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Abstract 

As chip designs penetrate further into the dark silicon 
era, innovative techniques are much needed to power off 
idle or under-utilized system components while having min-
imal impact on performance. On-chip network routers are 
potentially good targets for power-gating, but packets in the 
network can be significantly delayed as their paths may be 
blocked by powered-off routers. In this paper, we propose 
Power Punch, a novel performance-aware, power reduction 
scheme that aims to achieve non-blocking power-gating of 
on-chip network routers. Two mechanisms are proposed 
that not only allow power control signals to utilize existing 
slack at source nodes to wake up powered-off routers along 
the first few hops before packets are injected, but also allow 
these signals to utilize hop count slack by staying ahead of 
packets to “punch through” any blocked routers along the 
imminent path of packets, preventing packets from having to 
suffer router wakeup latency or packet detour latency. Full 
system evaluation on PARSEC benchmarks shows Power 
Punch saves more than 83% of router static energy while 
having an execution time penalty of less than 0.4%, effec-
tively achieving near non-blocking power-gating of on-chip 
network routers. 

1. Introduction 

A significant challenge for the design of current and fu-
ture many-core chips is how to provide fast and efficient on-
chip communication. While network-on-chip (NoC) offers a 
potentially scalable solution, current designs consume sub-
stantially more power than may be needed (e.g., up to 28% 
in Intel Teraflop [16] and 19% in Scorpio [10]), with a large 
percentage of static power (over 60% even for simpler rout-
er designs) due to relatively low average traffic load of real 
applications. Static power consumption is exacerbated as 
transistor feature sizes continue to shrink. Meanwhile, with 
more cores being integrated on chips, there is an increasing 
demand for low latency NoCs due to the longer core-to-core 
hop distance. Thus, it is of paramount importance to devise 
effective NoC static power saving techniques that do not 
compromise NoC performance.  

Power-gating is a very promising technique that can re-
duce the static power component dramatically. When ap-
plied to on-chip network routers, however, power-gating is 
prone to incur a significant increase in packet latency due to 
blocking. When a router is powered off, it essentially blocks 
all paths that intersect with the router. Packets thus have to 
wait for the router to wake up before proceeding and experi-
ence wakeup latency multiple times before delivery in cases 

where many routers along the path are powered off. This 
leads to large cumulative delay that is pronounced even 
when common optimizations are applied which are designed 
to hide the wakeup latency, at least partially. Another ap-
proach to mitigate this blocking problem in power gating is 
to deflect packets via routing and topology reconfiguration. 
Nevertheless, existing reconfiguration methods either are 
too slow (~10K cycles) to capture the short but exploitable 
router idle periods (~10-100 cycles) or can cause a large 
number of packet detours due to simplified reconfiguration 
algorithms. Moreover, dynamic reconfiguration unneces-
sarily complicates the already complex designs of on-chip 
networks.  

In addressing this blocking problem comprehensively, in 
this work we propose Power Punch, a novel performance-
aware power-saving scheme that aims to achieve non-
blocking power-gating of on-chip network routers. The 
basic idea of Power Punch is to always send power control 
signals ahead of packets to “punch through” any blocked 
routers in power-gated mode along the imminent path of 
packets so that packets can be transported without having to 
suffer any router wakeup latency or packet detour latency. 

Power Punch consists of two mechanisms that solve ma-
jor challenges in sending punch-through power control sig-
nals. The first challenge concerns the tension between the 
amount of power control information needed to be propa-
gated across multiple hops ahead of packets and the tight 
constraints in allocating control wires for this purpose. Us-
ing dedicated wires for each wakeup control signal incurs 
prohibitive hardware cost whereas sharing wakeup signals 
introduces serious contention delay that could defeat the 
purpose of sending wakeup signals in advance. The first 
proposed mechanism utilizes the properties and constraints 
of the network to minimize the needed control information 
and is able to merge all the signals arriving at a router in the 
same cycle, thereby propagating punch-through power con-
trol signals in a low-cost and contention-free fashion. In 
addition, the multi-hop power control signals forewarn rout-
ers to know precisely whether there will be packets arriving 
in the next few cycles. This helps to filter out short counter-
productive idle periods (i.e., less than the break-even time), 
and ensure the resulting router wakeups are accurate and 
necessary. The second challenge concerns how to punch 
through powered off routers that are close in vicinity to the 
injection node and, therefore, do not have enough remaining 
hops (i.e., hop count slack) for sending wakeup control sig-
nals to cover the wakeup latency. Our second proposed 
mechanism holistically exploits existing slack in the net-
work interface at injection nodes. In essence, the mechanism 
allows wakeup control signals to be sent before packets are 
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generated, thus compensating for the otherwise insufficient 
slack in hop count.  

Full-system simulations show that, compared to an op-
timized conventional power-gating technique applied to on-
chip network routers, Power Punch achieves a reduction of 
61.2% in network performance penalty while also saving 
3.8% more router energy. When compared with not using 
power-gating, Power Punch reduces router static energy by 
83.7% while incurring only 0.4% increase in execution time, 
essentially achieving near non-blocking power-gating which 
is the goal. 

This research increases our understanding of how to 
maintain performance in the presence of power-gating of 
on-chip network routers and provides key insights on the 
viability of achieving non-blocking power-gating. The rest 
of the paper is organized as follows. Section 2 provides 
more background on power-gating and its blocking issue. 
Section 3 describes the rationale of Power Punch and dis-
cusses challenges in achieving it. Section 4 provides details 
of the proposed Power Punch scheme. Section 5 presents 
our evaluation methodology, and Section 6 provides simula-
tion results. Finally, related work is summarized in Section 
7, and Section 8 concludes the paper. 

2. Background and Motivation 

2.1 High Static Power in On-chip Network Routers 

On-chip networks provide a scalable approach for sup-
porting parallel communication in many-core CMPs. They 
should be designed so as not to incur considerable overhead 
in chip area and power. While the area overhead becomes 
less of a concern as more and more transistors are being 
integrated on a chip, the NoC power problem has been esca-
lating across each technology node due to ever tighter power 
constraints. Consequently, despite numerous previously 
proposed novel topologies and routing algorithms, most 
taped-out commercial and research many-core chips adopt 
planar mesh-based topologies with dimension-order routing 
in practice to reduce NoC overhead (e.g., Intel SCC [17], 
TRIPS [13], Scorpio [10], Adapteva Epiphany family [1], 
Tilera TILE-Pro and TILE-Gx families [30]). Even with 
these simpler implementations, the NoC still consumes sub-

stantially more power than necessary, with a large amount 
consumed by its static power component.  

To illustrate, we conduct full-system simulations using 
gem5 [4] and multi-threaded PARSEC benchmarks [3] on 
an 8x8 mesh network with XY routing and wormhole 
switching. The number of virtual networks is configured to 
be three, the minimum number needed for correctly running 
the MESI coherence protocol without deadlocks. Each vir-
tual network also has a relatively small buffer configuration, 
with two 3-flit sized data virtual channels (VCs) and one 1-
flit sized control VC. Simulation results from the DSENT 
[29] NoC power simulator integrated in gem5 show that, 
under this simple NoC design and minimal resource config-
uration, router static power still accounts for nearly 64% of 
the total router power consumption assuming 45nm tech-
nology. This is because router components other than buff-
ers also consume noticeable power [6] and because the av-
erage network utilization in real benchmarks is relatively 
low. As chip designs penetrate further into the dark silicon 
era, the static power component of NoCs will only get worse 
as more processing cores can be powered off or are operated 
at lower frequencies, thereby generating less network traffic 
and leading to higher static power percentage. 

2.2 Applying Power-gating to On-chip Network Routers 

One way that can dramatically reduce static power is to 
apply power-gating techniques to each NoC router. This can 
be very effective as it exploits the idleness exhibited in each 
router while reducing the static power of all components in 
a router. As depicted in Figure 1, power-gating is imple-
mented by inserting an appropriately sized header transis-
tor(s), usually a high threshold and non-leaky “sleep switch”, 
between Vdd and the router. When the sleep signal is assert-
ed by the power-gating controller (which is a small hard-
ware component that is always powered on), the supply 
voltage to the router is cut off, thus eliminating the leakage 
currents in both the subthreshold conduction and reverse-
biased diodes.  

Different from other system components, when applying 
power-gating to on-chip network routers, extra handshaking 
signaling is needed between neighboring routers to ensure 
the correct delivery of packets. As shown in Figure 2, be-
sides generating the sleep signal, the power-gating control-

Figure 1: Power-gating technique. Figure 2: Power-gating handshaking. 
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ler also monitors the emptiness of the router datapath and 
the wakeup signals from neighbors. When the datapath of a 
router, for example, router A is empty (i.e., input buffers, 
output registers and crossbar are empty) and no wakeup 
signals (WU) come from neighbors, the controller in router 
A asserts the sleep signal after a timeout period1 to put rout-
er A into gated-off state and notifies its neighbors by assert-
ing the PG signal. Upon detecting the asserted PG signal, 
neighboring routers mark the corresponding output ports as 
unavailable in their switch allocator. Later, if a packet in 
router B or in other neighbors of router A needs to be for-
warded to router A, a WU signal will be asserted which trig-
gers the controller in router A to de-assert its sleep signal. 
The packet is then stalled in router B until router A is fully 
awoken and the PG signal is cleared. Hence, the wakeup 
latency of router A, including the blocking latency due to 
being powered off, is directly part of the overall latency of 
the packet forwarding process. 

2.3 Blocking Problem in Conventional Power-gating 

As can be seen, the primary concern with the above con-
ventional way of applying power-gating to routers is the 
negative performance impact caused by wakeup latency. 
Essentially, when a router is powered off, it blocks all the 
paths of a packet that overlap with the router (i.e., forward-
ing path from any of the router’s input ports to its output 
ports). In what follows, we use the term blocking power-
gating to refer to this phenomenon.  

The blocking problem in conventional power-gating can 
be prohibitive. Prior works [6, 7, 9, 24, 28] as well as results 
given in this work show that the wakeup latency of on-chip 
network routers is around 6-12 cycles depending on imple-
mentation, which is quite sizable. More importantly, a pack-
et may experience wakeup latency multiple times in the 
network as more than one router along the packet’s path 
could be powered off. Thus, the cumulative delay caused by 
blocking power-gating is comparable to the zero-load packet 
latency which also is on the order of tens of cycles. As on-
chip network latency is very critical to the overall system 
performance, the blocking problem must be addressed ade-
quately before power-gating can be applied most effectively. 

Several approaches have been proposed so far to combat 
blocking power-gating, but they have various degrees of 
effectiveness. One approach is to deflect packets when their 
current paths are blocked by powered-off routers. This 
needs to be achieved through intricate reconfiguration of 
routing, topology, or both. For example, a fast reconfigura-
tion method [6] that uses pre-determined paths to bypass 
gated-off routers reconfigures quickly and can capture both 
long (i.e., >100 cycles) and short idle intervals (i.e., 10-100 
cycles). However, it introduces considerable packet detours 
and degrades system performance. More extensive but com-
plex reconfiguration algorithms [27, 28] use dynamic in-
formation to minimize detours. However, they are slow by 
comparison and, as a result, reconfigure only on a per-epoch 

                                                           
1 A minimum of two-cycle timeout is needed to allow packets that already 
left upstream routers to be received correctly. Additional timeout cycles 
can be used to filter short idle periods. More details are in next subsection. 

basis (~10K cycles for an epoch) to capture idleness on a 
very coarse granularity. Also, their uses are limited to sce-
narios in which a couple of cores and the co-located caches 
are completely idle with no communication with other cores 
and caches, which might be impractical for typical shared 
cache architectures. Additionally, the routing and topology 
reconfiguration due to power-gating unnecessarily compli-
cates the simple design of deterministic routing in mesh 
networks. 

Another approach to deal with blocking power-gating is 
to control powered-off routers more effectively using tech-
niques directly aimed at reducing waiting time. A common 
technique is to send the wakeup signal early to the next 
router as soon as the output direction is computed [24]. This 
hides a few cycles, equivalent to the number of router pipe-
line stages but typically is not sufficient to cover the entire 
wakeup latency. Another technique is to apply a timeout 
mechanism after a router is detected as being idle. This 
technique intends to filter out short idle periods that are less 
than the break-even time2 to reduce the possibility of en-
countering a powered-off router. However, the timeout val-
ue cannot be too long (around 4 cycles [7, 9]) as false filter-
ing essentially wastes the remaining idle cycles that can be 
exploited by power-gating. Finally, several techniques have 
been proposed to power-gate individual components within 
a router [24, 25, 26]. This approach reduces the chance of 
encountering powered-off router components at the cost of 
substantially higher implementation complexity. Yet, it still 
cannot entirely remove the blocking when a powered-off 
component is needed for packet forwarding, and it does not 
mitigate the cumulative wakeup latency problem either.  

Therefore, given the severe performance penalty that can 
be caused by wakeup latency and the many limitations in 
existing approaches, it is imperative for a novel scheme to 
be devised that can solve the blocking problem comprehen-
sively, ideally achieving non-blocking power-gating. 

3. Challenges in Achieving Non-blocking Pow-
er-gating 

Non-blocking power-gating of on-chip network routers 
can be achieved by pre-powering up routers along network 
paths taken by packets in advance of packet arrival. To ac-
complish this, fundamental challenges must be adequately 
addressed. One major challenge concerns how to completely 
hide router wakeup latency across multiple hops with mini-
mal overhead; another concerns how to wake up routers 
located at or neighboring nodes that inject packets into the 
NoC at the source. Below, these challenges are discussed in 
detail. 

In order to hide wakeup latency of Twakeup cycles com-
pletely, the number of hops that a wakeup signal should be 
sent ahead of a packet is determined by Twakeup/Trouter , as-
suming the packet takes (Trouter+Tlink) cycles per hop, where-
as the wakeup signal takes Tlink cycles per hop. For example, 

                                                           
2 Break-even time (BET) is the minimum number of consecutive cycles 
that a gated circuit block needs to remain idle before waking up to offset 
the energy overhead of one power-gating process (e.g., charge capacitance, 
distribute sleep signal). BET is around 10 cycles for on-chip routers [7]. 
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Figure 3 shows two common router pipeline designs [20]. 
The router design in Figure 3(a) uses look-ahead routing, 
resulting in a 4-stage pipeline of buffer writing (BW), VC 
allocation (VA), switch allocation (SA) and switch traversal 
(ST). The router design in Figure 3(b) further optimizes 
with speculative switch allocation, which reduces another 
pipeline stage if the speculation is successful. With a Twakeup 
of 8 cycles, wakeup signals need to be sent at least 2 hops in 
advance for the case in Figure 3(a) and 3 hops in advance 
for the case in Figure 3(b) in order to hide the entire Twakeup.  

However, for a given router, the total number of routers 
that needs to be monitored may quickly become very large 
even within a short hop distance. Figure 4 shows an exam-
ple of an 8x8 mesh network. There are 24 routers within 3 
hops of router 27 (denoted as R27 hereafter), which ac-
counts for nearly 38% of all routers on the chip. This means 
that, assuming the 3-stage speculative router pipeline design 
shown in Figure 3(b), R27 needs to monitor the wakeup 
signals from all the 24 routers that are either sent to wake up 
R27 (e.g., from R3 to R27) or sent to wake up other routers 
but need to be relayed at R27 (e.g., from R26 to R29). This 
makes it very challenging to monitor and propagate effec-
tively all the needed wakeup signals in the network. 

A straightforward way to achieve this is to allocate dedi-
cated wire channels for every wakeup control signal be-
tween a router and its monitored routers (e.g., 24 separate 
incoming wire channels are needed for R27). Note that it is 
not enough to have only 1-bit wire channels for the wakeup 
control signal. For instance, if the wire channel from R26 to 
R27 is only 1 bit, R27 will have no idea about if and where 
this signal should be forwarded after it arrives as the router 
cannot distinguish whether this 1-bit wakeup signal is in-
tended to wake up R29, or R43, or any of the 9 routers that 
are within 3 hops of R26 with the first hop being R27. 
Hence, to allow correct relay of wakeup signals, minimally 
4 bits are needed to distinguish the 9 different cases, totaling 
96 bits of wire channels in this example which is prohibi-
tively high, e.g., by comparison, packet payload channel 
widths typically are 128 bits or 256 bits. 

An alternative approach is to share wire channels for the 
wakeup control signals. This solution may be more viable 
from the perspective of hardware cost, but it immediately 
brings to fore the critical issue of possible contention among 
wakeup signals. In the case of Figure 4, a single wire chan-
nel such as the one from R27 to R28 may be shared by up to 
9 wakeup signals. If only one of them can be transmitted in 
a given cycle, other wakeup signals arriving at the same 
cycle will be unavoidably delayed. As any delayed cycle is 
translated directly into delayed wakeup of the needed router, 
this can seriously degrade the effectiveness of sending 
wakeup signals in advance unintentionally, causing blocking 
to persist. To avoid such contention issues, multiple wakeup 
control signals must be allowed to be transmitted simultane-
ously. Nevertheless, merging wakeup signals is very diffi-
cult due to the large number of distinct cases. We illustrate 
by continuing to use as an example the wire channel from 
R27 to R28. Nine routers (i.e., R11, R18, R19, R25, R26, 
R27, R34, R35, and R43) may send wakeup signals that use 
this wire channel, and different signals may be intended to 

wake up different routers leading to a prohibitively large 
number of combinations. For example, in one cycle, R27 
may need to merge the wakeup signal from R26 to R36 and 
the wakeup signal from R27 to R21. In another cycle, R27 
may need to merge wakeup signals from R26 to R20 and 
from R27 to R37. The merged results are different in these 
two cases and, therefore, need to be distinguishable in the 
wire channels. As a result, wire channels need to be wide 
enough to have different values that can differentiate be-
tween all the various combinations of needed wakeup sig-
nals. This could lead to very wide wire channels comparable 
in size to the aforementioned dedicated wire approach. In 
the next section, we show how this challenge can be ad-
dressed by presenting an innovative mechanism that can 
collectively propagate wakeup signals in a contention-free 
manner while requiring narrow wire channels. 

The other major fundamental challenge arises from the 
situation of there not being enough routing hop slack to send 
wakeup signals in advance to fully cover the wakeup latency. 
This problem is most severe for routers located at or neigh-
boring injection nodes. For instance, if R24 in Figure 4 is 
powered off, the associated local node will experience the 
entire Twakeup latency before being able to inject packets. Our 
evaluations using PARSEC benchmarks show that, on aver-
age, more than 13% of packets received by routers come 
from local nodes, causing the above performance penalty to 
occur when those routers are powered off. To address this 
challenge, other time slack opportunities that holistically 
include exploiting behavior at injection nodes need to be 
explored to increase the effectiveness of hiding router 
wakeup latency, as is achieved with our proposed Power 
Punch. 

4. Power Punch 

In this section, we present a detailed description of the 
proposed Power Punch, a novel scheme that incorporates 
innovative mechanisms for addressing aforementioned chal-

Figure 4: Power Punch challenges and solutions.  
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lenges to achieving near non-blocking power-gating. The 
key rationale for Power Punch is the following: if wakeup 
information can be cleverly generated and transmitted suffi-
ciently early, power control signals can be sent to “punch 
through” the network ahead of packets to power up needed 
routers along the path of packet destinations. From the per-
spective of packets, transport in the network can be accom-
plished without having to suffer any router wakeup latency 
or packet detour latency, as if all NoC routers were virtually 
always powered on. 

In merging wakeup signals, the main obstacle is the ten-
sion between the amount of power control information 
needed to be propagated and the limited power control 
bandwidth available. The basic idea behind the mechanism 
for addressing this concern is to utilize the routing and topo-
logical properties of the network to minimize the needed 
information and reduce the width of the merged signals via 
clever encoding. The proposed mechanism allows all of the 
wakeup signals arriving at a router in the same cycle to be 
efficiently merged and relayed, thereby eliminating conten-
tion delay. In addressing the challenge of not having enough 
slack in hop count at or near injection nodes, the basic idea 
behind the mechanism that addresses this concern is to ex-
ploit existing slack at the network interface (NI) from when 
information for generating wakeup control signals is availa-
ble and when a packet is generated and ready for injection. 
This allows wakeup signals to be sent ahead to the source 
and neighboring routers well enough in advance of packet 
injection, thus compensating for the otherwise insufficient 
hop count slack. 

Collectively, these mechanisms work in tandem to ena-
ble power control signals to “punch though” blocked routers 
along the entire path of packet destinations, thereby allow-
ing packets to be transported in the network in a near non-
blocking fashion. The following subsections describe these 
mechanisms in further detail. 

4.1 Low-cost and Contention-free Multi-hop Punch 

To merge and relay wakeup signals across multiple hops, 
a five-step encoding process can be used to minimize hard-
ware implementation. In this subsection, we explain these 
steps using the example of sending a wakeup signal 3 hops 
in advance (i.e., for the speculative router pipeline shown in 
Figure 3(b)). If needed, a simplified 2-hop and an extended 
4-hop design can be derived using similar procedures. It is 
important to note that wakeup signals should not be sent too 
early, as this would wake up routers before they are actually 
needed and, thus, squander powered-off cycles. In practice, 
3 hops of slack typically is able to cover router wakeup la-
tency (e.g., hide Twakeup up to 9 cycles for 3-stage routers and 
up to 12 cycles for 4-stage routers). To facilitate discussion, 
the term targeted router is used to refer to the router that is 
3 hops away from the current router (e.g., in Figure 4, if a 
packet has source R0, destination R7 and is currently in R3, 
then R6 is the targeted router for the wakeup signal from 
R3). The term punch signal is used to refer to the final 
merged wakeup signals encoded using the proposed Power 
Punch scheme.  

Without loss of generality, we implement Power Punch 
assuming a 2D mesh network with XY routing. The ra-
tionale is the following. First, most commercial and research 
chips use dimension-order routing to keep NoC overhead 
low as mentioned in Section 2.1, therefore the proposed 
scheme can be readily adopted and have high practical im-
pact. Second, the advantage of adaptive routing over deter-
ministic routing becomes prominent only when traffic load 
approaches saturation. Power-gating is best applied when 
traffic load is low to medium, a region where there is little 
distinguishable performance difference between the two 
routing methods in the absence of power-gating. Third, if 
certain many-core applications require very high throughput 
that is not sustainable by deterministic routing, previous 
works have proposed theory and methodology (e.g., [11, 22]) 
that allow the routing algorithm to switch from deterministic 
to adaptive, and vice versa, according to prevailing network 
loads. This enables the use of Power Punch to save static 
power under low load conditions while not compromising 
throughput under high load conditions. Below are the steps. 
(1) Determine targeted router based on network topology 
and routing algorithm 

To merge multiple wakeup signals into one punch signal, 
the targeted router for each wakeup signal must first be de-
termined. We assume a mesh NoC with deterministic rout-
ing. The main advantage of mesh XY routing is that, at any 
given router, the targeted router of the wakeup signal can be 
easily determined using destination information stored in 
the packet header. For instance, in Figure 4, a packet cur-
rently at R26 with destination R31 knows precisely that the 
targeted router is R29, and a wakeup signal will be sent to 
notify that router (the actual sent wakeup signal will be 
merged with other wakeup signals into one encoding, as 
described shortly). 

(2) Reduce information for waking up intermediate routers 
With an identified targeted router and mesh XY routing, 

no additional information is needed in the wakeup signal for 
any intermediate routers along the path to the targeted router 
that need to be notified (e.g., R27 and R28 are along the path 
from R26 to R29; thus they are implicitly notified if the tar-
geted router is R29). This helps to reduce the information 
needed in wakeup signals and the number of bits of encod-
ing for the final merged punch signals. 

(3) Reduce the number of wakeup signals 
After reducing the information in each wakeup signal, 

the next step is to reduce the number of wakeup signals that 
need to be merged at a given router. Take R27 as an exam-
ple. In its X+ direction (i.e., from R27 to R28), wakeup sig-
nals from up to 9 routers (i.e., R11, R18, R19, R25, R26, 
R27, R34, R35, and R43) may need to be relayed from R27 
to R28 in general. However, due to restrictions in XY rout-
ing for avoiding deadlock, only three out of these 9 routers 
are possible, namely R25, R26 and R27. Packets from the 
remaining six routers do not use the link from R27 to R28, 
hence do not send wakeup signals along that link (e.g., path 
R19→R27→R28 is not valid as Y+ to X+ turns are illegal). 
Similarly, in the X- direction of R27, only three routers can 
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be the source for wakeup signals as well. This greatly re-
duces the number of combinations for targeted routers. As 
for the Y+ and Y- directions of R27, while all nine routers 
can still be the source of wakeup signals, their targeted rout-
ers are limited, so it is straightforward to optimize as ex-
plained in the next step.  

(4) Reduce combinations of targeted routers 

Next, the minimal number of bits needed for encoding 
the punch signals in order to merge all possible wakeup sig-
nals arriving at a router in the same cycle should be deter-
mined. As mentioned in Section 3, different sets of targeted 
routers require distinct punch signals. For instance, a punch 
signal from R27 to R28 with an encoding of “01100” can be 
used to represent the merged result of wakeup signals from 
R26 to R36 and from R27 to R21 (i.e., the set of targeted 
routers is {36, 21}; see Table 1, entry 13). A different en-
coding for the punch signal, such as “01111”, is needed to 
merge a different combination of wakeup signals from R26 

to R20 and from R27 to R37 (i.e., the set of targeted routers 
is {20, 37}), even though the source routers are the same in 
both cases. However, if the targeted router of one wakeup 
signal is along the path of the targeted router of another 
wakeup signal (e.g., R26 to R29 is along the path from R27 
to R21), the same punch signal encoding of “00010” can be 
used as in the case where there is only one wakeup signal 
from R27 to R21. In other words, the width of the punch 
signal can be optimized to be just wide enough to distin-
guish all distinctive sets of targeted routers, and no wider. 

Based on the results from step (3), up to three routers 
can be the source of wakeup signals in the X+ direction. 
R27 has 9 possible targeted routers (i.e., R12, R20, R21, R28, 
R29, R36, R37, and R44); R26 has 4 (i.e., R20, R28, R29, 
and R36) and R25 has 1 (i.e., R28). Table 1 lists all the dis-
tinctive sets of targeted routers for the X+ direction of R27 
(the third column) and the corresponding wakeup signals 
represented (the second column). The wakeup signal from 
R25 is not listed for clarity, as the targeted router for this 
wakeup signal is always R28, which is along the path of a 
targeted router in any table entry. In total, due to the reduc-
tion through previous steps and the use of targeted routers to 
remove the cases where other targeted routers are implicitly 
contained, there are only 22 different sets. Therefore, only 5 
bits are needed in the punch signal of the X+ direction to 
distinguish between these sets. Similarly, the width of the 
punch signal for the X- direction is also 5 bits. Note that we 
do not use the targeted router numbers in punch signals di-
rectly which would otherwise cost 8 bits of encoding each.  

For the Y+ and Y- directions, although there are up to 9 
routers for sending wakeup signals, the targeted routers have 
only 3 possibilities in each direction due to the illegal turns 
from Y to X dimensions (e.g., only R35, R43 and R51 for 
Y+). The combination of the three targeted routers result in 
three distinctive sets in each direction, e.g., {R35}, {R43}, 
{R51} in Y+ (note that if both R35 and R51 are the targeted 
routers, the resulting set is {R51} as R35 is implicitly con-
tained). Therefore, only 2 bits of encoding are needed for 
the punch signals in each of the Y directions. 

(5) Punch signals from/to neighbors 

Figure 5 depicts the resulting punch signals and their 
widths between neighboring routers. Each cycle, up to four 
sets of punch signals can arrive from neighbors in the two 
dimensions with values reflecting the targeted router(s) that 
need to be controlled. Along with additional targeted routers 
generated from the local router, the power-gating controller 
sends newly generated punch signals to at most the four 
neighbors. As multiple targeted routers can be merged and 
communicated through a punch signal in one cycle, no con-
tention delay is incurred, and targeted routers can always 
receive the notification as scheduled and wake up in time. In 
addition, this mechanism requires only 5 bits of encoding 
for X directions and 2 bits for Y directions in the case of 3-
hop wakeup signal slack. Therefore, the hardware cost of 
punch signals and the power-gating control logic is very low, 
particularly compared to the main datapath and control path 
in routers that operate at the size of flits with 128 bits or 256 
bits. It can be shown that, for the case of 4-hop wakeup sig-

Table 1: All possible sets of targeted routers in the X+ 
direction of R27 (“||” means or; “&” means and). 

# Represented 
Wakeup Signals 

Set of 
Targeted Routers 

Punch 
Signal

1 27→28 || 26→28 { 28 } 00000

2 
27→12 || 
27→12 & 26→20 || 
27→12 & 26→28 

{ 12 } 00001 

3 
27→21 || 
27→21 & 26→29 || 
27→21 & 26→28 

{ 21 } 00010 

4 
27→30 || 
27→30 & 26→29 || 
27→30 & 26→28 

{ 30 } 00011 

5 
27→37 || 
27→37 & 26→29 || 
27→37 & 26→28 

{ 37 } 00100 

6 
27→44 || 
27→44 & 26→36 || 
27→44 & 26→28 

{ 44 } 00101 

7 
27→20 || 26→20 || 
27→20 & 26→20 || 
27→20 & 26→28 

{ 20 } 00110 

8 
27→29 || 26→29 || 
27→29 & 26→29 || 
27→29 & 26→28 

{ 29 } 00111 

9 
27→36 || 26→36 || 
27→36 & 26→36 || 
27→36 & 26→28 

{ 36 } 01000 

10 27→12 & 26→29 { 12, 29 } 01001
11 27→12 & 26→36 { 12, 36 } 01010
12 27→21 & 26→20 { 21, 20 } 01011
13 27→21 & 26→36 { 21, 36 } 01100
14 27→30 & 26→20 { 30, 20 } 01101
15 27→30 & 26→36 { 30, 36 } 01110
16 27→37 & 26→20 { 37, 20 } 01111
17 27→37 & 26→36 { 37, 36 } 10000
18 27→44 & 26→20 { 44, 20 } 10001
19 27→44 & 26→29 { 44, 29 } 10010

20 27→20 & 26→29 || 
27→29 & 26→20 { 20, 29 } 10011 

21 27→20 & 26→36 || 
27→36 & 26→20 { 20, 36 } 10100 

22 27→29 & 26→36 || 
27→36 & 26→29 { 29, 36 } 10101 
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nal slack, the width of punch signals is 8-bit for the X direc-
tions and 2-bit for the Y directions, which is still relatively 
small. Sending wakeup signals with 5 hops or more would 
be counter-productive as the wakeup latency is not that high 
(~20 cycles) and more powered-off cycles would be wasted. 

4.2 Injection Node Punch 

Power Punch has an additional mechanism to address 
the blocking issue at routers due to there not being enough 
hop count slack at the injection node to fully cover the 
wakeup latency of the local router. Our proposed mecha-
nism holistically exploits two potential sources of existing 
slack at injection nodes to send punch signals before packets 
are generated. 

Figure 6 shows the timeline for generating and sending a 
packet at an injection node. Normally, after accessing local 
resources (e.g., cache, directory) and generating a message, 
several operations are performed in the network interface. 
This includes encapsulating the message into packets and 
flits, arbitrating among multiple ready VCs (as only one VC 
from all virtual networks can send a flit through the physical 
link in each cycle), checking the availability of the connect-
ed input port of the local router, and passing the packet to 
the VC buffer of the input port. If the local router is found to 
be powered off when checking the availability, a wakeup 
signal is sent to the power-gating control of the router. Also, 
additional wakeup signals (in the form of punch signals as 
described before) are sent to other non-local routers one or 
more hops away based on packet destinations.  

As can be seen, packets at the NI need to wait for the en-
tire wakeup latency before being injected into the router 
input port. However, there is slack between the time that the 
destination is known (as part of the message passed to the 

NI) and the time that the availability of the router is checked 
that can be exploited. Therefore, both types of wakeup sig-
nals can be sent at the beginning of NI delay instead of at 
the end of NI delay, as shown in Figure 6 “slack 1”. With 
this slack, several cycles equivalent to the NI latency (usual-
ly 3 or 4 cycles) can be hidden from Twakeup.  

The above “slack 1” extends only up to the beginning of 
the NI as the destinations may not be known earlier. For 
example, sharers of a cache line for an invalidation coher-
ence message cannot be known without accessing the cache 
directory on the home node. Therefore, wakeup signals to 
non-local routers, which rely on destination information to 
determine the targeted routers, cannot be generated earlier. 
In contrast, for the local router, as long as there is a packet 
that needs to be sent from this node, the local router will 
always be used, even though the destination is not known. 
This is represented as “slack 2” in Figure 6. Consequently, it 
is possible to send the wakeup signal for the local router at 
the beginning of accessing L2 cache or directory when it is 
known for sure that a packet will be generated and the local 
router will be used. This hides several additional cycles 
from Twakeup (e.g., hiding ~6 cycles if accessing L2). One 
limitation, however, is that it might not always be possible 
to send the wakeup signal before accessing L1 as not all 
accesses result in non-local packets. A straightforward solu-
tion to this simply is not to exploit “slack 2” for L1 cache 
accesses. A valid bit is added for each type of resource to 
signify whether that resource type uses this slack (i.e., “1” 
for L2 cache and directory, and “0” for L1 cache). Note that 
“slack 2” is relatively long, so it is very effective in hiding 
wakeup latency when this slack is used. 

4.3 Putting It All Together: Power Punch Impact 

To summarize, Power Punch enables punch signals to 
utilize existing slack at source nodes to wake up powered-
off local and neighboring routers along the first few hops 
even before packets are injected. It also enables punch sig-
nals to utilize hop count slack by propagating ahead of 
packets to “punch through” any blocked routers along the 
imminent path of packets, waking them up along the way. 
The contention-free signal propagation mechanism guaran-
tees on-time delivery of wakeup signals and the on-time 
wakeup of routers, essentially hiding the wakeup latency 
from packets and not requiring packet detours. In addition, 
with multi-hop wakeup signals, a router knows exactly 

Figure 6: Exploiting slack at injection nodes. 

Figure 5: Power Punch signals. 

Router

Router

Router

Router Router
5

5

5

5
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Table 2: Key parameters for simulation. 

Network topology 4x4, 8x8, 16x16 mesh 
Input buffer depth 3-flit for data VC, 1-flit for control VC 
Link bandwidth 128 bits/cycle 
Router 3-stage and 4-stage 
Private I/D L1$ 32KB, 2-way, LRU, 1-cycle latency 
Shared L2 per bank 256KB, 16-way, LRU, 6-cycle latency 
Cache block size 64Bytes 
Virtual channel 2 VCs/VN, 3 VNs 
Coherence protocol Two-level MESI 
Memory controllers 4, located one at each corner 
Memory latency 128 cycles 
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whether there is any incoming packet in next few cycles, 
thus avoiding power-gating short idle periods. This is supe-
rior to timeout techniques as no false filtering can happen 
and the filtering length is considerably longer. These fea-
tures allow Power Punch to have significant static energy 
savings with minimal performance penalty, as shown in the 
following evaluation. 

5. Evaluation Methodology 

Power Punch is evaluated under full system simulation 
with the combined use of architecture-level and circuit-level 
simulators. The cycle-accurate gem5 [4] simulator enhanced 
with GARNET [2] is used for detailed timing simulation of 
the processor, memory and on-chip network. We also inte-
grate the latest DSENT [29] NoC power tool with gem5 and 
GARNET to obtain runtime network activity statistics and 
estimate router power consumption more accurately. Signif-
icant effort has been made to implement various power-
gating functionalities in the previous simulation settings. 
Besides regular power-gating components, we also modify 
the simulators to model all the key additional hardware in 
Power Punch, such as punch signals in all directions, extra 
logic in the power-gating controller for punch signal relay 
and handshaking, wakeup signals in network interface and 
cache controllers for holistically exploiting slack, and so on. 
The cache architecture assumes a 32KB I/D private L1 
cache and 16MB shared L2 cache. The coherence protocol 
uses two-level MESI implemented with 3 logically separat-
ed virtual networks to avoid message-dependent deadlock. 
An 8x8 mesh network is used for most of the simulations 
while both 4x4 and 16x16 meshes are used for scalability 
analysis. All the NI operations are packed compactly in 
three cycles, although other loosely packed NI designs with 
longer latency would give Power Punch larger advantage 
due to increased slack. Table 2 lists other key configuration 
parameters. 

Router wakeup latency is estimated using a standard 
VLSI design flow with 45nm technology. Parasitic extrac-
tion is performed on a 451um by 451um layout, and the 
extracted data is fed into a SPICE RC model. The wakeup 
latency is estimated to be 8 cycles. Additional sensitivity 
studies on various wakeup latencies are also conducted to 
demonstrate the applicability of Power Punch over a practi-
cal range of alternatives. The break-even time is 10 cycles 

and the timeout is 4 cycles, consistent with prior works [6, 7, 
9]. 

We compare the following four schemes: (1) No-PG: 
baseline design with no power-gating; (2) ConvOpt-PG: 
conventional power-gating optimized with timeout and 
sending of wakeup signals early (these techniques partially 
hide the wakeup latency and avoid powering off short idle 
periods); (3) PowerPunch-Signal: proposed scheme with 
multi-hop punch signal only (no use of NI slack); (4) Pow-
erPunch-PG: comprehensive scheme with multi-hop and NI 
punch signals. 

6. Results and Analysis 

6.1 Effect on Performance 

We first evaluate one of the primary objectives of Power 
Punch for reducing the performance penalty of power-gating. 
Figure 7 compares the average packet latency, and Figure 8 
shows the execution time of the four schemes for the multi-
threaded PARSEC benchmarks [3]. Results are normalized 
to the No-PG scheme which generally provides a lower 
bound for average packet latency and execution time. As 
can be seen from Figure 7, even with the timeout and early-
wakeup optimizations, ConvOpt-PG still increases the aver-
age packet latency substantially, by 69.1% on average com-
pared with No-PG. This large penalty mainly comes from 
the fact that powered-off routers in conventional power-
gating essentially block the path of packets and traditional 
optimization techniques are far from being able to cover the 
wakeup latency. In contrast, PowerPunch-Signal uses multi-
hop punch signals to wake up the needed routers in advance, 
completely hiding the wakeup latency when there are 
enough hops. Consequently, PowerPunch-Signal reduces 
average packet latency significantly, with only 12.6% in-
crease on average. By exploiting slack to compensate for the 
cases where there are not enough hops, the PowerPunch-PG 
achieves an additional 4.7% reduction, resulting in an aver-
age of only 7.9% increase in packet latency compared to 
No-PG. This amounts to a remarkable 61.2% improvement 
compared to ConvOpt-PG.  

Similar trends are also observed in execution time. As 
shown in Figure 8, while the degree of reduction in execu-
tion time may vary among benchmarks due to their different 
sensitivities to network latency, Power Punch always has 
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                        Figure 7: Average packet latency.                                                   Figure 8: Execution time. 
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the lowest performance penalty (for ferret, it is not clear 
why PowerPunch-PG actually has a slight decrease in exe-
cution time compared to No-PG, but likely causes are 
changes in thread criticality and synchronization traffic from 
altered packet timing). On average, PowerPunch-Signal and 
PowerPunch-PG have only 2.3% and 0.4% increase in exe-
cution time, respectively, essentially achieving non-blocking 
power-gating. 

6.2 Effect on Reducing Blocking 

To gain more insight on the effectiveness of Power 
Punch in mitigating blocking due to power-gating of routers, 
Figure 9 compares the average number of powered-off rout-
ers (i.e., blocked routers) that a packet encounters when 
transported from source to destination. As can be seen, the 
average number of blocked routers is dramatically reduced 
from 4.21 in ConvOpt-PG to 1.09 in PowerPunch-Signal; 
PowerPunch-PG further reduces that number to 0.96 due to 
the use of slack at the injection node (11.8% improvement 
over PowerPunch-Signal). However, this metric cannot fully 
reveal the advantage of exploiting NI slack since a blocked 
router is always counted as one even if the majority of its 
wakeup latency is hidden by the slack. To reflect this differ-
ence, Figure 10 plots the actual number of cycles that pack-
ets spend in waiting for routers to become fully awoken. 
While both PowerPunch-Signal and PowerPunch-PG signif-

icantly decrease the number of waiting cycles compared 
with ConvOpt-PG, the improvement of PowerPunch-PG 
over PowerPunch-Signal is actually 36.2%, revealing the 
true advantage of exploiting NI slack. Figures 9 and 10 il-
lustrate the substantial reduction in performance penalty 
evidenced in the previous subsection and clearly demon-
strate the impact of Power Punch. 

6.3 Effect on Router Energy 

The performance advantage of Power Punch does not 
come at a sacrifice in energy savings. Figure 11 shows the 
breakdown of router energy across the benchmarks, normal-
ized to No-PG. The router energy is decomposed into dy-
namic energy, static energy and power-gating energy over-
head. The power-gating overhead includes all the energy 
wasted owing to power-gating and its control, such as the 
energy consumed in powering on/off routers, in distributing 
sleep signals, and in generating and propagating punch sig-
nals. 

We first compare router static energy. For fair compari-
son with No-PG, the power-gating overhead is added to the 
router static energy as the total router static energy for the 
three power-gating schemes (i.e., the total height of the bot-
tom two bars) to reflect the net static energy savings. On 
average, the three power-gating schemes have similar static 

Figure 11: Breakdown of router energy. 
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     Figure 9: Number of encountered powered-off routers.      Figure 10: Number of cycles waiting for router wakeup. 
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energy savings, with an improvement of around 83% (rela-
tive to the static energy in No-PG). 

As for the total router energy, compared with No-PG, 
ConvOpt-PG saves 50.3%, with PowerPunch-Signal saving 
52.9% and PowerPunch-PG saving 54.1%. Hence, Power 
Punch has slightly more energy savings. This is mainly due 
to two reasons: 1) Power Punch provides better filtering for 
short idle periods, and 2) Power Punch has a shorter execu-
tion time, which leads to less total router energy. Consider-
ing Figure 7 to Figure 10 together, it can be seen that, com-
pared with the optimized conventional power-gating (Con-
vOpt-PG), Power Punch is better in both performance and 
energy.  

6.4 Comparison across Full Network Load Range 

To understand the behavior of different schemes more 
fully, we conduct simulations with synthetic traffic and vary 
the network load from zero to saturation. Figure 12 presents 
the performance and power results for three common traffic 
patterns: uniform random, transpose and bit-complement. 
Statistics are collected after sufficiently long NoC warm up.  

Regarding performance, the typical “power-gating curve” 
is observed for ConvOpt-PG. That is, for low loads, the av-
erage packet latency is very high as many routers are pow-
ered off and packets are likely to be blocked multiple times. 
As load increases, the packet latency starts to decrease as 
more routers are powered on, and then rises again as load 
approaches saturation. This creates a massive performance 
gap compared with No-PG. In contrast, the average packet 
latency of PowerPunch-PG is almost identical to that of No-
PG across the entire load range, essentially achieving non-
block power-gating. Note that at high load for the transpose 

traffic pattern, due to the uneven load distribution among 
routers, it is possible that some routers are still powered off 
while other routers are congested. ConvOpt-PG performs 
poorly in this case, whereas PowerPunch-PG is able to reach 
the same maximum throughput as the no-power-gating case. 
This highlights the advantage of Power Punch in supporting 
high traffic load phases of application execution. 

With regard to static power savings, both ConvOpt-PG 
and PowerPunch-PG save considerable static power as ex-
pected. ConvOpt-PG is slightly better for some medium 
loads but is achieved at the cost of significant performance 
penalty. 

6.5 Sensitivity on Wakeup Latency and Router Pipeline 

To illustrate that Power Punch is applicable to a variety 
of designs, Figure 13 compares the average packet latency 
of No-PG, ConvOpt-PG and PowerPunch-PG with varying 
values of wakeup latency and router pipeline stages. In this 
sensitivity study, uniform random traffic is used with load 
rate set to the average load rate of PARSEC benchmarks. A 
3-hop punch signal is used in Power Punch. As can be seen, 
compared with No-PG, ConvOpt-PG has a large penalty of 
average packet latency in all cases, varying from 1.5X to 
more than 2X. In contrast, PowerPunch-PG has only 2.4% 
to 9.2% increase in the average packet latency. The highest 
increase of 9.2% occurs in the case of Twakeup = 10 and Trouter 
= 3, where the 3-hop punch signal does not cover the entire 
wakeup latency. We intentionally include this case to show 
that most of the penalty reduction of Power Punch indeed 
comes from hiding wakeup latency; otherwise performance 
penalty may occur. For this case, the performance penalty of 

                      (a) Uniform random                                  (b) Bit-complement                                        (c) Transpose 

Figure 12: Packet latency and router static power across full range of network loads. 
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Power Punch becomes negligible when a 4-hop punch sig-
nal is used.  

6.6 Discussion 

(1) Hardware implementation and cost 

While the prior description in Section 4 on how and why 
Power Punch works is detailed, the final implementation is 
actually very simple, without the need of any table or com-
plex hardware. In the example of Figure 5, each bit in the 5-
bit punch signal in the right X+ direction is a direct combi-
national logic function of the 5-bit punch signal from the 
left (no need to monitor Y directions due to routing re-
strictions). Similarly, each bit in the 2-bit Y+ direction 
punch signal is also a direct and simple logic function of the 
punch signals in the X and Y- directions. The overall area 
overhead of these logic gates, plus the 5-bit or 2-bit signal 
lines and other minor control logic, consumes only 2.4% of 
additional NoC area as compared to conventional power-
gating. 

(2) Scalability 

Power Punch provides very good scalability and is suit-
able for larger network sizes. Power Punch does not have 
any particular central element that limits its scalability. The 
key parameter – the width of the punch signals – depends on 
the number of targeted router hops, not network size. This is 
unlike reconfiguration approaches that have complexity 
which depends greatly on the size of the network. In addi-
tion, conventional power-gating suffers from cumulative 
wakeup latency, which increases linearly with network size. 
In contrast, Power Punch does not have any of these issues, 
thus achieves relatively higher improvement for larger net-
works. For example, at an injection rate of 0.01 
flits/node/cycle, compared with ConvOpt-PG, PowerPunch-
PG reduces the average packet latency by 43.4%, 54.9% and 
69.1% for 4x4, 8x8, and 16x16 networks, respectively.  

(3) Comparison to other recent power-gating schemes 
Previous work has proposed to send wakeup signals ear-

ly using information already provided in look-ahead routing 
[24]. However, wakeup signals in this method can be sent at 
most 2 hops ahead, and sending beyond 2 hops requires 
monitoring a large number of dedicated signals. This paper 
follows a similar intuition, but proposes schemes that solve 

the critical problems of minimizing and merging wakeup 
signals with minimal hardware cost and no contention. This 
enables wakeup signals to be sent multiple hops ahead to 
hide router wakeup latency completely. In [5], NR-Mesh is 
proposed to improve NoC topology for power-gating by 
connecting a core to multiple routers. This scheme does not 
hide any wakeup latency at the injection if all the connected 
routers are powered off, and latency penalty due to detours 
is significant. It also requires high-radix routers. NoRD [6] 
is a recently proposed scheme that uses bypass paths to cir-
cumvent powered-off routers. It falls under the category of 
fast reconfiguration-based schemes as mentioned in Section 
2.3. As NoRD relies on packet detours, its performance 
overhead is about 5 times that of Power Punch (9.3 cycles of 
packet latency penalty in NoRD versus 1.8 cycles in Power 
Punch for the 64-node system). NoRD also requires extra 
VCs for deadlock avoidance whereas Power Punch works 
with any number of VCs. Router Parking [28] and Panthre 
[27] are two other reconfiguration-based NoC power saving 
schemes with reasonably efficient algorithms. However, 
these schemes similarly suffer from issues associated with 
reconfiguration such as detour, long epoch and limitations 
on core-to-core communication. Compared with these two 
schemes, Power Punch has more router static energy savings 
capability and less packet latency penalty. MP3 [7] is a re-
cently proposed NoC power-gating scheme that is very ef-
fective at achieving near-zero performance penalty. Howev-
er, it is applicable to Clos and other indirect networks, not 
meshes (a direct network) targeted in this work. Another 
recent power-gating scheme, Catnap [9], uses multiple nar-
row networks to increase the efficiency of power-gating, but 
it is proposed mainly for CMPs with high-bandwidth.  

7. Related Work 

A number of closely related works on power-gating of 
NoC routers have already been discussed in detail [6, 7, 9, 
24, 25, 26, 27, 28]. In addition, topology-aware power-
gating has also been proposed recently [31] that specifically 
targets Flattened bufferfly [19] and MECS [14] networks. 
Besides on-chip network routers, power-gating techniques 
have been successfully applied to cores and execution units 
in CMPs and GPGPUs [18, 21, 23]. These applications of 
power-gating highlight the potential of this approach to save 
static power. The notion of NoC slack has been used before 
[8] in the context of the criticality of packet delivery to an 
application’s execution, which is quite different from the 
slack concept exploited in this paper. Another related ap-
proach is bufferless routing [12, 15] which saves router 
power by eliminating buffers, but it may introduce potential 
livelock, misrouting and packet reassembly issues that must 
be handled appropriately. Moreover, besides buffers, there 
are other key components in NoC routers that also consume 
a considerable amount of static power which is reduced with 
Power Punch. 

8. Conclusion 

Current and future many-core chips require on-chip net-
works to be designed with both low power and high perfor-

Figure 13: Wakeup latency sensitivity. 
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mance. While conventional power-gating of on-chip routers 
incurs significant performance penalty due to the blocking 
problems, this paper investigates the challenges and viabil-
ity of achieving non-blocking power-gating. Power Punch, a 
novel and effective power-gating scheme, is proposed in this 
work. Power Punch exploits the slack in hop count as well 
the slack at source nodes to send power control signals 
ahead of packets to “punch through” any blocked routers 
along the imminent path of packets, turning them on. With 
Power Punch, packets do not suffer router wakeup latency 
or detour latency. Simulation results verify that significant 
router static energy savings with little performance penalty 
can be had, demonstrating the viability of achieving near 
non-blocking power-gating. 
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