by A with
probability ≤ 1

2 . MNC is the class of all such languages.

OutLine

Automata on Infinite Strings

Probabilistic Automata on Finite Strings

Probabilistic Buchi Automata

Finite State Probabilistic Monitors

Expressiveness results for FPMS

Decidability and Complexity results for FPMs

Decidability and Expressiveness for PBAs

Hierarchical PBAs

Expressiveness results

Monitoring Non-ω-regular Languages
I For any A,B, can construct C such that for any input a,

PrOfRejC(a) = PrOfRejA(a)× PrOfRejB(a).

I For any a ∈ {0,1}ω, PrOfRejB(a) = val(a).
I Construct FPM C, PrOfRejC(a) = (PrOfRejB(a))2.
I Let L be the set of inputs rejected by C with prob ≤ 1

2 .
I L = {a : val(a) ≤ 1√

2
}. L ∈ MNC and not ω-regular.

Monitoring Non-ω-regular Languages
I For any A,B, can construct C such that for any input a,

PrOfRejC(a) = PrOfRejA(a)× PrOfRejB(a).

I For any a ∈ {0,1}ω, PrOfRejB(a) = val(a).

I Construct FPM C, PrOfRejC(a) = (PrOfRejB(a))2.
I Let L be the set of inputs rejected by C with prob ≤ 1

2 .
I L = {a : val(a) ≤ 1√

2
}. L ∈ MNC and not ω-regular.

Monitoring Non-ω-regular Languages
I For any A,B, can construct C such that for any input a,

PrOfRejC(a) = PrOfRejA(a)× PrOfRejB(a).

I For any a ∈ {0,1}ω, PrOfRejB(a) = val(a).
I Construct FPM C, PrOfRejC(a) = (PrOfRejB(a))2.

I Let L be the set of inputs rejected by C with prob ≤ 1
2 .

I L = {a : val(a) ≤ 1√
2
}. L ∈ MNC and not ω-regular.

Monitoring Non-ω-regular Languages
I For any A,B, can construct C such that for any input a,

PrOfRejC(a) = PrOfRejA(a)× PrOfRejB(a).

I For any a ∈ {0,1}ω, PrOfRejB(a) = val(a).
I Construct FPM C, PrOfRejC(a) = (PrOfRejB(a))2.
I Let L be the set of inputs rejected by C with prob ≤ 1

2 .

I L = {a : val(a) ≤ 1√
2
}. L ∈ MNC and not ω-regular.

Monitoring Non-ω-regular Languages
I For any A,B, can construct C such that for any input a,

PrOfRejC(a) = PrOfRejA(a)× PrOfRejB(a).

I For any a ∈ {0,1}ω, PrOfRejB(a) = val(a).
I Construct FPM C, PrOfRejC(a) = (PrOfRejB(a))2.
I Let L be the set of inputs rejected by C with prob ≤ 1

2 .
I L = {a : val(a) ≤ 1√

2
}. L ∈ MNC and not ω-regular.

OutLine

Automata on Infinite Strings

Probabilistic Automata on Finite Strings

Probabilistic Buchi Automata

Finite State Probabilistic Monitors

Expressiveness results for FPMS

Decidability and Complexity results for FPMs

Decidability and Expressiveness for PBAs

Hierarchical PBAs

Decidability and Complexity results

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1 is PSPACE-complete.

I Upperbound proof: Such an input exists, if there is a
reachable state q from which the reject state is never
reached on some input.

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1

2 is R.E.-complete.

I Upperbound proof: Such an input exists, if there is an
ultimately periodic input γ, i.e., of the form α(β)ω, such that
PrOfRejA(γ) < 1

2 .

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) ≤ 1

2 is co-R.E.-complete.

Decidability and Complexity results

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1 is PSPACE-complete.

I Upperbound proof: Such an input exists, if there is a
reachable state q from which the reject state is never
reached on some input.

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1

2 is R.E.-complete.

I Upperbound proof: Such an input exists, if there is an
ultimately periodic input γ, i.e., of the form α(β)ω, such that
PrOfRejA(γ) < 1

2 .

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) ≤ 1

2 is co-R.E.-complete.

Decidability and Complexity results

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1 is PSPACE-complete.

I Upperbound proof: Such an input exists, if there is a
reachable state q from which the reject state is never
reached on some input.

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1

2 is R.E.-complete.

I Upperbound proof: Such an input exists, if there is an
ultimately periodic input γ, i.e., of the form α(β)ω, such that
PrOfRejA(γ) < 1

2 .

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) ≤ 1

2 is co-R.E.-complete.

Decidability and Complexity results

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1 is PSPACE-complete.

I Upperbound proof: Such an input exists, if there is a
reachable state q from which the reject state is never
reached on some input.

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1

2 is R.E.-complete.

I Upperbound proof: Such an input exists, if there is an
ultimately periodic input γ, i.e., of the form α(β)ω, such that
PrOfRejA(γ) < 1

2 .

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) ≤ 1

2 is co-R.E.-complete.

Decidability and Complexity results

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1 is PSPACE-complete.

I Upperbound proof: Such an input exists, if there is a
reachable state q from which the reject state is never
reached on some input.

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1

2 is R.E.-complete.

I Upperbound proof: Such an input exists, if there is an
ultimately periodic input γ, i.e., of the form α(β)ω, such that
PrOfRejA(γ) < 1

2 .

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) ≤ 1

2 is co-R.E.-complete.

Summary of Complexity and Decidability results

EMPTINESS UNIVERSALITY

Msa PSPACE-complete NL-complete
Mwa PSPACE-complete PSPACE-complete
Msc co-R.E.-complete Π1

1-complete
Mnc R.E.-complete co-R.E.-complete

OutLine

Automata on Infinite Strings

Probabilistic Automata on Finite Strings

Probabilistic Buchi Automata

Finite State Probabilistic Monitors

Expressiveness results for FPMS

Decidability and Complexity results for FPMs

Decidability and Expressiveness for PBAs

Hierarchical PBAs

Decidability and Expressiveness for PBAs

I What inputs are accepted with non-zero probability?

I Should have infinite number of 1s.
I Consider 010101...10.... Accepted with Prob 0.
I Consider 01021031...10i Accepted with Prob > 0.
I Acceptance probability (1− 1

2)× (1− 1
22)× ...(1− 1

2i)× ...

Decidability and Expressiveness for PBAs

I What inputs are accepted with non-zero probability?
I Should have infinite number of 1s.

I Consider 010101...10.... Accepted with Prob 0.
I Consider 01021031...10i Accepted with Prob > 0.
I Acceptance probability (1− 1

2)× (1− 1
22)× ...(1− 1

2i)× ...

Decidability and Expressiveness for PBAs

I What inputs are accepted with non-zero probability?
I Should have infinite number of 1s.
I Consider 010101...10.... Accepted with Prob 0.
I Consider 01021031...10i Accepted with Prob > 0.

I Acceptance probability (1− 1
2)× (1− 1

22)× ...(1− 1
2i)× ...

Decidability and Expressiveness for PBAs

I What inputs are accepted with non-zero probability?
I Should have infinite number of 1s.
I Consider 010101...10.... Accepted with Prob 0.
I Consider 01021031...10i Accepted with Prob > 0.
I Acceptance probability (1− 1

2)× (1− 1
22)× ...(1− 1

2i)× ...

Decidability Results

Given a PBA A:
I deciding if it accepts at least one input with non-zero

probability is undecidable, is π0
2-complete.

I deciding if it accepts at least one input with probability 1 is
PSPACE-complete.

I deciding if it accepts all inputs with probability 1 is
PSPACE-complete.

I Reduce to emptiness and universality problems for FPMs.

Decidability Results

Given a PBA A:
I deciding if it accepts at least one input with non-zero

probability is undecidable, is π0
2-complete.

I deciding if it accepts at least one input with probability 1 is
PSPACE-complete.

I deciding if it accepts all inputs with probability 1 is
PSPACE-complete.

I Reduce to emptiness and universality problems for FPMs.

Decidability Results

Given a PBA A:
I deciding if it accepts at least one input with non-zero

probability is undecidable, is π0
2-complete.

I deciding if it accepts at least one input with probability 1 is
PSPACE-complete.

I deciding if it accepts all inputs with probability 1 is
PSPACE-complete.

I Reduce to emptiness and universality problems for FPMs.

Decidability Results

Given a PBA A:
I deciding if it accepts at least one input with non-zero

probability is undecidable, is π0
2-complete.

I deciding if it accepts at least one input with probability 1 is
PSPACE-complete.

I deciding if it accepts all inputs with probability 1 is
PSPACE-complete.

I Reduce to emptiness and universality problems for FPMs.

Expressiveness Results

I Probable Semantics: L>0(A) = {a : PrOfAccA(a) > 0}.
Also L(PBA>0) = {L>0(A) : PBA A}.

I L(PBA>0) is closed under ∪ (union), ∩ and ¬ (Baier et al).
Like ω-regular langs, i.e., langs accepted by non-det BA.

I Almsot Sure Semantics:
L=1(A) = {a : PrOfAccA(a) = 1}.

Also L(PBA=1) = {L=1(A) : PBA A}.

I L(PBA=1) is closed under ∪ and ∩, but not under ¬. Like
the Det-ω-Regular langs, i.e., languages accepted by det.
BAs.

I L(PBA>0) is exactly the boolean closure of L(PBA=1). Just
like classes of languages accepted by non-det. BAs and
det.BAs.

Expressiveness Results

I Probable Semantics: L>0(A) = {a : PrOfAccA(a) > 0}.
Also L(PBA>0) = {L>0(A) : PBA A}.

I L(PBA>0) is closed under ∪ (union), ∩ and ¬ (Baier et al).
Like ω-regular langs, i.e., langs accepted by non-det BA.

I Almsot Sure Semantics:
L=1(A) = {a : PrOfAccA(a) = 1}.

Also L(PBA=1) = {L=1(A) : PBA A}.

I L(PBA=1) is closed under ∪ and ∩, but not under ¬. Like
the Det-ω-Regular langs, i.e., languages accepted by det.
BAs.

I L(PBA>0) is exactly the boolean closure of L(PBA=1). Just
like classes of languages accepted by non-det. BAs and
det.BAs.

Expressiveness Results

I Probable Semantics: L>0(A) = {a : PrOfAccA(a) > 0}.
Also L(PBA>0) = {L>0(A) : PBA A}.

I L(PBA>0) is closed under ∪ (union), ∩ and ¬ (Baier et al).
Like ω-regular langs, i.e., langs accepted by non-det BA.

I Almsot Sure Semantics:
L=1(A) = {a : PrOfAccA(a) = 1}.

Also L(PBA=1) = {L=1(A) : PBA A}.

I L(PBA=1) is closed under ∪ and ∩, but not under ¬. Like
the Det-ω-Regular langs, i.e., languages accepted by det.
BAs.

I L(PBA>0) is exactly the boolean closure of L(PBA=1). Just
like classes of languages accepted by non-det. BAs and
det.BAs.

Expressiveness Results

I Probable Semantics: L>0(A) = {a : PrOfAccA(a) > 0}.
Also L(PBA>0) = {L>0(A) : PBA A}.

I L(PBA>0) is closed under ∪ (union), ∩ and ¬ (Baier et al).
Like ω-regular langs, i.e., langs accepted by non-det BA.

I Almsot Sure Semantics:
L=1(A) = {a : PrOfAccA(a) = 1}.

Also L(PBA=1) = {L=1(A) : PBA A}.

I L(PBA=1) is closed under ∪ and ∩, but not under ¬. Like
the Det-ω-Regular langs, i.e., languages accepted by det.
BAs.

I L(PBA>0) is exactly the boolean closure of L(PBA=1). Just
like classes of languages accepted by non-det. BAs and
det.BAs.

Expressiveness Results

I Probable Semantics: L>0(A) = {a : PrOfAccA(a) > 0}.
Also L(PBA>0) = {L>0(A) : PBA A}.

I L(PBA>0) is closed under ∪ (union), ∩ and ¬ (Baier et al).
Like ω-regular langs, i.e., langs accepted by non-det BA.

I Almsot Sure Semantics:
L=1(A) = {a : PrOfAccA(a) = 1}.

Also L(PBA=1) = {L=1(A) : PBA A}.

I L(PBA=1) is closed under ∪ and ∩, but not under ¬. Like
the Det-ω-Regular langs, i.e., languages accepted by det.
BAs.

I L(PBA>0) is exactly the boolean closure of L(PBA=1). Just
like classes of languages accepted by non-det. BAs and
det.BAs.

OutLine

Automata on Infinite Strings

Probabilistic Automata on Finite Strings

Probabilistic Buchi Automata

Finite State Probabilistic Monitors

Expressiveness results for FPMS

Decidability and Complexity results for FPMs

Decidability and Expressiveness for PBAs

Hierarchical PBAs

Hierarchical PBAs (HPBA)
PBA A is called HPBA, if

I Its states are divided into levels.

I On an input symbol, at most one next state is at the same
level, all others are at higher levels.

L(HPBA>0) = {L>0(A) : HPBA A}.
L(HPBA=1) = {L=1(A) : HPBA A}.

I L(HPBA>0) = ω-Regular.

I L(HPBA=1) is exactly the class of langs accepted by det.
BAs.

I Determining emptiness and universality of L>0(A) is in
NLand PSPACE-complete, respectively.

I Determining emptiness and universality of L=1(A) is
PSPACE-complete and in NL, respectively.

Hierarchical PBAs (HPBA)
PBA A is called HPBA, if

I Its states are divided into levels.

I On an input symbol, at most one next state is at the same
level, all others are at higher levels.

L(HPBA>0) = {L>0(A) : HPBA A}.
L(HPBA=1) = {L=1(A) : HPBA A}.

I L(HPBA>0) = ω-Regular.

I L(HPBA=1) is exactly the class of langs accepted by det.
BAs.

I Determining emptiness and universality of L>0(A) is in
NLand PSPACE-complete, respectively.

I Determining emptiness and universality of L=1(A) is
PSPACE-complete and in NL, respectively.

Hierarchical PBAs (HPBA)
PBA A is called HPBA, if

I Its states are divided into levels.

I On an input symbol, at most one next state is at the same
level, all others are at higher levels.

L(HPBA>0) = {L>0(A) : HPBA A}.

L(HPBA=1) = {L=1(A) : HPBA A}.

I L(HPBA>0) = ω-Regular.

I L(HPBA=1) is exactly the class of langs accepted by det.
BAs.

I Determining emptiness and universality of L>0(A) is in
NLand PSPACE-complete, respectively.

I Determining emptiness and universality of L=1(A) is
PSPACE-complete and in NL, respectively.

Hierarchical PBAs (HPBA)
PBA A is called HPBA, if

I Its states are divided into levels.

I On an input symbol, at most one next state is at the same
level, all others are at higher levels.

L(HPBA>0) = {L>0(A) : HPBA A}.
L(HPBA=1) = {L=1(A) : HPBA A}.

I L(HPBA>0) = ω-Regular.

I L(HPBA=1) is exactly the class of langs accepted by det.
BAs.

I Determining emptiness and universality of L>0(A) is in
NLand PSPACE-complete, respectively.

I Determining emptiness and universality of L=1(A) is
PSPACE-complete and in NL, respectively.

Hierarchical PBAs (HPBA)
PBA A is called HPBA, if

I Its states are divided into levels.

I On an input symbol, at most one next state is at the same
level, all others are at higher levels.

L(HPBA>0) = {L>0(A) : HPBA A}.
L(HPBA=1) = {L=1(A) : HPBA A}.

I L(HPBA>0) = ω-Regular.

I L(HPBA=1) is exactly the class of langs accepted by det.
BAs.

I Determining emptiness and universality of L>0(A) is in
NLand PSPACE-complete, respectively.

I Determining emptiness and universality of L=1(A) is
PSPACE-complete and in NL, respectively.

Hierarchical PBAs (HPBA)
PBA A is called HPBA, if

I Its states are divided into levels.

I On an input symbol, at most one next state is at the same
level, all others are at higher levels.

L(HPBA>0) = {L>0(A) : HPBA A}.
L(HPBA=1) = {L=1(A) : HPBA A}.

I L(HPBA>0) = ω-Regular.

I L(HPBA=1) is exactly the class of langs accepted by det.
BAs.

I Determining emptiness and universality of L>0(A) is in
NLand PSPACE-complete, respectively.

I Determining emptiness and universality of L=1(A) is
PSPACE-complete and in NL, respectively.

Hierarchical PBAs (HPBA)
PBA A is called HPBA, if

I Its states are divided into levels.

I On an input symbol, at most one next state is at the same
level, all others are at higher levels.

L(HPBA>0) = {L>0(A) : HPBA A}.
L(HPBA=1) = {L=1(A) : HPBA A}.

I L(HPBA>0) = ω-Regular.

I L(HPBA=1) is exactly the class of langs accepted by det.
BAs.

I Determining emptiness and universality of L>0(A) is in
NLand PSPACE-complete, respectively.

I Determining emptiness and universality of L=1(A) is
PSPACE-complete and in NL, respectively.

Hierarchical PBAs (HPBA)
PBA A is called HPBA, if

I Its states are divided into levels.

I On an input symbol, at most one next state is at the same
level, all others are at higher levels.

L(HPBA>0) = {L>0(A) : HPBA A}.
L(HPBA=1) = {L=1(A) : HPBA A}.

I L(HPBA>0) = ω-Regular.

I L(HPBA=1) is exactly the class of langs accepted by det.
BAs.

I Determining emptiness and universality of L>0(A) is in
NLand PSPACE-complete, respectively.

I Determining emptiness and universality of L=1(A) is
PSPACE-complete and in NL, respectively.

Conclusions and Future Work

I Applications to non-deterministic probabilistic programs.

I Explore relationships to Partially Observable Markov
Decision Processes. (POMDPs)

I Explore power of randomization in other computation
models on infinite inputs.

Conclusions and Future Work

I Applications to non-deterministic probabilistic programs.

I Explore relationships to Partially Observable Markov
Decision Processes. (POMDPs)

I Explore power of randomization in other computation
models on infinite inputs.

Conclusions and Future Work

I Applications to non-deterministic probabilistic programs.

I Explore relationships to Partially Observable Markov
Decision Processes. (POMDPs)

I Explore power of randomization in other computation
models on infinite inputs.

	Automata on Infinite Strings
	Probabilistic Automata on Finite Strings
	Probabilistic Buchi Automata
	 Finite State Probabilistic Monitors
	Expressiveness results for FPMS
	Decidability and Complexity results for FPMs
	Decidability and Expressiveness for PBAs
	Hierarchical PBAs

