
1

Power Punch: Towards Non-blocking Power-gating of NoC Routers

Lizhong Chen1, Di Zhu2, Massoud Pedram2, and Timothy M. Pinkston2

1School of Electrical Engineering and Computer Science, Oregon State University, USA
2Department of Electrical Engineering, University of Southern California, USA
chenliz@eecs.oregonstate.edu, {dizhu, pedram, tpink}@usc.edu

Abstract

As chip designs penetrate further into the dark silicon
era, innovative techniques are much needed to power off
idle or under-utilized system components while having min-
imal impact on performance. On-chip network routers are
potentially good targets for power-gating, but packets in the
network can be significantly delayed as their paths may be
blocked by powered-off routers. In this paper, we propose
Power Punch, a novel performance-aware, power reduction
scheme that aims to achieve non-blocking power-gating of
on-chip network routers. Two mechanisms are proposed
that not only allow power control signals to utilize existing
slack at source nodes to wake up powered-off routers along
the first few hops before packets are injected, but also allow
these signals to utilize hop count slack by staying ahead of
packets to “punch through” any blocked routers along the
imminent path of packets, preventing packets from having to
suffer router wakeup latency or packet detour latency. Full
system evaluation on PARSEC benchmarks shows Power
Punch saves more than 83% of router static energy while
having an execution time penalty of less than 0.4%, effec-
tively achieving near non-blocking power-gating of on-chip
network routers.

1. Introduction

A significant challenge for the design of current and fu-
ture many-core chips is how to provide fast and efficient on-
chip communication. While network-on-chip (NoC) offers a
potentially scalable solution, current designs consume sub-
stantially more power than may be needed (e.g., up to 28%
in Intel Teraflop [16] and 19% in Scorpio [10]), with a large
percentage of static power (over 60% even for simpler rout-
er designs) due to relatively low average traffic load of real
applications. Static power consumption is exacerbated as
transistor feature sizes continue to shrink. Meanwhile, with
more cores being integrated on chips, there is an increasing
demand for low latency NoCs due to the longer core-to-core
hop distance. Thus, it is of paramount importance to devise
effective NoC static power saving techniques that do not
compromise NoC performance.

Power-gating is a very promising technique that can re-
duce the static power component dramatically. When ap-
plied to on-chip network routers, however, power-gating is
prone to incur a significant increase in packet latency due to
blocking. When a router is powered off, it essentially blocks
all paths that intersect with the router. Packets thus have to
wait for the router to wake up before proceeding and experi-
ence wakeup latency multiple times before delivery in cases

where many routers along the path are powered off. This
leads to large cumulative delay that is pronounced even
when common optimizations are applied which are designed
to hide the wakeup latency, at least partially. Another ap-
proach to mitigate this blocking problem in power gating is
to deflect packets via routing and topology reconfiguration.
Nevertheless, existing reconfiguration methods either are
too slow (~10K cycles) to capture the short but exploitable
router idle periods (~10-100 cycles) or can cause a large
number of packet detours due to simplified reconfiguration
algorithms. Moreover, dynamic reconfiguration unneces-
sarily complicates the already complex designs of on-chip
networks.

In addressing this blocking problem comprehensively, in
this work we propose Power Punch, a novel performance-
aware power-saving scheme that aims to achieve non-
blocking power-gating of on-chip network routers. The
basic idea of Power Punch is to always send power control
signals ahead of packets to “punch through” any blocked
routers in power-gated mode along the imminent path of
packets so that packets can be transported without having to
suffer any router wakeup latency or packet detour latency.

Power Punch consists of two mechanisms that solve ma-
jor challenges in sending punch-through power control sig-
nals. The first challenge concerns the tension between the
amount of power control information needed to be propa-
gated across multiple hops ahead of packets and the tight
constraints in allocating control wires for this purpose. Us-
ing dedicated wires for each wakeup control signal incurs
prohibitive hardware cost whereas sharing wakeup signals
introduces serious contention delay that could defeat the
purpose of sending wakeup signals in advance. The first
proposed mechanism utilizes the properties and constraints
of the network to minimize the needed control information
and is able to merge all the signals arriving at a router in the
same cycle, thereby propagating punch-through power con-
trol signals in a low-cost and contention-free fashion. In
addition, the multi-hop power control signals forewarn rout-
ers to know precisely whether there will be packets arriving
in the next few cycles. This helps to filter out short counter-
productive idle periods (i.e., less than the break-even time),
and ensure the resulting router wakeups are accurate and
necessary. The second challenge concerns how to punch
through powered off routers that are close in vicinity to the
injection node and, therefore, do not have enough remaining
hops (i.e., hop count slack) for sending wakeup control sig-
nals to cover the wakeup latency. Our second proposed
mechanism holistically exploits existing slack in the net-
work interface at injection nodes. In essence, the mechanism
allows wakeup control signals to be sent before packets are

2

generated, thus compensating for the otherwise insufficient
slack in hop count.

Full-system simulations show that, compared to an op-
timized conventional power-gating technique applied to on-
chip network routers, Power Punch achieves a reduction of
61.2% in network performance penalty while also saving
3.8% more router energy. When compared with not using
power-gating, Power Punch reduces router static energy by
83.7% while incurring only 0.4% increase in execution time,
essentially achieving near non-blocking power-gating which
is the goal.

This research increases our understanding of how to
maintain performance in the presence of power-gating of
on-chip network routers and provides key insights on the
viability of achieving non-blocking power-gating. The rest
of the paper is organized as follows. Section 2 provides
more background on power-gating and its blocking issue.
Section 3 describes the rationale of Power Punch and dis-
cusses challenges in achieving it. Section 4 provides details
of the proposed Power Punch scheme. Section 5 presents
our evaluation methodology, and Section 6 provides simula-
tion results. Finally, related work is summarized in Section
7, and Section 8 concludes the paper.

2. Background and Motivation

2.1 High Static Power in On-chip Network Routers

On-chip networks provide a scalable approach for sup-
porting parallel communication in many-core CMPs. They
should be designed so as not to incur considerable overhead
in chip area and power. While the area overhead becomes
less of a concern as more and more transistors are being
integrated on a chip, the NoC power problem has been esca-
lating across each technology node due to ever tighter power
constraints. Consequently, despite numerous previously
proposed novel topologies and routing algorithms, most
taped-out commercial and research many-core chips adopt
planar mesh-based topologies with dimension-order routing
in practice to reduce NoC overhead (e.g., Intel SCC [17],
TRIPS [13], Scorpio [10], Adapteva Epiphany family [1],
Tilera TILE-Pro and TILE-Gx families [30]). Even with
these simpler implementations, the NoC still consumes sub-

stantially more power than necessary, with a large amount
consumed by its static power component.

To illustrate, we conduct full-system simulations using
gem5 [4] and multi-threaded PARSEC benchmarks [3] on
an 8x8 mesh network with XY routing and wormhole
switching. The number of virtual networks is configured to
be three, the minimum number needed for correctly running
the MESI coherence protocol without deadlocks. Each vir-
tual network also has a relatively small buffer configuration,
with two 3-flit sized data virtual channels (VCs) and one 1-
flit sized control VC. Simulation results from the DSENT
[29] NoC power simulator integrated in gem5 show that,
under this simple NoC design and minimal resource config-
uration, router static power still accounts for nearly 64% of
the total router power consumption assuming 45nm tech-
nology. This is because router components other than buff-
ers also consume noticeable power [6] and because the av-
erage network utilization in real benchmarks is relatively
low. As chip designs penetrate further into the dark silicon
era, the static power component of NoCs will only get worse
as more processing cores can be powered off or are operated
at lower frequencies, thereby generating less network traffic
and leading to higher static power percentage.

2.2 Applying Power-gating to On-chip Network Routers

One way that can dramatically reduce static power is to
apply power-gating techniques to each NoC router. This can
be very effective as it exploits the idleness exhibited in each
router while reducing the static power of all components in
a router. As depicted in Figure 1, power-gating is imple-
mented by inserting an appropriately sized header transis-
tor(s), usually a high threshold and non-leaky “sleep switch”,
between Vdd and the router. When the sleep signal is assert-
ed by the power-gating controller (which is a small hard-
ware component that is always powered on), the supply
voltage to the router is cut off, thus eliminating the leakage
currents in both the subthreshold conduction and reverse-
biased diodes.

Different from other system components, when applying
power-gating to on-chip network routers, extra handshaking
signaling is needed between neighboring routers to ensure
the correct delivery of packets. As shown in Figure 2, be-
sides generating the sleep signal, the power-gating control-

Figure 1: Power-gating technique. Figure 2: Power-gating handshaking.

Input port

Switch

Output port

Output portInput port

VC allocator &
Switch allocator

PG
Controller

… …

Vdd

Sleep
Signal

GND

 (a) Router with look-ahead routing

(b) Router with look-ahead routing
and speculative SA

Figure 3: Router pipeline designs.

Router
C

Router
A

Router
E

Router
B

Router
D

WU

PG

WU

PG

WU PG

WU PG

3

ler also monitors the emptiness of the router datapath and
the wakeup signals from neighbors. When the datapath of a
router, for example, router A is empty (i.e., input buffers,
output registers and crossbar are empty) and no wakeup
signals (WU) come from neighbors, the controller in router
A asserts the sleep signal after a timeout period1 to put rout-
er A into gated-off state and notifies its neighbors by assert-
ing the PG signal. Upon detecting the asserted PG signal,
neighboring routers mark the corresponding output ports as
unavailable in their switch allocator. Later, if a packet in
router B or in other neighbors of router A needs to be for-
warded to router A, a WU signal will be asserted which trig-
gers the controller in router A to de-assert its sleep signal.
The packet is then stalled in router B until router A is fully
awoken and the PG signal is cleared. Hence, the wakeup
latency of router A, including the blocking latency due to
being powered off, is directly part of the overall latency of
the packet forwarding process.

2.3 Blocking Problem in Conventional Power-gating

As can be seen, the primary concern with the above con-
ventional way of applying power-gating to routers is the
negative performance impact caused by wakeup latency.
Essentially, when a router is powered off, it blocks all the
paths of a packet that overlap with the router (i.e., forward-
ing path from any of the router’s input ports to its output
ports). In what follows, we use the term blocking power-
gating to refer to this phenomenon.

The blocking problem in conventional power-gating can
be prohibitive. Prior works [6, 7, 9, 24, 28] as well as results
given in this work show that the wakeup latency of on-chip
network routers is around 6-12 cycles depending on imple-
mentation, which is quite sizable. More importantly, a pack-
et may experience wakeup latency multiple times in the
network as more than one router along the packet’s path
could be powered off. Thus, the cumulative delay caused by
blocking power-gating is comparable to the zero-load packet
latency which also is on the order of tens of cycles. As on-
chip network latency is very critical to the overall system
performance, the blocking problem must be addressed ade-
quately before power-gating can be applied most effectively.

Several approaches have been proposed so far to combat
blocking power-gating, but they have various degrees of
effectiveness. One approach is to deflect packets when their
current paths are blocked by powered-off routers. This
needs to be achieved through intricate reconfiguration of
routing, topology, or both. For example, a fast reconfigura-
tion method [6] that uses pre-determined paths to bypass
gated-off routers reconfigures quickly and can capture both
long (i.e., >100 cycles) and short idle intervals (i.e., 10-100
cycles). However, it introduces considerable packet detours
and degrades system performance. More extensive but com-
plex reconfiguration algorithms [27, 28] use dynamic in-
formation to minimize detours. However, they are slow by
comparison and, as a result, reconfigure only on a per-epoch

1 A minimum of two-cycle timeout is needed to allow packets that already
left upstream routers to be received correctly. Additional timeout cycles
can be used to filter short idle periods. More details are in next subsection.

basis (~10K cycles for an epoch) to capture idleness on a
very coarse granularity. Also, their uses are limited to sce-
narios in which a couple of cores and the co-located caches
are completely idle with no communication with other cores
and caches, which might be impractical for typical shared
cache architectures. Additionally, the routing and topology
reconfiguration due to power-gating unnecessarily compli-
cates the simple design of deterministic routing in mesh
networks.

Another approach to deal with blocking power-gating is
to control powered-off routers more effectively using tech-
niques directly aimed at reducing waiting time. A common
technique is to send the wakeup signal early to the next
router as soon as the output direction is computed [24]. This
hides a few cycles, equivalent to the number of router pipe-
line stages but typically is not sufficient to cover the entire
wakeup latency. Another technique is to apply a timeout
mechanism after a router is detected as being idle. This
technique intends to filter out short idle periods that are less
than the break-even time2 to reduce the possibility of en-
countering a powered-off router. However, the timeout val-
ue cannot be too long (around 4 cycles [7, 9]) as false filter-
ing essentially wastes the remaining idle cycles that can be
exploited by power-gating. Finally, several techniques have
been proposed to power-gate individual components within
a router [24, 25, 26]. This approach reduces the chance of
encountering powered-off router components at the cost of
substantially higher implementation complexity. Yet, it still
cannot entirely remove the blocking when a powered-off
component is needed for packet forwarding, and it does not
mitigate the cumulative wakeup latency problem either.

Therefore, given the severe performance penalty that can
be caused by wakeup latency and the many limitations in
existing approaches, it is imperative for a novel scheme to
be devised that can solve the blocking problem comprehen-
sively, ideally achieving non-blocking power-gating.

3. Challenges in Achieving Non-blocking Pow-
er-gating

Non-blocking power-gating of on-chip network routers
can be achieved by pre-powering up routers along network
paths taken by packets in advance of packet arrival. To ac-
complish this, fundamental challenges must be adequately
addressed. One major challenge concerns how to completely
hide router wakeup latency across multiple hops with mini-
mal overhead; another concerns how to wake up routers
located at or neighboring nodes that inject packets into the
NoC at the source. Below, these challenges are discussed in
detail.

In order to hide wakeup latency of Twakeup cycles com-
pletely, the number of hops that a wakeup signal should be
sent ahead of a packet is determined by Twakeup/Trouter , as-
suming the packet takes (Trouter+Tlink) cycles per hop, where-
as the wakeup signal takes Tlink cycles per hop. For example,

2 Break-even time (BET) is the minimum number of consecutive cycles
that a gated circuit block needs to remain idle before waking up to offset
the energy overhead of one power-gating process (e.g., charge capacitance,
distribute sleep signal). BET is around 10 cycles for on-chip routers [7].

4

Figure 3 shows two common router pipeline designs [20].
The router design in Figure 3(a) uses look-ahead routing,
resulting in a 4-stage pipeline of buffer writing (BW), VC
allocation (VA), switch allocation (SA) and switch traversal
(ST). The router design in Figure 3(b) further optimizes
with speculative switch allocation, which reduces another
pipeline stage if the speculation is successful. With a Twakeup
of 8 cycles, wakeup signals need to be sent at least 2 hops in
advance for the case in Figure 3(a) and 3 hops in advance
for the case in Figure 3(b) in order to hide the entire Twakeup.

However, for a given router, the total number of routers
that needs to be monitored may quickly become very large
even within a short hop distance. Figure 4 shows an exam-
ple of an 8x8 mesh network. There are 24 routers within 3
hops of router 27 (denoted as R27 hereafter), which ac-
counts for nearly 38% of all routers on the chip. This means
that, assuming the 3-stage speculative router pipeline design
shown in Figure 3(b), R27 needs to monitor the wakeup
signals from all the 24 routers that are either sent to wake up
R27 (e.g., from R3 to R27) or sent to wake up other routers
but need to be relayed at R27 (e.g., from R26 to R29). This
makes it very challenging to monitor and propagate effec-
tively all the needed wakeup signals in the network.

A straightforward way to achieve this is to allocate dedi-
cated wire channels for every wakeup control signal be-
tween a router and its monitored routers (e.g., 24 separate
incoming wire channels are needed for R27). Note that it is
not enough to have only 1-bit wire channels for the wakeup
control signal. For instance, if the wire channel from R26 to
R27 is only 1 bit, R27 will have no idea about if and where
this signal should be forwarded after it arrives as the router
cannot distinguish whether this 1-bit wakeup signal is in-
tended to wake up R29, or R43, or any of the 9 routers that
are within 3 hops of R26 with the first hop being R27.
Hence, to allow correct relay of wakeup signals, minimally
4 bits are needed to distinguish the 9 different cases, totaling
96 bits of wire channels in this example which is prohibi-
tively high, e.g., by comparison, packet payload channel
widths typically are 128 bits or 256 bits.

An alternative approach is to share wire channels for the
wakeup control signals. This solution may be more viable
from the perspective of hardware cost, but it immediately
brings to fore the critical issue of possible contention among
wakeup signals. In the case of Figure 4, a single wire chan-
nel such as the one from R27 to R28 may be shared by up to
9 wakeup signals. If only one of them can be transmitted in
a given cycle, other wakeup signals arriving at the same
cycle will be unavoidably delayed. As any delayed cycle is
translated directly into delayed wakeup of the needed router,
this can seriously degrade the effectiveness of sending
wakeup signals in advance unintentionally, causing blocking
to persist. To avoid such contention issues, multiple wakeup
control signals must be allowed to be transmitted simultane-
ously. Nevertheless, merging wakeup signals is very diffi-
cult due to the large number of distinct cases. We illustrate
by continuing to use as an example the wire channel from
R27 to R28. Nine routers (i.e., R11, R18, R19, R25, R26,
R27, R34, R35, and R43) may send wakeup signals that use
this wire channel, and different signals may be intended to

wake up different routers leading to a prohibitively large
number of combinations. For example, in one cycle, R27
may need to merge the wakeup signal from R26 to R36 and
the wakeup signal from R27 to R21. In another cycle, R27
may need to merge wakeup signals from R26 to R20 and
from R27 to R37. The merged results are different in these
two cases and, therefore, need to be distinguishable in the
wire channels. As a result, wire channels need to be wide
enough to have different values that can differentiate be-
tween all the various combinations of needed wakeup sig-
nals. This could lead to very wide wire channels comparable
in size to the aforementioned dedicated wire approach. In
the next section, we show how this challenge can be ad-
dressed by presenting an innovative mechanism that can
collectively propagate wakeup signals in a contention-free
manner while requiring narrow wire channels.

The other major fundamental challenge arises from the
situation of there not being enough routing hop slack to send
wakeup signals in advance to fully cover the wakeup latency.
This problem is most severe for routers located at or neigh-
boring injection nodes. For instance, if R24 in Figure 4 is
powered off, the associated local node will experience the
entire Twakeup latency before being able to inject packets. Our
evaluations using PARSEC benchmarks show that, on aver-
age, more than 13% of packets received by routers come
from local nodes, causing the above performance penalty to
occur when those routers are powered off. To address this
challenge, other time slack opportunities that holistically
include exploiting behavior at injection nodes need to be
explored to increase the effectiveness of hiding router
wakeup latency, as is achieved with our proposed Power
Punch.

4. Power Punch

In this section, we present a detailed description of the
proposed Power Punch, a novel scheme that incorporates
innovative mechanisms for addressing aforementioned chal-

Figure 4: Power Punch challenges and solutions.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

X+

Y+

5

lenges to achieving near non-blocking power-gating. The
key rationale for Power Punch is the following: if wakeup
information can be cleverly generated and transmitted suffi-
ciently early, power control signals can be sent to “punch
through” the network ahead of packets to power up needed
routers along the path of packet destinations. From the per-
spective of packets, transport in the network can be accom-
plished without having to suffer any router wakeup latency
or packet detour latency, as if all NoC routers were virtually
always powered on.

In merging wakeup signals, the main obstacle is the ten-
sion between the amount of power control information
needed to be propagated and the limited power control
bandwidth available. The basic idea behind the mechanism
for addressing this concern is to utilize the routing and topo-
logical properties of the network to minimize the needed
information and reduce the width of the merged signals via
clever encoding. The proposed mechanism allows all of the
wakeup signals arriving at a router in the same cycle to be
efficiently merged and relayed, thereby eliminating conten-
tion delay. In addressing the challenge of not having enough
slack in hop count at or near injection nodes, the basic idea
behind the mechanism that addresses this concern is to ex-
ploit existing slack at the network interface (NI) from when
information for generating wakeup control signals is availa-
ble and when a packet is generated and ready for injection.
This allows wakeup signals to be sent ahead to the source
and neighboring routers well enough in advance of packet
injection, thus compensating for the otherwise insufficient
hop count slack.

Collectively, these mechanisms work in tandem to ena-
ble power control signals to “punch though” blocked routers
along the entire path of packet destinations, thereby allow-
ing packets to be transported in the network in a near non-
blocking fashion. The following subsections describe these
mechanisms in further detail.

4.1 Low-cost and Contention-free Multi-hop Punch

To merge and relay wakeup signals across multiple hops,
a five-step encoding process can be used to minimize hard-
ware implementation. In this subsection, we explain these
steps using the example of sending a wakeup signal 3 hops
in advance (i.e., for the speculative router pipeline shown in
Figure 3(b)). If needed, a simplified 2-hop and an extended
4-hop design can be derived using similar procedures. It is
important to note that wakeup signals should not be sent too
early, as this would wake up routers before they are actually
needed and, thus, squander powered-off cycles. In practice,
3 hops of slack typically is able to cover router wakeup la-
tency (e.g., hide Twakeup up to 9 cycles for 3-stage routers and
up to 12 cycles for 4-stage routers). To facilitate discussion,
the term targeted router is used to refer to the router that is
3 hops away from the current router (e.g., in Figure 4, if a
packet has source R0, destination R7 and is currently in R3,
then R6 is the targeted router for the wakeup signal from
R3). The term punch signal is used to refer to the final
merged wakeup signals encoded using the proposed Power
Punch scheme.

Without loss of generality, we implement Power Punch
assuming a 2D mesh network with XY routing. The ra-
tionale is the following. First, most commercial and research
chips use dimension-order routing to keep NoC overhead
low as mentioned in Section 2.1, therefore the proposed
scheme can be readily adopted and have high practical im-
pact. Second, the advantage of adaptive routing over deter-
ministic routing becomes prominent only when traffic load
approaches saturation. Power-gating is best applied when
traffic load is low to medium, a region where there is little
distinguishable performance difference between the two
routing methods in the absence of power-gating. Third, if
certain many-core applications require very high throughput
that is not sustainable by deterministic routing, previous
works have proposed theory and methodology (e.g., [11, 22])
that allow the routing algorithm to switch from deterministic
to adaptive, and vice versa, according to prevailing network
loads. This enables the use of Power Punch to save static
power under low load conditions while not compromising
throughput under high load conditions. Below are the steps.
(1) Determine targeted router based on network topology
and routing algorithm

To merge multiple wakeup signals into one punch signal,
the targeted router for each wakeup signal must first be de-
termined. We assume a mesh NoC with deterministic rout-
ing. The main advantage of mesh XY routing is that, at any
given router, the targeted router of the wakeup signal can be
easily determined using destination information stored in
the packet header. For instance, in Figure 4, a packet cur-
rently at R26 with destination R31 knows precisely that the
targeted router is R29, and a wakeup signal will be sent to
notify that router (the actual sent wakeup signal will be
merged with other wakeup signals into one encoding, as
described shortly).

(2) Reduce information for waking up intermediate routers
With an identified targeted router and mesh XY routing,

no additional information is needed in the wakeup signal for
any intermediate routers along the path to the targeted router
that need to be notified (e.g., R27 and R28 are along the path
from R26 to R29; thus they are implicitly notified if the tar-
geted router is R29). This helps to reduce the information
needed in wakeup signals and the number of bits of encod-
ing for the final merged punch signals.

(3) Reduce the number of wakeup signals
After reducing the information in each wakeup signal,

the next step is to reduce the number of wakeup signals that
need to be merged at a given router. Take R27 as an exam-
ple. In its X+ direction (i.e., from R27 to R28), wakeup sig-
nals from up to 9 routers (i.e., R11, R18, R19, R25, R26,
R27, R34, R35, and R43) may need to be relayed from R27
to R28 in general. However, due to restrictions in XY rout-
ing for avoiding deadlock, only three out of these 9 routers
are possible, namely R25, R26 and R27. Packets from the
remaining six routers do not use the link from R27 to R28,
hence do not send wakeup signals along that link (e.g., path
R19→R27→R28 is not valid as Y+ to X+ turns are illegal).
Similarly, in the X- direction of R27, only three routers can

6

be the source for wakeup signals as well. This greatly re-
duces the number of combinations for targeted routers. As
for the Y+ and Y- directions of R27, while all nine routers
can still be the source of wakeup signals, their targeted rout-
ers are limited, so it is straightforward to optimize as ex-
plained in the next step.

(4) Reduce combinations of targeted routers

Next, the minimal number of bits needed for encoding
the punch signals in order to merge all possible wakeup sig-
nals arriving at a router in the same cycle should be deter-
mined. As mentioned in Section 3, different sets of targeted
routers require distinct punch signals. For instance, a punch
signal from R27 to R28 with an encoding of “01100” can be
used to represent the merged result of wakeup signals from
R26 to R36 and from R27 to R21 (i.e., the set of targeted
routers is {36, 21}; see Table 1, entry 13). A different en-
coding for the punch signal, such as “01111”, is needed to
merge a different combination of wakeup signals from R26

to R20 and from R27 to R37 (i.e., the set of targeted routers
is {20, 37}), even though the source routers are the same in
both cases. However, if the targeted router of one wakeup
signal is along the path of the targeted router of another
wakeup signal (e.g., R26 to R29 is along the path from R27
to R21), the same punch signal encoding of “00010” can be
used as in the case where there is only one wakeup signal
from R27 to R21. In other words, the width of the punch
signal can be optimized to be just wide enough to distin-
guish all distinctive sets of targeted routers, and no wider.

Based on the results from step (3), up to three routers
can be the source of wakeup signals in the X+ direction.
R27 has 9 possible targeted routers (i.e., R12, R20, R21, R28,
R29, R36, R37, and R44); R26 has 4 (i.e., R20, R28, R29,
and R36) and R25 has 1 (i.e., R28). Table 1 lists all the dis-
tinctive sets of targeted routers for the X+ direction of R27
(the third column) and the corresponding wakeup signals
represented (the second column). The wakeup signal from
R25 is not listed for clarity, as the targeted router for this
wakeup signal is always R28, which is along the path of a
targeted router in any table entry. In total, due to the reduc-
tion through previous steps and the use of targeted routers to
remove the cases where other targeted routers are implicitly
contained, there are only 22 different sets. Therefore, only 5
bits are needed in the punch signal of the X+ direction to
distinguish between these sets. Similarly, the width of the
punch signal for the X- direction is also 5 bits. Note that we
do not use the targeted router numbers in punch signals di-
rectly which would otherwise cost 8 bits of encoding each.

For the Y+ and Y- directions, although there are up to 9
routers for sending wakeup signals, the targeted routers have
only 3 possibilities in each direction due to the illegal turns
from Y to X dimensions (e.g., only R35, R43 and R51 for
Y+). The combination of the three targeted routers result in
three distinctive sets in each direction, e.g., {R35}, {R43},
{R51} in Y+ (note that if both R35 and R51 are the targeted
routers, the resulting set is {R51} as R35 is implicitly con-
tained). Therefore, only 2 bits of encoding are needed for
the punch signals in each of the Y directions.

(5) Punch signals from/to neighbors

Figure 5 depicts the resulting punch signals and their
widths between neighboring routers. Each cycle, up to four
sets of punch signals can arrive from neighbors in the two
dimensions with values reflecting the targeted router(s) that
need to be controlled. Along with additional targeted routers
generated from the local router, the power-gating controller
sends newly generated punch signals to at most the four
neighbors. As multiple targeted routers can be merged and
communicated through a punch signal in one cycle, no con-
tention delay is incurred, and targeted routers can always
receive the notification as scheduled and wake up in time. In
addition, this mechanism requires only 5 bits of encoding
for X directions and 2 bits for Y directions in the case of 3-
hop wakeup signal slack. Therefore, the hardware cost of
punch signals and the power-gating control logic is very low,
particularly compared to the main datapath and control path
in routers that operate at the size of flits with 128 bits or 256
bits. It can be shown that, for the case of 4-hop wakeup sig-

Table 1: All possible sets of targeted routers in the X+
direction of R27 (“||” means or; “&” means and).

Represented
Wakeup Signals

Set of
Targeted Routers

Punch
Signal

1 27→28 || 26→28 { 28 } 00000

2
27→12 ||
27→12 & 26→20 ||
27→12 & 26→28

{ 12 } 00001

3
27→21 ||
27→21 & 26→29 ||
27→21 & 26→28

{ 21 } 00010

4
27→30 ||
27→30 & 26→29 ||
27→30 & 26→28

{ 30 } 00011

5
27→37 ||
27→37 & 26→29 ||
27→37 & 26→28

{ 37 } 00100

6
27→44 ||
27→44 & 26→36 ||
27→44 & 26→28

{ 44 } 00101

7
27→20 || 26→20 ||
27→20 & 26→20 ||
27→20 & 26→28

{ 20 } 00110

8
27→29 || 26→29 ||
27→29 & 26→29 ||
27→29 & 26→28

{ 29 } 00111

9
27→36 || 26→36 ||
27→36 & 26→36 ||
27→36 & 26→28

{ 36 } 01000

10 27→12 & 26→29 { 12, 29 } 01001
11 27→12 & 26→36 { 12, 36 } 01010
12 27→21 & 26→20 { 21, 20 } 01011
13 27→21 & 26→36 { 21, 36 } 01100
14 27→30 & 26→20 { 30, 20 } 01101
15 27→30 & 26→36 { 30, 36 } 01110
16 27→37 & 26→20 { 37, 20 } 01111
17 27→37 & 26→36 { 37, 36 } 10000
18 27→44 & 26→20 { 44, 20 } 10001
19 27→44 & 26→29 { 44, 29 } 10010

20 27→20 & 26→29 ||
27→29 & 26→20 { 20, 29 } 10011

21 27→20 & 26→36 ||
27→36 & 26→20 { 20, 36 } 10100

22 27→29 & 26→36 ||
27→36 & 26→29 { 29, 36 } 10101

7

nal slack, the width of punch signals is 8-bit for the X direc-
tions and 2-bit for the Y directions, which is still relatively
small. Sending wakeup signals with 5 hops or more would
be counter-productive as the wakeup latency is not that high
(~20 cycles) and more powered-off cycles would be wasted.

4.2 Injection Node Punch

Power Punch has an additional mechanism to address
the blocking issue at routers due to there not being enough
hop count slack at the injection node to fully cover the
wakeup latency of the local router. Our proposed mecha-
nism holistically exploits two potential sources of existing
slack at injection nodes to send punch signals before packets
are generated.

Figure 6 shows the timeline for generating and sending a
packet at an injection node. Normally, after accessing local
resources (e.g., cache, directory) and generating a message,
several operations are performed in the network interface.
This includes encapsulating the message into packets and
flits, arbitrating among multiple ready VCs (as only one VC
from all virtual networks can send a flit through the physical
link in each cycle), checking the availability of the connect-
ed input port of the local router, and passing the packet to
the VC buffer of the input port. If the local router is found to
be powered off when checking the availability, a wakeup
signal is sent to the power-gating control of the router. Also,
additional wakeup signals (in the form of punch signals as
described before) are sent to other non-local routers one or
more hops away based on packet destinations.

As can be seen, packets at the NI need to wait for the en-
tire wakeup latency before being injected into the router
input port. However, there is slack between the time that the
destination is known (as part of the message passed to the

NI) and the time that the availability of the router is checked
that can be exploited. Therefore, both types of wakeup sig-
nals can be sent at the beginning of NI delay instead of at
the end of NI delay, as shown in Figure 6 “slack 1”. With
this slack, several cycles equivalent to the NI latency (usual-
ly 3 or 4 cycles) can be hidden from Twakeup.

The above “slack 1” extends only up to the beginning of
the NI as the destinations may not be known earlier. For
example, sharers of a cache line for an invalidation coher-
ence message cannot be known without accessing the cache
directory on the home node. Therefore, wakeup signals to
non-local routers, which rely on destination information to
determine the targeted routers, cannot be generated earlier.
In contrast, for the local router, as long as there is a packet
that needs to be sent from this node, the local router will
always be used, even though the destination is not known.
This is represented as “slack 2” in Figure 6. Consequently, it
is possible to send the wakeup signal for the local router at
the beginning of accessing L2 cache or directory when it is
known for sure that a packet will be generated and the local
router will be used. This hides several additional cycles
from Twakeup (e.g., hiding ~6 cycles if accessing L2). One
limitation, however, is that it might not always be possible
to send the wakeup signal before accessing L1 as not all
accesses result in non-local packets. A straightforward solu-
tion to this simply is not to exploit “slack 2” for L1 cache
accesses. A valid bit is added for each type of resource to
signify whether that resource type uses this slack (i.e., “1”
for L2 cache and directory, and “0” for L1 cache). Note that
“slack 2” is relatively long, so it is very effective in hiding
wakeup latency when this slack is used.

4.3 Putting It All Together: Power Punch Impact

To summarize, Power Punch enables punch signals to
utilize existing slack at source nodes to wake up powered-
off local and neighboring routers along the first few hops
even before packets are injected. It also enables punch sig-
nals to utilize hop count slack by propagating ahead of
packets to “punch through” any blocked routers along the
imminent path of packets, waking them up along the way.
The contention-free signal propagation mechanism guaran-
tees on-time delivery of wakeup signals and the on-time
wakeup of routers, essentially hiding the wakeup latency
from packets and not requiring packet detours. In addition,
with multi-hop wakeup signals, a router knows exactly

Figure 6: Exploiting slack at injection nodes.

Figure 5: Power Punch signals.

Router

Router

Router

Router Router
5

5

5

5

2 2

2 2

Table 2: Key parameters for simulation.

Network topology 4x4, 8x8, 16x16 mesh
Input buffer depth 3-flit for data VC, 1-flit for control VC
Link bandwidth 128 bits/cycle
Router 3-stage and 4-stage
Private I/D L1$ 32KB, 2-way, LRU, 1-cycle latency
Shared L2 per bank 256KB, 16-way, LRU, 6-cycle latency
Cache block size 64Bytes
Virtual channel 2 VCs/VN, 3 VNs
Coherence protocol Two-level MESI
Memory controllers 4, located one at each corner
Memory latency 128 cycles

8

whether there is any incoming packet in next few cycles,
thus avoiding power-gating short idle periods. This is supe-
rior to timeout techniques as no false filtering can happen
and the filtering length is considerably longer. These fea-
tures allow Power Punch to have significant static energy
savings with minimal performance penalty, as shown in the
following evaluation.

5. Evaluation Methodology

Power Punch is evaluated under full system simulation
with the combined use of architecture-level and circuit-level
simulators. The cycle-accurate gem5 [4] simulator enhanced
with GARNET [2] is used for detailed timing simulation of
the processor, memory and on-chip network. We also inte-
grate the latest DSENT [29] NoC power tool with gem5 and
GARNET to obtain runtime network activity statistics and
estimate router power consumption more accurately. Signif-
icant effort has been made to implement various power-
gating functionalities in the previous simulation settings.
Besides regular power-gating components, we also modify
the simulators to model all the key additional hardware in
Power Punch, such as punch signals in all directions, extra
logic in the power-gating controller for punch signal relay
and handshaking, wakeup signals in network interface and
cache controllers for holistically exploiting slack, and so on.
The cache architecture assumes a 32KB I/D private L1
cache and 16MB shared L2 cache. The coherence protocol
uses two-level MESI implemented with 3 logically separat-
ed virtual networks to avoid message-dependent deadlock.
An 8x8 mesh network is used for most of the simulations
while both 4x4 and 16x16 meshes are used for scalability
analysis. All the NI operations are packed compactly in
three cycles, although other loosely packed NI designs with
longer latency would give Power Punch larger advantage
due to increased slack. Table 2 lists other key configuration
parameters.

Router wakeup latency is estimated using a standard
VLSI design flow with 45nm technology. Parasitic extrac-
tion is performed on a 451um by 451um layout, and the
extracted data is fed into a SPICE RC model. The wakeup
latency is estimated to be 8 cycles. Additional sensitivity
studies on various wakeup latencies are also conducted to
demonstrate the applicability of Power Punch over a practi-
cal range of alternatives. The break-even time is 10 cycles

and the timeout is 4 cycles, consistent with prior works [6, 7,
9].

We compare the following four schemes: (1) No-PG:
baseline design with no power-gating; (2) ConvOpt-PG:
conventional power-gating optimized with timeout and
sending of wakeup signals early (these techniques partially
hide the wakeup latency and avoid powering off short idle
periods); (3) PowerPunch-Signal: proposed scheme with
multi-hop punch signal only (no use of NI slack); (4) Pow-
erPunch-PG: comprehensive scheme with multi-hop and NI
punch signals.

6. Results and Analysis

6.1 Effect on Performance

We first evaluate one of the primary objectives of Power
Punch for reducing the performance penalty of power-gating.
Figure 7 compares the average packet latency, and Figure 8
shows the execution time of the four schemes for the multi-
threaded PARSEC benchmarks [3]. Results are normalized
to the No-PG scheme which generally provides a lower
bound for average packet latency and execution time. As
can be seen from Figure 7, even with the timeout and early-
wakeup optimizations, ConvOpt-PG still increases the aver-
age packet latency substantially, by 69.1% on average com-
pared with No-PG. This large penalty mainly comes from
the fact that powered-off routers in conventional power-
gating essentially block the path of packets and traditional
optimization techniques are far from being able to cover the
wakeup latency. In contrast, PowerPunch-Signal uses multi-
hop punch signals to wake up the needed routers in advance,
completely hiding the wakeup latency when there are
enough hops. Consequently, PowerPunch-Signal reduces
average packet latency significantly, with only 12.6% in-
crease on average. By exploiting slack to compensate for the
cases where there are not enough hops, the PowerPunch-PG
achieves an additional 4.7% reduction, resulting in an aver-
age of only 7.9% increase in packet latency compared to
No-PG. This amounts to a remarkable 61.2% improvement
compared to ConvOpt-PG.

Similar trends are also observed in execution time. As
shown in Figure 8, while the degree of reduction in execu-
tion time may vary among benchmarks due to their different
sensitivities to network latency, Power Punch always has

0

0.2

0.4

0.6

0.8

1

1.2

Ex
ec
u
ti
o
n
 t
im

e
 (
n
o
rm

al
iz
e
d
 t
o
 N
o
‐P
G
)

No‐PG ConvOpt‐PG PowerPunch‐Signal PowerPunch‐PG

0

10

20

30

40

50

60

70

80

A
ve
ra
ge

 p
ac
ke
t
la
te
n
cy
 (
cy
cl
e
s)

No‐PG ConvOpt‐PG PowerPunch‐Signal PowerPunch‐PG

 Figure 7: Average packet latency. Figure 8: Execution time.

9

the lowest performance penalty (for ferret, it is not clear
why PowerPunch-PG actually has a slight decrease in exe-
cution time compared to No-PG, but likely causes are
changes in thread criticality and synchronization traffic from
altered packet timing). On average, PowerPunch-Signal and
PowerPunch-PG have only 2.3% and 0.4% increase in exe-
cution time, respectively, essentially achieving non-blocking
power-gating.

6.2 Effect on Reducing Blocking

To gain more insight on the effectiveness of Power
Punch in mitigating blocking due to power-gating of routers,
Figure 9 compares the average number of powered-off rout-
ers (i.e., blocked routers) that a packet encounters when
transported from source to destination. As can be seen, the
average number of blocked routers is dramatically reduced
from 4.21 in ConvOpt-PG to 1.09 in PowerPunch-Signal;
PowerPunch-PG further reduces that number to 0.96 due to
the use of slack at the injection node (11.8% improvement
over PowerPunch-Signal). However, this metric cannot fully
reveal the advantage of exploiting NI slack since a blocked
router is always counted as one even if the majority of its
wakeup latency is hidden by the slack. To reflect this differ-
ence, Figure 10 plots the actual number of cycles that pack-
ets spend in waiting for routers to become fully awoken.
While both PowerPunch-Signal and PowerPunch-PG signif-

icantly decrease the number of waiting cycles compared
with ConvOpt-PG, the improvement of PowerPunch-PG
over PowerPunch-Signal is actually 36.2%, revealing the
true advantage of exploiting NI slack. Figures 9 and 10 il-
lustrate the substantial reduction in performance penalty
evidenced in the previous subsection and clearly demon-
strate the impact of Power Punch.

6.3 Effect on Router Energy

The performance advantage of Power Punch does not
come at a sacrifice in energy savings. Figure 11 shows the
breakdown of router energy across the benchmarks, normal-
ized to No-PG. The router energy is decomposed into dy-
namic energy, static energy and power-gating energy over-
head. The power-gating overhead includes all the energy
wasted owing to power-gating and its control, such as the
energy consumed in powering on/off routers, in distributing
sleep signals, and in generating and propagating punch sig-
nals.

We first compare router static energy. For fair compari-
son with No-PG, the power-gating overhead is added to the
router static energy as the total router static energy for the
three power-gating schemes (i.e., the total height of the bot-
tom two bars) to reflect the net static energy savings. On
average, the three power-gating schemes have similar static

Figure 11: Breakdown of router energy.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

o
f
en

co
u
n
te
re
d
 p
o
w
e
re
d
‐o
ff
 r
o
u
te
rs

ConvOpt‐PG PowerPunch‐Signal PowerPunch‐PG

0

5

10

15

20

25

o
f
cy
cl
es
/p
ac
ke
t
w
ai
ti
n
g
fo
r
w
ak
e
u
p

ConvOpt‐PG PowerPunch‐Signal PowerPunch‐PG

 Figure 9: Number of encountered powered-off routers. Figure 10: Number of cycles waiting for router wakeup.

0%

20%

40%

60%

80%

100%

N
o
‐P
G

C
o
n
vO

p
t‐
P
G

P
o
w
er
P
u
n
ch
‐S
ig
n
al

P
o
w
er
P
u
n
ch
‐P
G

N
o
‐P
G

C
o
n
vO

p
t‐
P
G

P
o
w
er
P
u
n
ch
‐S
ig
n
al

P
o
w
er
P
u
n
ch
‐P
G

N
o
‐P
G

C
o
n
vO

p
t‐
P
G

P
o
w
er
P
u
n
ch
‐S
ig
n
al

P
o
w
er
P
u
n
ch
‐P
G

N
o
‐P
G

C
o
n
vO

p
t‐
P
G

P
o
w
er
P
u
n
ch
‐S
ig
n
al

P
o
w
er
P
u
n
ch
‐P
G

N
o
‐P
G

C
o
n
vO

p
t‐
P
G

P
o
w
er
P
u
n
ch
‐S
ig
n
al

P
o
w
er
P
u
n
ch
‐P
G

N
o
‐P
G

C
o
n
vO

p
t‐
P
G

P
o
w
er
P
u
n
ch
‐S
ig
n
al

P
o
w
er
P
u
n
ch
‐P
G

N
o
‐P
G

C
o
n
vO

p
t‐
P
G

P
o
w
er
P
u
n
ch
‐S
ig
n
al

P
o
w
er
P
u
n
ch
‐P
G

N
o
‐P
G

C
o
n
vO

p
t‐
P
G

P
o
w
er
P
u
n
ch
‐S
ig
n
al

P
o
w
er
P
u
n
ch
‐P
G

N
o
‐P
G

C
o
n
vO

p
t‐
P
G

P
o
w
er
P
u
n
ch
‐S
ig
n
al

P
o
w
er
P
u
n
ch
‐P
G

blackscholes bodytrack canneal dedup ferret fluidanimate swaptions x264 AVG

B
re
ak
d
o
w
n
 o
f
ro
u
te
r
e
n
e
rg
y
(n
o
rm

al
iz
e
d
 t
o
 N
o
‐P
G
)

Router_dynamic

Router_static

Power‐gating overhead

10

energy savings, with an improvement of around 83% (rela-
tive to the static energy in No-PG).

As for the total router energy, compared with No-PG,
ConvOpt-PG saves 50.3%, with PowerPunch-Signal saving
52.9% and PowerPunch-PG saving 54.1%. Hence, Power
Punch has slightly more energy savings. This is mainly due
to two reasons: 1) Power Punch provides better filtering for
short idle periods, and 2) Power Punch has a shorter execu-
tion time, which leads to less total router energy. Consider-
ing Figure 7 to Figure 10 together, it can be seen that, com-
pared with the optimized conventional power-gating (Con-
vOpt-PG), Power Punch is better in both performance and
energy.

6.4 Comparison across Full Network Load Range

To understand the behavior of different schemes more
fully, we conduct simulations with synthetic traffic and vary
the network load from zero to saturation. Figure 12 presents
the performance and power results for three common traffic
patterns: uniform random, transpose and bit-complement.
Statistics are collected after sufficiently long NoC warm up.

Regarding performance, the typical “power-gating curve”
is observed for ConvOpt-PG. That is, for low loads, the av-
erage packet latency is very high as many routers are pow-
ered off and packets are likely to be blocked multiple times.
As load increases, the packet latency starts to decrease as
more routers are powered on, and then rises again as load
approaches saturation. This creates a massive performance
gap compared with No-PG. In contrast, the average packet
latency of PowerPunch-PG is almost identical to that of No-
PG across the entire load range, essentially achieving non-
block power-gating. Note that at high load for the transpose

traffic pattern, due to the uneven load distribution among
routers, it is possible that some routers are still powered off
while other routers are congested. ConvOpt-PG performs
poorly in this case, whereas PowerPunch-PG is able to reach
the same maximum throughput as the no-power-gating case.
This highlights the advantage of Power Punch in supporting
high traffic load phases of application execution.

With regard to static power savings, both ConvOpt-PG
and PowerPunch-PG save considerable static power as ex-
pected. ConvOpt-PG is slightly better for some medium
loads but is achieved at the cost of significant performance
penalty.

6.5 Sensitivity on Wakeup Latency and Router Pipeline

To illustrate that Power Punch is applicable to a variety
of designs, Figure 13 compares the average packet latency
of No-PG, ConvOpt-PG and PowerPunch-PG with varying
values of wakeup latency and router pipeline stages. In this
sensitivity study, uniform random traffic is used with load
rate set to the average load rate of PARSEC benchmarks. A
3-hop punch signal is used in Power Punch. As can be seen,
compared with No-PG, ConvOpt-PG has a large penalty of
average packet latency in all cases, varying from 1.5X to
more than 2X. In contrast, PowerPunch-PG has only 2.4%
to 9.2% increase in the average packet latency. The highest
increase of 9.2% occurs in the case of Twakeup = 10 and Trouter
= 3, where the 3-hop punch signal does not cover the entire
wakeup latency. We intentionally include this case to show
that most of the penalty reduction of Power Punch indeed
comes from hiding wakeup latency; otherwise performance
penalty may occur. For this case, the performance penalty of

 (a) Uniform random (b) Bit-complement (c) Transpose

Figure 12: Packet latency and router static power across full range of network loads.

0

20

40

60

80

100

120

0 0.05 0.1 0.15 0.2 0.25

A
ve
ra
ge

 n
e
tw

o
rk
 la
te
n
cy
 (
cy
cl
e
s)

Injection rate (flits/node/cycle)

No‐PG ConvOpt‐PG PowerPunch‐PG

0

0.4

0.8

1.2

1.6

2

0 0.05 0.1 0.15 0.2 0.25

R
o
u
te
r
st
at
ic
 p
o
w
e
r
(W

)

Injection rate (flits/node/cycle)

No‐PG ConvOpt‐PG PowerPunch‐PG

0

20

40

60

80

100

120

0 0.05 0.1 0.15

A
ve
ra
ge

 n
e
tw

o
rk
 la
te
n
cy
 (
cy
cl
e
s)

Injection rate (flits/node/cycle)

No‐PG ConvOpt‐PG PowerPunch‐PG

0

0.4

0.8

1.2

1.6

2

0 0.05 0.1 0.15

R
o
u
te
r
st
at
ic
 p
o
w
e
r
(W

)

Injection rate (flits/node/cycle)

No‐PG ConvOpt‐PG PowerPunch‐PG

0

20

40

60

80

100

120

0 0.05 0.1 0.15

A
ve
a
rg
e
 n
e
tw

o
rk
 la
te
n
cy
 (
cy
cl
e
s)

Injection rate (flits/node/cycle)

No‐PG ConvOpt‐PG PowerPunch‐PG

0

0.4

0.8

1.2

1.6

2

0 0.05 0.1 0.15

R
o
u
te
r
st
at
ic
 p
o
w
e
r
(W

)

Injection rate (flits/node/cycle)

No‐PG ConvOpt‐PG PowerPunch‐PG

11

Power Punch becomes negligible when a 4-hop punch sig-
nal is used.

6.6 Discussion

(1) Hardware implementation and cost

While the prior description in Section 4 on how and why
Power Punch works is detailed, the final implementation is
actually very simple, without the need of any table or com-
plex hardware. In the example of Figure 5, each bit in the 5-
bit punch signal in the right X+ direction is a direct combi-
national logic function of the 5-bit punch signal from the
left (no need to monitor Y directions due to routing re-
strictions). Similarly, each bit in the 2-bit Y+ direction
punch signal is also a direct and simple logic function of the
punch signals in the X and Y- directions. The overall area
overhead of these logic gates, plus the 5-bit or 2-bit signal
lines and other minor control logic, consumes only 2.4% of
additional NoC area as compared to conventional power-
gating.

(2) Scalability

Power Punch provides very good scalability and is suit-
able for larger network sizes. Power Punch does not have
any particular central element that limits its scalability. The
key parameter – the width of the punch signals – depends on
the number of targeted router hops, not network size. This is
unlike reconfiguration approaches that have complexity
which depends greatly on the size of the network. In addi-
tion, conventional power-gating suffers from cumulative
wakeup latency, which increases linearly with network size.
In contrast, Power Punch does not have any of these issues,
thus achieves relatively higher improvement for larger net-
works. For example, at an injection rate of 0.01
flits/node/cycle, compared with ConvOpt-PG, PowerPunch-
PG reduces the average packet latency by 43.4%, 54.9% and
69.1% for 4x4, 8x8, and 16x16 networks, respectively.

(3) Comparison to other recent power-gating schemes
Previous work has proposed to send wakeup signals ear-

ly using information already provided in look-ahead routing
[24]. However, wakeup signals in this method can be sent at
most 2 hops ahead, and sending beyond 2 hops requires
monitoring a large number of dedicated signals. This paper
follows a similar intuition, but proposes schemes that solve

the critical problems of minimizing and merging wakeup
signals with minimal hardware cost and no contention. This
enables wakeup signals to be sent multiple hops ahead to
hide router wakeup latency completely. In [5], NR-Mesh is
proposed to improve NoC topology for power-gating by
connecting a core to multiple routers. This scheme does not
hide any wakeup latency at the injection if all the connected
routers are powered off, and latency penalty due to detours
is significant. It also requires high-radix routers. NoRD [6]
is a recently proposed scheme that uses bypass paths to cir-
cumvent powered-off routers. It falls under the category of
fast reconfiguration-based schemes as mentioned in Section
2.3. As NoRD relies on packet detours, its performance
overhead is about 5 times that of Power Punch (9.3 cycles of
packet latency penalty in NoRD versus 1.8 cycles in Power
Punch for the 64-node system). NoRD also requires extra
VCs for deadlock avoidance whereas Power Punch works
with any number of VCs. Router Parking [28] and Panthre
[27] are two other reconfiguration-based NoC power saving
schemes with reasonably efficient algorithms. However,
these schemes similarly suffer from issues associated with
reconfiguration such as detour, long epoch and limitations
on core-to-core communication. Compared with these two
schemes, Power Punch has more router static energy savings
capability and less packet latency penalty. MP3 [7] is a re-
cently proposed NoC power-gating scheme that is very ef-
fective at achieving near-zero performance penalty. Howev-
er, it is applicable to Clos and other indirect networks, not
meshes (a direct network) targeted in this work. Another
recent power-gating scheme, Catnap [9], uses multiple nar-
row networks to increase the efficiency of power-gating, but
it is proposed mainly for CMPs with high-bandwidth.

7. Related Work

A number of closely related works on power-gating of
NoC routers have already been discussed in detail [6, 7, 9,
24, 25, 26, 27, 28]. In addition, topology-aware power-
gating has also been proposed recently [31] that specifically
targets Flattened bufferfly [19] and MECS [14] networks.
Besides on-chip network routers, power-gating techniques
have been successfully applied to cores and execution units
in CMPs and GPGPUs [18, 21, 23]. These applications of
power-gating highlight the potential of this approach to save
static power. The notion of NoC slack has been used before
[8] in the context of the criticality of packet delivery to an
application’s execution, which is quite different from the
slack concept exploited in this paper. Another related ap-
proach is bufferless routing [12, 15] which saves router
power by eliminating buffers, but it may introduce potential
livelock, misrouting and packet reassembly issues that must
be handled appropriately. Moreover, besides buffers, there
are other key components in NoC routers that also consume
a considerable amount of static power which is reduced with
Power Punch.

8. Conclusion

Current and future many-core chips require on-chip net-
works to be designed with both low power and high perfor-

Figure 13: Wakeup latency sensitivity.

0

20

40

60

80

6 8 10 8 10 12

A
ve
ra
ge
 p
ac
ke
t
la
te
n
cy
 (
cy
cl
e
s)

3‐stage router 4‐stage router

Wakeup latency (cycles)

No‐PG ConvOpt‐PG PowerPunch‐PG

12

mance. While conventional power-gating of on-chip routers
incurs significant performance penalty due to the blocking
problems, this paper investigates the challenges and viabil-
ity of achieving non-blocking power-gating. Power Punch, a
novel and effective power-gating scheme, is proposed in this
work. Power Punch exploits the slack in hop count as well
the slack at source nodes to send power control signals
ahead of packets to “punch through” any blocked routers
along the imminent path of packets, turning them on. With
Power Punch, packets do not suffer router wakeup latency
or detour latency. Simulation results verify that significant
router static energy savings with little performance penalty
can be had, demonstrating the viability of achieving near
non-blocking power-gating.

Acknowledgement

We sincerely thank the anonymous reviewers for their
helpful comments and suggestions. This research was sup-
ported, in part, by the National Science Foundation (NSF),
grant CCF-1321131 and the Software and Hardware Foun-
dations program of the NSF.

References
[1] Adapteva. http://www.adapteva.com/epiphanyiv/, 2014.
[2] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, "GARNET: A

detailed on-chip network model inside a full-system simulator," in
International Symposium on Performance Analysis of Systems and
Software (ISPASS), pp. 33-42, 2009.

[3] C. Bienia and K. Li, "Parsec 2.0: A new benchmark suite for chip-
multiprocessors," in 5th Annual Workshop on Modeling,
Benchmarking and Simulation, 2009.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A.
Basil, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K.
Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, "The
gem5 Simulator," Computer Architecture News, vol. 39, pp. 1-7,
2011.

[5] J. Camacho, J. Flich, J. Duato, H. Eberle, and W. Olesinski,
"Towards an efficient NoC topology through multiple injection
ports," in 14th Euromicro Conference on Digital System Design:
Architectures, Methods and Tools, pp. 165-172, 2011.

[6] L. Chen and T. M. Pinkston, "NoRD: Node-Router Decoupling for
Effective Power-gating of On-Chip Routers," in 45th IEEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 270-
281, 2012.

[7] L. Chen, L. Zhao, R. Wang, and T. M. Pinkston, "MP3: Minimizing
Performance Penalty for Power-gating of Clos Network-on-Chip," in
20th IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2014.

[8] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, "Aergia: Exploiting
packet latency slack in on-chip networks," in 37th International
Symposium on Computer Architecture (ISCA), pp. 106-116, 2010.

[9] R. Das, S. Narayanasamy, S. K. Satpathy, and R. G. Dreslinski,
"Catnap: Energy Proportional Multiple Network-on-Chip," in 40th
International Symposium on Computer Architecture (ISCA), 2013.

[10] B. K. Daya, C. H. O. Chen, S. Subramanian, K. Woo-Cheol, P.
Sunghyun, T. Krishna, J. Holt, A. P. Chandrakasan, and P. Li-Shiuan,
"SCORPIO: a 36-core research chip demonstrating snoopy
coherence on a scalable mesh NoC with in-network ordering," in
International Symposium on Computer Architecture (ISCA), 2014.

[11] J. Duato, O. Lysne, R. Pang, and T. M. Pinkston, "Part I: A theory
for deadlock-free dynamic network reconfiguration," IEEE
Transactions on Parallel and Distributed Systems (TPDS), vol. 16,
pp. 412-427, 2005.

[12] C. Fallin, C. Craik, and O. Mutlu, "CHIPPER: A low-complexity

bufferless deflection router," in International Symposium on High
Performance Computer Architecture (HPCA), pp. 144-55, 2011.

[13] P. Gratz, K. Changkyu, K. Sankaralingam, H. Hanson, P.
Shivakumar, S. W. Keckler, and D. Burger, "On-chip
interconnection networks of the TRIPS chip," IEEE Micro, vol. 27,
pp. 41-50, 2007.

[14] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, "Express cube
topologies for on-chip interconnects," in 15th International
Symposium on High Performance Computer Architecture (HPCA),
pp. 163-74, 2009.

[15] M. Hayenga, N. E. Jerger, and M. Lipasti, "SCARAB: A single cycle
adaptive routing and bufferless network," in 42nd IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2009.

[16] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, "A 5-
GHz mesh interconnect for a Teraflops processor," IEEE Micro, vol.
27, pp. 51-61, 2007.

[17] J. Howard, et al., "A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS," in IEEE International Solid-State Circuits
Conference (ISSCC), pp. 108-109, Feb. 2010.

[18] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson,
and P. Bose, "Microarchitectural techniques for power gating of
execution units," in International Symposium on Lower Power
Electronics and Design (ISLPED), pp. 32-37, 2004.

[19] J. Kim, J. Balfour, and W. J. Dally, "Flattened butterfly topology for
on-chip networks," in 40th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 172-182, 2007.

[20] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, "Express virtual
channels: Towards the ideal interconnection fabric," in 34th Annual
International Symposium on Computer Architecture (ISCA), pp. 150-
161, 2007.

[21] A. Lungu, P. Bose, A. Buyuktosunoglu, and D. J. Sorin, "Dynamic
power gating with quality guarantees," in International Symposium
on Low Power Electronics and Design (ISLPED), pp. 377-382, 2009.

[22] O. Lysne, T. M. Pinkston, and J. Duato, "Part II: A methodology for
developing deadlock-free dynamic network reconfiguration
processes," IEEE Transactions on Parallel and Distributed Systems
(TPDS), vol. 16, pp. 428-443, 2005.

[23] N. Madan, A. Buyuktosunoglu, P. Bose, and M. Annavaram, "A case
for guarded power gating for multi-core processors," in 17th
International Symposium on High-Performance Computer
Architecture (HPCA), pp. 291-300, 2011.

[24] H. Matsutani, M. Koibuchi, W. Daihan, and H. Amano, "Run-time
power gating of on-chip routers using look-ahead routing," in 13th
Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 55-60, 2008.

[25] H. Matsutani, M. Koibuchi, D. Wang, and H. Amano, "Adding slow-
silent virtual channels for low-power on-chip networks," in 2nd
International Symposium on Networks-on-Chip (NOCS), 2008.

[26] H. Matsutani, M. Koibuchi, D. Ikebuchi, K. Usami, H. Nakamura,
and H. Amano, "Ultra fine-grained run-time power gating of on-chip
routers for CMPs," in 4th International Symposium on Networks on
Chip (NOCS), 2010.

[27] R. Parikh, R. Das, and V. Bertacco, "Power-aware NoCs through
routing and topology reconfiguration," in 51st ACM/EDAC/IEEE
Design Automation Conference (DAC), p. 6, 2014.

[28] A. Samih, W. Ren, A. Krishna, C. Maciocco, C. Tai, and Y. Solihin,
"Energy-efficient interconnect via router parking," in IEEE 19th
International Symposium on High Performance Computer
Architecture (HPCA), 23-27 Feb. 2013, pp. 508-19, 2013.

[29] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-
S. Peh, and V. Stojanovic, "DSENT - A tool connecting emerging
photonics with electronics for opto-electronic networks-on-chip
modeling," in 6th IEEE/ACM International Symposium on Networks-
on-Chip (NOCS), pp. 201-210, 2012.

[30] Tilera. http://www.tilera.com/products/processors, 2014.
[31] S. Yue, L. Chen, D. Zhu, T. M. Pinkston, and M. Pedram, "Smart

butterfly: reducing static power dissipation of network-on-chip with
core-state-awareness," in IEEE/ACM International Symposium on
Low Power Electronics and Design (ISLPED), pp. 311-314, 2014.

