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Abstract—Many-cores, processors with 100s of cores, are
becoming increasingly popular in general-purpose computing, yet
power is a limiting factor in their performance. In this paper,
we compare the power and performance of two design points
in the many-core processor domain. The XMT1 general-purpose
processor provides significant runtime advantage on irregular
parallel programs (e.g., graph algorithms). This was previously
demonstrated and tied to its architecture choices and ease-of-
programming. In contrast, current commercial GPUs excel at
regular parallel programs that require high processing capability.
In this work, we set the power envelope as a constraint and eval-
uate an envisioned 1024-core XMT processor against an NVIDIA
GTX280 GPU considering various scenarios for estimating the
power of the XMT chip. Even under worst-case assumptions and
scenarios, simulations show that the XMT processor sustains its
advantage over the GPU on irregular parallel programs, while
not falling significantly behind on regular programs. The total
energy spent per benchmark fits a similar pattern. Given that the
two architectures target different types of parallelism, a future
system can potentially utilize an XMT chip and a GPU chip in
complementary roles.

Index Terms—XMT, GPU, parallelism, power and performance
comparison, many-core, PRAM

I. INTRODUCTION
The power wall forced the transition from single to multi-

core microprocessors in general purpose computing [5]. Nev-
ertheless, power and thermal feasibility remains a first class
design constraint for today’s computing systems, whereas the
introduction of parallelism to the mainstream general-purpose
domain brings another long elusive problem to focus: ease of
parallel programming. Consequently, the success of a many-
core system depends on its competitiveness on both power
dissipation and programmability.

The eXplicit Multi-Threading (XMT) architecture is a
general-purpose many-core platform for fine grained paral-
lel programs that scales to hundreds, or even thousands of
lightweight cores. XMT aims at: (i) improving single task ex-
ecution time through parallelism, and at the same time provid-
ing competitive performance on serial code (backwards com-
patibility), and (ii) making the task for the parallel programmer
as easy as possible [37]. The current XMT platform consists
of a proof-of-concept 64-core FPGA and ASIC prototypes
[41], [42] and a highly configurable cycle-accurate simulator
(XMTSim) [20]. A 1024 core XMT chip (XMT1024) was
estimated to use the same silicon area as an implementation
of the NVIDIA Tesla architecture, the GTX280 GPU [7]. It
was also reported that XMT1024 outperforms GTX280 for

1This refers to the XMT architecture developed at the University of
Maryland and not the Cray XMT system.

programs with irregular memory access and/or parallelism pat-
terns that commonly exist in the general-purpose domain [7].
The purpose of this work is to show that the speedups remain
significant when a power envelope, obtained from GTX280,
is an added constraint. For many-cores, the power envelope is
a suitable metric [4] that is closely related to feasibility and
cooling costs of individual chips or large systems consisting
of many processors.

Early estimates in a simulation based architecture study
are always prone to errors due to possible deviations in the
parameters used in the power model. Therefore we consider
various scenarios that represent potential errors in the model.
We show that for the best case scenario XMT1024 overper-
forms GTX280 by an average of 8.8x on irregular benchmarks
and 6.4x overall. Speedups are only reduced by an average of
20% for the average-case scenario and approximately halved
for the worst-case. We also compare the energy consumption
per benchmark on both chips, which follows the same trend
as the speedups.

Irregular parallel programs are among the hardest problems
in parallel computing today (see Benchmarks in Sec. IV).
These programs defy optimizations, such as programming for
locality, that are common in typical many-cores, and require
significant programming effort to obtain minor performance
improvements. Previous work, however, documents a strong
advantage of XMT on ease-of-programming [13], [30], [36],
[40] and effectiveness for achieving speedups, even on such
workloads [7], [8]. Establishing that power constraints are
not likely to dampen the performance of XMT leads to
the conclusion that XMT is an attractive option for future
computer systems, especially when coupled with a GPU chip
for more GPU-specific computations. Even as a standalone
general purpose processor, XMT still performs well on all
types of parallel programs and provides the valuable asset of
ease-of-programming.

II. MANY-CORE PLATFORMS: XMT AND TESLA

This section provides an overview of the XMT and the
Tesla architectures. Table I highlights some of the key issues
that affect the design of both architectures and lists the
main differences between them. These differences motivate
the power and performance study that we will present in
the subsequent sections. Not reflected in the table are design
decisions that are shared by the two designs, such as using
lightweight cores and not including coherent per-core caches.
In this paper, we extend the comparison between XMT and



Tesla XMT

Memory Latency
Hiding and Reduction

·Heavy multithreading (requires large register
files and state aware scheduler).
·Limited local shared scratchpad memory.
·No coherent private caches at SM or SP.

·Large globally shared cache.
·No coherent private TCU or cluster caches.
·Software prefetching.

Memory and Cache
Bandwidth

·Memory access patterns need to be coordinated by
the user for efficiency (request coalescing).
·Scratchpad memories prone to bank conflicts.
·High bandwidth interconnection network.

·Caches relax the need for user-coordinated DRAM access.
·Address hashing for avoiding memory module hotspots.
·Mesh-of-trees interconnect able to handle irregular
communication efficiently.

Functional Unit
(FU) Allocation

·Dedicated FUs for SPs and SFUs.
·Less arbitration logic required.
·Higher theoretical peak performance.

·Heavyweight FUs (FPU/MDU) are shared through arbitrators.
·Lightweight FUs (ALU and branch unit) are allocated per TCU
(ALUs do not include multiply/divide functionality).

Control Flow and
Synchronization

·Single instruction cache and issue per SM for
saving resources. Warps execute in lock-step
(penalizes diverging branches).
·Efficient local synchronization and communication
within blocks. Global communication is expensive.
·Switching between serial and parallel modes (i.e.
passing control from CPU to GPU) requires off-chip
communication.

·One instruction cache and program counter per TCU
enables independent progression of threads.
·Coordination of threads can be performed in constant time
via prefix-sum. Other forms of thread communication are done
over the shared cache.
·Dynamic hardware support for fast switch between serial and
parallel modes and load balance of virtual threads.

TABLE I: Implementation differences between XMT and Tesla. FPU and MDU stand for floating-point and multiply/divide units respectively.

Tesla architectures presented in [7]. Extending our study to
Tesla’s successor, the Fermi architecture [28] is reserved for
future work.

The XMT Architecture. The primary goal of the eXplicit
Multi-Threading (XMT) general-purpose computer architec-
ture [27], [39] has been improving single-task performance
through parallelism. XMT was designed from the ground up
to capitalize on the huge on-chip resources becoming available
in order to support the formidable body of knowledge, known
as Parallel Random Access Model (PRAM) algorithmics [18],
[21], and the latent, though not widespread, familiarity with
it. Ease-of-programing is one of the main objectives of XMT:
considerable amount of evidence was developed on ease of
teaching [36], [40] and improved development time with XMT
relative to alternative parallel approaches including MPI [13],
OpenMP [30] and CUDA (experiences in [7]).

The XMT architecture, depicted in Fig. 1.a, includes an
array of lightweight cores, Thread Control Units (TCUs),
and a serial core with its own cache (Master TCU). The
architecture includes several clusters of TCUs connected by
a high-throughput interconnection network, for example using
a mesh-of-trees (MOT) topology [2]; an instruction and data
broadcast mechanism; a global register file; and a prefix-sum
unit (similar to Fetch-and-Add [11], provides constant, low
overhead inter-thread coordination). The first level of cache is
shared and partitioned into mutually-exclusive cache modules
sharing several off-chip DRAM memory channels. The TCU
Load-Store unit applies hashing on each address to avoid
memory hotspots. Cache modules handle concurrent requests,
which are buffered and reordered to achieve better DRAM
bandwidth utilization. Within a cluster, a compiler-managed
read-only (constant) cache is used to store constant values
across all threads. TCUs include lightweight ALUs, but the
more expensive Multiply/Divide (MDU) and Floating Point
Units (FPU) are shared by all TCUs in a cluster. TCUs also
feature prefetch buffers which are utilized via a compiler
optimization to hide memory latencies.

XMT is programmed in XMTC, a simple extension of the
C language which contains succession of serial and parallel
code sections. The code of a parallel section is expressed in

the SPMD (single program, multiple data) style, specifying an
arbitrary number of virtual threads sharing the same code. An
algorithm designed in the XMT model usually permits each
thread to progress at its own speed from its initiating spawn
to the end of the section, without ever having to busy-wait for
other threads.

The Tesla Architecture. Fig. 1.b depicts an overview
of the NVIDIA Tesla architecture. It consists of an array
of Streaming Multiprocessors (SMs), connected through an
interconnection network to a number of memory controllers
and off-chip DRAM modules. Each SM contains a shared
register file, shared memory, constant and instruction caches,
special function units and several Streaming Processors (SPs)
with integer and floating point ALU pipelines. SFUs are 4-
wide vector units that can handle complex floating point
operations. More information on the GPU architecture and
programming can be found in [23], [29].

Compared Processors. In our experiments we physically
measure runtime and power of an NVIDIA GTX280 and
simulate a 1024-TCU XMT processor, XMT1024 (Sec. IV).
Table II lists the specifications of these processors. GTX280
is used as a baseline in evaluating the envisioned XMT chip.
Previous work estimated the XMT1024 silicon area to be
equivalent to that of GTX280 [7], and the table outlines the
hardware resources that were considered in that derivation.
The DRAM latency and bandwidth of XMT1024 were set to
approximately match the specifications of the GPU. The clock
frequency of the XMT chip is set so that the power envelope of
the base case described in Sec. III does not exceed that of the
GPU. In Sec. V, we will consider different cases which will
require the XMT clock frequencies to be modified accordingly.

Fundamental differences. In XMT, complex functional
units are sacrificed for a higher number of TCUs with dedi-
cated program counters. Unlike GTX280, a TCU can execute a
thread at its own speed and take different paths on conditional
statements without affecting the performance of other TCUs. A
serial on-chip processor enables fast switching between serial
and parallel modes. Moreover, the interconnection network
is specifically designed to boost the bandwidth for irregular
memory traffic, at the cost of reduced peak bandwidth. These
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Fig. 1: (a) The XMT architecture. (b) The Tesla architecture.

GTX280 XMT1024
Principal Computational Resources

Cores 240 SP, 60 SFU 1024 TCU
Integer Units 240 ALU+MDU 1024 ALU, 64 MDU
Float. Point Units 240 FPU, 60 SFU 64 FPU
On-chip Memory
Registers 1920KB 128KB
Prefetch Buffers – 32KB
Regular caches 480KB 4104KB
Constant cache 240KB 128KB
Texture cache 480KB –

Other Parameters
Pipeline clk. freq. 1.3 GHz 1.3 GHz
Interconnect clk. freq. 650 MHz 1.3 GHz
Bandwidth to DRAM 141.7 GB/sec (peak theoretical)
Fab. technology 65 nm
Silicon area 576 mm2

TABLE II: Hardware specifications of GTX280 and the simulated XMT
configuration. Values that span both columns are common to GTX280 and
XMT1024.

design choices are geared towards better support for the
XMT’s distinctive programming model and improving the
runtime of irregular parallel programs.

III. XMTSIM: THE CYCLE-ACCURATE XMT SIMULATOR

We simulated the XMTC programs on XMTSim, the cycle-
accurate simulator of the XMT architecture [20]. XMTSim
is modeled after the FPGA/ASIC prototypes of XMT and it
can be customized to realistically simulate any configuration,
beyond the resource limitations of the prototype. At this time,
off chip buses and DRAM modules are modeled as simple
latency components in the simulator. The XMT compiler and
simulation environment are publicly available [20].

Cycle-Accuracy and Reliability of Power Estimation.
The cycle-accuracy of XMTSim is verified against the FPGA
prototype with a maximum error of 15%. This error is not
necessarily an indication of inaccurate modeling, as in parallel
processors the execution time can show variation between
runs due to complex interactions between memory and thread
progression.

We used validated tools to determine the model parameters,
and in order to avoid excessively optimistic power estimates
we added a worst case error margin whenever possible. Fur-
thermore, Sec. V demonstrates the sensitivity of our results
to potential errors in the initial power estimation. Note that
validation of the power model through the FPGA prototype is
not possible since an FPGA, by nature, does not constitute a

reliable medium to run such a study. As a positive indication,
the measurements presented in Sec. IV show a strong correla-
tion between our simulator and GTX280 in power dissipation
trends among the benchmarks.

The Power Model. The power model of XMTSim is based
on the model proposed in [17]. According to this model, the
simulation provides the access rate for each component (Ci),
which is a value between 0 and 1. The power of a component
is a linear function of the access rate with a constant offset.

Power(Ci) =AccessRate(Ci) ·
MaxActPower(Ci) + (1)
Const(Ci)

C is the set of microarchitectural components for which we es-
timate the power in a simulated chip. Const(Ci) is the power
of a component which is spent regardless of its activity (static
power). MaxActPower(Ci) is the upper bound on power that
depends on the activity. These two parameters are constants
and are statically determined per component. XMTSim utilizes
internal counters that monitor the activity of each architectural
component and produce its AccessRate(Ci).

The Const(Ci) parameter includes the static power of a
component and may also include a portion of the dynamic
power depending on factors such as efficiency of the tech-
niques that manage the dynamic power (i.e., clock gating)
applied to the circuits. In our model we use the same as-
sumption as the Wattch power simulator [6] and regard 10%
of the maximum dynamic power as constant.

Table III lists the cumulative values of the Const(Ci) and
MaxActPower(Ci) parameters for all groups of simulated
components. In most cases, parameter values were obtained
from McPAT 0.9 [22] and Cacti 6.5 [26], [43]. The DRAM
parameters were based on the information in [31].

The designs of the shared caches and the ICN are unique
to XMT and their power model parameters cannot be reliably
estimated using the above tools2. Instead, they are estimated
from our 200MHz 90nm ASIC prototype, using the Synopsys
PrimeTime tool [35], and the implementation in [1] for the
ICN, as indicated in Table III. The power values obtained
from Synopsys were scaled following the relationship between

2Shared caches of XMT contain a significant amount of logic circuitry for
serving multiple outstanding requests simultaneously. Cacti estimates for the
shared caches were found to be much lower than our estimates.



Component MaxActPower Const Source
Computing Clusters

TCU Pipeline 51.2W 13.3W McPAT
ALU 122.9W 20.5W McPAT
MDU 21.1W 6.4W McPAT, ASIC
FPU 29W 3.2W McPAT, ASIC
Register File 30.8W ∼0W McPAT
Instr. Cache 15.4W 1W Cacti
Read-only Cache 2.7W 300mW Cacti
Pref. Buffer 18.4W 2W McPAT

Memory System
Interconnect 28.5W 7.2W ASIC [1]
Mem. Contr./DRAM 44.8W 104mW McPAT, [31]
Shared Cache 58.9W 19.2W ASIC

TABLE III: Power model parameters for XMT1024.

power and clock frequency/voltage.

Pdyn ∼ f ·V 2 Pstat ∼ V 2 V = 0.22· f + 0.86 (2)

Pdyn is dynamic power and Pstat is static power. The voltage
is reduced at lower clock frequencies in order to save further
power. We use the published data on the Intel Pentium M765
and AMD Athlon 4000+ processors [24], to determine the
minimum feasible voltage for a given clock frequency in
GHz. When feature size scales down, power ideally scales
in proportion to the square of the feature size [5]. From 90nm
for the ASIC prototype to 65nm for envisioned XMT1024,
we use a scaling factor of (65nm/90nm)2 ≈ 0.5, but this
assumption is subject to further analysis in Section V.

Next, we provide details on the power model of major
microarchitectural components in XMTSim.

Computing Clusters. The power dissipation of an XMT
cluster is calculated as the sum of the individual elements
indicated in Table III. The access rate of a TCU pipeline
is calculated according to the number of instructions that
are fetched and executed, which is a simple but sufficiently
accurate approximation. For the integer and floating point
units (including arbitration), access rates are the ratio of their
throughputs to the maximum throughput. The remainder of the
units are all memory array structures and their access rates are
computed according to the number of reads and writes they
serve.

Memory Controllers, DRAM and Global Shared Caches.
The access rate of these components are calculated as the
ratio of the requests served to the maximum number of
requests that can be served over the sampling period (i.e. one
request per cycle).

Global Operations and Serial Processor. We omit the
power spent on global operations, since the total gate counts
of the circuits that perform these operations were found to
be insignificant with respect to the other components, and
these operations make up a negligible portion of execution
time. For example, prefix-sum operations and global register
file accesses make up less than 1.5% of the total number
of instructions among all the benchmarks. We also omit the
power of the XMT serial processor, which is only active during
serial sections of the XMTC code and when parallel TCUs are
inactive. None of our benchmarks contain significant portions
of serial code: the number of serial instructions, in all cases, is
less than 0.005% of the total number of instructions executed.

Interconnection Network. The power of the Mesh-of-Trees
(MoT) ICN includes the total cost of communication from all
TCUs to the shared caches and back. The access rate for the
ICN is equal to its throughput ratio, which is the ratio of the
packets transferred between TCUs and shared caches to the
maximum number of packets that can be transferred over the
sampling period.

The power cost of the ICN can be broken into various parts
[19], which fit into the framework of Eq. 1 in the following
way. The power spent by the reading and writing of registers,
and the charge/discharge of capacitive loads due to wires and
repeater inputs can be modeled as proportional to the activity
(i.e. number of transferred packets). All packets travel the
same number of buffers in the MoT-ICN and the wire distance
they travel can be approximated as a constant which is the
average of all possible paths. The power of the arbiters is
modeled as a worst-case constant, as it is not feasible to model
it accurately in a fast simulator.

The power of the interconnection network (ICN) is a
central theme in Sec. V, which will explore various scenarios
considering possible estimation errors in the power model.

The Thermal Model. For thermal estimation, we incorpo-
rated HotSpot, an accurate and fast thermal solver [33]. The
heatsink convection thermal resistance was set to 0.15K/W
in order to follow the power-temperature trend observed for
GTX280 in Sec. IV, and the ambient temperature was set
to 45C. XMTSim accounts for the effect of temperature on
leakage power via a linear approximation [34].

IV. GPU MEASUREMENTS AND SIMULATION RESULTS

Power envelope is the main constraint in our study and in
this section we aim to show that the performance advantage
of XMT1024 previously demonstrated in [7] holds under this
constraint. First, we provide a list of our benchmarks, followed
by the results from the GTX280 measurement setup and
the XMT simulation environment. We report the benchmark
execution times, power dissipation values and average temper-
atures on both platforms. We also compare the execution time
and energy consumption.

As mentioned earlier, the power envelope of many-core
chips is more closely related to their thermal feasibility than
is the case with large serial processors. Many-cores can be
organized in thermally efficient floorplans such as the one
in [15]. As a result, activity is less likely to be focused on
a particular area of the chip for power intensive workloads,
and temperature is more likely to be uniformly distributed
(unlike serial processors, in which hotspots are common).
In some cases, as observed in [14], the temperature of the
memory controllers might surpass the temperature of the
rest of the chip. However, this typically happens for low
power benchmarks such as Bfs, which are heavy on memory
operations but not on computation.

We thermally simulated an XMT floorplan, in which caches
and clusters are organized in a checkerboard pattern and the
ICN is routed through dedicated strips. For the most power-
hungry benchmarks, maximum variation between adjacent



Name Description Dataset Type GTX280 XMT1024
Time Power Tempr. Time Power Tempr.

Bfs
Breadth-First Search
on graphs [9]

1M nodes,
6M edges Irregular 16.3ms 155W 74C 1.34ms 161W 70C

Bprop Back Propagation machine
learning algorithm [9] 64K nodes Irregular 15ms 97W 61C 2.26ms 98W 65C

Conv
Image convolution kernel
with separable filter [29] 1024x512 Regular 0.18ms 180W 78C 0.69ms 179W 81C

Msort Merge-sort algorithm [12], [32] 1M keys Irregular 33.3ms 120W 70C 2.77ms 144W 71C

Nw
Needleman-Wunsch sequence
alignment [9]

2x2048
sequences Irregular 13.4ms 116W 67C 1.46ms 136W 71C

Reduct Parallel reduction (sum) [29] 16M elts. Regular 0.1ms 156W 74C 0.52ms 165W 75C

Spmv Sparse matrix - vector
multiplication. [3]

36Kx36K,
4M non-zero

Irregular 0.9ms 200W 80C 0.23ms 189W 78C

TABLE IV: Benchmarks and results of experiments.

blocks was only 1C. However, from the midpoint of the chip
towards the edges, temperature can gradually drop by up to
4C. This is due to the greater lateral dissipation of heat at the
edges and does not change the relationship between power and
temperature. These results as well as the linear relationship
between the power and temperature of the GTX280 chip [14]
strengthens the argument of using power envelope as relevant
metric.

Benchmarks. Our benchmarks are listed in Table IV. The
selection of benchmarks is guided by the fact that a “general-
purpose” architecture should provide good performance on
both regular and irregular applications. Regularity, in this con-
text, implies regularity of memory accesses and a consistently
high amount of parallelism. Regular programs are the forte of
the GPU concept as they can efficiently take advantage of the
raw computing capacity of the GPU. In contrast, XMT excels
in more general-purpose type irregular programs, which are
outside the realm of the GPUs. An example irregular program
is Bfs [38]. In Bfs, every newly discovered edge is traversed
in a new parallel thread. The amount of parallelism and the
memory access patterns are not predictable, in contrast to
regular DSP-type applications, since the graph structure is not
known in advance.

We selected benchmarks whose GPU results are published,
and CUDA source code was made available by authors. This
ensures that we are using the most optimized code for the
CUDA implementation, whigh is highly tuned for GPUs. All
benchmarks use single-precision floating point arithmetic only,
to allow for a fair comparison with Tesla.

GPU Measurements. A P4460 Power Meter [16] is
orchestrated to measure the total power of the computer system
that we use in our experiments. The system is configured with
a dual-core AMD Opteron 2218 CPU, an NVIDIA GeForce
280 GPU card and RedHat Linux 5.6 OS. The temperatures
of the CPU cores and the GPU are sampled every second
via the commands sensors and nvclock -T. The clock
frequencies of the CPU cores and the GPU are monitored via
the commands cat /proc/cpuinfo and nvclock -s.

Our preliminary experiments show that the effect of the
CPU performance is negligible on the runtime of our bench-
marks. Therefore, for reducing its effect on overall power, the
clock frequency of the CPU was set to its minimum value,
1GHz. While the GPU card does not provide an interface
for manually configuring its clock, we observed that during
the execution of the benchmarks, core and memory controller

frequencies remain at the maximum values.
The GTX280 column of Table IV lists the data collected

from the execution of the benchmarks on the GPU. The power
of a benchmark is computed by subtracting the idle power of
the system without the GPU card (98W ) from the measured
total power. Each benchmark is modified to execute in a loop
long enough to let the system reach a stable temperature,
and execution time is reported per iteration. The initialization
phases, during which the input data is read and moved to the
GPU memory, are omitted from the measurements 3. We also
measured the idle power of the GPU card at various temper-
atures to better understand its dependency on the operating
temperature. Results range from 76W at 61C to 85W at 80C.
We use this data to calibrate the leakage/temperature model of
XMTSim mentioned in Sec. III. The CPU core temperatures
deviate at most 2◦C from the initial temperature, which is not
expected to affect the leakage power of the CPU significantly.

XMT Simulations and Comparison with GTX280. The
simulation results for XMT1024 are given in the XMT1024
column of Table IV. We need to ensure that the two most
power intensive benchmarks on XMT1024, Spmv and Conv,
do not surpass the maximum power on GTX280, which is
200W for Spmv. Under these restrictions, we determined that
the XMT1024 chip can be clocked at the same frequency as
GTX280, 1.3 GHz.

Fig. 2 presents the speedups of the benchmarks on
XMT1024 relative to GTX280. Fig. 3 then shows the ratio
of benchmark energy on GTX280 to those on XMT1024.

As expected, XMT1024 performance exceeds GTX280 on
irregular benchmarks (8.8x speedup) while GTX280 performs
better for the regular benchmarks (0.24x slowdown). The
average is 6.34x among all benchmarks. The trends of the
speedups match those demonstrated in [7] and the differences
in the exact values are caused by improved simulation models
and the newer version of the CUDA compiler used in our
experiments.

The two chips show similar power trends among the
benchmarks. On XMT1024, the average power of irregular
benchmarks, 138W, is lower than the average power of the
two regular benchmarks, which is 168W. A similar trend can
be observed for GTX280. We see that XMT does not require
a higher power envelope in order to boost the performance

3In XMT, the Master TCU and the TCUs share the same memory space,
and no explicit data move operations are required. However, this advantage
of XMT over Tesla is not reflected in our experiments.



Fig. 2: Speedups of XMT1024 with respect to GTX280. A value less than 1
denotes slowdown.

Fig. 3: Ratio of benchmark energy on GTX280 to energy on XMT1024.

of the irregular benchmarks, for which efficient handling of
irregular communication and control flow is more important.
Acceleration of regular benchmarks on GTX280, however,
reflects directly on its power envelope. Predictable flow of
regular programs allows the GPU to extract more arithmetic
operations, given sufficient peak ICN bandwidth and peak
computation capacity. It can be noted that Spmv is an ex-
ception to the rule-of-thumb that irregular programs spend
lower power. In the case of Spmv, irregularity is caused by
the complexity of the memory addressing, whereas the high
density of floating point operations elevates the power.

The energy comparison yields results similar in trend to
the speedup results (ratio of 8.1 for irregular and 0.22 for
regular benchmarks; 5.81 for all benchmarks). Energy is the
product of power and execution time, and the relation of power
dissipation among the benchmarks is alike between the two
chips, as can be seen in Table IV. Therefore, the energy is
roughly proportional to the speedups.

V. SENSITIVITY OF RESULTS TO POWER MODEL ERRORS

Early estimates in a simulation based architecture study
are always prone to errors due to possible deviations in the
parameters used in the power model. In this section we will
challenge some of the assumptions of Sec. III that led to
the results in Sec. IV: The accuracy of the parameter values
obtained from the McPAT and Cacti tools, the ideal scaling
factor of 0.5 used to scale the power of the shared caches
from 90nm to 65nm, and the overall interconnection network
power.

These modifications will increase the estimated power dissi-
pation, which will in turn cause the maximum power observed
for the benchmarks to surpass GTX280. To satisfy the power
envelope constraint in our experiments, we reduce the clock
frequency and voltage of the XMT computing clusters and the

Fig. 4: Decrease in XMT vs. GPU speedups with average case and worst case
assumptions for power model parameters.

Fig. 5: Increase in benchmark energy ratios on XMT with average case and
worst case assumptions for power model parameters.

ICN according to Eq. 24. As a result, XMT runtimes increase
and the speedups shown in Fig. 2 degrade (GTX280 runtimes
do not change).

Cluster, Cache and Memory Controller. In their vali-
dation study, the authors of McPAT observed that the total
power dissipation of the modeled processors may exceed the
predictions by up to 29%. Therefore, we added 29% to the
value of all the parameter obtained from McPAT to account
for the worst case error. As a worst case assumption we also set
the technology scaling factor to 1, which results in no scaling.
In addition to the worst case assumptions, we explored an
average case, for which we used 15% prediction correction
for McPAT and Cacti and a technology scaling factor of 0.75.
We measure the speedup and energy ratio changes with respect
to the best case values given in Figs. 2 and 3.

Fig. 4 shows that the average speedups decrease by 5.6%
and 21.5% for the average and the worst cases, respectively.
The energy ratios of the benchmarks increase by average
of 15.5% for the average and 42.7% for the worst case
(Fig. 5). For each case, we ran an exhaustive search for
cluster and ICN frequencies between 650MHz and 1.3GHz
and chose the frequencies that give the maximum average
speedup while staying under the power envelope of 200W.
For the average case the cluster and ICN frequencies were
1.1GHz and 1.3GHz, respectively. For the worst case, they
were 650MHz and 1.3GHz. The optimization tends to lower
the cluster frequencies and keep the ICN frequency as high as
possible since the irregular benchmarks are more sensitive to
the rate of data flow rather than computation. Also, with the
current parameters, ICN power contributes to the total power
less than the cluster power and the effect of reducing the ICN
frequency on power is relatively lower.

4We assume that clusters and ICN are in separate voltage and frequency
domains as in GTX280.



Conv and Spmv are the two most power intensive bench-
marks and they are also the most affected by lowering the
cluster frequency. Under best-case assumptions, Conv is very
balanced in the ratio of computation to memory operations,
and Spmv has a relatively high number of FP and integer opera-
tions that it cannot overlap with memory operations. Reducing
the cluster frequency slows down the computation phases in
both Conv and Spmv. Msort and Nw are programmed with a
high number of parallel sections (i.e., high synchronization)
and they are also affected by the lower cluster frequency, as
it slows down the synchronization process. Bfs, Bprop and
Reduct are not sensitive to the cluster frequency since they
spend most of the time in memory operations. The trend of
the energy increase data in Fig. 5 is similar to the data in
Fig. 4, however unlike Fig. 4, all benchmarks are affected.
This is expected as the average and worst case assumptions
essentially increase the overall power dissipation.

Interconnection Network. The ICN model parameters
used in Sec. III may be inaccurate due to a number of
factors. First, the implementation on which we based our
model [1] was placed and routed for a smaller chip area
than we anticipate for XMT1024, and therefore might under-
estimate the power required to drive longer wires. Second, as
previously mentioned, the ideal technology scaling factor we
used in estimating the parameters might not be realistic. To
accommodate for these inaccuracies, we run a study to show
the sensitivity of the results we previously presented to the
possible errors in ICN power estimation.

We assume that the errors might be manifested in the form
of two parameters that we will explore: Pmax - ICN power at
maximum activity and clock frequency, and α - the activity-
power correlation at the maximum clock frequency, described
as follows:

Pmax = MaxActPower(ICN) + Const(ICN)

α = MaxActPower(ICN)/Const(ICN) (3)

MaxActPower and Const are the parameters in Eq. 1.
The motivation for exploring α as a parameter arises from the
fact that ICN is the only major distributed component in the
XMT chip. Efficient management of power (including dynamic
power) in interconnection networks is an open research ques-
tion [25], which affects the activity-power correlation implied
by α. For example, if clock-gating is not implemented very
efficiently the dynamic power may contain a large constant
part. Other distributed components are the prefix-sum network
and the parallel instruction broadcast, which do not contribute
to power significantly. The remainder of the components in the
chip are off-the-shelf parts, for which optimal designs exist.

The values of Pmax and α in Figs. 6 and 7 (which
will be explained next) are given for the maximum clock
frequency of 1.3GHz. However, ICN frequency may be re-
duced as a part of the optimization process, which will
change the effective values of these parameters. For example,
assume that MaxActPower(ICN) + Const(ICN) is set

Fig. 6: Degradation in the average speedup with different ICN power scenar-
ios. Pmax and activity-power correlation (α) are regarded as variables. Their
values are with respect to 1.3GHz clock frequency.

to 125W. The power envelope required with this parameter
values is more than the 200W, which is our constraint. An
exhaustive search looking for the maximum speedup point
within the power envelope is performed, and the ICN and
cluster clock frequencies are then both set to 650MHz. Since
the ICN clock and voltage are both lowered, the sum of
MaxActPower(ICN) + Const(ICN) decreases to 78W.

Fig. 6, shows the average speedups for different scenarios of
the ICN power model. In order to compress the large amount
of data, we only show the average of the speedups of all
benchmarks. Values of α, 2 and 0.6, are determined such that
10% (which was the initial value from Sec. III) and 50%
of the maximum dynamic power is regarded as a constant,
respectively. As in the previous section, we ran an exhaustive
search for cluster and ICN frequencies ranging from 650MHz
to 1.3GHz for finding the suitable design point. The change
in speedups for the α = 2 series of the plot is relatively
low, whereas the decline for the α = 0.6 series is faster. A
lower value of α will cause the ICN to spend more power
regardless of its activity, which will increase the overall power
dissipation. As a result, the solutions found have lower clock
frequencies.

Putting it together. In Fig. 7, we combine various scenarios
from the previous two sections, namely the variations in Pmax

of ICN with the best, average and worst case scenarios for the
rest of the chip. The α parameter for ICN is set to the worst
case value of 0.6. For the data points that do not exist in the
plot, no solution exists within our search space. It should be
noted that even for the worst scenarios the average speedup
of XMT, is greater than 3x.

We also included the power breakdown of the XMT chip for
two representative cases. Fig. 8(a) is the best case assumptions
with minimum ICN power and α = 2, and Fig. 8(a) is the
average case assumptions with Pmax of 82W and α = 0.6 for
ICN. The average speedup for the first case was 6.34 and for
the second case it was approximately 4.4. As can be noted, the
ratio of ICN power to cluster power is higher in the second
case since ICN power is increased more than the cluster power
as a part of the assumptions.

VI. CONCLUSION

This paper demonstrates the runtime advantage of XMT
under power constraints by comparing it to a state-of-the-art
GPU as the baseline. Consequently, it strengthens the claim



Fig. 7: Degradation in the average speedup with different chip power
scenarios. Pmax for ICN and best, average and worst case for the rest of
the chip are regarded as variables. ICN activity-power correlation (α) is set
to 0.6. Pmax and α are with respect to 1.3GHz clock frequency.

Fig. 8: Power breakdown for two cases: (a) α = 2, Pmax = 33W , best case
for the rest of the chip, and (b) α = 0.6, Pmax = 82W , average case for
the rest of the chip.

that XMT is competitive with GPUs, as a general-purpose
many-core architecture, on performance and programmer’s
productivity when using comparable resources. Caragea et al.
[7] compared a simulated 1024-core XMT chip with a silicon-
area equivalent GPU, but left open the issue of power. We com-
plete the comparison by establishing that the XMT chip does
not require a higher power envelope than the GPU. Namely,
this verifies that a general-purpose desktop XMT computer
is as feasible as a current high-end GPU. Performance [7]
already demonstrated a variety of workloads for which a
simulated 1024-core XMT chip comes ahead; it also showed
that XMT does not fall behind significantly on workloads for
which GPU is particularly stronger. Ease-of-programming As
its programming is PRAM-like, XMT has a big advantage,
documented in [13], [30], [36], [40], on ease-of-programming
and effectiveness on achieving speedups. XMT also offers
backwards compatibility on serial code and rewards even small
amount of parallelism with speedups over uni-processing.

In view of the results of the current paper, XMT is well-
positioned for the mainstream general-purpose platform of the
future, especially when coupled with a GPU (see, e.g., [10])
for GPU-specific tasks.
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