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Automata on Infinite Strings (Rabin, Buchi, Muller,
McNaughton)

I Finite State Automata on Finite Strings:
DFA ≡ NFA ≡ RExprs

I Buchi Automata (BA) on Infinite Strings:
A = (Σ,Q, δ,q0,F )

I Σ — input alphabet
I Q — automaton states
I δ ⊆ Q × Σ× q — transition relation
I q0 — start state
I F ⊆ Q — accepting set
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Buchi Automata
I A run r on an infinite input a = a0, ...ai , ... is a sequence

(r0, ..., ri , ...) such that r0 = q0 and (ri ,ai , ri+1) ∈ δ for i ≥ 0.

I r is accepting if some accepting state appears infinitely
often.

I L(A) is the set of inputs on which A has an accepting run.
I An example BA: Accepts strings in which every a is

eventually followed by b.
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no equivalent Det BA.

Accepts strings in which eventually only a appears.
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Rabin Automata

I Rabin Automaton (RA): the acceptance set is of the form
{(L1,U1), ..., (Lk ,Uk )} where Li ,Ui ⊆ Q.

I A run r is accepting if for some i , no state in Li appears
infinitely often and some state in Ui appears infinitely often.

I DetRA ≡ NonDetRA ≡ NonDetBA
I DetRA ≡ ω-Regular languages
I Det-ω-Regular langs = Langs recognized by Det BA.
I Fact: ω-Regular Langs = Boolean closure of Det-ω-Regular

Langs.
I Applications: Verification of concurrent programs,

decision procedures for logics: Linear Temporal Logic,
S1S, Theory of Linear order, etc.
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Decision Problems

I Emptiness: Given BA A, check if L(A) 6= ∅. It is in
NLOGSPACE and hence is in P.

I Universality; Given a BA A, check if L(A) = Σω. It is
PSPACE-complete.

I Language Containment; Given a BAs A,B, check if
L(A) ⊆ L(B). PSPACE-complete.
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Probabilistic Finite string Automata (PFA) (Rabin)

I A = (Σ,Q, δ,q0,F ).
I δ : Q × Σ×Q → [0,1] so that

∑
q′ δ(q,a,q′) = 1.

I For a ∈ Σ∗, PrOfAccA(a), called the probability of
acceptance of a— is the probability that A is in some state
in F after the input a.

I L> 1
2
(A) = {a ∈ Σ∗ : Pr(a) > 1

2}.

I L> 1
2
(A) can be a non-regular set (Rabin 1960s).

I Determining non-emptiness of L> 1
2
(A) and L≥ 1

2
(A) are

undecidable. Both are R.E.-complete. (Paz 1971, Soloma
1973).
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Probabilistic Buchi Automata (PBA) (Baier et al 2007)
I A = (Σ,Q, δ,q0,F ). δ defines probabilities on transitions

as in the case of PFAs.
I Consider a ∈ Σω.

I Let Inf (F ) ⊆ Qω be the set of sequences having some
state of F appearing infinitely often.

I Define PrOfAccA(a) to be the probability that a run of A on
a is in Inf (F ).

I Example. Σ = {0,1}.
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Formal defn. of Acceptance Probability

I Fix a ∈ Σω. Define the probability space (Qω,∆, φ) where
∆ is the event space and φ is the probability measure on it.

I ∆ is the σ-algebra generated by the sets Su = uQω for
u ∈ Q∗.

I Definition of φ: Fix any u = (r0, .., rm).
If r0 = q0 then
φ(Su) = δ(r0,a0, r1, )× ...δ(ri ,ai , ri+1)× ...δ(rm,am, rm+1).
If r0 6= q0 then φ(Su) = 0.

I PrOfAccA(a) = φ(Inf (F )). (Note Inf (F ) ∈ ∆).
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Finite State Probabilistic Monitors (FPM)
I A FPM is a PBA with a designated reject state, an

absorbing state. All other states are accepting states. Let
PrOfRejA(a) = 1− PrOfAccA(a).

I Any input a ∈ {0,1}ω is the binary representation of a
number val(a) ∈ [0,1].

I Observe PrOfRejB(a) = val(a).
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Applications

I As monitors for monitoring safety as well as some liveness
properties.

I Modeling open systems that can fail.

I Model checking safety properties of open finite state
probabilistic programs.
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Properties of Infinite Executions

I Language C ⊆ Σω is a safety property, if it is limit closed.
That is, for any a ∈ Σω, if prefixes(a) ⊆ (Prefixes(C)) then
a ∈ C.
Example: Set of sequences in which every 1 is preceded
by 0.

I Only Safety properties can be monitored using
deterministic monitors.

I C ⊆ Σω is an almost safety property if it is a countable
union of safety properties.
Example: Set of sequences in which 1 appears at least 3
times.
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Monitoring Non-safety Properties

The following FPM monitors (i.e., accepts) the set of sequences
in which 1 appears eventually. Not a safety property!
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Classes of Monitorable Languages

Consider an alphabet Σ and a language L ⊆ Σω.
I L is Monitorable with Strong Acceptance if there is a FPM
A such that L is the set of strings rejected by A with
probability 0. MSA is the class of all such languages.

I L is Monitorable with Weak Acceptance if there is a FPM A
such that L is the set of strings rejected by A with
probability < 1 ,i.e., accepted with non-zero prob. MWA is
the class of all such languages.

I L is Monitorable with Strict Cut-off if there is a FPM A such
that L is the set of strings rejected by A with probability
< 1

2 . MSC is the class of all such languages.

I L is Monitorable with Non-strict Cut-off if there is a FPM A
such that L is the set of strings rejected by A with
probability ≤ 1

2 . MNC is the class of all such languages.
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Expressiveness results



Monitoring Non-ω-regular Languages
I For any A,B, can construct C such that for any input a,

PrOfRejC(a) = PrOfRejA(a)× PrOfRejB(a).

I For any a ∈ {0,1}ω, PrOfRejB(a) = val(a).
I Construct FPM C, PrOfRejC(a) = (PrOfRejB(a))2.
I Let L be the set of inputs rejected by C with prob ≤ 1

2 .
I L = {a : val(a) ≤ 1√

2
}. L ∈ MNC and not ω-regular.
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Decidability and Complexity results

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1 is PSPACE-complete.

I Upperbound proof: Such an input exists, if there is a
reachable state q from which the reject state is never
reached on some input.

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) < 1

2 is R.E.-complete.

I Upperbound proof: Such an input exists, if there is an
ultimately periodic input γ, i.e., of the form α(β)ω, such that
PrOfRejA(γ) < 1

2 .

I Given a FPM A, determining if there is at least one input a
such that PrOfRejA(a) ≤ 1

2 is co-R.E.-complete.
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Summary of Complexity and Decidability results

EMPTINESS UNIVERSALITY

Msa PSPACE-complete NL-complete
Mwa PSPACE-complete PSPACE-complete
Msc co-R.E.-complete Π1

1-complete
Mnc R.E.-complete co-R.E.-complete
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Decidability and Expressiveness for PBAs

I What inputs are accepted with non-zero probability?

I Should have infinite number of 1s.
I Consider 010101...10.... Accepted with Prob 0.
I Consider 01021031...10i .... Accepted with Prob > 0.
I Acceptance probability (1− 1

2)× (1− 1
22 )× ...(1− 1

2i )× ...
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Decidability Results

Given a PBA A:
I deciding if it accepts at least one input with non-zero

probability is undecidable, is π0
2-complete.

I deciding if it accepts at least one input with probability 1 is
PSPACE-complete.

I deciding if it accepts all inputs with probability 1 is
PSPACE-complete.

I Reduce to emptiness and universality problems for FPMs.
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Expressiveness Results

I Probable Semantics: L>0(A) = {a : PrOfAccA(a) > 0}.
Also L(PBA>0) = {L>0(A) : PBA A}.

I L(PBA>0) is closed under ∪ (union), ∩ and ¬ (Baier et al).
Like ω-regular langs, i.e., langs accepted by non-det BA.

I Almsot Sure Semantics:
L=1(A) = {a : PrOfAccA(a) = 1}.

Also L(PBA=1) = {L=1(A) : PBA A}.

I L(PBA=1) is closed under ∪ and ∩, but not under ¬. Like
the Det-ω-Regular langs, i.e., languages accepted by det.
BAs.

I L(PBA>0) is exactly the boolean closure of L(PBA=1). Just
like classes of languages accepted by non-det. BAs and
det.BAs.
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Hierarchical PBAs (HPBA)
PBA A is called HPBA, if

I Its states are divided into levels.

I On an input symbol, at most one next state is at the same
level, all others are at higher levels.

L(HPBA>0) = {L>0(A) : HPBA A}.
L(HPBA=1) = {L=1(A) : HPBA A}.

I L(HPBA>0) = ω-Regular.

I L(HPBA=1) is exactly the class of langs accepted by det.
BAs.

I Determining emptiness and universality of L>0(A) is in
NLand PSPACE-complete, respectively.

I Determining emptiness and universality of L=1(A) is
PSPACE-complete and in NL, respectively.
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Conclusions and Future Work

I Applications to non-deterministic probabilistic programs.

I Explore relationships to Partially Observable Markov
Decision Processes. (POMDPs)

I Explore power of randomization in other computation
models on infinite inputs.
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