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Abstract: Several factors affect existing electric power systems and negatively impact power quality
(PQ): the high penetration of renewable and distributed sources that are based on power converters
with or without energy storage, non-linear and unbalanced loads, and the deployment of electric
vehicles. In addition, the power grid needs more improvement in the performances of real-time
PQ monitoring, fault diagnosis, information technology, and advanced control and communication
techniques. To overcome these challenges, it is imperative to re-evaluate power quality and require-
ments to build a smart, self-healing power grid. This will enable early detection of power system
disturbances, maximize productivity, and minimize power system downtime. This paper provides an
overview of the state-of-the-art signal processing- (SP) and pattern recognition-based power quality
disturbances (PQDs) characterization techniques for monitoring purposes.

Keywords: smart grid; power quality monitoring; disturbances characterization; detection; estimation;
classification; signal processing methods; pattern recognition methods; information theoretical criteria;
phasor measurement unit (PMU)

1. Introduction

Nowadays, renewable energy sources (RES) are extensively integrated into the power
grid in order to meet the energy demand and green energy motive. The high penetration
level of renewable energies requires the use of operation and management strategies to
maintain and enhance the reliability, efficiency, and safety of the power grid. The power
electronic converters are becoming widely used and expanded in this news power grid
structure [1,2]. In fact, the power quality (PQ) is significantly impacted by the increased
level of RE penetration [3]. Power quality can be defined as the interaction between con-
sumers and the electric grid [4,5]. The first type of PQ is voltage quality, which is presented
by a deviation of voltage from its nominal value due to the effect of the power grid on the
end-consumers or equipment. The second type of PQ is the current quality which is pre-
sented by a deviation of current from its nominal value [1]. Voltage disturbance caused by a
producer could have a negative effect on end-user equipment [6,7]. A fault may damage the
electric grid and equipment [8,9]. To resume, voltage quality can be explained by the impact
of the electric grid on equipment, while current quality is the impact of equipment on the
grid. This does not allow us to maintain effectively the balance between consumption
and production [10] and could have a negative affect on frequency and voltage [11,12].
In real electric grids, voltage parameters are deviating from the nominal voltages, which
correspond to PQ disturbances (PQDs) [8,13]. The deviation is a stationary PQD that is
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presented by a small deviation (A large or small deviation is reported by IEEE 1159, IEC
61000-4-30 and EN 50160 standards [14–16]) from its nominal value. For example, the
frequency and voltage variations are classified as variations. The event can be presented
by a high augmentation or diminution in the voltage amplitude compared to its nominal
value. The most known events are outage, interruption, sag and swell [17,18]. Within the
progressing discussion, the PQDs may cause a huge financial loss and they can degrade
system reliability and negatively influence the PQ. To address these challenges, it is impor-
tant to develop advanced algorithms for PQD characterization that allow for improving the
reliability and efficiency of the electric grid according to international standards. Therefore,
PQD characterization has become a major issue in PQ monitoring. In this scope, the phasor
measurement unit (PMU) becomes an advanced measurement technology used in the
electric system and it can be a piece of essential equipment for the state estimation of the
power grid. In addition, PMU can validate the performance and the settings of equip-
ment [19]. Standard C37.118.2011 [20] (and its amendment [21]) provides the following
criteria: rate of change of frequency (ROCOF), frequency error (FE) and total vector error
(TVE). These criteria allow evaluation of the performances of the extraction, selection and
detection techniques under stationary and non-stationary conditions associated with RES
integration, noise and non-linear loads. Hence, several publications have proposed the use
of signal processing (SP) and artificial intelligence (AI) techniques for extracting, selecting
and classifying the voltage. Indeed, the techniques-based on SP techniques are widely used
to extract and detect the signal’s features. For PQDs classification, most used algorithms
are based on AI methods. In the last few years, there are few reviews that address various
aspects of PQ assessment [22–29]. The paper published in [23], presents a review of soft
computing and signal processing techniques for PQ disturbances detection and classifica-
tion. These papers includes also the issues related to micro-grid applications-based on the
distributed generation that uses power electronic technology (PET). This PET leads to an
increase the power quality issues. A comprehensive and critical review of PQDs detection
and classification for power grid-based RES application is presented in [24]. This paper
provided also general software and hardware-based plate-forms for PQ monitoring with
renewable energy integration. The paper in [25], provides a review of SP and machine
learning techniques for PQDs detection and classification. A review of techniques based on
machine learning methods with a focus on control and decision-making performances is
proposed in [26]. A critical review of techniques-based on SP, optimization and AI for PQD
detection and classification is provided in [27]. This review focuses on PQ issues related
to renewable energy in the smart grid context. It gives also attention to the research with
experimental and real-time studies. The review provided in [28], presents an overview
of the techniques used for PQDs location and cause identification. Ref. [29] provides a
thorough overview of the signal processing and soft computing approaches that are used
to detect and identify the root causes of PQD. However, there are currently more faster
and reliable techniques for PQDs extraction, selection and classification. In this context,
the main objective of this paper is to provide an up-to-date and well-organized review of
PQDs extraction, selection and classification. These papers presents also the power quality
definition, standards, causes and types of disturbances. A discussion is provided of the
PMU’s requirements and estimation evaluation criteria that are defined by international
standards. Moreover, this manuscript gives an overview of the existing SP techniques that
are used for extracting, selecting and classifying the disturbance’s signal. Regarding the
stage of feature extraction, the objective is to estimate the voltage’s parameters which are
amplitudes and initial phases (phasors) and frequency. For PQ monitoring, frequency is
considered as the parameter to control the grid state. In addition, the frequency must be es-
timated once in order to estimate the phasors. Concerning frequency and phasor estimation,
several methods are proposed in the literature that can be classified as non-parametric and
parametric. Regarding feature selection, several optimization methods have been published
for optimum feature selection [30–32]. For the feature classification stage, the extracted
features are used as inputs for the stage techniques. The classification stage provides as
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output the type or cause of PQD. In the literature, several classical and based-pattern recog-
nition techniques for feature classification have been proposed. For classical techniques,
two principal features, which are amplitude or residual voltage and duration, are used
to determine the PQD type. Moreover, this paper is interested in PQ issues that need the
use of advanced SP, optimization and pattern recognition techniques [3,5,33] and use the
advanced techniques of PQD characterization to improve the reliability and efficiency of
the electric grids. To this purpose, suitable feature extraction, selection and classification
methods become of great importance to developing efficient and reliable algorithms for
PQDs characterization. The paper’s contributions can be presented as follows:

• Comprehensive review of PQDs and their causes and consequences is presented. A
review is also provided of PQ measurement (PMU) and summarizes its main points.
The requirements of PMU standards for balanced and unbalanced systems are defined.

• Critical and comprehensive review is presented for PQ disturbances characterization
with a focus on extraction, selection and classification techniques.

• A state-of-the-art of feature selection (FS) technique that is based on the optimization
algorithms features classification applications is provided.

• In-depth and critical analysis of signal processing, optimization algorithms and pattern
recognition techniques are done.

• A discussion on the application of parametric and non-parametric methods is performed.
• A critical analysis and future research of relevant issues that are related to the PQ

disturbances characterization is performed.

The organization of the paper is presented as:

• Section 2 presents the PQDs and their origins and consequences. Then the international
standard for PQ characterization is provided. In addition, PQ measurement (PMU) is
presented.

• Section 3 deals with feature extraction techniques used for frequency and phasor
estimation.

• Section 4 is concerned with the problem of feature selection or parameter optimization
for classification purposes.

• Section 5 describes power quality disturbances classification with a focus on classical
and pattern recognition techniques.

• Sections 6–8 provide comparative analysis, future research, challenges and conclusion.

2. PQ Disturbances Monitoring

PQ issues have received more attention from scientists and engineers. In fact, PQ can
have a negative effect on an electric system by impacting its operation conditions, efficiency,
and measurements performances [1,11,34,35]. In the following, more reasons that explain
the increased interest in PQ issues are presented [9]:

• Sensors: PQD impacts negatively the performance of measurement devices.
• Protective relays: they can lead to mal-function due to PQDs.
• Equipment’s lifetime: it can be reduced and equipment can be damaged because of

these disturbances.
• Electromagnetic compatibility: PQDs are one of the most important sources of electro-

magnetic noise [36].

In this paper, the PQ issues that require SP techniques [17,33] and drive the use of
advanced algorithms for PQDs characterization are presented. The characterization of
the PQDs characterization is considered one of the important PQ monitoring issues. The
main steps of PQ characterization are presented in Figure 1, and can be decomposed as
follows [17].

• Feature extraction stage: this refers to the voltage estimation (i.e., phasor and fre-
quency) from the acquisition signals that are noise corrupted.

• Feature selection stage.
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• Feature detection stage: this presents triggering, i.e., determining the time-points
when the event is starting and ending.

• Feature classification stage: this permits the identification of the type of disturbance.

Figure 1. Diagram of main stages characterizing power quality.

2.1. Disturbances

The electric system consists of 3 phases that have a mutual coupling. A balanced
power grid has three sinusoidal signals with the same RMS amplitude and same frequency
(f ) (f = 50 Hz or f = 60 Hz). Moreover, the phase shift between phases = 120◦ [37,38]. In the
case where one of these conditions is not respected, the power grid is unbalanced [13,39].
As mentioned previously, any significant deviation in current or voltage signals from
their nominal values is considered as PQDs [17,18]. Table 1 provides the common PQ
disturbances, with their causes and consequences.

Table 1. Main disturbances with their causes and impacts [40]. Energies, 2020.

Disturbance Causes Impacts

Swell

system fault conditions (such as
single line-to-ground (SLG) fault),

switching off large loads,
capacitor banks

Electronic component’s breakdown
and damage or other sensitive
equipment, insulation failure
(induction machine), flicker.

Sag
switching of large loads (such as arc

furnaces, motors, etc.),
disconnecting capacitors, Lightning.

Flicker, decreasing AC motor speed,
switching off of control systems.

Over-voltage
capacitor banks, lighting,

resonances, fault condition and
circuit breaker opening

damage of equipment and circuit
breaker, flicker.
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Table 1. Cont.

Disturbance Causes Impacts

Under-voltage

Low factor of power, overloaded
network and transformers,

switching off of a large electric
generation.

Electromechanical equipment’s life
reduction, premature failure.

Harmonics
Electronic power converter,

non-linear loads, generators and
transformers, arc furnaces.

Malfunction of relays and sensitive
equipment, degrade of the machine
performances, capacitors failures,

electromagnetic interference in
communication circuits.

Interruptions

Human errors, faults, failures of
control-command system, natural

causes (high winds, ice on the lines,
etc.)

Loss of power, equipment failures,
shutdown of computer and

sensitive equipment.

Frequency
variation

electric generation loss, an
un-synchronous between the power
system and generator, overloaded

of electric system.

Degrade engine performance,
inefficient of motors, power failure.

Voltage fluctuation

Electric arc furnaces, start-up of
drives, resistance welders,

inter-harmonics components in
current signal.

Voltages and currents instability of
the electronic equipment, flicker.

Flicker
Switching of large load, capacitor

banks, electric arc furnace, frequent
start-up of AC motors.

Flicker.

2.1.1. Disturbance Variations

1. Frequency and voltage variations:
As mentioned previously, the real-time frequency value has always a small deviation
of ±1 Hz [16], from the nominal value which is 50 Hz or 60 Hz. Figure 2 presents the
measured frequency for several countries. These frequency variations can lead to a
variation in motor speed and less power generation in production units.

Figure 2. Examples of the variation of frequency in several countries, such as Great Britain (bottom right),
Singapore (bottom left), Chinese east coast (top right), Sweden (top left) and Spain (top center) [8]. IEEE
Press, 2006.
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The voltage variation is caused by the variation of the end-user loads and distributed
generation [13]. These can affect the performance of equipment. They can also cause
overheating and reduce the starting torque of electrical motors (induction motors) [6].
For example, over-voltage is a voltage value that arrives at 110–120% of the nominal
value over several periods (one minute). An over-voltage is illustrated by Figure 3.

Figure 3. Over-voltage.

2. Harmonic, inter-harmonic, and non-periodic distortions:
These distortions are a deformation of the current or voltage wave-form from its
nominal one. These disturbances can lead to over-heating of power electronic equip-
ment, etc. [41–43]. The harmonics components are more considered by engineers
and researchers since they are more dominant in the electric grid than others distur-
bances [44]. Total harmonic distortion (THD) is a criterion that is used to analyze the
number of harmonic components in the signal. THD is defined by the international
standard IEC 61000-4-7 [45] as:

THDF(%) = 100 α

2

√
∞
∑

h=2
a2

mh

am
, (1)

where am refers to fundamental frequency and amh corresponds to the amplitude of
the hth harmonic component. The parameter α > 0 allows controlling THD.

2.1.2. Events

PQ events are represented by large deviations in voltage values from normal ones.
The most recurrent events are sags, swells and interruptions [8]. Interruption is defined as
a voltage or current with an amplitude that is less than 10% of the nominal voltage [14–16].
These interruptions can be caused by multi-phase disconnection at the power grid, like
short-circuits. Figure 4 illustrates an interruption caused by lightning, using recorded data
provided by the DOE/EPRI [46].

Voltage sag (Voltage sag is more used in US publications, while the dip is used by
the IEC) is one of the severe PQ issues and it is a small diminution of the amplitude that
is between 0.1 and 0.9 pu of the nominal voltage over a few periods ( 1

2 period and one
minute [14]. Sags can lead to a decrease in the performance of end-user equipment. It
is characterized, by the standard IEC 61000-4-30, by its duration and amplitude. Others
parameters like phase angle jump and three-phase characteristics are introduced in order
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to provide more information about sag behavior. Figure 5 presents a sag caused by a
two-phases fault for event-code-0284 provided in [46].

Figure 4. Interruption due to lightning (Event 2857) [46]. DOE EPRI, 2022.

Figure 5. Voltage sag (Event 0284) [46]. DOE EPRI, 2022.

Swell is by definition an augmentation in the amplitude in the interval that is [1.1, 1.8]
of the nominal value.

2.2. Monitoring

The smart grid should address the limitations of the existing one by using PQ monitoring,
advanced measurement devices, and self-healing, pervasive system anomalies [1,34,47–50].
Moreover, SG is expected to enhance reliability, efficiency and security through commu-
nication technologies and advanced control technologies [12,51–55]. In this scope, PQ
monitoring has become the backbone of control strategies that are used in SG applications.
In Figure 6, a control strategy (CS) used in SG applications and that uses PMUs is presented.
This CS allows for achieving four tasks that are: PMU devices allow extraction of the
signals at sub-stations, such as phasors and frequency. Intelligent electronic devices (IEDs)
provide data and allow to control and monitor the electric grid for protecting the end-user
equipment. The most used IEDs are digital and modern protective relays, infrastructure
and energy management systems (EMS) and PMUs. The supervisory control and data
acquisition (SCADA) monitors the grid and it is located at the control center.
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Figure 6. A control strategy based on PMUs applied in electric grid applications.

Figure 7 presents a PQ monitoring system, which allows performing several PQ
monitoring tasks.

Figure 7. Diagram of a device for PQ measurements with the following blocks: (1) voltage or current
input, (2) digitized and sampled voltage or current, (3) others processing.

In Figure 8, an RMS threshold and duration of triggering are given. The vertical axis
shows the reference voltage in the percentage of the threshold and the reference is the
normal value. The horizontal axis refers to the duration that begins at the time-point when
the voltage reaches the threshold. These thresholds are defined in several international
standards for characterizing voltage disturbances, such as the IEEE 1159, IEC 61000-4-30,
and EN 50160 [14–16].
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-11-

Swells Over-voltages 

1 10% 

90% 

Sags Under-voltages 

1-10%

Short interruptions Long interruptions 

1-3 min Duration 

Figure 8. Threshold used for event detection with RMS values triggering.

2.3. Standards

International standards (IS) allow elaborating and defining requirements of PQ in
order to satisfy the end-user consumer and to protect the electric grid. IS defines the limits
and tolerance variations for different signal parameters, like frequency and voltage. The
most known organization for elaborating IS are the Institute of Electrical and Electronics
Engineers (IEEE) and the International Electrotechnical Commission (IEC), where EMC
describes a description about the equipment and device abilities with its electromagnetic
environment [56]. For instance, the international standard IEEE 519 provides the require-
ments for harmonic components [57]. EN 50160 and IEEE 1159 standards provide a PQDs
classification according to duration and RMS thresholds that are shown in Tables 2 and 3.
The IEC 61000-4-30 [15] describes the measurement methods of the signal’s parameters.

Table 2. classification of PQ disturbances.

PQ Disturbance Duration Voltage Values

Sag >0.5 cycles 0.1 to 0.9 pu
Swell >0.5 cycles 1.1 to 1.8 pu

Outage >0.5 cycles <0.1 pu
Flicker >0.5 cycles 0.9 to 1.1 pu

Harmonic - THD < 5%
Inter-harmonic - THD < 5%

Table 3. Definitions of interruption reported in international standards.

Standard Term Definition

IEEE 1159

Interruption Voltage below 10% of nominal
Sustained interruption Longer than 3 s

Momentary interruption 1
2 cycle to 3 min

Temporary interruption 3 s to 1 min
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Table 3. Cont.

Standard Term Definition

IEEE 1250

Instantaneous interruption Shorter than 30 cycles
Momentary interruption 1

2 to 2 s
Temporary interruption 2 s to 2 min
Sustained interruption longer than 2 min

EN 50160 Short interruption Shorter than 3 min
Long interruption Longer than 3 min

IEEE 1366 Momentary interruption Shorter than 5 min
Sustained interruption Longer than 5 min

2.4. Phasor Measurement Units (PMUs)

Herein, we provide a PQ measurement that is PMU with a presentation of its main
points. Then, a discussion is provided about the PMU’s requirements that are defined by
international standards.

2.4.1. Definition

PMU is an advanced measurement device and is part of PQ monitoring, especially
for real-time state estimation. PMU allows for validation of the performance and to
control of the settings of end-user equipment [19]. In addition, it can be stand-alone inside
another monitoring system, like a protective relay [58]. PMUs allow for providing real-time
parameters with respect to global time references, such as frequency, rate of change of
frequency (ROCOF), positive sequence and synchro-phasor. A global position system (GPS)
is used for generating the time-tags to the PMU device [19]. Figure 9 shows a synchro-
phasor system of a sinusoidal signal. The phasor reference is represented by a time-tag
(t = 0) and it is composed of RMS value (amplitude) and phase angle ϕ. In the case, where
all PMUs are using the same time basis, their estimated parameters can be compared. This
presents the main advantage of PMUs over other measurements [20,59].

Figure 9. Synchro-phasor representation of a sinusoidal signal.
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2.4.2. Standards

In this section, a description of the PMU standard, which is C37.118, is performed. The
PMU standard imposes the phasor, frequency, and ROCOF requirements under stationary
and non-stationary conditions. It provides the requirements of synchronization and time-
tag for the electric grid with an evaluation specification method [20,60,61]. The PMUs
standard is enhanced into C37.118 [20,21] to use dynamic synchronized measurement.
IEEE standard C37.118 [20,21] provides the following criteria: ROCOF, frequency error (FE)
and total vector error (TVE). These criteria allow for evaluating the performances of the
phasor and frequency estimates under stationary and non-stationary conditions. C37.118
defines also two classes that are M-class and P-class, the first class requires the highest
estimation performances while the second one requires low computation complexity. Under
non-stationary conditions, the estimation algorithm must achieve a frequency less or equal
to ±5 mHz from the nominal value. Figure 10 illustrates a frequency concept under non-
stationary conditions. The signal has a sinusoidal form and is observed over several periods
[0, T0, 2T0, . . . , NT0]. T0 = 1

f0
presents the fundamental period, f0 refers to the fundamental

frequency, and [0,X0, 2X0,. . . ,NX0] are the phasors representation. It should be mentioned
that the synchrophasor can be variable in terms of time, therefore the PMU device shall
provide a real-time estimation over a short time. Figure 11 presents a PMU process that is
inspired by the international standard PMU IEEE for power grid applications [20].

Figure 10. Phase angle change under off-nominal frequency conditions.

Figure 11. Complete PMU signal processing model [20]. IEEE standard C37.118.1, 2011.

2.4.3. Estimation Evaluation’s Criteria

PMU must estimate the signal’s parameters with the highest performance under
stationary or non-stationary conditions. There are three evaluation criteria that are defined
by this standard, which are FE, TVE and ROCOF.



Energies 2023, 16, 2685 12 of 41

1. Frequency and ROCOF measurement evaluation:
The voltage or current of the three-phase power grid can be expressed by the following
model:

Xm(t) = am cos(φm(t)), (2)

where m ∈ {a, b, c} refers to the phase index, am corresponds to the maximum am-
plitude and φ(t) is instantaneous phase angle. The frequency expression is given by

f (t) =
1

2π

dφ(t)
dt

, (3)

and the ROCOF is expressed by

ROCOF(t) =
d f (t)

dt
. (4)

Both FE and ROCOF error (RFE) are provided by the standard C37.118 for evaluating
the estimation performance of the frequency estimator.
The FE is defined as

FE(t) =
∣∣∣ f0(t)− f̂0(t)

∣∣∣, (5)

and the RFE is expressed as

RFE(t) =

∣∣∣∣∣d f0(t)
dt
− d f̂0(t)

dt

∣∣∣∣∣, (6)

where f0 and f̂0 correspond to the real and estimated frequency.
PMUs must yield high estimation performance in order to meet the requirements
specified by the PMU standard. These performances shall meet the requirements
of the C37.118 under stationary and non-stationary conditions and for P- and/or
M-classes. Table 4 presents the FE and RFE requirements for both classes and un-
der stationary conditions. Under non-stationary conditions, a condition test is also
presented that determines the band-width of the synchro-phasor device. In this test,
phase modulation and sinusoidal amplitude are used. The model of signals is given by

Xm(t) = am[1 + kxcos(wt)]
× cos[w0t + kacos(wt− π)],

where am refers to the input signal amplitude, w0 and w are, respectively, the nominal
and the modulation angular frequencies in rad

s . fm = w
2π corresponds to the modula-

tion frequency in Hz, m ∈ {a, b, c} presents the phase index. Kx and Ka correspond,
respectively, to the magnitude and the modulation of phase angle. This test must be
realized with w, kx, and ka over the range of frequency given in Table 5 [21].

Table 4. Steady-state frequency and ROCOF measurement requirements.

Influence Quantity Reference
Condition

Error Requirements for Compliance

P-Class M-Class

Signal
frequency

Frequency = f0
( fnominal)

Phase angle
constant

Range: f0 ± 2.0

Range:
f0 ± 2.0 Hz for Fs ≤ 10

± Fs
5 for 10 ≤ Fs < 25
±5.0 Hz for Fs ≥ 25

Max FE Max RFE Max FE Max RFE

0.005 Hz 0.01 Hz
s 0.005 Hz 0.01 Hz

s
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Table 4. Cont.

Influence Quantity Reference
Condition

Error Requirements for Compliance

P-Class M-Class

Harmonic
distortion

(same as Table 3
in C37.118-2011)

(single harmonic)

<0.2 % THD 1% each harmonic up to 50th 10% each harmonic up to 50th

Max Fe Max RFE Max Fe Max RFE

Fs > 20 0.005 Hz 0.01 Hz
s 0.025 Hz 0.01 Hz

s

Fs ≤ 20 0.005 Hz 0.01 Hz
s 0.025 Hz 0.01 Hz

s

Table 5. Frequency and ROCOF performance requirements under modulation tests.

Modulation Level, Reference Condition, Range
(Use the Same Modulation Levels and Ranges under the Reference

Conditions Specified in Table 5 in C37.118-2011 Standard)

Error Requirements for Compliance

P-Class M-Class

Max FE Max RFE Max FE Max RFE

Fs > 20 0.06 Hz 3 Hz
s 0.3 Hz 30 Hz

s
Fs ≤ 20 0.01 Hz 0.2 Hz

s 0.06 Hz 2 Hz
s

2. Total vector error evaluation:
The C37.118 standard allows for simplifying the compliance specification by combin-
ing the angle phase and amplitude in one evaluation criterion which is TVE, which
allows for evaluating the estimation performance of the phasor. TVE is then the differ-
ence between the real value and the estimated one of the phasor. Let supposing the
following synchrophasor representation X̄ = Xr + jXi, the TVE criterion is expressed
then as

TVE[n] = 2

√(
(X̂r [n]−Xr [n])

2
+(X̂i [n]−Xi [n])

2

X2
r [n]+X2

i [n]

)
, (7)

where Xr[n] and Xi[n] present, respectively, at the instant n, the real and imaginary
values of the fundamental phasor. X̂r[n] and X̂i[n] refer, respectively, at the instant n,
to the real and imaginary estimated values of phasor. Both real and estimated values
of the phasor are measured at the same time-point. The PMU standard requires that
the TVE does not exceed 1%. Figure 12 presents a circle with a radius of 1% which is
the allowed error. This concept is inspired by the international standard IEEE C37.118.
The signal’s parameters are considered to be constant under stationary conditions.
However, under non-stationary conditions, these parameters can be time-varying. In
this case, it is imperative to use a model of signal that takes into consideration the
parameter changes.
Tables 6 shows the requirements of synchrophasor for P- and M-classes under station-
ary conditions. The modulation tests, under non-stationary conditions, require the
TVE requirements given in Table 7.
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Figure 12. Estimation performance required by PMU standard [21]. IEEE standard C37.118.1a, 2014.

Table 6. Steady-state synchrophasor measurement requirements.

Influence Quantity Reference
Condition

Minimum Range of Influence Quantity over Which PMU
Shall Be within Given TVE Limit

P-Class M-Class

Range Max TVE % Range Max TVE %

Signal frequency
range- fdev

(test applied nominal
+deviation: f0 ± fdev)

Fnominal
( f0) ±2.0 Hz 1

±2.0 Hz for Fs < 10
± Fs

5 for 10 ≤ Fs < 25
±5.0 Hz for Fs > 25

1

The above signal frequency range tests are to be performed over the given ranges and meet the given
requirements at three temperatures: T = nominal (23 ◦C), T = 0 ◦C, and T = 50 ◦C

Signal voltage
magnitude

100%
rated

80% to 120%
rated 1 10% to 120%

rated 1

Signal current
magnitude

100%
rated

10% to 200%
rated 1 10% to 200%

rated 1

Phase angle with
| fin − f0| < 0.25 Hz

Constant or
slowly varying

angle
±π 1 ±π 1

Table 7. Synchrophasor measurement bandwidth requirements using modulated test signals.

Influence Quantity Reference
Condition

Minimum Range of Influence Quantity over Which PMU
Shall Be within Given TVE Limit

P Class M Class

Range
Max TVE

(%) Range
Max TVE

(%)

kx = 0.1,
ka = 0.1

100% rated
signal

magnitude,
fnominal

Modulation
frequency 0.1 to

losser of Fs
10 or 2 Hz

3
Modulation

frequency 0.1 to

losser of Fs
5 or 5 Hz

3

kx = 0.1,
ka = 0

100% rated
signal

magnitude,
fnominal

3 3
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The following section presents a review of existing feature extraction techniques for
PQ monitoring.

3. Feature Extraction-Spectral Estimation Techniques for Power Quality Monitoring

The studied techniques allow a spectral analysis of the signal and can be classified into
parametric and non-parametric methods, where parametric methods are based on a signal
model. Moreover, an extension to non-stationary conditions is provided. The analysis of
these methods is performed under stationary and non-stationary conditions.

3.1. Non-Parametric Methods

The analysis of these methods can be performed with no assumption about the voltage
or current signal.

3.1.1. Zero-Crossing Transform

A simple frequency estimator is proposed by IEC 61000-4-30 standard that is based on
the zero-crossing method. This estimator performs a calculation of the time required for
the signal shape to change from a positive to a negative value, as shown in Figure 13.

Figure 13. Zero-crossing approach illustration.

The first step is to compute the duration, in the same direction, between two zero-
crossings. From Figure 13, the frequency is expressed by

f̂0 =
1

Tsc
, (8)

where Tsc presents the duration of 2 consecutive zero-crossings. In the case of Nzc zero
crossings, the frequency can be estimated by

f̂0 =
Nzc

Tmc
, (9)

where Tmc presents the duration of Nzc zero crossing. However, this approach achieves low
performance under noisy environments and for harmonics, inter-harmonics and distorted
signals [33].

3.1.2. Root Mean Square and Peak Voltage Techniques

Different techniques can estimate the signal’s magnitude, such as the RMS and PV
techniques. The concept of the former one is based on the computation of the RMS value of
voltage over several half-periods. The RMS value could then be calculated as a function of
V(t) over the period T.

Vrms =

√
1
T

∫ T

0
V2(t)dt, (10)
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The peak voltage estimates the signal’s amplitude as a function of time. It is given by

Vpeak = max
0<τ<T

|v(t− τ)| (11)

PQ monitoring devices estimate the rms voltage once every period, which can give an
over-estimation of the PQD duration like sag [13].

Both techniques are simple and proven approaches. Nevertheless, they cannot estimate
the phase angle and they lead to poor estimation in a noisy environment. In order to
improve the estimation performance, several techniques based on the Fourier transform
(FT) are proposed in the literature.

3.1.3. Fourier Transform and Its Extensions

FT is one of the most used estimation methods for stationary signals for extracting
spectra at specific frequencies. Fourier transform models the studied signal as a sum of
sinusoids where each sinusoid has a specific frequency. These frequencies are estimated
without any information about the time the frequency appeared. Several references and
books are devoted to the FT [62,63].

The continuous FT of a time signal x(t) is expressed as follows [62,64]

X( f ) =
∫ ∞

−∞
x(t)e−j2π f tdt, (12)

The discrete-time Fourier transform (DTFT) is widely used for sampled data systems
and is implemented using the fast Fourier transform (FFT) with a short sliding window.
First, the input signal of FFT is sampled in the time domain, then the FFT is performed in
the frequency domain in discrete steps. The length of the signal contains N samples that
are recorded over equal interval tn

tn = n∆t =
nTw

N
, (13)

where n presents an integer number (n = 0, 1, . . . , N − 1). N refers to the samples number
within the window Tw. The phasor estimation by DTFT is provided by

V̂ =
1
N

N−1

∑
n=0

x[n]e−jŵn, (14)

where the estimator of angular frequency, w, is expressed as follows

ŵ = arg max
w

1
N

∣∣∣∣∣N−1

∑
n=0

x[n]e−jωn

∣∣∣∣∣
2

. (15)

In fact, the DTFT is used over a multiple half-period of signal and can be interpreted
as multiplying a rectangular window function with an infinitely continuous signal that is
given by

w[n] =

{
1 if |n| ≤ 1

2 Tw.
0 otherwise.

(16)

As mentioned previously, the discrete Fourier transform uses a window with trun-
cation of the sampled data, which leads to an estimation error. This phenomenon is
the leakage effect. The most used window in electric grid applications is a rectangular
windowing function because of its simplicity.

DTFT presents several advantages such as its low computational complexity, simple
implementation, accuracy, and immunity to harmonic components under stationary condi-
tions. Indeed, DTFT achieves high estimation performance if the fundamental frequency
has a very small deviation from the nominal value. However, its performance critically
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degrades under off-nominal frequency and for amplitude and/or phase variations [65].
Table 8 provides a fair comparison of the Fourier transform and its extension techniques
that are reported in this subsection, comprising their advantages and drawbacks.

Table 8. Advantages and drawbacks of Fourier-based techniques.

Method Ref Advantages Drawbacks

Discrete Fourier
transform (DFT) [66]

DFT is the most used
computation algorithms for

PQDs analysis. In most cases,
DFT is used to analysis

three-phase signals under
stationary conditions.

In real power systems, the
three-phase signals are

affected by small and large
variations (events). In such

conditions, the signal
parameters are time-varying
that affect the performance of

DFT.

Fast Fourier
transform (FFT) [67]

FFT is commonly used for
harmonic analysis and it has

lower computation time
compared to one DFT.

Due to aliasing and leakage
effects, the FFT yields

inaccurate results.

Short time Fourier
transform (STFT) [68]

STFT is a technique that
performs the DFT on the

time-dependent length using
a “sliding window”.

STFT yields inaccurate
results under non-stationary

conditions.

Wavelet transform
(WT) [69–71]

Compared to FT, WT allows
obtaining the time and

frequency information of the
power system signals.

The performance of this
technique is affected by the

leakage effect and noisy
environment. Moreover,

using a short sliding window
yield to high computation

time.

3.2. Harmonic Decomposition-Based Methods
3.2.1. Pisarenko Method

Pisarenko Harmonic Decomposition (PHD) is based on eigenanalysis [33]. PHD is a
parametric method that is used for harmonic estimation in the power systems field [72].
The signal x(n) is assumed to consist of a sum of N sinusoids s(n) and an additive white
noise b(n).

x(n) = s(n) + b(n) (17)

It is possible also to write:

s(n) = −
2N

∑
m=1

ams(n−m) (18)

where,

x(n) = −
2N

∑
m=1

ams(n−m) + b(n)

By replacing s(n−m) by x(n−m)− b(n−m), we find

2N

∑
m=0

amx(n−m) =
2N

∑
m=0

amb(n−m) (19)

Using matrix notations, the signal model can be written as follows:

x(n)Ta = b(n)Ta (20)
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where (.)T denotes the matrix transpose. with,

x(n)T = [x(n), x(n− 1), . . . , x(n− 2N)]T

b(n)T = [b(n), b(n− 1), . . . , b(n− 2N)]T

and
a = [a0, a1, . . . , a2N ]

T

The vector a is therefore the eigenvector associated with the variance of the white
noise with the constraint a0 = 1.

To analyze a signal according to the Pisarenko method, it is necessary to:

• Observe N values of the signal x(nTe).
• Compute the auto-correlation matrix and decompose it into eigenelements.
• Detect variance (σ2 and deduce the number of sinusoids).
• Extract the roots of a complex polynomial of degree 2N.

In [73], the authors proposed a technique based on Pisarenko’s harmonic method.
This technique allows for determining the corresponding eigenvector and the minimum
eigenvalue of the covariance matrix in order to estimate the frequency. Pisarenko allows for
achieving higher resolution compared to FFT. However, the Pisarenko method needs exact
information on the model order and it gives inaccuracy estimation because of the statistical
auto-correlation lag estimation.

3.2.2. Prony Method

This method is used for estimating inter-harmonic, harmonic and damping compo-
nents. In this method, the signal is, as in Pisarenko’s method, assumed to consist of a sum
of N sinusoids but the noise is replaced by damping on the latter. The starting hypothesis
therefore reads:

x(n) =
N

∑
m=1

bmZn
m (21)

with,
Zm = eαm ej2π fm

We can then construct the polynomial:

Ψ(Z) =
N

∑
i=0

aiZN−i (22)

with a0 = 1

x(n) = −
N

∑
m=1

amxn−m (23)

The coefficients am can therefore be obtained by solving the following linear system of
dimension N:  x(N + 1)

...
x(2N)

 =

 x(N + 1) . . . x(1)
...

...
...

x(2N) . . . x(N)


 a1

...
aN

 (24)

From the N coefficients am, it is possible to form the following polynomial:

Ψ(Z) =
N

∑
m=0

amZm−i (25)

with,
a0 = 1
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The moduli of these roots give the attenuation αm while those phases give the frequen-
cies fm. The amplitudes bm of the different sinusoids can finally be obtained by solving the
following system:  1 . . . 1

...
...

...
ZN−1

1 . . . ZN−1
N


 b1

...
bN

 =

 x0
...

xN−1

 (26)

For the Prony method, it is needed to:

• Observe 2N values of the signal x(nTe).
• Solve a complex N-dimensional linear system.
• Extract the roots of a complex polynomial of N degree.
• In order to determine the amplitudes, it is necessary to solve a complex linear system

of N dimension.

An approach based on the Prony method is proposed in [74]. This approach allows
minimizing the mean square for computing the harmonic and inter-harmonic sub-groups.
Authors have proposed in [69–71], an approach based on the wavelet and Prony meth-
ods. However, the wavelet method requires appropriate windowing in order to obtain an
accurate estimate. The Prony method has lower complexity compared to the Pisarenko
method [75]. Furthermore, it leads to the highest performance compared to FT [76]. How-
ever, this method is still sensible to noise and it depends on the system’s parameters [77–80].

3.2.3. Least Square Prony Method

It is imperative to increase the data points in order to improve Prony’s method perfor-
mance. In this context, the least square method uses data points for generating the desired
coefficients.

x(n) +
N

∑
m=1

a(m)x(n−m) = ε(n) (27)

for
p + 1 ≤ n ≤ N

This equation presents the linear predictor filter and ε(n) refers to the error of predic-
tion and the predictor filter is referred to by the summation. The coefficient of the linear
predictor filter can be optimized by the minimization of the following cost-function:

J (a) =
N

∑
n=p+1

|ε(n)|2 (28)

3.2.4. Modified Least Square Prony Method

In the case where a number of frequencies are known, it is recommended to use the
Prony method. In such conditions, it has low computation complexity than conventional
methods [81].

y[n] =
N

∑
m=0

c[m]x(n−m). (29)

The y[n] can be obtained by filtering the signal x[n]. c[m] is an impulse response of the filter.
A modified least squares Prony method is proposed in [82]. This approach allows

estimating the frequency and phasor for electric power systems. The LS Prony method leads
to high estimation performances compared to those of the Prony method. Other methods
that lead to high performances under specific conditions are proposed in [83–85]. The Prony
method allows for estimating inter-harmonics, harmonics and damping components. Their
performance depends on the number of samples, model order and SNR [74]. Compared to
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the Fourier transforms, the Prony method has lower computation cost and it leads to high
estimation performance. However, the Prony method is still sensible to noise.

3.3. Parametric Methods

The parametric methods require a knowledge of the signal model and they include
auto-regressive-moving average (ARMA) and sinusoidal models. They are also known as
model-based methods where a signal model with a known form is assumed. The matching
between the real and proposed signal should follow this process:

• A good knowledge and hypothesis of generated process.
• Using models that are validated by good experimental results.

The signal’s parameters can be estimated when a good signal model is chosen. If there
is a good matching between the used and real models, then these methods yield the highest
estimation performances over short signal lengths. The limitation of parametric methods
is how to find a good matching between the real and theoretical signal models. There are
two categories of methods: (1) parametric methods for discrete spectra, and (2) parametric
methods for rational spectra.

3.3.1. Discrete Spectra

For these techniques, the estimation problem can be reduced to the frequency ( f0)
estimation from the recorded data, which is the most difficult task. Then, estimate phasors
by reformulating this estimation problem as a linear regression problem. The most known
methods are high-resolution or sub-space techniques such as multiple signal classification
(MUSIC) and estimation of signal parameters via rotational invariance approaches (ESPRIT).
MUSIC-based on a sinusoidal model gives an estimation of the frequency components
and it is considered a noise sub-space technique. Nevertheless, this technique presents
several drawbacks such as it can not provide an estimation for closely spaced signals under
a low noise environment and it is highly computationally complex. ESPRIT technique
based on a sinusoidal model allows also estimating the frequency components and it is
considered as a signal sub-space technique. Both techniques can be used for the analysis
of harmonic and inter-harmonics components [8]. In addition, MUSIC and ESPRIT can
estimate the frequency of events, such as transient voltages and currents [8]. Nevertheless,
these techniques require knowledge of the order of the signal model. Moreover, under
highly noisy environments, they achieve low estimation performances.

3.3.2. Continuous Spectra

The mentioned discrete spectra technique in the previous section allows for character-
izing PQDs such as harmonic and inter-harmonics components. Otherwise, other PQDs
are characterized by a continuous spectrum, in particular when the harmonic and inter-
harmonics number is unlimited. For example, active rectifiers and arc furnaces generate
high-frequency components. However, the limited knowledge of the causes of these high
components is still the main barrier in electric grids [33] and their interpretation is not
easy. The continuous spectra methods include auto-regressive (AR) models, where ARMA
models are still general rational models. More details about this class of techniques can
be found in [86]. The continuous spectra include also linear prediction methods such as
Prony ones. These techniques don’t estimate the parameters from the data, but they allow
modeling the data as the output of a linear system corrupted by noise. After that, the
estimation of parameters can be obtained using the ARMA model. Knowing that the Prony
method achieves the same performance as the ESPRIT and MUSIC techniques [33]. The
theoretical considerations are given in [86,87]. However, several PQ disturbances possess
discrete spectra with components at discrete frequencies.

3.4. Extension to Non-Stationary Conditions

As mentioned previously, most PQ disturbances are non-stationary signals. Under
these conditions, FT-based techniques can not perfectly analyze these disturbances. There-
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fore, PQ estimation is realized by using non-stationary approaches, such as time-frequency
or time-scale representation [88–92]. These methods include Hilbert–Huang transform
(HHT), continuous wavelet transform (CWT) and Kalman filters (KF) [8,88,93–95].

3.4.1. Hilbert–Huang Transform (HHT)

HHT is a recent advance in SP techniques to analysis the non-stationary signals [96–99].
HHT is based on Hilbert transform (HT) and Empirical Mode Decomposition (EMD)
techniques [100].

EMD is an analysis based on the time-frequency domain, which allows decomposing
of a signal into intrinsic mode functions (IMFs) [101]. After that, the HT estimates the
frequency, phases and amplitudes at each instant with an analysis of the IMFs. The
advantage of using HT is its using of one phase signal for feature extraction.

An HHT algorithm was proposed in [102] for PQDs classification with a focus on the
swell, sag, harmonics, transient, etc. The proposed probabilistic neural network approach
allows us to identify the corresponding event. In [103], a PQD classification technique for
distorted signals was proposed with a comparison between S-transform and the proposal.
The results seem to achieve a good PQD classification for the different disturbances. The
separation between frequency components, in particular under non-stationary conditions,
becomes an essential task. To achieve this objective, HT and EMD are combined for
detecting sag cause [104] and the PNN-based classifier allows for determining the sag type.

However, HT could lead to false information and it suffers from the effects of the
border. In addition, it is not easy to interpret when there is no satisfaction of the Bedrosian
condition, while the EMD could achieve wrong IMF decomposition, mode mixing and
border effect.

3.4.2. Kalman Filters

Kalman filter (KF) is a special type of filter. KF solutions are based on a set of state-
space equations. These filters are widely used in power quality applications, such as real-
time tracking harmonics [105–108], signal parameters estimation of transients [109,110].
The Kalman filter is a linear filter that can be applied to a linear system. However, most of
the systems are ultimately nonlinear [111].

A technique for PQ disturbances classification was proposed in [112]. This classifier
can be applied for short-duration of disturbances. This technique is based on the Stockholm
transform (ST) and extended KF (EKF), where ST allows for detecting the signal and EKF is
used to estimate the harmonic components and frequency, amplitude, and phase variations.
The authors proposed in [113] a PQ disturbances classifier that uses Unscented KF (UKF)
and modified Particle Swarm Optimization (PSO) algorithms. The frequency, amplitude,
and phase can be tracked at low signal-to-noise ratio (SNR) values. A phasor and frequency
estimator based on a dynamic model is proposed in [114]. In [112], the authors proposed
a PQ disturbances classifier based on discrete wavelet transform and Kalman filter with
a fuzzy expert system. In [115], an approach based on Taylor EKF is proposed. This
approach uses a dynamic model, which reduces the state space and takes into consideration
harmonic components.

3.4.3. Maximum Likelihood Estimator

Under high noise and off-nominal conditions, the performance of the previously
mentioned techniques critically degrades. To overcome these limitations, the maximum
likelihood estimator (MLE) yields to highest performances of estimation over a short
signal length compared to non-parametric methods. MLE is an asymptotically optimal
estimator [116] that leads to the highest estimation performances compared to traditional
techniques. The estimation problem can be solved as follows: (1) first, from recorded data,
MLE can estimate the frequency ( f0). (2) The estimate of amplitude and initial phases can
be obtained by resolving a problem in linear regression. The w can be estimated (ŵ) by the
following maximization
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{ŵ0, Ŝ} = arg maxw,S L(X; w, S) = argminw,S ‖X−G(w)S‖2
F, (30)

where Ŝ refers to the S estimate and L(X; w, S) = log(p(X; w, S)) is the log-likelihood
function of X. ‖.‖2

F is the Frobenius norm.

• X is N × 3 matrix containing the recorded. This matrix is expressed as

X =

 xa[0] xb[0] xc[0]
...

...
...

xa[N − 1] xb[N − 1] xc[N − 1]

, (31)

• G(w) is a N × 2 matrix containing the fundamental frequency w = 2π f . This matrix
is given by

G(w) =



1 0
cos(w) sin(w)

. .

. .

. .

cos(w(N − 1)) sin(w(N − 1))


. (32)

• S is a 2× 3 real-valued matrix containing the amplitudes and initial phases of the
three-phase voltage system. This matrix is expressed by

S =

[
aacos(φa) abcos(φb) accos(φc)
−aasin(φa) −absin(φb) −acsin(φc)

]
. (33)

A technique proposed in [117,118], presents an estimator of the fundamental frequency
and phasor. This technique is based on the ML method and it uses three-phase information.
The signal parameters are time-varying and the analysis is realized on a short sliding win-
dow. This estimator-based ML technique needs to maximize the 1-dimensional cost func-
tion. For such an objective, an algorithm of optimization that uses the Newton–Raphson
approach is proposed. ML-based Newton–Raphson technique has lower computational
complexity than classical techniques and enhances the estimation performance.

3.5. Discussion

The most used extraction techniques for signal features, i.e., frequency and phasor, are
the non-parametric methods. Indeed, these techniques need a long signal length in order
to achieve a good performance. For instance, for FT-based techniques, the window may
lead to a leakage effect. It should be mentioned that in a real electrical grid, the recorded
data are limited, which represents the main limitation of these methods [33].

Parametric methods require knowledge of real signals to achieve good resolution.
When there is a good match between theoretical and real signal models, these methods
can achieve the best estimation performance on short-length signals compared to non-
parametric methods. Nevertheless, the performance of parametric-methods depends on
the choice of the theoretical signal model.

The features of several PQDs are time-variant, therefore FT-based techniques can
not be used to analyze these non-stationary disturbances. To overcome this challenge,
other non-stationary methods are used to perform this task with good performance. For
example, time-frequency or time-scale representation are non-parametric methods that are
applied for time-variant disturbances [64,119–127]. In addition, high-resolution and ML
techniques are parametric methods [8,117,118]. These techniques are based on the concept
of using a short sliding window that allows handling the non-stationarity problem. This
sliding window decomposed the signal into several stationary blocks. Then, time-varying
parameters can be estimated over each short window.
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Advanced feature extraction techniques are proposed to estimate the PQD’s features
under non-stationary conditions. HHT is an advanced SP technique that is based on HT and
EMD techniques [100]. EMD decomposes the signal into IMFs and it is a time-frequency
analysis method [101]. Then, the EMD estimates the instantaneous frequency, amplitude,
and phase by analysis these IMFs. The main advantage of HT is its requirement of one
phase signal in order to extract the IF and IA. The HT could detect the disturbance; however,
it could lead to false information and it suffers from the effects of the border. The main
drawbacks of EMD are the wrong intrinsic mode functions, border effect and mode mixing.
Finally, an estimator based on the ML technique was proposed for the analysis of the
time-varying disturbances. This estimator uses a Newton–Raphson optimization algorithm
for maximizing a one-dimensional cost function. This estimator has lower computational
complexity than classical techniques and enhances the estimation performance. Table 9
reports an analysis of the feature extraction techniques mentioned in this section.

Table 9. Advantages and drawbacks of feature extraction techniques.

Method Advantages Drawbacks

Zero-crossing transform [33] Low Computationally complexity.
It has low performance under noisy

environments and for distorted wave-forms,
harmonics, and inter-harmonics.

RMS and peak voltage
techniques [13] They are well-proven and simple techniques.

They can not estimate other signal parameters,
such as phase angle. Moreover, they achieve

low performance in noisy environments.

Fourier transform and its
extensions [65,119]

They have a simple implementation, low
computation complexity, accuracy, and

immunity against harmonic components under
stationary conditions.

Their estimation performance is limited under
off-nominal conditions.

Pisarenko [33,72,73] It has low computation complexity.

Pisarenko method needs exact information on
the model order and it gives inaccuracy

estimation because of the statistical
auto-correlation lag estimation. It suffers also

under low noisy environments.

Prony method and its
extension [69,70,76–80]

They have low computation complexity and
high estimation performance compared to

those of the Pisarenko method.

These techniques are still sensible to noise and
they depend on the system’s parameters.

Music approach [8]
It has high resolution than Prony techniques

and achieves asymptotically unbiased
estimation of signal parameters.

It can not resolve a problem with closely
spaced signals under a low SNR environment

and its high computational burden.

ESPRIT approach [8]
It has a lower computational burden compared
to MUSIC. It achieves the highest performance

for inter-harmonic estimation.

It needs to know the order of the signal model
and it achieves low performance under high

noisy environment.

Hilbert–Huang
transform [96–99]

It achieves good performance under a
non-stationary environment and for

non-linear signals.

Its drawbacks are end effects and mode mixing
during the process of empirical mode

decomposition (EMD).

Kalman filters [105–108,111] It achieves the highest performance for
linear systems.

It leads to poor estimation for
non-linear systems.

Maximum likelihood [8,116] It allows achieving the highest performance
and it is an asymptotically optimal estimator.

The signal model is required. Moreover, its
resolution is near to this of Fourier-based

techniques for low SNR.

4. Feature Selection Techniques

Herein, a study of the problem of feature selection or parameters optimization, i.e.,
finding the most unique and optimum feature, is provided. The classification stage needs
as input the extracted feature that should achieve a high recognition rate. In the literature,
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proposed optimization algorithms used in the feature selection stage include particle swarm
algorithm (PSA), ant colony optimization (ACO), genetic algorithm (GA), genetic k-means
algorithm (KMA), Newton–Raphson method and downhill simplex. The genetic algorithm
is based on the evolutionary of natural selection [30] and is an iterative heuristic algorithm.
It can be used as an optimization algorithm for obtaining the optimum solution(s) [128].
A GA uses chromosomes that are binary digits. By modifying the individual population,
it is possible to make a decision based on probabilistic rules. A GA chooses a random
individual, which is a parent, from the actual population and for the next generation, it
provides children. The GA-based competitive selection allows for eliminating the poor
solution. GA’s main advantage is its capability to obtain the optimum solution(s) over suc-
cessive generations [120,129–131]. KMA is widely used for feature selection for classification
applications [132,133]. This algorithm is iterative and allows minimizing SE measure [132,134].
The main drawback of this optimization method is how to choose the first guess. It could
give as result a local maximum or minimum in the case where the initial guess is not
suitable. In [132], a classifier using two approaches, which are GA and fuzzy k-nearest
neighbor (FKNN), was proposed. The solution or optimum feature is selected by a GA
with improved performance. The classification performance is also improved by using
16 features from 96 features. The authors proposed in [135] a classification approach based
on GA and SVM algorithms for PQDs. In [136], a classifier that uses a combination between
extension theory (EXT) and GA was proposed. Indeed, GA gives the optimum solution
over a large space while EXT allows providing a means for distance measurement.

PSO is an iteration algorithm that allows obtaining the optimum solution according to
a given measure [137–144]. This algorithm is based on the social sharing concept, where the
particle refers to the individual and the swarm represents the population. The main objec-
tive of PSO is to find the particle that gives the optimum solution of the cost-function. The
authors proposed in [139] a PQ disturbances classifier that uses PSO for feature selection
under a noisy environment. In [140], an SVM classifier for online and offline monitoring
was proposed. This classifier is based on the PSO algorithm for optimizing the classi-
fier’s parameters. A combination between artificial bee colony (ABC) and PSO for PQD
classification is proposed in [142], and it is used for selecting the algorithm’s features.
ACO is a computation intelligence approach introduced by M. Dorigo, A. Colorni and
V. Maniezzo [145]. ACO is an iterative algorithm that is based on ants’ behaviors. The
solution is obtained by heuristic information given by memory containing experience in the
previous iteration that is provided by the ants as well as the problem instance. In [146], the
authors proposed an ACO to improve classification performance and reduce computational
time. The ACO is used for minimizing the set size of the feature and classification error.
The downhill simplex optimization (DSO) method is a heuristic search method that is
used for non-linear problems for optimizing 1- or multi-dimensional cost-functions. This
method allows for finding the maximum or minimum of the objective function [147]. DSO
does not always lead to an optimal solution [148,149]. MATLAB® environment provides an
optimization algorithm that is called fminsearch based on the Nelder–Mead technique. How-
ever, this technique is highly computationally complex to find the feature with the highest
performance. To overcome this limitation, the Newton–Raphson algorithm (NRA) was
proposed in [117]. It is an iterative algorithm allowing the maximization of the objective-
function to find the optimum solution. This algorithm uses the tangent knowledge of the
curve that is close to the root. The main advantage of the Newton–Raphson method is its
capability to find the optimum feature in a few iterations reducing then the computation
time [150]. The newton-Raphson method can be applied to the analysis, detection and
classification of short transients and disturbances. In [117], a parametric spectral estimation
technique for PQ monitoring application was proposed. This technique allows for reducing
the computation time compared to classical techniques. Table 10 presents the advantages
and drawbacks of the main selection techniques.
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Table 10. Main optimization techniques with their advantages and drawbacks.

Technique Advantages Drawbacks

GA

It is the heuristic method that can provide multiple
solutions for several search and optimization
problems. GA design is simple and easy to

understand. GA can obtain a solution for difficult
problems over traditional methods and it requires less

amount of information.

The main drawbacks of GA are the
hyper-parameter tuning, time-consuming, and

the need for special definitions. Its
implementation is still a difficult task.

PSA

PSA design is based on particle swarm and it is
adapted with mutation computation. PSA requires a
few parameters to tune and it can provide fast and

multiple solutions.

PSA leads a low performance for complex and
large numbers of dimensions and data-sets. IT
requires software knowledge and theoretical

analysis is still a difficult step.

ACO

ACO design is based on ant colony and it may be
continuously used and can instantly adjust to changes.

It can provide a good solution compared to
other methods.

It is complex and the theoretical analysis is still
difficult with a random decision. It requires a

pre-knowledge of factors and
software languages.

ABC

Its concept is based on a bee colony and it has the
ability to convert to local solutions with good speed. It

needs fewer steps for optimization. It adapted to
optimization problems that have multi-dimensions.

ABC requires pre-knowledge of factors and
software languages.

Downhill simplex

This method is a heuristic search that is used for
non-linear problems for optimizing 1- or

multi-dimensional cost-functions. This method allows
for finding the maximum or minimum of the

objective function.

However, this technique is highly
computationally complex to find the feature with

the highest performance.

Newtho-Raphson

It is an iterative algorithm and it uses the tangent
knowledge of the curve that is close to the root. The

main advantage of the Newton–Raphson method is its
capability to find the optimum feature in a

few iterations.

This technique has two main drawbacks that are:
(1) it requires an initial guess that must be close
to the searched-for zero in order to obtain a good
solution. (2) The computation of the inverse of

the derivative is still a difficult task.

5. PQ Disturbances Classification Techniques

The PQDs classification stage requires as input the extracted or estimated feature,
whose output is the type of disturbance. As mentioned previously, advanced SP techniques
have become essential to extract the feature with the highest performance. Regarding PQ
monitoring, feature classification has become a great important part. Among the variety of
classification techniques, the most known and common techniques are presented in this
section that is classified into three classes: (1) classical techniques, (2) techniques based on
signal processing methods and (3) pattern recognition techniques [151,152]. More PQDs
classification techniques are presented in [153–162].

5.1. Classical Techniques

For this class, two parameters are used to classify the PQ disturbances that are duration
and phasor (amplitude) without using the phase angle [8]. Indeed, classical techniques
exploit the information of single-phase to classify the corresponding disturbance; however,
the power grid is a three-phase system. The most common classical techniques are discussed
in the following sections.

5.1.1. ABC Classifier

For unbalanced voltage sags, the ABC classifier permits to find the corresponding
sag. The voltage sags consist of 7 sag signatures that are denoted from A to G [163].
Figure 14 illustrates the phasor representation of each sag, where the balanced three-phase
is presented by dashed arrows and the sag phasor is presented by the solid ones. For
example, symmetrical faults in the power grid result in three-phase symmetrical sags that
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are referred to as type A. Regarding phase a, the sag value differs from the pre-fault E and
a value in faulted phase V [163]. ABC classification has a simple design to classify the sag
voltage. Nevertheless, The ABC classifier can not select other sag parameters.

Figure 14. Phasor representation of sag signatures proposed by ABC classification.

5.1.2. Symmetrical Component Classifier (SCC)

This classifier is proposed to identify the corresponding sag among sag types C & D [164].
Concerning sags sub-types, Figure 15 illustrates the 6 sag sub-types among C & D types.
The angle between positive- (V1) and negative-sequence voltages (V2) [164] is used for
selecting the corresponding sag. This angle is expressed as

T =
1

60◦
arg
(

V2

1−V1

)
, (34)

where T is the integer close to the obtained result. The sag sub-type can be obtained
as follows:

T = 0 Type Ca

T = 1 Type Dc

T = 2 Type Cb

T = 4 Type Da

T = 5 Type Cc

T = 6 Type Db

(35)

These techniques achieve low performance for high amplitude or phase angle variations.
Moreover, they lead to frequency errors that can provide a false type of sag. Under these
conditions, it is become essential to utilize an improved technique for PQDs classification.

Figure 15. Six sub-types of sags.
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5.2. Techniques-Based on Signal Processing Methods
5.2.1. PQDs Classification Based on Information Theoretic Criteria

A technique for PQDs classification uses the Model Order Selection proposed by
the authors in [162]. This technique studies the signatures of the sag and swell voltages
illustrated by Figure 16. These 9 signatures, provided in Figure 16, can be pre-classified into
4 classes as depicted in Table 11. It should be noted that each class depends on a symmetrical
component number that is equal to zero. The task of obtaining the corresponding class is
reformulated as a problem of pure model order selection [165]. Once the corresponding
class is selected, the estimated value of the symmetrical component allows for determining
the corresponding signature. Authors proposed in [162] two approaches that are based
on Information Theoretical Criteria (ITC) for selecting the corresponding class. The first
approach achieves the highest classification performance, while the second approach
reduces the computation time. The obtained results prove the efficiency of these classifiers
to identify the correct sag and swell voltage.

Figure 16. Phasor representation of sag and swell signatures [166]. IEEE, 2009.

Table 11. Pre-classification of sag/swell signatures into 4 classes.

Type z0 z1 z2 Class

Balanced 0 E 0 C1A 0 V 0

C 0 V+E
2

E−V
2

C2
D 0 V+E

2
V−E

2
F 0 2V+E

3
V−E

3
G 0 2V+E

3
E−V

3

H V − E E 0 C3I 3(E−V)
2

E 0

B V−E
3

V+2E
3

V−E
3 C4E E−V

3
2V+E

3
E−V

3

5.2.2. PQDs Classification Based on Space Vector Method

A classification technique based on space vector transformation and zero sequence
voltage is proposed in [166]. Under nominal conditions, and in the complex plane, the
result is a circle that has a radius equal to the voltage nominal value. For balanced sags, the
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circle’s radius is inferior to the nominal value. Under unbalanced conditions, for sags, the
result is an ellipse that depends on amplitude, phase(s) and phase angle shift. For swells,
the sequence voltage allows for analysis of the swells. Finally, the zero sequence and space
vector changes allow for determining the time occurrence of the sag and swell.

5.3. Pattern Recognition (PR) Techniques

Artificial intelligence-based techniques use the data and take action based on the
pattern category. These techniques perform tasks to mimic human behavior, such as
learning from experiences, speech recognition, decision-making, etc. In PQ monitoring,
these techniques have become of great important. The PR techniques used for disturbance
classification include artificial neural network (ANN), support vector machine (SVM) and
fuzzy expert system (FES) [167–171]. These techniques have the ability to generalization
and learn from examples.

5.3.1. Artificial Neural Networks

ANNs are used to identify the PQ disturbance and can achieve high classification
performance. The commonly used structure of ANN is the multilayer perceptron (MLP).
An ANN with an MLP is illustrated by Figure 17. Each layer consists of several neurons,
whereas the first and last layers consist of the inputs and outputs data, respectively. Indeed,
the input data are transformed in a non-linear manner into a new space by the hidden
layers. After that, the PR classes are separated in this space [172]. ANNs can self-learn the
PR of several systems. Several classifiers based on ANNs are used for disturbances analysis
and harmonics sources classification.

Several techniques-based on ANNs are proposed and they deal with disturbances clas-
sification in PQ monitoring [173–183]. In [184], a classification technique based on a hybrid
approach for PQ disturbances was proposed. This technique combines a convolutional
neural network (CNN) and Wigner–Ville distribution (WVS). WVD Allows transferring
a 1-dimensional disturbance into a two-dimension image file. Then, the CNN allows for
achieving the task of image classification. In [178], a classification technique using an MLP
neural network with 3 layers and WT was proposed. In [179], an adaptive linear network
(ADALINE) with FFNN is used to identify the corresponding disturbances. ADALINE
estimates the harmonic component or inter-harmonic component in order to compute the
rms value and THD, then, the FFNN allows selecting the corresponding disturbance.

Figure 17. Network graph of a (L + 1)-layer perceptron with (D + 1) input units and C output units.
The lth hidden layer contains (m(l)+1) hidden units.

5.3.2. Support Vector Machine

SVM was introduced by Vapnik in the late 1970s and it uses the learning theory for
classification [185,186], such as intelligent machines and forecasting. The main phases
of SVM are: (1) the input data are linearly transformed into multi-dimensional space.
(2) The input is classified by an optimal hyper-plane determination in high or infinite-
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dimensional space. A learning stage is also required by a support vector machine such
as ANN. In the literature, several techniques-based on SVM were proposed for PQDs
classification [187–199]. In [191], the authors proposed a classifier based on DWT and SVM
to classify several disturbances in a power grid. Authors in [192], proposed two SVM
classifiers that are the One-Versus-One (OVO) and the One-Versus- Rest (OVR), which
are suitable tools for solving class problems. However, their performances depend on the
network size and the stage of data preparation. In [193], a disturbances-Versus-Normal
(DVN) approach was proposed. It is suitable for solving multi-class problems. A technique-
based on DWT and multi-class SVM was proposed in [200].

5.3.3. Fuzzy Expert Systems

FESs allows for generalizing the binary logic under uncertainty and it is inspired by
the reasoning of humans. A mapping of the objects to their member values using a function
is performed into a concern domain. The most common functions are the triangular and
trapezoidal ones. Indeed, the expert system is a specific application of AI that is used
in module diagnostic [201]. For reasoning about data, a fuzzy rule base (FRB) and fuzzy
sets (FS) are used by FES instead of Boolean sets. To classify the PQ disturbances, the ES
needs to extract information from computers and learn from human experts. However, this
information is heuristic which makes it difficult to be used by the computer. The rule-based
expert system is the typical ES structure and it is illustrated in Figure 18. It includes a
user interface that shows how the information is sent to the system, i.e., the output of
PQ monitoring. The classification results present the outputs of the system. Reasoning
between rules and information is performed by the interface engine. An explanation system
allows for defining the reasoning to the user. The knowledge base editor allows updating
the knowledge base and rules. Finally, the user can stock all data that has additional
information in case-specific data.

Figure 18. Architecture of rule-based expert system.

Figure 19 illustrates a rule-based ES for disturbances classification. Based on the input
recorded data, its architecture has the ability to classify the corresponding disturbance.
From the knowledge base, the ES classifier provides the corresponding disturbance.

In the literature, several classifiers-based on expert systems to classify the PQ dis-
turbances were proposed [126,137,155,202–211]. In [202], the authors proposed an events
classification technique during the RES integration in the power system. This technique
is based on the data mining tool and the expert system. The authors proposed in [203] a
techniques-based on neuro-fuzzy classifier and principle component analysis (PCA). The
authors proposed in [204], a classifier uses the neuro-fuzzy and theorem of Parseval for
PQ disturbances recognition systems. This technique was tested for several disturbances
using noise-riding signals. An algorithm-based fuzzy decision tree for the classification of
various disturbances was proposed in [205].

However, the above-presented techniques require a good knowledge of the distur-
bances or training database and their performance depends on the learning stage. Database
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size must be large to cover all types of PQ disturbances which is a difficult task in practice.
Moreover, their performance also depends on that of the extraction stage. In addition, the
learning step results in a high computational time to perform the task.

Figure 19. Illustration of rule-based expert system for event classification of PQ disturbance.

5.3.4. Machine Learning-Based Techniques

In recent years, the research on Deep Learning (DL) algorithms has attracted the
attention of scientists in several domains, such as signal and image processing, speech
recognition and human face recognition. DL is a type of machine learning and AI that
consists essentially of a NN with several layers. The DL algorithms have the ability to
automatically learn the best features from the original input signal without being specifically
coded [212,213]. A neural network with more hidden layers allows for improving accuracy
compared to the NN with only one layer. DL-based techniques have been used to solve
certain PQ issues, for instance, the architecture-based convolutional neural network (CNN)
is mostly employed in PQ extraction, detection and classification applications. In addition,
DL architectures include deep belief and neural networks, identity RNN (I-RNN), and
recurrent neural networks (RNN). However, these deep learning techniques are highly
complex and they rely on training sets.

In previous works, some authors have applied DL techniques to analysis, detect
and classify the power quality disturbances in the power grid [214–217]. The authors
proposed in [212] a technique based on deep CNN for PQDs detection and classification.
This technique uses a one-dimension convolutional, pooling and batch-normalization
layers for reducing over-fitting and capturing multi-scale features. In [218], a technique-
based on machine learning for PQ disturbances classification is proposed. The stage of
feature extraction of this technique uses an algorithm-based on un-decimated WT that
allows reducing the over-fitting under noisy conditions. A technique based on CWT and
CNN for PQDs classification is proposed in [219]. The CWT allows for generating a 2-D
representation that incorporates frequency and time from the disturbance’s signal.

Decision Trees-based learning (DT) is a supervised learning method used in different
fields, such as machine learning and data mining. This approach can be used as a classifi-
cation and predictive model that allows taking conclusions about observation data. In a
decision tree structure, the leaves refer to the classes and the branches are the characteristics
that lead to the corresponding classes. In [220], a PQDs classification algorithm-based
on a time-frequency and DT was proposed. Compared to the S-transform, the proposed
technique requires limited feature statistics. Moreover, the DT classifier allows the train-
ing of these features in order to improve automatic classification. A classifier-based on
multi-resolution S transform and DT was proposed in [221]. This classifier uses adjustment
factors that allow for improving accuracy and their performances are evaluated under
a noisy environment. Ref. [222] proposed an approach for detecting and classifying the
PQ disturbances. This technique is based on the Stockwell transform and DT method. ST
permits to detection of 5 statistical features, such as the oscillatory’s high frequency, voltage
oscillation and harmonics. A DT algorithm-based on rules set is used for classifying the PQ
disturbances. Table 12 presents the benefits and drawbacks of the main PQDs classification
Techniques.
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Table 12. Benefits and Drawbacks of PQ Disturbances Classification Techniques.

Techniques Benefits Drawbacks

ABC ABC has a simple design to classify the sag
voltage.

Nevertheless, The ABC classifier can not select
other sag parameters.

Symmetrical
component

classifier

This classifier is used to identify the
corresponding sag among sag types C & D

[164].

SCC achieves low-performance classification
under noisy environments.

Classifier-based
on ITC

It yields to highest classification performance
with a lower computation time. It requires a signal model.

ANN It can self-learn the PR of several systems.
It requires sufficient layers and a good

knowledge of neurons. Moreover, the learning
step results in a high computation time.

SVM has a high ability of learning and it achieves
high performance for large dimensional spaces.

SVM has low performance under noisy
environments and its training and testing data

requires a huge computation time.

FES-based
classifier

This classifier achieves good accuracy for
several PQDs and it can be used to analyze

complex systems.

It requires a good knowledge about the
disturbances or training database and its

performance depends on the learning stage.

Machine learning
DL algorithms do not require having

specifically coded to automatically learn the
best features.

These techniques are highly complex and they
rely on the training stage.

6. Comparative Analysis and Discussion

This work provided a review of the international standards used in PQ monitoring.
The main objective of these standards is to ensure good compatibility between end-user
consumers and the electric grid. In addition, they define and impose requirements of
frequency and phasor with recommendations and guide-lines. IEEE and IEC organizations
develop international standards and are the most known standards in PQ filed. Concern-
ing PQ monitoring, PMUs allow extracting frequency and phasor in order to solve the
problems of PQDs. In this scope, the IEEE organization provides a PMU standard that
is refereed by C37.118, where several estimation requirements of frequency and phasor
are imposed. These requirements must be tested and validated under stationary and non-
stationary conditions. Power systems utility requires a high level of power quality due to
the complexity of the power system and RES integration. A comprehensive review of the
characterization techniques of PQ disturbances, with a focus on feature extraction, feature
selection and PQDS classification techniques is provided. Table 13 provides a detailed
comparison of the above-mentioned techniques. This comparison takes into consideration
the accuracy and environment of each technique. In fact, the techniques-based on signal
processing (SP) techniques are widely used to extract and detect the signal’s features,
whereas the most used algorithms for PQDs classification are based on artificial intelligence
(AI) methods. The combination of SP and AI techniques allows for improving accuracy,
especially with a high sample rate. However, the above-published estimation techniques
are sub-optimal and most of these techniques do not use the information of the three-phase
signals. Moreover, their performances lead to low performance under off-nominal con-
ditions. Regarding the classification stage, the extracted feature is used as input for the
PQDs classifier. Pattern recognition-based techniques (i.e., ANN, SVM, etc.) require a good
knowledge of disturbances, and a large training database and their performance critically
rely upon the extraction, selection and learning stages. Moreover, these techniques have a
high computation complexity. To overcome these limitations, the development of advanced
SP algorithms has become essential. It is still necessary to develop robust and reliable
techniques under noisy and off-nominal environments and for short-length signals.
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Table 13. Comparative Study of Feature Extraction, Selection and PQ Disturbances Classification Techniques.

Ref-Year Feature
Extraction Feature Selection Feature

Classification
System

Employed
Non-Noisy

Environment
Noisy

Environment

[223], 2012 DWT - - Synthetic and
single data 98.03 -

[208], 2011 DWT - HHM Synthetic and
multi-phase data 99.66 -

[224], 2013 DWT - LS-SVM-kMA Synthetic and
multi-phase data 98.88 98.14

[225], 2014 DWT and FFT - Threshold Synthetic and
multi-phase data 90.04 -

[141], 2015 DWT PSO ELM Synthetic and
multi-phase data 97.60 –

[226], 2011 WPT GA-SA SVM Synthetic data 98.33 -

[227], 2012 WPT - MSVM Synthetic data 97.7 92.25

[228], 2013 WPT - -
Synthetic and
single data in

real-time
- –

[27], 2021 HT-DWT - ANN-SVM Synthetic and
single-phase data 98.11 -

[218], 2022 un-decimated WT -

Stochastic
Gradient

Boosting Trees
(SGBT)

Synthetic,
simulation and

multi-phase data
- 99.29–99.50

[229], 2013 ST - DT Real time and
multi-phase data 99.27 94.36–97.91

[230], 2012 ST - Hidden Markov
model

Synthetic and
multi-phase data 98.14 91.86–95.04

[231], 2017 ST - Fuzzy C-means
clustering

Synthetic and
single-phase data 99.20 98.50

[232], 2017 ST - Fuzzy C-means Real data - <90

[233], 2018 ST - RF Synthetic and
multi-phase data 99.85 99.61

[234], 2020 ST - Fuzzy C-means Real data - <90

[235], 2010 HT - ANN single-phase data
in real-time 96.75 -

[123], 2014 HHT - PNN–SVM Synthetic and
multi-phase data 100 -

[236], 2014 HHT - FES Synthetic and
multi-phase data 98 87.22–91.55

[237], 2020 EMD-HT - SVM Real data - <90

[238], 2018 Orthogonal EMD - - Real data - <90

[239], 2018 VMD - DT Real-time and
single-phase data 98.56 96.73

[240], 2015 VMD - DT Real-time and
multi-phase data 99.50 93.80

[241], 2018 LMS - MLP-NN Synthetic and
single-phase data 96.71 -

[117], 2017 ML Newton–
Raphson - Synthetic and

multi-phase data 100 -

[118], 2015 ML Nelder–Mead
(fminsearch) - Synthetic and

multi-phase data 100 -

[161], 2016 ML - ITC Synthetic and
single data 100 100

[162], 2017 ML - ITC Synthetic and
single data 100 100
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7. Prospects and Challenges

A smart grid covers a large-scale system from generation until end-consumers. SG
shall overcome the limitations of the existing system by spreading automated control and
modern communication technologies through every power system’s parts. SG allows
providing real-time estimation and classification that satisfies the PQ standards require-
ments. Moreover, it is needed to enhance reliability, safety and efficiency for controlling
and monitoring the power system. In this context, the main challenge we face is to involve
real-time PQ disturbance characterization algorithms with high performance even under
off-nominal conditions. Future research should evaluate the real-time characterization
algorithms that require low computational complexity, high accuracy and low false alarm
rate under balanced or unbalanced conditions. For distribution networks, it is important
to take into consideration forecasting schemes. Finally, these algorithms must exploit
the three-phases nature of the power system to achieve high performances over a short
signal length.

8. Conclusions

This paper provided a comprehensive review of the characterization of PQ distur-
bances. In particular, several feature extraction, selection, and classification techniques for
PQ monitoring were presented. A comparative study of the existing techniques was also
highlighted with useful comments and remarks, which can be used for future development
on PQDs characterization. An overview of international standards for PQ was also pro-
vided, where these standards define and provide extraction performance of frequency and
phasor with recommendations and guidelines. An in-depth analysis related to the applica-
tion of signal processing, optimization and pattern recognition techniques was highlighted.
However, most of the previously published estimation techniques are sub-optimal, since
they only use single-phase information. In addition, the mentioned techniques achieve low
estimation performance under high noisy and off-nominal conditions. Furthermore, they
require a long signal length to achieve high estimation performance, where various fast
disturbances occur. For the classification stage, the studied classical techniques achieve
low performance under highly noisy environments and for high variations in frequency.
In addition, these techniques are not able to classify all sag and swell types. Pattern
recognition-based techniques require a good knowledge of disturbances, a large training
database and their performance critically relies on the extraction, selection and learning
stages. The disturbances extraction based on SP tools is required and is considered of
great importance to accelerate the evolution of future electric grids. Under off-nominal
conditions, the use of suitable feature extraction and selection techniques over short data
acquisition time is still a difficult task to perform. Moreover, PQ disturbances monitoring
needs to improve feature extraction, optimal selection and classification algorithms for
identifying disturbance causes. Finally, to improve PQ disturbance monitoring, further
research should offer great scope on the use of communication and computing technologies,
e.g., future 5G wireless networks, edge computing, three-phase system, and real-time data.
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