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POWER REFLECTION FROM A LOSSY ONE-DIMENSIONAL
RANDOM MEDIUM*

W. KOHLERY} anp G. C. PAPANICOLAOU}

Abstract. We consider the problem of an electromagnetic plane wave normally incident upon a
slab of material whose constitutive parameters are subjected to lossy random perturbations. A trans-
mission line model is adopted, wherein the four distributed parameters are assumed to be strongly
mixing random functions of distance along the line. We study the reflection of energy at the input in
the diffusion limit, an asymptotic limit involving weak random perturbations and long transmission
lines. In the presence of dissipation, the probability density function for the modulus of the reflection
coefficient approaches a nontrivial limit as the line length approaches infinity. We compute the mean
and fluctuations of the voltage and power reflection coefficients with respect to this limiting density as
a function of the dissipation.

1. Introduction. Consider the problem of an electromagnetic plane wave
normally incident upon a slab of material whose permittivity, conductivity and
permeability have been randomly perturbed. Assume that the slab is homogeneous
in the plane transverse to the propagation direction and that in the absence of
perturbations the constitutive parameters reduce to those of free space. This
one-dimensional problem is mathematically equivalent to the analysis of a
transmission line whose corresponding four distributed parameters are randomly
perturbed [2], [S]. We shall adopt this transmission line model.

The nondissipative or lossless case has been studied by a number of authors
([21,[3],[7] and the references therein). For a general class of random perturbations
known as strongly-mixing processes [1], [8] it is known that the modulus of the
input reflection coefficient converges in probability to unity as the slab thickness
becomes infinite ; in another case [9] this convergence to unity has been shown to
hold almost surely. This behavior has also been observed in numerical simulation
studies [3], [4], [6], [9]. Tutubalin [10], however, has shown that if the random
perturbations are weakly dissipative, the marginal density function for the
modulus of the reflection coefficient approaches a nontrivial limit as the slab
thickness becomes infinite. Our goal in this paper is to extend [8] to consider
this dissipative case within the context of strongly mixing processes and the
diffusion limit.

We adopt a transmission line model wherein all four distributed parameters
are subjected to random perturbations. As in [8], we obtain the Riccati equation
for the input reflection coefficient as a function of slab thickness. This equation
is studied in the diffusion approximation, an asymptotic limit involving weak
random fluctuations and long transmission lines. Using a theorem of Khas’minskii
[1], we derive the forward equation for the marginal density function of the
reflection coefficient modulus and explicitly determine the limiting equilibrium

* Received by the editors November 6, 1974. This work was supported by the Office of Naval
Research under Contract N00014-67-A-0467-0015.

+ Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061.
} Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.

263



264 W. KOHLER AND G. C. PAPANICOLAOU

solution. With this density function, we compute the mean and fluctuations of the
input voltage and power reflection coefficients as functions of a characteristic
loss parameter.

2. Formulation of the problem. Let (2, #, P) denote an underlying probability
space with element w € Q. E{ - } will be used to indicate expectation, i.e., integration
with respect to the probability measure P. Frequency will be denoted by f. We
consider the following transmission line equations:

(1) dVidx = —ZI, dljdx = — YV,

—i2nft

where an e time-dependence has been omitted and where we assume that

Z=R-i2nfL, Y=G — i2zafC,

R = &’Ry(x, f, w),

G = ¢°G,(x, f, w), R, and G, almost surely nonnegative,
L =Ly + ¢L(x, f,w) + e2Ly(x, f, w),

C = Cy+ eCi(x, f, w) + &2Cy(x, f, w),

E{Li(x, f, w)} = E{C\(x, f, w)} =0,

@)

with ¢ a small real parameter. The distributed parameters of the line, therefore,
are subjected to small random perturbations. We shall assume that the stochastic
processes in (2) are almost surely bounded, wide-sense stationary and strongly
mixing. A precise statement of the strong mixing property is given in [1]. Loosely
speaking, a strongly mixing process is one where random variables formed by
sampling the process at two values of x tend to become independent as the
separation between the sampling points becomes infinite. Note, however, that we
make no other assumptions regarding the details of the joint statistics of the six
processes since they do not affect the diffusion limit.

We define the characteristic impedance, characteristic admittance, wave-
number and scattering parameters as follows:

3) Zy=Lo/Coy Yo= Z5', ko= 2nf/LoCy
a=YYSV 4 ZV), b= YYERV - 23R,

where a and b are functions of x, f, w and ¢. We shall use a prime to denote normal-
ized parameters as follows:

4) Li=L)Y,, C,=CZ,, j=1,2; 5 =R,Y,, G,=G,Z,.
Define

ay = (LoCo) VALY + CY), By = (LoCo) VALY — CY),
% = (LoCo) AL, + Ch), By =(LoCo) VAL, — Ch),
a3 = ko '(R) + GY), By = ko '(Ry — Gy),

o= ey + &0, + i), B =efy + (B, + ifs).

©)
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Note that E{a,} = E{B,} = 0 and that oy = |5|. The parameter «; is a measure
of the total dissipation in each realization of the process. We assume that E{a3} > 0,
i.e., that this dissipation is present in a nontrivial way. In terms of this notation,
the scattering parameters a and b satisfy the following stochastic differential
equations:

da . i i
) yo ikga + Ekoaa — Ekoﬂb,
© db ) i i
I —ikobh — Ekoab + Ekoﬁa.

We shall consider the case where the randomly perturbed transmission line
occupies the interval 0 < x < I. We define

_ iz S 0, €)
(7) r(l,f, w, 8)_ e b(l,f, w,g),

which represents the right input reflection coeflicient of the line, with the rapid
phase variation removed. From (6) it follows that I" satisfies the first order Riccati
equation :

ar

8) = kool = %koﬁ ¢i2kol 2 _ %koﬁ emiZkl [ >0,

We shall assume that the line is matched at x = 0 (i.e., a(0) = 0) and that it is
excited by a wave incident from the right at x = [ (i.e., b(l) # 0). Consequently,
we consider the initial value problem consisting of (8) and the initial condition

o) =o0.
Let

9) I =reé?, 0 =¢ + 2k,l.
Then (8) transforms into the following pair of equations:

dr ¢ 2 .

i 5"0/31(’ — 1)sin 0

82
+ Eko[——Zcxg,r + B3(r* + 1)cos 6 + B,(r* — 1)sin 6]

(10)

dp ¢ 1

a = §k0[2o¢, — By(r + 1~ 7)cos 0]

2
+ %ko[Zaz — By(r + r~Y)cos 0 + By(r — r~Y)sin 0].

3. Application of the limit theorem. Observe that for fixed coordinates r and
0, the coefficients of ¢ on the right side of (10) have a zero expectation. Let t = &21.
We shall study (10) in the diffusion approximation, an asymptotic limit in which
¢ —> 0 and | - oo in such a way that t remains fixed. This limit has been amply
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discussed in the literature ([1], [2], [3] and references therein); reference [8] in
particular, deals with an application quite similar to the present case. Therefore,
we shall only state the result here.

Recall that the processes in (2) were assumed to be wide sense stationary.
Define

Ri(u) = E{f,(u + s)p(s)}

= ko *0fE{[L(u + s) — Ci(u + )] [Li(s) — C1(9)]},

o b
8 Jo

Y= koD_lE{fX3}.

R,(u) cos 2kqu du,

An application of the diffusion limit leads to the conclusion that the marginal
density function associated with the reflection coefficient r(z/¢2, f, w) behaves
asymptotically as the solution of the forward equation:

~40p 0 op y 0
(4D) i &[(22 - 1)5;:l + Z&[(zz = Dp],
(12)
z=(1+rH)/1 — r?).

4. Limiting density function and moments. To obtain the equilibrium or
limiting density function as T — oo, call it p_(z), we look for a solution of

Ol P | 70, , _
5;[(2 - 1)6—2} *t3 52[(2 - Dp,]1=0,
(13) )
P(z2) =0 on([l, o) and j Po(2)dz = 1.
1
Problem (13) can be solved by repeated quadratures; the solution is

(14) p(s) = %e*m- bi4,

This density function agrees with that obtained by Tutubalin [10]. Let E_{-}
denote expectation with respect to this limiting density function. Then

15 E{r N il 1,2
( ) oo{r}=fl (Z+1) poo(z)dZ, n=1,2,---,

represent the equilibrium moments. In particular, the mean and fluctuations of the
voltage reflection coefficient modulus are given by E . {r} and [E {r*} — E2 {r}]"/?
while the mean and fluctuations of the power reflection coefficient are given by
E_{r*} and [E{r*} — E2{r*}]"/2. These quantities are plotted in Fig. 1 as a
function of the loss parameter .
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F1G. 1. Equilibrium values of the reflection coefficient vs. loss parameter y.
Voltage reflection coefficient :

Power reflection coefficient : —~ ——~

The graphs labeled (M) and (F) are mean values and fluctuations, respectively.
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