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Foreword 

System-level design is a challenging task because engineers are confronted with 

a variety of problems, including the need of trading off different objectives, such 

as performance and power consumption, in the search for design implementa

tions with increasing features, constraints and complexity. 

When looking at electronic systems, whether computational or embedded, 

as information processing machines, an immediate question comes up on the 

efficiency by which they perform their tasks, as in the case of thermo-dynamical 

machines. Designing electronic systems with high energy efficiency, or equiv

alently designing systems that· perform under bounds on electric energy con

sumption, is one of the essential problems to be solved. Despite efforts in this 

direction in the last decade, new solutions - such as those presented in this 

book - are crucial for the improvement of system design technologies. Systems 

with increasingly higher energy efficiency are required by the ongoing needs 

of batter-power portable systems to support complex software application pro

grams, and by the desire of reducing the environmental impact of all electronic 

systems. 

Design technologies for system-level design have evolved through the years 

while facing the formidable challenge of addressing computationally complex 

problems. The widespread use of heuristics in solving design problems has 

enabled the creation of several computer-aided design tools in a short time. 

Nevertheless, the quality of the results achieved by design tools based on heuris

tics is hard to quantify. Algorithms with guaranteed optimality properties are 

highly-desired because they can enable a thorough search of the design space. 
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This book makes an important contribution to the field of system design 

technologies by presenting a set of algorithms with guaranteed optimality prop

erties, that can be readily applied to system-level design. This contribution is 

timely, because it fills the need of new methods for a new design tool genera

tion, which supports the design of electronic systems with even more demanding 

requirements. 

Giovanni De Micheli, Professor 

Stanford University 



Preface 

With the Moore's law still in effect, integrated circuit densities and operating 

speeds continue to rise at an exponentail rate. Chips however cannot get larger 

and faster without a sharp increase in power consumption beyond the current 

levels. Minimization of power consumption in VLSI chips has thus become an 

important design objective. In fact, with the explosive growth in demand for 

portable electronics and the usual push toward more complex functionality and 

higher performance, power consumption has in many cases become the limiting 

factor in satisfying the market demand. 

The low power design challenge has been met by an active research and devel

opment community both in industry and academia. Rapid advances are taking 

place in low-power process technologies, architecture and circuit optimization 

techniques, power-aware simple and complex cell design, use of variable and/or 

multiple supply voltages and dynamic power management schemes, and low 

power computer aided design (CAD) tools from system and software levels to 

layout and transistor levels. In particular, a new generation of power-conscious 

CAD tools are coming into the market to help designers estimate, optimize and 

verify power consumption levels at most stages of the IC design process. These 

tools are especially prevalent at the register-transfer level and below. There is 

great need for similar tools and capabilities at the behavioral and system levels 

of the design process. 

The increased degree of automation of industrial design frameworks has pro

duced a substantial change in the way digital ICs are developed. The design of 

modern systems usually starts from specifications given at a very high level of 

abstraction. This is because existing EDA tools are able to automatically pro-
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duce low-level design implementations directly from descriptions of this type. 

Circuit and system designers need tools that allow them to explicitly control 

the power budget during the early phases of the design process. This is because 

the power savings obtainable through automatic optimization early in the de

sign process is usually more significant than that achievable by means of lower 

level optimization. 

This need has not gone unnoticed. Many researchers and CAD tool develop

ers are working on high-level power modeling and estimation, as well as power

constrained high-level synthesis and optimization. Techniques and tools alone 

are however insufficient to optimize the VLSI circuit power dissipation - a con

sistent and convergent design methodology is required as well. Components of 

such a low power design methodology include: upfront specification, early anal

ysis and optimization, forward timing and power constraint propagation and 

backward capacitance annotation, as well as multi-level power simulation and 

verification. Tools that support such a flow would include power macro-models 

for such library primitives as gates, adders, multipliers and register files as well 

as more complex functions such as memories, controllers, encoder/decoders and 

in general, intellectual property (IP) blocks. 

The present book is written to address some of the key problems in power 

analysis and optimization early in the design process. In particular, this book 

focuses on power macro-modeling based on regression analysis and power min

imization through behavioral transformations, scheduling, resource assignment 

and hardware/software partitioning and mapping. What differentiates this 

book from the other published work on the subject is that the mathematical 

basis and formalism behind our algorithms and the optimality of the these 

algorithms subject to the stated assumptions. 

This book is organized into six chapters. Chapter 1 lays the groundwork by 

presenting an overview of the behavioral-level and system-level synthesis tech

niques and design representations. In Chapters 2 and 3, we present optimal 

algorithms for activity-driven register and module allocation and binding. The 

power consumed by a resource mainly depends on the input switching activi

ties induced by the data being stored or processed. Since the patterns flowing 

through a circuit may have specific probability distribution, the way registers 

and modules are allocated in a control/data flow graph may heavily impact the 

switching activities at the interface of the resources. These chapters present 
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graph-theory-based algorithms for power-efficient allocation and binding of reg

isters and modules based on accurate computation of the probability density 

functions at the inputs of various resources, given probability distributions for 

the system primary input. In Chapter 4, we describe an algorithm based on dy

namic programming for solving the multiple-voltage scheduling problem. The 

technique, which is based on dynamic programming requires the availability 

of accurate timing and power models for the modules in the RTL library for 

all possible supply voltage levels. Using this information, and by a post-order 

traversal of the data flow graph, it is then possible to calculate the energy

delay trade-off curves at each node of the graph. Supply voltage level assign

ment and scheduling of all operations take place during a pre-order traversal 

of the data flow graph. In Chapter 5, we provide an optimal algorithm for 

finding the minimum cost (area and/or energy dissipation) hardware/software 

partitioning, and mapping of a generalized task graph subject to performance 

constraints. Processes in a generalized task graph may communicate with each 

other at times other than the beginning or end of their lifetimes by various 

blocking/non-blocking communication mechanisms. The coarse-grain HW /SW 

partitioning/mapping technique used a modified (symbolic) dynamic program

ming algorithm with binning strings to produce a globally optimal solution 

subject to model assumptions. When needed, we also present power estima

tion models and techniques to support the optimization algorithms. Chapter 6 

presents the book summary and outline of possible research venues. 

We wish to express our appreciation to the students in the low power CAD 

group at USC for providing a stimulating and challenging environment, to 

Professor Giovanni De Micheli for writing the foreword for the book, to Carl 
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publishing the book, and finally to our families for their indulgence of our 

interest in this project. 
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