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SUMMARY 

 

The objective of the proposed research is to develop a low-cost power router, capable 

of dynamic, independent control of active- and reactive-power flows on meshed grids. A 

power-flow solution with the aforementioned characteristics would enhance electric-grid 

utilization, leading to thermal and economic efficiency. Increasing load demand and 

growth of wind generation have significantly increased the stress on the transmission 

grid. The low investment in transmission infrastructure necessitates adoption of methods 

for efficient use of existing resources. Power-converter-based flexible alternating-current 

transmission systems (FACTS), capable of dynamic power-flow control, have been the 

preferred solution to maximize utilization of existing infrastructure. 

Traditional FACTS solutions for power-flow control, such as unified-power-flow 

controller (UPFC) and back-to-back high-voltage direct-current (BTB HVDC) converter, 

are based on two unique features. First, a BTB converter forms the core of the power-

flow controller. BTB converters based on the voltage-source converter (VSC) technology 

are commercially available up to 70 kV. But realizing a BTB converter at transmission-

level voltages (> 138 kV) requires low-frequency step-down transformers. Also, the DC-

link capacitor is typically implemented with electrolytic capacitors to reduce the cost of 

the converter. The electrolytic capacitor requires frequent maintenance and has a limited 

lifetime. Because of the large converter, low-frequency transformers, and DC capacitors, 

building high-power converters at transmission voltages is complex and cost prohibitive. 

The other essential characteristic of the traditional FACTS solutions is the centralized 

approach, with a single controller responsible for the entire control range. The centralized 

approach results in a single point of failure negatively impacting the grid reliability.  

Controllable network transformer (CNT), an alternative approach based on direct AC-

AC converters, obviates the need for DC capacitors. The CNT based solution reduces the 
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required rating of low-frequency transformers compared to the traditional FACTS 

solution. Also, implementation through a fractionally-rated converter provides a low-cost 

solution. But the practical implementation of CNT is limited by challenges such as 

reliable commutation, voltage scaling, and lack of freewheeling path, which are yet to be 

addressed satisfactorily. 

The proposed research aims to develop a power router (PR), also called as power-

flow controller, that combines the advantages of BTB and CNT while overcoming the 

limitations of both approaches. The proposed PR consists of a fractionally-rated BTB 

converter (FR-BTB) connected across the taps of a transformer. A fail-normal switch is 

connected in shunt with the converter to bypass the converter during faults. The proposed 

implementation, as in the case of a CNT, reduces the low-frequency transformer 

requirement compared to traditional FACTS solutions. At the same time, since the 

converter is based on a standard BTB converter, it avoids the commutation and free-

wheeling path issues associated with direct AC-AC converters. The fractionally-rated 

converter and reduced transformer rating lead to a low-cost solution, while the BTB-

based approach ensures a scalable, reliable, and market-ready solution.  

As a part of this research, the power-flow-control range of the proposed PR is 

evaluated. The control architecture of the PR is developed and the criterion for selection 

of controller parameters is determined. The operation of the proposed PR and the 

controller design is verified through system simulations. Fault handling of series-

connected controllers can have a significant impact on the network reliability. In the 

proposed research, the coordination between the converter and the fail-normal switch, for 

reliable operation under different types of faults, is analyzed through simulation studies. 

System-level studies for determining the feasibility, rating, and location of power routers 

will need reduced-order power-router models. As a part of this research, small-signal and 

frequency-domain models of the proposed PR are developed. Also, the functionality of 

the proposed PR is experimentally demonstrated at 13 kV, 1 MW.  
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The concept of controlled energy flows (CEFs) was introduced to lower the cost of 

accommodating the variability of stochastic renewable-energy sources and ensure the 

benefits of transmission investment to the investor. Implementation of the CEF concept, 

based on power routing through a given path, will require small power routers to be 

installed on multiple transmission lines, which can be short, medium, and long. In 

comparison, traditional FACTS devices are implemented only on long tie-lines, which 

require large control range. Even for tie-line solutions, a distributed solution, consisting 

of multiple power routers connected in series, will provide higher availability and 

flexibility compared to a centralized solution. But mutual interactions between multiple 

power routers, located in an electrically-close region, can lead to network instability. A 

controller design, to ensure stable operation of multiple power routers, is presented and 

verified through simulations. 

Achievement of the research objectives will provide a reliable and economical 

solution for independent, dynamic control of active- and reactive-power flows. Through 

optimum utilization of the existing electric grid, the resulting technology can reduce 

required transmission investment and facilitate cost-effective integration of wind 

generation.
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CHAPTER 1                                                                     

INTRODUCTION 

 

1.1 Problem Statement and Background 

An electric transmission grid is an extensive, interconnected network of high-voltage 

power lines that transport electricity from generators to consumers. In the United States 

(U.S.), the electric transmission grid is almost 125 years old and presently consists of 

about 372,340 miles of lines [9]. In earlier years, transmission lines were isolated and 

radial in nature, with each consumer group serviced by not more than a single generating 

unit. But with the start of the regulation era in 1934, the electric utilities joined together 

under a vertically-integrated monopoly to share the peak load and backup power. The 

interconnection of utilities led to meshed systems that provided reliability, allowing 

utilities to provide service even under contingencies to an extent. The deregulation in 

1990s resulted in a complex system of independent power providers (IPPs), transmission 

companies (TRANSCOs), independent system operators (ISOs), regional transmission 

organizations (RTOs), and retailers. IPPs sell the service to retailers through the 

transmission network, owned and operated by TRANSCOs. ISOs and RTOs are 

independent regulators, responsible for ensuring non-discriminatory services, and safe 

and reliable operation of the grid. With deregulation, the economics of the electric grid 

dominated the physics of the grid, pushing the grid towards an unsustainable state. A few 

of the problems associated with the present day electric grid are discussed here.  

1.1.1 Increasing Electrical Load 

The electrical energy delivered through the transmission networks has been 

increasing at about 2% per year for the last two decades, as shown in Figure 1.1. It 

increased from 2800 TWH in 1990 to 4000 TWH in 2010 and is expected to reach 4400 
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TWH by 2030 [1]. The electrical-energy demand is driven primarily by consumption 

growth in residential and commercial sectors [2, 3]. The growth in the residential sector is 

because of the population and economic growth, and continued population shifts to 

warmer regions with greater cooling requirements. The growth in the commercial sector 

is driven by the increasing demand from service sectors. Penetration of electric vehicles 

is not sufficient to reverse the slowing trend of electrical-energy demand in the 

transportation sector [3]. The electrical-energy demand of the industrial sector increases 

by only three percent from 2008 to 2035 because of the efficiency gains and the slow 

growth in industrial production. 

 

Figure 1.1: Electrical energy delivered through the electric-power sector. (Projected data: 2010-2035). 

1.1.2 Increasing Renewable Energy 

Renewable-energy sources provided about 13% of the total U.S. utility-scale electric 

energy generation, in 2011. Wind energy is the second largest contributor of the total 

renewable generation, with 23%. The growth of wind energy in the electric-power sector 

in the last 20 years and the projected growth till 2035 is shown in Figure 1.2 [4, 5]. Wind-

energy generation increased from 6 TWh in 2000 to 120 TWh in 2011. Increase of wind-

energy generation is driven by renewable portfolio standards (RPS). As of May 2012, 29 

states have enacted the RPS programs that resulted in creation of one-third of the current 

U.S. non-hydro renewable electricity. A number of states without the RPS policies have 

also seen a significant increase in renewable generation because of federal incentives, 
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state programs, and market conditions [6]. Wind energy is expected to reach about 30% 

of the total renewable energy and 12% of the total energy sources by 2035 [4].  

 

Figure 1.2: Wind energy delivered through the electric-power sector. (Projected data: 2011-2035). 

Wind-energy integration will require a capable transmission system to deliver the 

energy from the generation centers to the load centers. As of 2012, most of the wind 

generation was installed in locations where there has been adequate transmission capacity 

to deliver the wind energy to the loads [7]. In Figure 1.3, the potential wind resources in 

U.S. [8] and wind generation installed as of 2012 [9] are shown. Wind potential, shown 

in Figure 1.3(a), matches with installed locations, shown in Figure 1.3(b), where there has 

been adequate transmission capacity to interconnect the new wind generators and deliver 

their electricity to loads [7]. A number of published reports indicate that a large number 

of wind projects are held up due to the lack of transmission infrastructure [7, 10, 11].  
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Figure 1.3: (a) Wind resources and (b) wind installed-generation in US. 

1.1.3 Investment in Transmission Infrastructure 

After two decades of low investments, the investment in the electric transmission 

sector has increased in the last decade. For the period 1988-2010, the comparison of the 

investment in the transmission lines [12, 13] and the investment in the generating sector 

[1] is shown in Figure 1.4. Fuelled by the load growth, there was a bump in the 

investment in the generating capacity during 2000-2005. After 2005, the investment in 

the generating sector slowed down and much of the investment started flowing into the 

transmission sector.  

(a)

(b)
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Figure 1.4: Historical investment in the transmission lines ( > 100 kV) and generating capacity. 

The major support for the transmission investment came from the Energy Policy Act 

(EPA) of 2005 and federal transmission-pricing policies [13]. The investment in 

transmission sector is expected to add 30,000 circuit-miles of transmission lines over the 

period 2010-2017, in addition to the existing capacity of 372,340 circuit-miles as of 2009, 

as shown in Figure 1.5[1]. It is primarily driven by reliability concerns and for facilitating 

renewable integration, as shown in Figure 1.6 [14]. 

 

Figure 1.5:  Expected addition to the transmission capacity. 

 

Figure 1.6: Drivers for growth in transmission capacity. 
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Though transmission additions are increasing, they are not sufficient yet. The Brattle 

Group estimates that $298 billion transmission investment is needed between 2010 and 

2030 to maintain reliable service [15]. Another study indicates an investment need of $55 

billion over the period 2013-2025, just to meet the existing RPS mandates [15]. The 

requirement increases to $100 billion if a hypothetical 20% federal RPS mandates are 

considered [16]. But the planned investment is only approximately $56 billion for the 

period 20011-2015 [17]. A large number of transmission projects are being delayed 

because of right of way, cost allocation, and other environmental issues [18]. 

1.1.4 Network Congestion 

Congestion occurs on electric transmission facilities when actual or scheduled flows 

of electricity across a line or a piece of equipment are restricted below desired levels [7]. 

These restrictions may be imposed either by the physical or electrical capacity of the line, 

or by operational restrictions created and enforced to protect the security and reliability of 

the grid. Because power purchasers typically try to buy the least expensive energy 

available, when transmission constraints limit the amount of energy that can be delivered 

into the desired load center or exported from a generation-rich area, these constraints (and 

the associated congestion) impose real economic costs upon energy consumers. 

There are number of commonly used metrics for determining congestion and are 

region dependent [7]. The metric for eastern interconnection is the number of 

Transmission Loading Relief (TLR) issued in an area, while for western interconnection 

it is the number of lines operating above Operating Transfer Capacity (OTC). A TLR is a 

NERC developed procedure for a transmission operator when a transmission path is at or 

beyond the operating limits [7]. TLRs have five levels depending on the severity of 

congestion, with the 5th level being the most critical state requiring major generation 

rescheduling. OTC is defined as the amount of power that can be transferred in a reliable 
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manner, meeting all NERC contingency requirements, considering the current or 

projected operational state of the system. 

The history of TLRs logged by the transmission operators for the last decade is shown 

in Figure 1.7(a) [19]. The increasing number of TLRs, indicating increasing congestion, 

has a growing pattern from 1998 to 2008, and then starts decreasing. The decreasing 

trend is because of various initiatives by the transmission operators such as building new 

transmission lines, moderate economic growth, new generation close to the load centers, 

demand side management and others. [20]. Still, level 5 TLRs, shown in Figure 1.7(b), 

are increasing every year indicating the need for efforts to contain congestion. Similarly, 

in the western interconnection the number of lines operating above OTC has reduced in 

the last 8 years, as shown in Figure 1.8. But, this does not give the complete picture as 

only 23 major paths are considered for analysis. As of 2009, DOE has identified a 

number of congested areas that are not reflected in this figure [7].  

 

 
Figure 1.7: Number of logged TLRs in the eastern interconnection. 
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Figure 1.8: Path utilization trend in western interconnection, US. 

1.1.5 Efficient Utilization of Existing Transmission Grid  

Considering the uncertainties in the development of the transmission infrastructure, it 

is necessary to adopt methods for efficient utilization of existing grid. Besides demand-

side management, distributed generation, and energy efficiency, DOE also advocates the 

use of high-impact advanced technologies to address transmission bottlenecks [21]. The 

high-impact technologies include flexible alternating-current transmission systems 

(FACTS), high-temperature superconductor cable, and superconducting magnetic energy 

storage. Among various solutions, FACTS have reached technological maturity [22], but 

are hampered by high installation and maintenance costs. Recent advances in 

semiconductor technology and reducing prices of switching devices have rekindled 

interest in FACTS technologies. FACTS together with wide-area measurement systems 

(WAMS) can enable better control of electricity over existing lines [23]. 

Capability of FACTS devices for relieving congested networks and reducing energy 

price for consumers is discussed in large number of publications. Studies discussing the 

technical aspects are mainly related to the algorithms for choosing optimal location and 

ratings of FACTS devices [24-26]. Application of FACTS devices, specifically, for 

alleviating wind-penetration related congestion while satisfying transient stability 
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devices [30] and overall economic gains, accrued as a result of reduced generation from 

conventional generators and reduced congestion costs [31-36], are also discussed.  

Recently, the concept of controlled energy flows (CEFs) based on delivering energy 

from source to destination along a desired path is proposed [37-39]. Implementation of 

CEFs will require a power-flow controller at each of the intersecting node along the 

designated path, as shown in Figure 1.9.  

(a) 

(b) 

Figure 1.9: Line flows associated with dispatch of 3.4 MW from Gen 6 to load bus (a) without CEF and (b) 
with CEF [37]. 

Power-Flow 

Controller
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The power-flow controller will inject an incremental voltage to direct the flow of 

electrons along the desired path. The required control effort is only a fraction of the total 

controlled power [37]. The same concept can be extended to multiple transactions using 

the superposition principle. CEF concept relieves congestion through improved asset 

utilization and can create a parallel market for renewable generation, providing higher 

returns on investment [38]. 

Implementation of power-flow control, for relieving congestion by enabling efficient 

utilization of infrastructure, will need a cost-effective and reliable power-flow controller. 

1.2 Research Scope 

This research presents a low-cost power router (PR) for meshed systems, which is 

capable of dynamic, independent control of active- and reactive-power flows. The 

proposed PR consists of a fractionally-rated, back-to-back converter (FR-BTB) connected 

across the taps of a transformer. A fail-normal switch is connected in shunt with the 

converter to bypass the converter during faults. The proposed implementation provides a 

cost effective solution compared to traditional power-routing solutions. The fractionally-

rated converter and the reduced transformer rating lead to a low-cost solution, while the 

standard BTB-based approach ensures a scalable, reliable, and market-ready solution. 

Implementation of the power-flow control to alleviate congestion may require multiple 

PRs installed on the network. But mutual interactions between multiple PRs can lead to 

network instability. The research aims to develop a controller design to ensure stable 

operation of multiple power routers. 

The primary objectives of this research are: 

1. To present operating principle, various possible configurations and control 

range of the proposed power router. 

2. To present control architecture that is necessary to achieve power flow control 

with the proposed power router. 
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3. To verify the control algorithm through simulation and low power prototype. 

4. To develop small-signal and frequency-domain models from basic time 

domain equations. 

5. To identify various fault modes and develop a protection system for realible 

operation of the proposed power router. 

6. To verify the proposed protection scheme through simulation studies. 

7. To analytically evaluate the  reason for intercations between multiple power 

routers. 

8. To develop controller design that can ensure stable operation of multiple 

power routers and verify through system level studies. 

9. To develop a full-scale 13 kV, 1 MVA prototype and validate the proposed 

power router functionality. 

1.3 Outline of Chapters 

Chapter 2 will review various existing technologies for implementation of power-

routers. The features and shortcomings of various power routers are presented, explaining 

the need for a need a better power-routing solution. 

Chapter 3 will introduce the proposed power-routing solution for meshed systems. 

The detailed power-router configuration, various possible implementations and salient 

features of the power router are presented. The operating principle, control range and 

control architecture are presented. The verification of the control scheme through 

simulations and low power prototype is presented. Small-signal and frequency-domain 

modles of the proposed power router are derived. 

Chapter 4 will discuss the fault management aspects of the proposed power-router. 

Various fault modes are identified and a protection scheme to avoid single point-of-

failure is presented. In this chapter, the simulation results for verification of the 

protection scheme are discussed. 
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Chapter 5 introduces the problem of interactions between multiple power routers, 

which may lead to instability. An analytical method to analyze stability of a system with 

multiple power routers is presented and verified. Controller-design conditions to ensure 

stable operation of multiple power routers are proposed and verified on a IEEE 39-bus 

system through simulation studies.  

Chapter 5 presents the various possible applications and associated challenges of the 

power router in distribution systems.  

Chapter 7 presents the work performed to demonstrate the power router functionality 

at 13 kV, 1 MVA. The design of the test setup, selection of various components and 

fabrication of the power router is discussed. The experiment results at 13 kV, 1 MVA, 

validating the power router functionality are presented. 

Chapter 8 delineates the contributions, presents suggestions for future work, and 

summarizes the research. 
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CHAPTER 2                                                                      

PRIOR ART 

FACTS are power-electronic based systems capable of controlling one or more 

transmission parameters. They were developed as an alternative to slow moving 

mechanical power-flow controllers to provide fast response and increased availability 

[40]. The biggest advantage of FACTS is that the base technology is similar to HVDC, 

where converters up to the rating of 3.0 GVA, +/- 500kV are commercially built [41]. 

Though the FACTS technology has reached a stage of maturity, the market penetration 

has not reached expected levels. This section reviews various FACTS devices for power-

flow control, enumerating the advantages and limitations of each technology. 

2.1 Power-flow Controllers 

Consider a simplified two-bus system connected through a loss-less transmission line, 

as shown in Figure 2.1. The power-flow in the line is given by Equations (1)-(3). 

                 (1) 

        (          )   (2) 

        (          )   (3) 

where   is the active power,    is the sending-end reactive power,    is the receiving-

end reactive power,    is the sending-end voltage,    is the receiving-end voltage,   is 

the line impedance, and   is the phase angle between    and   .  

 

Figure 2.1: Simplified two-bus system. 
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From Equation (1), it is evident that the active power can be controlled by varying 

one or more of the following three parameters: line voltage, impedance, and phase angle. 

Power-flow controllers can be classified based on the parameter the device can control 

[40].  

 Shunt controllers – control line voltage. 

 Series controllers – control effective line impedance and/or phase angle. 

 Combined series and shunt controllers – control line impedance, phase angle and 

line voltage. 

2.1.1 Shunt Controllers 

In principle, shunt controllers inject current at the point of interconnection with the 

primary objective of providing voltage support. From Equation (1), it can be seen that 

any increase in bus voltage directly impacts the power flow. But regulations limit the 

line-voltage variation to +/- 10% of the nominal voltage. Hence, shunt controllers cannot 

provide a greater degree of active-power-flow control. Also, any attempt to vary the 

active-power flow through shunt compensation is associated with an even greater change 

in reactive-power flow. Though shunt compensation is ineffective for active-power-flow 

control, it can improve the power-transfer capability of a transmission line. Midpoint 

shunt compensation can double the power-transfer capability [42]. With midpoint 

voltage,  , controlled to be the same as sending- and receiving-end voltages, the new 

active-power-flow equation,  , is given by Equations (4).  

                (4) 

Comparing Equation (4) with Equation (1) indicates that with midpoint compensation 

the maximum active-power flow has doubled. Similarly, further line segmentation, 

achieved by applying shunt compensation at appropriate points, can further increase 
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power-transfer capability. With sufficient dynamic control, shunt compensation can also 

aid in improving transient stability and power-oscillation damping [40]. 

Fixed shunt capacitors/reactors can be used to provide the required shunt 

compensation, but because of the adverse response at non-nominal loading levels, 

switched capacitors/reactors are preferred. Mechanically switched capacitors/reactors 

have slow response, and hence lack dynamic control, limiting the additional power 

transfer capability that can be achieved. FACTS technology, by providing a faster 

response time and continuous control, has enabled realizing the full potential of shunt 

compensation. FACTS devices for shunt compensation are mainly divided into two 

categories. The controllers in the first category are commonly termed as Static Variable 

Compensator (SVC), based on semiconductor devices with no forced turnoff capability. 

Devices such as Thyristor Switched Reactor (TSR), Thyristor Controlled Reactor (TCR), 

Thyristor Switched Capacitor (TSC), and Fixed Capacitor-Thyristor Controlled Reactor 

(FC-TCR) come under this category. The second category consists of static converter 

based controllers, based on switches with forced turnoff capability, such as a Static 

Synchronous Compensator (STATCOM). 

2.1.1.1 Static Voltage Compensator (SVC) 

SVC is usually implemented as a combination of one or more of the following: TSR, 

TCR, TSC, and FC-TCR. A brief introduction of each of these devices is given below. 

TCR, as shown in Figure 2.2 (a), consists of a reactor connected in shunt with the line 

through a bi-directional switch, realized by two anti-parallel thyristors. By controlling the 

thyristor firing delay angle, defined as the angle between the instant of crest voltage and 

the instant of thyristor, the effective inductive impedance can be varied. The operating 

region of a practical TCR is shown in Figure 2.2 (b), with the boundaries determined by 

the ratings of the thyristor and the reactor. TCR can only provide inductive compensation 

and the maximum compensation is voltage dependent.  
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Thyristor switching introduces unwanted odd harmonics in the system, the significant 

being the 3rd, 5th, 7th and 9th. Usually, the triple-n harmonic currents are blocked from the 

system by employing a delta connected TCR, and a 12-pulse arrangement is employed to 

eliminate 5th and 9th harmonics. Because the thyristor turns off only when the current 

decays to zero naturally, the response time of a 3-ph TCR cannot be smaller than T/3, T 

being the time period of the fundamental frequency. If the firing angle of the TCR is 

fixed, usually at 0 deg, then it is termed as Thyristor Switched Reactor (TSR). TSR does 

not introduce any harmonics but can only provide on/off control. 

 

Figure 2.2: (a) Schematic of TCR. (b) V-I characteristics of TCR 

TSC, shown in Figure 2.3(a), consists of a capacitor connected in shunt with the line 

through a thyristor. A small reactor is also connected in series to limit the surge currents 

during transients. To limit the transients, the capacitor can be switched on only at a 

particular instant in a cycle when the voltage across the switch is zero. Hence, firing 

delay angle control is not possible with TSC. Since a single TSC module can only 

provide fixed step control, a number of TSCs are connected in parallel to approximate 

continuous control. Typical V-I characteristics of a TSC are shown in Figure 2.3(b). 

FC-TCR, shown in Figure 2.4(a), consists of a fixed capacitor connected in shunt 

with a TCR. The capacitor provides the fixed part of the compensation while the TCR 

provides the variable component. Typical V-I characteristics of a FC-TCR are shown in 
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Figure 2.4(b). The capacitor, while providing the compensation at fundamental 

frequency, will also act as a filter for the dominant harmonics generated by the thyristor 

switching in the TCR. Though FC-TCR can provide continuous capacitive and inductive 

VAR control, the presence of TCR limits the dynamic response time to one third of a 

cycle. Also, the thyristor switching introduces undesirable harmonics in the system. 

 

Figure 2.3: (a) Schematic of TSC. (b) V-I characteristics of TSC. 

 

Figure 2.4: (a) Typical implementation of FC-TCR. (b) V-I characteristics of FC-TCR. 

SVC, commercially available since 1974 for industrial applications, is the popular 

device among FACTS devices. For power system applications, the first installation in 

U.S. was a 40 MVAR SVC, installed in 1978 at Shannon substation [43]. In the next 10 
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years, 41 compensators with an installed capacity of 9710 MVAR have been added to the 

transmission system [43]. Photograph of 500 kV, -145/+575 MVAR at Rawlings, 

Maryland, one of the largest SVC installed, is shown in Figure 2.5. 

 

Figure 2.5: 500 kV, -145/+575 MVAR at Rawlings, Maryland, U.S. (Courtesy: ABB) 

2.1.1.2 STATCOM 

Gyugyi introduced the concept of using switching converters for reactive power 

control, in 1976. Static Synchronous Compensator (STATCOM) is one such device based 

on the principle of generating reactive power by circulating currents in the phases 

through a switching converter. As shown in Figure 2.6 (a), it consists of a Voltage Source 

Converter (VSC) connected in shunt with the line through a relatively small reactance 

(0.1-0.15 p.u.). On the input side of the converter is a DC capacitor, essential to maintain 

the equality of the instantaneous input and output powers. The converter is usually an 

array of semiconductor switches with forced turnoff capability (GTO thyristors or 

IGBTs). 

STATCOM, much like a synchronous generator, operates by generating a voltage in 

phase with the line. By controlling the magnitude of the in-phase voltage, the reactive 

current can either be generated (capacitive) or absorbed (inductive). As shown in Figure 

2.6 (b), that the reactive power generated by STATCOM is not voltage dependent, an 
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advantage over SVC. Also, STATCOM has much faster response time than SVC, as both 

the turn-on and turn-off instants of the switches can be controlled in STATCOM, while 

only turn-on instant is controllable in SVC. 

 

Figure 2.6: (a) Schematic of STATCOM. (b) V-I characteristics of STATCOM. 

The first STATCOM in U.S. was a +/- 100 MVAR installation at Sullivan substation 

of Tennessee Valley Authority (TVA), in 1995, for regulating the 161 kV bus voltage 

[44]. Other prominent U.S. installations are as follows:  +/- 86 MVAR, 115kV 

STATCOM at Essex substation, in 2001 [45];  +/- 100 MVAR STACOM at Talega, in 

2002 ; the +/- 95 MVAR STATCOM at Holly substation in 2004, shown in Figure 2.7. 

The improvement of power transfer capability by providing shunt compensation 

through SVC and STATCOM has been proved in practice. But, as mentioned in the 

introduction for shunt controllers, shunt compensation is ineffective for controlling the 

active power-flow. Still, in active power-flow control applications, shunt controllers are 

used along with series controllers to provide the requisite reactive power support. 
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Figure 2.7: 138 kV, +/- 95 MVAR STATCOM at Holly substation, U.S. (Courtesy: ABB) 

2.1.2 Series Controllers 

Series controllers are of two types: variable-impedance and phase-angle controllers. 

In principle, both types of series controllers inject a series voltage to control the line 

current. The transmission line impedance is usually very low (0.001-0.002 pu per mile) 

and so is the voltage drop across the line. Hence, a small voltage injected by the series 

controller can have a significant impact on the line current. It also implies that the volt-

ampere (VA) rating of the series controller would only be a small fraction of the 

throughput power rating of the line. 

The series-voltage injection can be either in-phase or out-of-phase (quadrature) or 

both. As shown in Figure 2.8(a), the quadrature-voltage injection (Vseries) has a significant 

impact on the active-power flow. Phase-angle controllers control the active power 

directly by injecting quadrature voltage. Variable-impedance controllers control the line 

impedance, which effectively implies controlling the magnitude of the voltage drop 

across the uncompensated line as shown in Figure 2.8(b). Variable-impedance controllers 

have no controllability at zero phase-angle. Typical variable-impedance controllers are 

thyristor-switched series capacitor, thyristor-controlled series capacitor, and static 

synchronous series compensator, while phase-angle regulator is a phase-angle controller. 
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Figure 2.8: Phasor diagram for compensation of (a) Phase-angle type compensators and (b) Impedance type 
compensators. 

2.1.2.1 Thyristor-switched Series Capacitor (TSSC) 

The concept of variable series compensation was first proposed as a means to 

improve transient stability [46]. Implementation of variable capacitance through 

thyristor-switched capacitors was later introduced by Karady, in 1991 [47]. A typical 

implementation of a TSSC is shown in Figure 2.9, and it consists of a string of switched 

capacitors in series, each one added or bypassed by an anti-parallel thyristor in shunt. The 

capacitive impedance is varied by switching the capacitors.  

 

Figure 2.9: A typical implementation of TSSC. 

TSSC can be operated either in voltage compensation mode or in impedance 

compensation mode. Typical V-I characteristics of TSSC in voltage compensation mode  

and impedance compensation mode are shown in Figure 2.10(a) and Figure 2.10(b), 

respectively [48].  The operation in either mode is differentiated by the value of line 

current (         ) at which the maximum compensation is provided. Any further 

increase in current will result in reduced compensation. 
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Figure 2.10: V-I characteristics of TSSC [48]. (a) Voltage compensation mode. (b) Impedance 
compensation mode 

The only known TSSC installation was on a 345 kV transmission line, at Kanawa 

River Substation in West Virginia, U.S. [49]. Essentially an experiment to the test the 

TSSC hardware, a thyristor valve was applied across one phase of a capacitor module. 

Siemens installed a number of thyristor-protected series capacitors (TPSC) worldwide 

[50]. The TPSC technology is available up to 500 kV and 400 MVAR. TPSC is 

structurally similar to TSSC, but the thyristor is switched on only to bypass the capacitor 

during faults. 

The TSSC can only add capacitive impedance to the line in discrete steps. Also, the 

capacitor can be inserted only at the zero-current crossing, where the thyristor naturally 

turns off. The capacitor can only be bypassed at the capacitor-voltage zero-crossing to 

avoid initial surge currents in the valve. The thyristor-switching constraints limit the 

minimum response time to one fundamental cycle, making it ineffective for mitigating 

sub-synchronous resonance (SSR) at higher frequencies [48]. In practical conditions, an 

inductor in series with the thyristor is required to address the 
     limitations of the 

thyristor. The use of the TSSC was limited because of the above mentioned limitations. 
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2.1.2.2 Thyristor-controlled Series Capacitor (TCSC) 

Thyristor-based implementation of continuously-variable series impedance, known as 

TCSC, was proposed in 1986 by Vithayathil et al. [51]. A typical implementation and 

operating characteristics of the TCSC are shown in Figure 2.11. As shown in Figure 2.11 

(a), the TCSC consists of a series capacitor in shunt with a thyristor-controlled reactor 

(TCR). To obtain variable impedance, the TCR is controlled by varying the thyristor 

firing-angle. The compensation provided by TCSC is given by the Equation (5). 

      ( )      ( )  ( )      (5) 

where      ( )   ,   ( ) is the effective inductive impedance of the TCR,   is 

the impedance of the inductor,    is the impedance of the capacitor, and   is the thyristor 

firing-angle. Typically, the ratio       is in the range of 0.1-0.3 [48].    is small to 

provide a low impedance path for surge currents during faults. As shown in Figure 

2.11(b), the operation is prohibited over a small range of   to avoid resonance. 

 

Figure 2.11 (a) Typical implementation and (b) operating characteristics of TCSC. 

Like TSSC, TCSC can be operated in either voltage compensation mode or 

impedance compensation mode. The V-I characteristics for either modes are shown in 

Figure 2.12[3]. Unlike TSSC, TCSC can provide continuous control in both inductive 

and capacitive regions. 
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Figure 2.12: (a) Schematic of TCSC. (b) TCSC compensation as a function of thyristor firing delay angle. 

 The world’s first three-phase TCSC was installed at Kayenta substation, Arizona, 

USA in 1990, with the objective of improving the power-transfer capability of the 

transmission system [48]. The picture of the 230 kV, 100 MVA TCSC at Kayneta is 

shown in Figure 2.13. Also, a 202 MVAR TCSC system in U.S. was installed on the 500 

kV Bonneville Power Administration (BPA) transmission system, in 1993 [52, 53]. The 

440 MVAR TCSC at Purnea-Gorakhpur, India is the largest installation in the world [54].  

 

Figure 2.13: Image of 230 kV, 330 MVAR TCSC at Kayenta, U.S. (Courtesy: ABB). 

The TCSC cannot provide independent control of active- and reactive-power flows. 

The uncontrolled reactive power can lead to additional line losses and also limit the 

power transfer capability. Because of these limitations, the application of TCSC, in 

majority of cases, is restricted for damping the SSR caused by fixed series capacitors. 
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2.1.2.3 Static Synchronous Series Compensator (SSSC) 

SSSC is based on the concept of synchronous voltage sources [55]. A typical 

implementation and V-I characteristics of an SSSC are shown in Figure 2.14. As shown 

in Figure 2.14(a), a typical implementation of an SSSC consists of a VSC connected in 

series with the transmission line through a series coupling transformer [56]. It can 

provide continuous, dynamic, capacitive- and inductive-impedance control, as shown in 

Figure 2.14(b). 

An SSSC will act as a capacitor only at fundamental frequency, and at all other 

frequencies only the leakage inductance of the series transformer is presented to line. 

Hence, the SSSC inherently does not ignite any SSR [56], and additionally it can provide 

damping for SSR caused by other capacitors on the line. The SSSC can also compensate 

for the real part of the line impedance by inducing a voltage in phase with the line 

current. Compensation of the real part of the line impedance will involve exchange of 

active power with the line, and hence the need for an energy source/sink 

 

Figure 2.14: (a) Schematic and (b) operating characteristics of SSSC. 

An SSSC with an energy source/sink can provide dynamic, independent control of 

active- and reactive-power flows. But realizing a separate energy source/sink is not 

economically viable, and hence there are no standalone implementations of SSSC till 

date. The SSSC is usually implemented as a part of UPFC, where the energy is sourced 

from the line through a shunt converter [57, 58].  
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2.1.2.4 Thyristor Controlled-Phase Angle Regulator (TC-PAR) 

Phase-angle regulators (PARs) are being used for static power-flow control since 

1930s [59]. As shown in Figure 2.15, a typical implementation of a PAR consists of an 

exciter unit and a regulator unit. The exciter unit is a shunt transformer, with the primary 

connected between the line and the neutral. The regulator unit is a series transformer, 

with the primary connected to the secondary of the exciter unit in such a way that it is 

effectively connected across the line-to-line voltage. The regulator unit injects a 

quadrature voltage by appropriate selection of line-to-line voltages. The power flow in 

the line is controlled by varying the series-voltage injection through the taps on the 

secondary.  

 

Figure 2.15:  Schematic and phasor diagram of phase-angle regulator [59]. 

TC-PAR is an implementation of the PAR with the mechanical contacts replaced by 

thyristors [60, 61]. In a simple and direct approach, the thyristors directly replace the 

mechanical switches. But this approach can only provide step control and requires eight 

thyristors per phase [62]. In another approach, the thyristors are controlled to achieve 

continuous control, but the thyristor control generates undesirable harmonics. Inherently, 

a TC-PAR cannot provide independent control of active- and reactive-power flows. Also, 

the inter-phase coupling can lead to challenges with respect to fault identification [59]. 
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The quadrature voltage injected by the TC-PAR interacts with the line current resulting in 

exchange of reactive power with the grid. Since the TC-PAR cannot source/sink the 

requisite reactive power, a separate shunt volt-ampere-reactive (VAR) source has to be 

used in conjunction. So far, there are no practical implementations of the high-power TC-

PAR because of the above mentioned limitations. 

2.1.2.5 Variable Frequency Transformer (VFT) 

VFT is essentially a continuously variable phase shifting transformer that can operate 

at an adjustable phase angle [63]. As shown in Figure 2.16, VFT consists of a rotary 

transformer with three phase windings on both rotor and stator. One power grid is 

connected to the rotor side of the VFT and another power grid is connected to the stator 

side of the VFT. Power transfer through the rotary transformer is a function of the torque 

applied to the rotor by a drive motor. The rotor inherently orients itself to follow the 

phase angle difference imposed by the two asynchronous systems, and will rotate 

continuously if the grids are at different frequencies. The VFT is designed to 

continuously regulate power-flow with drifting frequencies on both grids. Reactive 

power-flow through the VFT is determined by the series impedance of the rotary 

transformer and the difference in magnitude of voltages on the two sides. 

 

Figure 2.16: Schematic of variable frequency transformer [64]. 
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The VFT has the advantage that, unlike power electronic alternatives, it produces no 

harmonics and does not cause undesirable interactions with neighboring generators or 

other equipment on the grid. On the other hand, the VFT being essentially a slow rotating 

transformer has a very large time constant of the order of 1-2 seconds. The transformer of 

the VFT has to be rated for full system power and also has to handle the worst case fault 

current. Since the rotor of the VFT has to be designed for rotational motion, it is difficult 

to achieve high reliability. The design of VFT becomes complicated and expensive for 

power levels exceeding 100 MVA, requiring multiple VFTs in parallel for higher power 

ratings. Till date, there are three VFT installations: 100 MW, Hydro Quebec Langlois, 

Canada-USA, in 2004 [65], picture shown in Figure 2.17; 100 MW, AEP Laredo, 

Mexico-Texas, in 2007 [66]; and 300 MW (3 units), Linden, New Jersey–New York, 

U.S., in 2009 [64].   

 

Figure 2.17: Image of 100 MW VFT at Langlois, Canada-USA. (Courtesy: GE) 

2.1.3 Combined Series-Shunt Controllers 

Combined series-shunt controllers are capable of providing both series and shunt 

compensation for independent control of active- and reactive- power flows.  
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2.1.3.1 Unified Power-flow Controller (UPFC) 

UPFC, proposed in 1992 by Gyugi et al. [67], is an effective implementation to 

achieve the combined functionality of a STATCOM and an SSSC. A typical 

implementation of a UPFC consists of two VSCs connected back-to-back, as shown in 

Figure 2.18 [68]. The series inverter provides the basic functionality of the UPFC by 

injecting a series voltage, and thereby controlling the power flow in the line. The injected 

voltage can be of any phase and magnitude, limited only by the rating of the converter. 

Thus, a UPFC can provide independent control of active - and reactive-power flows [68]. 

The series voltage injection results in exchange of active power between the series 

inverter and the transmission line. The shunt inverter is controlled to compensate the 

active power exchanged by the series inverter. In addition, the shunt inverter can also act 

as a shunt compensator to provide VAR support. 

 

Figure 2.18: Schematic of UPFC. 

The first UPFC is installed in 1998, at Inez substation in eastern Kentucky, U.S. [57]. 

A picture of the Inez UPFC is shown in Figure 2.19. In Inez UPFC, the series and the 

shunt inverters are rated for 160 MVA each and the DC bus is at 24 kV. To enable 

operation at 138 kV, both the inverters are connected to the line through step-up 

transformers, rated for 160 MVA. A set of 80 MVA intermediate transformers are used to 

achieve harmonic cancellation. A large converter and a number of low-frequency 

transformers resulted in an expensive implementation. The converter is rated for 2.0 p.u., 

the intermediate transformers are rated for 0.5 p.u., and the shunt transformer is rated for 
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1.0 p.u. To avoid saturation during startup, the series transformer is usually rated for at 

least 1.5 p.u. [69]. 

 

Figure 2.19: Image of 320 MVA UPFC installed at Inez substation, U.S. (Courtesy: Siemens). 

A major problem with the UPFC is the fault-current handling. In case of faults, the 

shunt converter is turned off, but the series converter is kept on to avoid an open 

secondary on the series transformer. To protect the series converter from fault current, an 

electronic by-pass switch is connected as shown in Figure 2.18. A small inductor is 

connected between the series converter and the by-pass switch to avoid shorting the 

converter. But the inductor reduces the overall capacitive-compensation range. The high 

cost and the complexity has restricted the wide-scale implementation of the UPFC. Till 

date, there are only two other installations in the world [58, 70]. 

2.1.3.2 Back-to-Back High-voltage DC (BTB HVDC) 

BTB HVDC system consists of two converters connected next to each other through 

an energy-storage element. It converts AC power at one terminal to DC and then converts 

back to AC at the other terminal. The intermediate DC stage allows complete decoupling 

of the two AC systems. In the VSC-based BTB HVDC systems, a DC capacitor is used 

for the intermediate DC stage, as shown in Figure 2.20 [71]. Typically, a VSC-based 

BTB HVDC system is connected in series with the line through coupling transformers to 
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allow operation at lower DC voltages. The VSC-based BTB HVDC system can provide 

dynamic bi-directional control of active- and reactive-power flows. Also, it can provide 

independent reactive-power support at both ends.  

 

Figure 2.20: Schematic of VSC-based BTB HVDC system. 

In U.S., the first VSC-based BTB HVDC system was installed at Eagle Pass 

substation, in 2001 [71]. The picture of the Eagle Pass BTB HVDC is shown in Figure 

2.21. It is a 36 MVA VSC-based BTB tie, interconnecting two power systems to maintain 

a controlled bi-directional power transfer between them. It also provides reactive-power 

support for dynamic voltage control at the two ends of the BTB tie. The DC bus is 

maintained at +/- 15.9 kV. BTB HVDC technology is currently available up to 200 MW, 

70 kV [72]. 

 

Figure 2.21: Image of BTB HVDC at Eagle Pass, U.S. (Courtesy: ABB) 

Traditionally, BTB HVDC systems are used for interconnecting asynchronous 

systems. Conceptually, a BTB HVDC system can also be used for power-flow control 

applications in synchronous systems. A BTB HVDC is functionally similar to a UPFC 

VSC VSC

BTB HVDC
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with 100% series-compensation capability, except the decoupling that only a BTB HVDC 

can provide. In most applications, the required series compensation is not greater than 

20% because of the low line impedance (0.001-0.002 pu/mile). The economics associated 

with the large DC capacitor, fully rated VSCs, and decoupling transformers have made 

the BTB HVDC technology unjustifiable for power-flow-control applications in 

synchronous systems. The BTB HVDC to be installed at Mackinac, Michigan is the only 

BTB HVDC system for synchronous systems, in U.S. [72]. Even in Mackinac, 

requirement for islanded operation is the main reason for choosing BTB HVDC 

technology. 

2.1.3.3 Sen Transformer 

PAR can provide active power regulation while the Load Tap Changing Transformer 

(LTC) can provide voltage compensation. A combination of LTC and PAR will be able 

to provide both the compensations, and one such effective implementation called Sen 

Transformer has been proposed in 2003 [73]. As shown in Figure 2.22, the Sen 

Transformer (ST) consists of a three-phase primary winding and nine secondary 

windings. Among the 9 secondary windings, a1, a2, and a3 are on the same core as 

phase-A winding; b1, b2, and b3 are on the same core as phase-B; and c1, c2, and c3 are 

on the same core as phase-C. The phase-A line is connected in series with secondary 

windings a1, b1, and c1.  As shown in the phasor diagram, Figure 2.22(b), the voltages 

across a1, b1, and c1 are 120 deg apart. By appropriately choosing the taps of the three 

windings (a1, b1, and c1), any voltage phasor can be derived from the phasor sum of the 

three voltages. Since both magnitude and phase of the resultant vector can be varied, both 

voltage and active power compensation can be achieved. Similar explanation holds for 

the other two phases. Like in case of TC-PAR, the mechanical tap changer can be 

replaced by electronic switches for dynamic control. 
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Figure 2.22: Schematic and phasor diagram of Sen Transformer 

Sen Transformer is a cost effective and reliable implementation of both LTC and 

PAR functionality with a single transformer, but it has its own limitations. Each one of 

the nine secondary windings has to be rated for the line current, and hence, the magnetic 

rating of the ST has to be at least 2.0 p.u. [69]. The series winding of the ST exchanges 

active and reactive power with the system because of the interaction of the compensating 

voltage and the line current. The exchanged power, compensated by the shunt 

transformer, appears as a load on the system.  A separate shunt compensator, such as 

SVC, is needed to reduce the additional stress on the system [69]. The cost effectiveness 

of ST is adversely affected by the 2.0 p.u. rating and the need for additional shunt 

compensation. Also, like in case of a PAR, the inter-phase coupling can lead to 

challenges with respect to fault identification and isolation. Still, the biggest drawback of 

the ST is the response time. Even with electronically switched taps, the response time is 

limited to T/6, T being the fundamental time period. Till date, there are no reported 

practical implementations of STs in U.S. 
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2.1.3.4 Direct AC-AC Converters  

The concept of direct AC-AC converters was first introduced in [74] but rigorous 

theoretical analysis was developed by Venturini [75]. Direct AC-AC converter, also 

called as Matrix converter, is an alternative to three-phase VSC, obviating the need for 

bulky DC capacitor. As shown in Figure 2.23, it consists of nine switches arranged in 

rows of three such that any output phase can be connected to any of the input phases at 

any instant. The switches are controlled to generate voltage of required magnitude, phase, 

and frequency.  

 

Figure 2.23: Basic schematic of Matrix converter. 

The output voltage is limited to 86.6% of the input voltage by the constraint that the 

peak-to-peak output voltage has to be less than the minimum difference between any two 

input voltages [76]. Methods have been proposed to fully utilize the input voltage, but are 

associated with harmonics in both input and output [77]. One of the major issues of 

Matrix converters is the lack of free-wheeling path. To avoid an open or a short circuit 

during commutation, a 4-step commutation method was proposed [78] and further 

improved by a 2-step commutation method [79]. 

Matrix converters, proposed for power-flow applications, consists of the converter 

connected in series with line through a set of coupling transformers [80]. It was shown 

that for 1 p.u. of power-flow control, the converter rating has to be 2.0 p.u., which is 
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comparable to the BTB based UPFC. Still, the lack of freewheeling path for the fault 

currents is a major reliability constraint for matrix converters, especially for power-flow 

applications. Also, like in case of a PAR or a ST, the inter-phase coupling is undesirable, 

as it can lead to challenges with respect to fault identification and isolation. 

2.1.3.5 Controllable Network Transformer (CNT)  

The concept of controllable network transformer (CNT) was introduced in 2008 [81]. 

As shown in Figure 2.24, it consists of a tap-changing transformer augmented by a direct 

AC-AC converter to provide dynamic vernier control of voltage magnitude and phase 

angle simultaneously. The direct AC-AC converter, also called as a thin AC-AC 

converter (TAAC), consists of two AC switches connected to the two transformer taps. 

The switches can be controlled to connect the line to either of the taps. 

The AC-AC converter in a CNT is implemented on per-phase basis to avoid inter-

phase coupling. The concept of “Dual Virtual Quadrature Sources” [82] is applied to 

generate phase-angle control. Within the operating region, a CNT can provide 

independent control of active and reactive-power flows.  

 

Figure 2.24: Schematic of controllable network transformer (CNT). 

The biggest advantage of a CNT is the fractional power rating of the converter. Also, 

the elimination of DC capacitor implies increased reliability compared to a UPFC. 

Though the concept of CNT looks promising, it still has the problems associated with 
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direct AC-AC converters. One of the major issues of direct AC-AC converters is the lack 

of free-wheeling path. The lack of freewheeling path for the fault currents is a major 

reliability constraint for power-flow applications. Scaling of direct AC/AC converters for 

transmission voltages and reliable operation under complex fault modes is yet to be 

proved in practice.  

2.1.4 Distributed Power-Flow Controllers 

High costs and reliability concerns have restricted the use of FACTS for power-flow 

control. The concept of distributed-FACTS (D-FACTS) is introduced as a way to remove 

these barriers [83]. Two prominent devices under this category are distributed static 

series compensator (DSSC) and distributed series impedance (DSI).  

2.1.4.1 Distributed Static Series Compensator (DSSC) 

DSSC consists of multiple modules that attach to the transmission line, achieving 

power-flow control by varying the line impedance [83]. As shown in Figure 2.25, each 

DSSC module consists of a single-phase inverter, a single-turn transformer, control 

block, and communication system. The whole module is either mechanically clamped or 

suspended from the line and is self-powered.  

The principle of power-flow control of a DSCC is similar to that of an SSSC, but the   

major advantage of the DSSC is the ease of implementation. The single-turn transformer 

of DSSC overcomes the limitation of series-transformer design for fault current. By 

choosing an appropriate turns ratio, the current on the converter side, even during faults, 

can be limited to within the ratings of the semiconductor switches. Also the single-turn 

transformer aids in saving footprint and isolation requirements. The distributed nature 

adds sufficient redundancy, improving the reliability and availability. 
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Figure 2.25: Implementation of distributed static series compensator (DSSC) [83]. 

The DSSC concept has introduced an effective way of implementing distributed 

controllers, but is limited by lack of independent control of active- and reactive-power 

flows. Since the module is powered form the line itself, the controller cannot operate at 

low currents. Also, the DC capacitor in the DSSC has a short life time, requiring frequent 

replacements. Since the installation cost is a significant component of the total system 

cost, frequent maintenance may not be cost effective over a long period [84]. 

2.1.4.2 Distributed Series Impedance (DSI) 

As shown in Figure 2.26, a DSI consists of an inductor, a single-turn transformer and 

an AC capacitor [85]. The AC capacitor has a longer lifetime than a DC capacitor, and 

hence the DSI is more economically viable than the DSSC. The DSI controls power flow 

by adding a series impedance, either inductor or capacitor, in series with the line. The 

electrical characteristics of the DSI are similar to the characteristics of the TCSC. The 

DSI retains the same advantages as that of the DSSC, in terms of fault current ride-

through and reduced isolation requirements. But like the DSSC, the DSI lack independent 

control of active and reactive powers and cannot operate at low currents. 
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Figure 2.26: Schematic of distributed series impedance (DSI) [85]. 

2.2 Control of Multiple Power-flow Controllers 

The number of FACTS devices on the system is increasing steadily over the years and 

is expected to increase at a much faster rate with the reducing prices of high-power 

semiconductor devices. The concept of D-FACTS seems promising and can lead to an 

even faster increase in the number of controllers on the network [83, 86]. Also, with the 

advent of faster semiconductor switches, the response time of the FACTS devices is 

decreasing. With multiple controllers installed on the network, each trying to control the 

system parameters to achieve its own objective, high-frequency interaction between 

different controllers can occur. 

A possible occurrence of interaction between PARs is reported in [87]. It was shown 

that, without a carefully designed controller, even slow-responding PARs can counteract 

each other, leading to instability. With the advent of faster thyristor-based controllers, the 

issue of multiple-controller interactions at high frequencies is observed. A potential high-

frequency interaction between a TCSC and a SVC is reported in [88], and the interaction 

between multiple SVCs is shown in [89]. 

Interactions between multiple controllers can be avoided by coordinated controller 

design, where the control parameters of all the controllers are tuned simultaneously [90]. 

A test case demonstrating the importance of coordinated controller design of multiple 
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TCSCs is shown in [91]. Though coordinated controller design is widely used in various 

system designs, it has its own limitations. The network configuration is not constant, and 

the controller parameters may not be optimal for all possible configurations. More 

significantly, with the advent of the concept of D-FACTS, the number of controllers can 

be large and coordinated controller design can become cumbersome, computationally 

intensive, and non-viable with constantly changing network conditions. 

A simple method for coordinated control of multiple controllers is proposed in [92]. 

The method was demonstrated with multiple DSIs, but the same can be extended to any 

D-FACTS controller. In the proposed strategy, each DSI controller internally corrects 

itself, and controls the rate of injection by looking at the system state at each sampling 

instant. The self-correcting mechanism allows the controllers to adjust to the system 

dynamics and obviates the need for communication between controllers. The control strategy 

is given by Equation   (6). 

      (          )  (      (    ))        ,   (6) 

where       (              ) ,      is the magnitude of injection for the next step,        is 

the present value of injection,      is the reference value for the sampling period,       is 

the present value of the line current, and          
  is the final reference value of the line 

current. Based on       and         
 ,       , either voltage or impedance in case of DSR, is 

calculated at the end of each sampling period. Within each sampling period, the 

controller tries to increase the injection from       to      in a decaying exponential 

manner. The decaying exponential approach damps any high-frequency interactions 

between controllers. Since the controller self-corrects and adjusts the rate of injection at 

each sampling period, the controller reaches the desired injection asymptotically over 

time. 

 The efficacy of the control strategy was demonstrated through simulations [92], but 

the criterion for selecting the control parameters is not discussed. Hence, there is no basis 
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to guarantee absolute stability for all system conditions. Ensuring stable operation of 

multiple controllers is a critical factor for achieving dynamic power-flow control.  

2.3 Conclusions 

The transmission grid, gradually developed over the last 125 years, is experiencing 

increasing stress levels. The electrical load increased by 40% in the last two decades and 

is expected to increase further, driven primarily by the consumption growth in residential 

and commercial sectors. In contrast, the investment in transmission infrastructure has 

only recently started. For an estimated requirement of $298 billion between 2010 and 

2030, only $55 billion dollars has been planned for the period 2011-2015. A large 

number of transmission projects are being delayed because of the right of way, cost 

allocation and other environmental issues. Wind energy has increased dramatically in the 

past decade and is expected to reach 12% of the total energy delivered by 2035. So far, 

most of the wind generation is installed in locations with adequate transmission capacity. 

Further development of wind energy is hampered by the lack of transmission 

infrastructure. The increasing electrical load and limited transmission investments have 

led to increased electric-grid congestion. Congestion data from recent years indicate the 

need for either development of new infrastructure or efficient use of existing resources.  

Considering the uncertainties in the development of transmission infrastructure, it is 

necessary to adopt methods for efficient utilization of the existing grid. Among available 

high-impact technologies, FACTS have reached technological maturity, but are hampered 

by high installation and maintenance costs. Recent advances in semiconductor 

technology and reducing prices of semiconductor switching devices have rekindled the 

interest in FACTS technologies.  

Power-flow controllers, a class of FACTS devices, have been successfully 

implemented in practical application for relieving congested networks. Thyristor-based 

series controllers provide dynamic control, which is not possible with mechanically-
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switched controllers (MSCs). TSSC is a thyristor-based controller, capable of providing 

capacitive compensation. Besides an experimental installation, there are no known 

commercial TSSC installations. TCSC can provide dynamic inductive and capacitive 

compensation. There are a number of TCSC installations worldwide, but usually it is 

installed to provide SSR damping. TC-PAR is proposed to improve the response time of 

a PAR, but there are no utility installations till date. In general, the thyristor-based 

controllers have faster response time than the MSCs, but the lower limit on response time 

is still above one-third cycle. Also, the thyristor-switched devices lack continuous 

control, while the thyristor-controlled devices generate undesirable harmonics. 

Significantly, TCSC, TSSC, and TC-PAR lack independent control of active and reactive 

powers.  

VSC-based controllers have lower response time than the thyristor-based controllers. 

UPFC can provide three independent degrees of control: active power, reactive power, 

and voltage at one bus. But the large converter-rating and high count of low-frequency 

transformers makes the UPFC an expensive proposition. Till date, there are only three 

UPFC installations worldwide. SSSC can provide dynamic inductive and capacitive 

compensation, and with an energy source/sink, it can even provide independent control of 

active and reactive powers. But realizing a separate energy source/sink is not 

economically viable. BTB HVDC is the complete power-flow controller, capable of 

providing four degrees of control: active power, reactive power, and voltages at sending 

and receiving buses. But, as in the case of UPFC, the large converter rating and low-

frequency transformer count has limited the application of BTB HVDC to asynchronous 

systems. Though VSC-based BTB technology is available up to 70 kV, the cost and the 

complexity has restricted widespread use of UPFC, SSSC or BTB HVDC. Also, the 

three-phase implementation can lead to issues with fault identification and isolation. 

The CNT-based solution obviates the need for DC capacitors and reduces the required 

rating of low-frequency transformers compared to a UPFC or a BTB HVDC. Also, the 
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CTN implementation based on a fractionally-rated AC-AC converter provides a low-cost 

solution. But reliable commutation and voltage-scaling issues of direct AC-AC 

converters are yet to be addressed satisfactorily. 

Distributed power-flow controllers, such as DSSC and DSI, are shown to be an 

effective approach for power-flow control. The modular approach enables redundancy, 

increased availability, and flexibility to adapt to the changing network conditions. The 

concept of CEFs is shown to be a cost effective method for implementing the RPS 

mandates. Implementation of either CEFs or distributed power routers will require 

multiple power routers installed in an electrically-close region. It is shown that the 

interactions between multiple controllers can lead to instability.  

A reliable, cost-effective power router for dynamic, independent control of active and 

reactive powers is required. Controller design to ensure stable operation of multiple 

power routers is needed. Achievement of the research objectives will provide a solution 

for optimum utilization of existing transmission grid, which will reduce the need for 

immediate investments in transmission infrastructure and facilitate a cost-effective 

method for implementing the RPS mandates.  
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CHAPTER 3                                                                      

PROPOSED POWER ROUTER AND LOW POWER VALIDATION  

The objective of the proposed research is to develop a low-cost power router (PR), 

capable of independent control of active- and reactive-power flows. A power-routing 

solution with the aforementioned characteristics would enhance electric-grid utilization. 

In this chapter the basic topology, operating principle, and control architecture are 

introduced. A comparison of the proposed power router with existing technologies is 

provided. The simulation and experimental results verifying the PR functionality are 

presented. 

3.1 Topology 

The proposed PR consists of a transformer augmented with a fractionally-rated back-

to-back (FR-BTB) converter. The single-phase, two-level implementation of the power 

router is shown in Figure 3.1. The converter is connected across the taps of an 

autotransformer, typically +/- 10%. A fail-normal switch, realized by two anti-parallel 

thyristors, is connected across the converter.  

  

Figure 3.1: Single-phase, two-level implementation of the proposed power router. 
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The FR-BTB converter consists of a transformer-side converter (TSC) and a line-side 

converter (LSC), connected through a common DC-link capacitor. The TSC is a full-

bridge converter, and the LSC is a half-bridge converter. Hence, the TSC is constructed 

using two IGBT poles while the LSC is achieved with one IGBT pole. To achieve 

uniform current ratings across all the poles, the LSC may also be fitted with two poles 

operating in phase-staggered mode. For retrofit applications, an existing load-tap-

changing transformer can be substituted for the autotransformer as shown in Figure 3.2. 

 

Figure 3.2: Implementation of the proposed system for retrofit applications using LTC transformers. 

The main advantage of the proposed converter compared to traditional FACTS 

solutions is the fractional rating of the BTB converter. The converter rating is only a 

fraction of the total controlled power, as the switches handle a fraction of the transformer 

voltage. Typically, as the system power level increases, the line voltage increases 

proportionately. The FR-BTB configuration has a unique advantage since the converter 

achieves the fractional rating via fractional voltage rather than fractional current. At very 

high voltages (>138 kV), where series operation of IGBTs cannot be avoided, the 

converter can be easily scaled by implementing a multi-level converter. Neutral-point-

clamped (NPC) approach is an industry standard to realize multi-level converter because 

of its advantages in reduced 𝑑𝑣 𝑑𝑡, device voltage rating and lower losses compared to a 

two-level configuration [71]. IGBT-based NPC converter technology is commercially 
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available up to 150 kV showing ability of series device stack to scale [72]. The three-

level NPC implementation of the FR-BTB converter is shown in Figure 3.3.  

 

Figure 3.3: Single-phase, three-level implementation of FR-BTB converter. 

As a series element, the power router could introduce a single point of failure. By 

providing a fail-normal feature, system reliability can be improved. The fail-normal 

feature is realized using an anti-parallel thyristor connected across the FR-BTB converter, 

as shown in Figure 3.1. For three-phase applications, three single-phase converters are 

required. The single-phase implementation avoids phase interactions, which can lead to 

problems with fault identification and fault isolation [93]. 

3.2 The Principle of Power-flow Control  

In an elementary arrangement of two buses connected through a transmission line, the 

power flow in the line depends on the line impedance      , the sending-end voltage   , 

the receiving-end voltage   , and the phase angle between two buses  . Active and 

reactive power in the line can be controlled through series compensation [56]. In the 

proposed power router, the FR-BTB converter injects a series voltage       to provide the 

requisite series compensation. As shown in Figure 3.4,       adds to    to generate an 

effective sending-end bus voltage     . By controlling      ,      can be controlled in 

magnitude and phase, and thereby active and reactive power in the line can be controlled.   
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Figure 3.4: Principle of power-flow control of the proposed power router. 

The equations for active power P, sending-end reactive power Qs, and receiving-end 

reactive power Qr with the proposed power router are given by Equations (7), (8) and (9), 

respectively.  
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controlled in magnitude and phase, thereby providing four-quadrant power-flow control. 
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common- and differential-mode currents in a two-level FR-BTB converter and a three-

level FR-BTB converter are shown in Figure 3.5 and Figure 3.6, respectively. The 

common-mode current       is unique to the proposed system and is same as the line 

current      . The common-mode voltage       is the series compensation provided by 

the converter, and it controls the power-flow in the line. The differential-mode current       shuffles energy between the DC capacitor and the system, through the TSC.  

 

Figure 3.5: Common- and differential-mode currents in a two-level FR-BTB converter.  

 

Figure 3.6: Common- and differential-mode currents in a three-level FR-BTB converter. 

In a two-level FR-BTB converter,       is shared equally between the two TSC 

poles, and only one half of it flows through the capacitor at any time. In a three-level 

converter,       completely bypasses the TSC resulting in lower converter loss 

compared with the two-level configuration. Significantly, the transformer in a two-level 

Icomm/Iline

Idiff

TSC LSC

{ {

1

2

3

4

5

6

commV

sV

diffV
lineX

diffX

TSC LSC

{ {

Icomm/Iline

Idiff

lineX



48 
 

configuration has to carry       and      , while it carries only       in a three-level 

configuration. Hence, the transformer in a three-level configuration will require smaller 

rating than the transformer in a two-level configuration. Except for the       path, there 

is no major difference between the two configurations, and further analysis will use the 

two-level configuration. 

At any time, the 𝑣     generated by the converter is independent of the status of 

TSC switches. As shown in Figure 3.7, 𝑣     depends only on the status of the LSC 

switches and is proportional to either the sum or the difference of the converter input 

voltage 𝑣  and the DC-link voltage 𝑣  . Therefore, 𝑣     can be independently 

controlled by the LSC to generate the requisite line current. Similarly, 𝑣     is 

independently controlled by the TSC to generate      . The current       is controlled to 

maintain the DC-link voltage and, if required, to provide shunt-VAR support. 

 

Figure 3.7: Common-mode voltage for different switching combinations of the FR-BTB converter.  
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𝑣  and 𝑣  , the maximum (𝑣   ) and the minimum common-mode voltage (𝑣   ) 

generated by the LSC are given by Equation (10) and Equation (11) respectively. 

 𝑣    𝑣  𝑣                    𝑣  𝑣                                   (10) 

 𝑣    𝑣  𝑣                    𝑣  𝑣                                   (11)  

where       is the differential-mode impedance. As shown in Figure 3.8, any voltage 

waveform that remains within the envelope of 𝑣    and 𝑣    can be synthesized by 

switching between the two extremes. The fundamental voltage 𝑣       that the LSC can 

synthesize is given by Equation (12). 

 𝑣                  (             ) , (12) 

such that √(      )          , where       is the peak of 𝑣 .   ,   , and   are the 

reactive-power coefficient, active-power coefficient, and phase angle of the LSC-

reference voltage, respectively. 

 

Figure 3.8: Synthesis of FR-BTB converter voltage. 
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Figure 3.9: Series-voltage-compensation range of the proposed power router. 

Consider the 138 kV two-bus system shown in Figure 3.10. A 30-mile line, with a 

typical impedance of 0.79 ohms/mile [94], was connected between the two buses. The 

FR-BTB converter was connected to the  +/- 5% taps of the autotransformer at the 

sending end. The realizable power-flow-control range as a function of   is shown in 

Figure 3.11. The PR provides up to +/- 38 MVA of control capability under all operating 

conditions. 

 

Figure 3.10: 138 kV example system with the proposed power router. 
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as   increases. The relationship between   and the amount of independent control of 

receiving-end reactive power is negligible. Though the power router provides a control 

range of +/- 38 MVA, the FR-BTB converter is rated only 6.8 MVA for     , 18 MVA 

for      , and 31 MVA for      . As   increases, the converter reduces its 

fractional-rating advantage, but most of the short to medium lines have      . 

 

Figure 3.11: Control range of the proposed power router as a function of phase-angle difference. 
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(PI) regulator. The PI regulator generates an output voltage reference         
 to minimize 

the error.         
 is then compared with the carrier wave to generate switching pulses for 

the LSC. 

The objective of the differential-mode control is to maintain the voltage     at a 

desired value and control the shunt VARs. The voltage     is extracted with a low-pass 

filter and then compared with the DC-link-voltage reference         
. The voltage error is 

sent to a PI regulator which generates the active component of the differential-current 

reference           
. The reactive component of the differential-current reference           

 is 

set by the desired shunt VARs. As in the common-mode control, the reference voltage is 

compared with a carrier wave to generate appropriate switching pulses for the TSC. 

 

Figure 3.12: Converter-control scheme for the proposed power router. 
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The differential current dynamics are given by Equation (13). The impact of    ( ) 

can be neglected by choosing the PI controller gains to have a time constant greater than             [95]. The current control block then reduces to the form shown in Figure 
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[              ]  [    ( )    ( )    ( )    ( )] [                    ], (13) 

where     ( )                                                          and 

   ( )                                                   .  

 

(a) (b) 

Figure 3.13 (a) Differential-mode equivalent circuit. (b) Differential-mode control scheme. 

The DC-bus dynamics are described by Equation (14), and since they are non-linear, 

the equation is linearized around an operating point of       and is given by Equation (15) 

[96]. Conditions to ensure stability at given operating point can be derived from the 

linearized equation and are given by Equation (16). The PI gains for the DC-voltage 

control are chosen so that the stability constraints are satisfied and also the time constant 

of the control loop is at least five times greater than the time constant of the inner current 

loop to ensure decoupling between the two control loops. 

                               𝑣   𝑑𝑑𝑡 (𝑣  )  (14) 

  𝑣  ( )            (                                    )         ( )  (15) 

                                                                   
(16)  
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The controller design for the common-mode current control is similar to the 

differential-mode current control with       and        replaced by       and      , 

respectively. 

3.6 Simulation Results 

The two-bus 138 kV system, shown in Figure 3.10, was simulated to demonstrate the 

functionality of the proposed power router. The converter parameters used in the 

simulation are shown in Table 3.1. The control parameters, designed using standard 

Bode-plot techniques, are shown in Table 3.2.  

Table 3.1: System parameters  used for FR-BTB converter simulation. 

Parameter Value 

FR-BTB source voltage, Vt  8.0 kV 

DC-link voltage, Vdc   12.5 kV 

DC-link capacitor 1 mF 

Differential inductor, Ldiff 4 mH 

Filter inductor/capacitor, Lf / Cf 1 mH/50 μF 

Phase angle,   2º 

Table 3.2: Control parameters used for converter simulation. 

Parameter Value Parameter Value 

Differential-mode Common-mode 

Vdc (base) 12.5 kV Vconv (base) 4 kV 

Idiff (base) 500 A Iline (base) 800 A 

Kp , Ki (voltage loop) 4 A/V, 10 A/V2 

respectively. 

Kp, Ki (current loop) 0.1 V/A, 0.5 V/A2 

respectively. 

Kp , Ki (current loop) 0.05 V/A, 0.5 V/A2 

respectively. 

  

 

At     , the power flow in the uncompensated line (without PR) was 28 MW. As 

shown in Figure 3.14, the power router can vary the power flow from 66 MW to -10 

MW, thereby providing a control range of +/- 38 MW. The reactive power was held 

constant while the active power was varied, demonstrating independent control. 

Similarly, the reactive power was varied while the active power was constant. As the 

power is varied, the regulation of the DC-link voltage through differential-current control 

is shown in Figure 3.15. The converter input voltage   , the line current      , and the 
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converter injected voltage       are shown in Figure 3.16. The maximum voltage       

that the converter can generate was half of   .  

 

Figure 3.14: Simulation results showing dynamic control of active and reactive powers. 

 

Figure 3.15: Simulation results showing the DC-link voltage and differential current (rms) variation under 
dynamic power-flow control. 

 

Figure 3.16: Simulation results showing the input voltage, output voltage, and line current of the FR-BTB 
converter. 

Figure 3.17 shows the magnitude of the differential and common-mode currents over 

the entire control range for the simulation case. The worst case common-mode current 

0

50

100

0 2 4 6 8
-50

0

50

time (s)

P
o

w
e

r 
(M

W
)

R
e

a
ct

iv
e

 P
o

w
e

r 

(M
V

A
R

)

time (s)

11

12

13

14

0 2 4 6 8
0

50

100

time (s)

D
C

 V
o

lt
a

g
e

 (
k

V
)

D
if

fe
re

n
ti

a
l 

C
u

rr
e

n
t 

(A
)

-1

5

0

5

1

x 10

Vt
Vconv

Iline

time (s)

1000

500

0

-500

-1000

V
o

lt
a

g
e

 (
k

V
)

Li
n

e
 C

u
rr

e
n

t 
(A

)

10

5

0

-5

-10

2.2            2.21          2 .22         2.23          2.24           2.25



56 
 

will be the same as the maximum line current, which occurs when the power router is 

injecting out-of-phase voltage  It has been observed that the differential current is 

maximized when the power router is injecting in-phase voltage to control series VARs. In 

this operating condition the active power exchange between the LSC converter and the 

line is maximal. Hence the differential current, which compensates for the active power 

exchange, is at a maximum for this condition. 

 

 
Figure 3.17: Simulation results showing the (a) active and reactive power; and (b) common and differential 

mode currents at 4 kV series voltage injection. 

A controllability range of +/- 38 MW/MVAR was achieved with the FR-BTB 

converter rated for 6.6 MVA. Since the converter was connected between +/- 5 % taps, 

the FR-BTB converter was rated to handle a peak voltage of 12 kV. Realizing the same 

control range with a standard BTB converter would require a converter that can handle 

peak voltages of 200 kV or low-frequency step-down transformers, increasing the cost of 

implementation. The simulation results demonstrate the capability of the proposed FR-

BTB based power router to independently control active- and reactive-power flows. 

3.7 Comparison of the Proposed PR with UPFC and CNT 

The UPFC [97] and CNT [98] are other converter-based solutions that can provide 

independent control of active and reactive power. In this section, the proposed power 
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router based on FR-BTB converter is compared with UPFC and CNT. The power routers 

are compared in terms of control range, component requirement, cost, implementation, 

and reliability. The configurations of the proposed power router, CNT, and UPFC used 

for comparison are shown in Figure 3.18. For the sake of uniformity, all the three 

controllers were designed to provide 5 % series quadrature-voltage compensation on the 

138 kV system shown in Figure 3.10. Throughout the analysis, the bus voltages were 

held constant, and the phase angle across the uncompensated line was assumed to be 50. 

The assumptions resulted in an initial current and active power of 294 A and 70 MW 

respectively. With 5% quadrature-voltage compensation, the maximum current and the 

active power were 453 A and 107 MW, respectively.  

 

Figure 3.18: Power-router topologies for comparison study. a) Single-phase, three-level FR-BTB converter. 
(b) Single-phase, two-level CNT. (c) Three-phase, three-level UPFC. 
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3.7.1 Semiconductor Requirement 

For the chosen converters, voltage scaling was achieved by series connecting devices 

in each pole, and multiple poles were connected in parallel to achieve the desired current 

rating. Dynex 1700V, 300A IGBT devices were used for this analysis. To provide margin 

of safety for voltage spikes during switching, the peak operating voltage of the 1700 V 

IGBT was limited to 1200 V. To account for derating under relatively high temperature 

operation, a current peak of 220 A was considered. 

To provide 5 % quadrature-voltage compensation, the CNT was connected across +/- 

10 % taps. Thus each IGBT pole has to withstand a peak of 22.5 kV and a peak current of 

640 A. The CNT required 76 of the selected IGBTs per pole, connected in series. In 

addition, the CNT required three poles, operating in parallel, to carry 640 A. The total 

semiconductor VA rating for the CNT was 350 MVA for the three-phase implementation.  

The FR-BTB converter was connected across +/- 5 % taps to provide 5 % quadrature-

voltage compensation. For the chosen configuration each IGBT pole had to withstand a 

peak of 12.5 kV, resulting in 22 devices per pole. Given that the IGBT pole in the FR-

BTB LSC had to withstand a peak of 640 A, three poles were connected in parallel. In 

addition, each pole of the three level converter would require two clamping diodes rated 

to carry the same pole current and block half the DC-link voltage.  The semiconductor 

VA requirement of the LSC was 34 MVA for the IGBTs and 17 MVA for the clamping 

diodes. The differential current depends on the active power exchanged by the LSC with 

the line, which is the average of the product of the series-injected voltage and the line 

current. For the analysis, the peak active power absorbed/delivered by the LSC was 1.1 

MW per phase, and the peak differential current of the TSC devices was 195 A. Hence, 

the TSC in the two-level FR-BTB converter required two poles with a VA requirement of 

23 MVA per phase. The total VA requirement of the three-phase, three-level FR-BTB 

was 168 MVA for IGBTs and 84 MVA for clamping diodes.  
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For the UPFC, a transformation ratio of 5:1 was selected for the shunt transformer 

and a 1:1 transformation ratio was selected for the series transformer. Therefore, the FR-

BTB converter poles were appropriate for the UPFC. However, the number of poles 

varied because the UPFC was implemented using a three-phase converter while the FR-

BTB was implemented using three single-phase converters. The UPFC shunt converter 

required half the number of poles of the FR-BTB TSC. The UPFC series converter 

required the same number of poles as the FR-BTB LSC. The ratings of the three-level 

UPFC implementation were 202 MVA for IGBTs and 101 MVA for diodes.   

3.7.2 Reactive Components 

3.7.2.1 Transformers 

The three-phase CNT requires three auto-transformers, connected either in star or 

delta configuration. The transformer VA rating was twice as that of the converter VA 

rating, which was rated for 5.4 MVA. In the FR-BTB, the transformer rating is the same 

as the TSC rating, which was 3.3 MVA. The UPFC has a shunt transformer and a series 

transformer. The shunt transformer contributes towards the active-power exchange of the 

series converter, as in the case of the FR-BTB TSC. Hence, the shunt transformer rating 

was 3.3 MVA. The series transformer was rated twice as large as the series converter, to 

achieve the same dynamic response as the FR-BTB and the CNT [69]. Since the series 

converter was rated for 5.4 MVA, the series transformer was 10.8 MVA.  

3.7.2.2 Reactors 

In case of a CNT, a third-harmonic voltage of the same magnitude as that of the 

fundamental compensating voltage is generated [98]. In a balanced three-phase system, 

the third-harmonic voltages in each phase cancel each other. But in unbalanced systems, 

a series third-harmonic filter is required to block the resultant third-harmonic current in 

the line [99]. For this analysis, the third-harmonic filter was designed for a 10 % 
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unbalance. The optimum value of the inductor is 10 % of the line impedance for 100 % 

third-harmonic compensation [99]. This analysis required ten percent third-harmonic 

compensation, so the filter inductor was set at one percent of the line impedance. Thus, 

the required filter inductor was 0.6 mH, 0.1 MVAR per phase. 

For the UPFC, the significant reactors are the line reactors connected between the 

transformer and the converter. The UPFC line reactors are usually rated in the range of 

10-15 % of the converter VA rating. Similarly, the differential inductors in the FR-BTB 

are chosen to be 10 % of the TSC rating. 

3.7.2.3 Capacitors 

The CNT configuration has two AC capacitors. One capacitor is connected across the 

taps to isolate the transformer windings from high-frequency ripple currents. The 

required capacitor is a function of the transformer leakage inductance. Assuming a 10% 

leakage inductance, a 5.0 μF capacitor was chosen to absorb the switching-ripple current 

at 2.0 kHz. At 16 kV, the capacitor was 0.5 MVAR per phase. The other AC capacitor in 

the CNT is a part of the third-harmonic series filter. With a 0.6 mH per phase filter 

inductor, the value of the capacitor was 1100 μF, 53 kVAR per phase. 

The significant capacitor in the FR-BTB and the UPFC is the DC-link capacitor. The 

capacitor is chosen to provide energy during the transients and to limit the voltage ripple. 

The metric used for selecting the DC capacitor, for providing energy during transients, is 

called unit capacitance constant (UCC) [100]. It is typically in the range of 3000-6000 

J/MVA for converters exchanging active power with the grid [101]. With a UCC of 4000 

J/MVA, the FR-BTB required a 85 μF capacitor with an energy capacity of 7 kJ. But with 

a 85 μF capacitor, the second-harmonic ripple in the DC-link voltage was 10 kV (76%). 

To limit the ripple to be within +/- 10%, a 650 μF, 54 kJ DC capacitor was chosen for the 

single-phase FR-BTB implementation. In case of a UPFC, the ripple is at sixth harmonic, 
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as all the three phases share the same capacitor. A 255 μF, 18.5 kJ DC capacitor was 

chosen so that the UPFC had the same DC-link ripple as the FR-BTB. 

3.7.3 Reliability 

CNT has the same commutation issues associated with direct AC-AC converters. The 

lack of free-wheeling path in AC-AC converters is a major constraint. Also, scaling to 

high voltages requires series stacking of devices. It is important to ensure static- and 

dynamic-voltage sharing among series-connected AC switches. In principle, an active 

snubber can solve the commutation issues, ensure voltage sharing, and provide the free-

wheeling path [102], but the active snubber is yet to be proved in practical application.  

The FR-BTB and UPFC have BTB converter, which is based on VSC technology. 

VSC-based BTB technology is commercially available at 75 kV, and the technology for 

series stacking of IGBTs is well established [72]. The major reliability constraint in the 

FR-BTB and UPFC is the DC-link capacitor. Electrolytic capacitors are preferred for 

DC-link applications, as they are economical than film capacitors. But electrolytic 

capacitors have a limited life time of only 2000-10000 hours. Film capacitors, with a 

lifetime of 100,000 hours, may be used for DC-link applications at an additional cost.  

3.7.4 Isolation Requirements 

 In case of the FR-BTB and CNT, the converter is connected across the taps of a 

transformer. The converter floating at line voltage requires sufficient isolation from 

ground level. Like in case of TCSC [40], a raised platform can be provided for isolation, 

but at an additional cost. Providing a raised platform for the FR-BTB can be more 

expensive than a CNT because of the bulky DC-link capacitor in FR-BTB. In case of 

UPFC, the shunt and the series transformers provide the required isolation. Hence, the 

converter and the DC capacitors can be installed at the ground level. Still, the series 

transformer, floating at line voltage, has to be provided with sufficient isolation. 
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3.7.5 Cost Assumptions 

For the cost analysis, the costs of various components considered are shown in Table 

3.3. In case of the CNT and the FR-BTB, the costs involved in providing elevated 

structure for ground isolation were not considered. 

Table 3.3: Costs of various components used for comparative analysis of different power routers. 

Parameter Value Remarks 

Transformers  10 $/kVAR [103]  

AC reactors    20 $/kVAR [104]  

AC capacitors 10 $/kVAR [105]  

DC electrolytic capacitors 0.075 $/J [106]  

Film capacitors for DC storage 0.35 $/J [106]  

1700V IGBT device   0.75 $/A / 440 $/MVA Retail cost is 1.0 $/A 

1700V Diode  0.6 $/A /350 $/MVA  Retail cost is 0.75 $/A 

3.7.6 Remarks 

The comparison of the three power-routing technologies is shown in Table 3.4. The 

technologies are compared for providing 8.0 kV per phase series compensation on a 138 

kV system. Unlike the CNT and UPFC, the FR-BTB three-level configuration is more 

economical than the two-level configuration. Comparing the three-level configurations, 

the FR-BTB and UPFC required half of the semiconductor requirement for the CNT. The 

low-frequency transformer required for FR-BTB was only a fraction of the requirement 

for CNT and UPFC. Though implementing the DC link with film capacitors increases the 

cost of the FR-BTB, it is still economical compared to the UPFC or the CNT. Thus, the 

proposed power router based on three-level FR-BTB offers a low-cost power-routing 

solution compared to a CNT or a UPFC.  
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Table 3.4: Comparison of power-router technologies.  

Features CNT UPFC FR-BTB 

 Cost 
(k$) 

 Cost 
(k$) 

 Cost 
(k$) 

Line voltage  138 kV  138 kV  138 kV  
Series 
compensation 

 8 kV  8 kV  8 kV  

Converter peak 
voltage rating 

 22.5 kV  12.5 kV  12.5 kV  

Converter peak 
current rating 

 650 A  650 A  650 A  

Semiconductor VA 
rating-3level NPC 
converter 

IGBT  350 154 202 89 168 76 
Diode - - 101 36 84 

30 

Reactors (MVAR)  0.3 9 0.54 11 0.3 6.6 
Capacitors AC (MVAR) 1.5 15 - - - - 

DC-link 
(μF / kJ) 

- - 220/21.5 1.75 1950/112 8.5 

DC-link with 
film capacitors 
(μF / kJ) 

- - 220/21.5 7.5 1950/112 39 

Transformers 
(MVA) 

Shunt 17.1 171 5.4 54 3.3 33 
Series   10.8 108   

Total cost Three-level  349  298  154 
Three-level 
with only film 
caps  

 349  305  184 

Isolation Converter Floating 
 

Ground level 
 

Floating 
 

DC bus - Ground level 
 

Floating 

 Transformer - Floating series 
transformer 

- 

Fault handling  Fail-normal switch Fail-normal switch Fail-normal 
switch 

Reliability 
limitation 

 Switch commutation, 
free-wheeling path 
and series operation 
of  AC switches. 

DC capacitor. DC capacitor. 
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3.8 Low Power Implementation 

The control algorithm and functionality of the proposed power router was verified 

through a 50 KVA prototype. 

3.8.1 Experimental Setup 

To demonstrate the functionality of the proposed PR, the two-bus test-bed shown in 

Figure 3.19 was fabricated. It consists of a single-phase 240 V source and two sets of 240 

V/1320V transformers. The inductor connecting the two transformers was replicating the 

line inductance. The two transformers, with taps at +/- 120 V, were representing the 

buses in a typical two-bus system. The FR-BTB converter was connected to one of the 

transformer sets between the +/- 120 V taps. The components used for the setup are 

shown in Table 3.5. The control algorithm, implemented on TI TMS320F2812 DSP, 

consists of grid synchronization, synchronous-frame control, three-level pulse-width-

modulation (PWM) pulse generation, and dead-time control. Separate control boards 

were developed for implementing signal conditioning and protection logics. The 

complete control scheme and the developed control boards are shown in Figure 3.20.  

 

Figure 3.19: Schematic and implementation of the 50 kVA two-bus experimental system. 
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Table 3.5: Components for the 50 kVA power-router prototype. 

Parameter Value 

Bus1,Bus2 240V/1200V, 100 kVA transformers 

IGBT 1700V, 200A Dynex 

Diodes 1700V, 60A Semikron 

Line inductor 2 mH, 60A 

Differential inductor 300 mH, 20A 

DC capacitor 300 μF , 600V 

 

 

Figure 3.20: Control system implementation for the 50 kVA experimental prototype. 

Table 3.6: PR-controller parameters for the 50 kVA experimental prototype. 

Parameter Value 

Differential-mode 

Vdc (base) 300V 

Idiff (base) 20A 

Kp,ki (DC-voltage loop) 0.5 A/V, 2 A/V2 respectively 

Kp,ki (current loop) 0.05 V/A,0.5 V/A2 respectively 

Common-mode 

Vconv (base) 120V 

Iline (base) 50A 

Kp, ki 0.24 V/A, 1.2 V/A2 respectively 
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3.8.2 Results 

Without the FR-BTB converter, the two buses have the same voltage, and hence no 

power flowed across the line. With the proposed PR, the effective voltage of Bus 1 was 

controlled in magnitude or phase or both, to induce power flow across the line. Four-

quadrant-control results at 50 kVA are shown in Figure 3.21. The converter voltage       , the voltage impressed by the LSC on the line inductor, induce a 35 A line current        at a bus voltage of 1320 V. The TSC is controlling the DC capacitor voltage at 400 

V. The common-mode current and the differential current in the negative-real-power 

mode are shown in Figure 3.22. In the experiment circuit, the sending and the receiving 

end voltages are sourced from the same source, and hence the differential current is only 

supplying the losses in the converter and is therefore of a very low value. 

 

Figure 3.21: 50 kVA experiment results. (a) Positive power (b) Negative power (c) Lagging VAR (d) 
Leading VAR. 

Vdc 200V/div Vconv: 200V/div I_line:  50A/div V_Bus: 2kV/div

4.0ms/div4.0ms/div

4.0ms/div 4.0ms/div

(a) (b)

(c) (d)
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Figure 3.22: 50 kVA experiment results showing the common- and differential-mode currents in real power 

mode. 

The dynamic-control results are shown in Figure 3.23. The current reference is varied 

to ramp the active power from 0 kW to 46 kW and then to -46 kW to demonstrate the 

dynamic controllability of active power. The corresponding changes in DC-link voltage 

and line current are shown in Figure 3.23(a). The active power calculated from voltage 

and current is shown in Figure 3.23(b). A controllability range of +/- 46 MW/MVAR was 

achieved with the 10 kVA converter. The advantage of the proposed PR in terms of 

fractional converter rating, leading to lower cost and reduced complexity, was 

experimentally demonstrated. 

 

Figure 3.23: 50 kVA experiment results for dynamic control. (a) Vdc, V_bus, and I_line. (b) Active power. 

3.9 Small-signal and Steady-state Models 

Simplified models of the converter are necessary for system studies. The time-domain 

model for the proposed power router are derived using similar basic principles used in 
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UPFC model derivation [107]. The small-signal model is then derived from the time-

domain model by averaging the switching dynamics. But it will retain the dynamics of 

the DC-link capacitor, which are necessary to understand the transient operating limits of 

the proposed PR. The small-signal model is useful for transient-stability studies and for 

the PR-controller design. The steady-state model will be derived by averaging the 

switching frequency dynamics and the DC-voltage dynamics. The steady-state model is 

useful for system-level studies such as load-flow analysis, and identification of optimum 

location and rating of the power router. 

3.9.1 Time-Domain Model 

Consider the implementation of the proposed power router shown in Figure 3.24. The 

compensating voltage injected by the power router for controlling the line current is 

given by Equation (17), and the corresponding line current dynamics are given by 

Equation (18).  

 𝑣        𝑣  𝑣            𝑣  𝑣              (17) 

 

 
𝑣  𝑣  𝑣     (            )  𝑑(     )𝑑𝑡                  (18) 

Where         if sw5 is on,         
 
 if only sw6 is on,        is complimentary 

of      , 𝑣     is common-mode voltage injected by the power router, 𝑣  is the 

sending-end voltage, 𝑣 2v  is the receiving-end voltage,       is the line current,       is 

the line inductance,       is the differential inductance, and       is the line resistance. 

The differential-mode voltage generated by the power router TSC is given by the 

Equation (19), and the corresponding differential-current dynamics are given by Equation 

(20). The DC-capacitor dynamics are given by Equation (21).  

 

 
𝑣     𝑣         𝑣          , (19) 
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    𝑣  𝑣             𝑑(     )𝑑𝑡                   (20) 

 

 
     (   )         (            )         (            )    (21) 

where          if sw1 and sw4 are on,         if sw2 and sw3 are on,       
 
is the 

differential current, 𝑣  1v
 
is the sending-end voltage,

 
𝑣     is the differential voltage, 𝑣   

is the DC-link voltage,        
is the differential-mode resistance,       is the differential-

mode inductance,     
is the DC-link capacitor, and   is the tap ratio. 

 

Figure 3.24: Schematic of proposed PR for deriving time-domain models. 

3.9.2 Small-Signal Model 

The small-signal model is obtained by averaging the switching-frequency dynamics. 

By replacing the switching functions (                    and       ) in the time-domain 

model by their average models, the averaged switching functions are derived. The 

common-mode averaged switching function is given by Equation (22) and the 

differential-mode averaged switching function is given by Equation (23). 

                              ( 𝑡       )                                ( 𝑡       )    (22) 

                              ( 𝑡       ) , (23) 
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                             ( 𝑡       ) , 

where        is the magnitude of the reference for the common-mode voltage, 

        is the reference function magnitude for generating differential-mode voltage, 

       is the phase of the reference for the common-mode voltage,  

and       is the phase of the reference for the differential-mode voltage.  

The averaged switching functions are substituted in Equation (17) and (18) to derive 

the common- and differential-mode voltages of the small-signal model. The common-

mode voltage of the small-signal model is given by Equation (24) and the differential-

mode voltage given by Equation (25). 

  

 
𝑣                   ( 𝑡       )         (24) 

 

 
𝑣                   ( 𝑡       )         (25) 

where 𝑣         is the common-mode voltage of the power router small-signal model, 

and 𝑣         is differential-mode voltage of the power router small-signal model 

injected by the power router. Similarly, the capacitor dynamics of the small-signal model, 

given by Equation (26), are obtained by substituting the averaged switching functions in 

Equation (21). The capacitor dynamics can also be obtained in terms of common-mode 

power and differential-mode power and are given by Equation (27). 

 

 
   𝑑(       )𝑑𝑡                      ( 𝑡       )   

                      ( 𝑡       ) , 

(26) 

 

 
   𝑑(       )𝑑𝑡                   𝑣     (27) 

where          ∫    𝑣                  ,           ∫𝑣                  , 
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        is the DC-link voltage of the small-signal model,           is the common-mode current of the small-signal model,  

and           is the differential-mode current of the small-signal model. 

For network analysis, the small-signal model can be represented by series- and shunt- 

controlled voltage sources, as shown in Figure 3.25. The equations governing the 

controlled voltage sources are given by Equations (24) - (27).
 

 

Figure 3.25: Small-signal model of the proposed power router. 

The small-signal model is verified by comparing the results with the time-domain 

model. The results for the time-domain model are obtained by simulating the system in 

MATLAB/SIMULINK©, with the converter represented by ideal switches. For 

simulating the small-signal model, the converter is represented by the Equations (24) -

(27). The line current and the differential currents, from time-domain and small-signal 

models, are compared in Figure 3.26. The switching-frequency ripple is not present in the 

small-signal model, as it is averaged. The dynamics of the DC-link voltage from time-

domain and small signal models are compared in Figure 3.27. There is no second-

harmonic ripple in the small-signal model, as it is averaged. 
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Figure 3.26: Comparison of line current from time-domain and small-signal models. 

 

Figure 3.27: Comparison of DC-link voltage from time-domain and small-signal models. 

3.9.3 Frequency-Domain Model 

In the frequency-domain model, the power router is modeled as active and reactive 

power injection at either bus, as shown in Figure 3.28. In this model, the dynamics of the 

DC-link voltage are ignored. The active- and reactive-power equations of the model are 

given by Equations (28)-(30).  
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where                 (           (   )) ,                 (               (       )),  

      √(          )  ,         (                        ) , 

      is the active power injection at sending-end bus,     is the reactive power injection at sending-end bus,         is the reactive power injection at receiving-end bus, 

    is the sending-end voltage,     is the receiving-end voltage,    is the phase angle between the two buses,        is the magnitude of PR injected series voltage,    is the phase of PR injected series voltage,        is the line impedance,        is the magnitude of power router differential voltage,        is the phase of power router differential voltage,        is the differential impedance, 

and   is the tap ratio. 

 

Figure 3.28: Frequency-domain model. 
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3.10 Conclusion 

A power router for dynamic control of active/reactive power in a meshed network is 

presented. The controller structure, principle of operation, and control range are 

presented. The power-flow-control ability is demonstrated through simulation results. It 

was shown that the proposed PR can achieve power flow control at a fractional cost 

compared to the classical UPFC. A 50 kVA lab prototype is built, and results at 50 kW 

demonstrate the functionality and advantages of the proposed power router. The 

fractional rating of the converter obtained through its fractional voltage rating gives the 

proposed converter a unique advantage in scaling for transmission level voltages, 

providing a simplified, cost-effective method for power flow control. 
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CHAPTER 4                                                                      

FAULT MANAGEMENT 

 

Ensuring reliable operation of the proposed power router, which is designed for utility 

applications, is essential. In the proposed power router, unlike the UPFC or the SSSC, the 

semiconductor devices are directly connected in series with the line. The direct series 

connection of semiconductor devices exposes them to fault currents. The fault currents  

can be of the order of 20-40 kA for 10 cycles, which is the typical time period before the 

line protection acts. Available fast turn-off semiconductor devices, such as IGBTs, can 

handle ten times the rated current for 10 µs. Thus, a 1200 IGBT, the largest available, can 

handle a peak fault current of 12 kA for only 10 µs, which is not a sufficient time for the 

protection device to operate. To avoid converter damage, it is necessary to isolate the 

converter from the fault current. Similarly, the basic grid operation needs to be restored 

by isolating the grid from the converter faults.  

In this section the converter response for various faults and the system parameters 

that can be used for fault detection are presented through simulation studies. A three-tier 

protection scheme to avoid single point-of-failure is proposed. The detailed design and 

operation of the protection mechanism is also presented.  

4.1 Protection Philosophy 

The proposed power router consists of a fail-normal switch that can provide a bypass 

path for the line current. The bypass path will isolate the FR-BTB converter from the grid 

faults and will also isolate the grid from any internal faults in the converter. The 

reliability of a converter based on active devices will typically be lower than the electric 

grid, which is predominantly a passive structure. Hence, by restoring the grid to its 

passive mode when the converter sees internal faults, the fail-normal switch assures that 
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the system reliability is not impacted even when a lower reliability converter is used to 

impact the system performance. This approach strikes a good balance between system 

reliability and performance at lowest cost. In addition, by isolating the converter from 

grid faults, the fail-normal switch will protect the converter elements from being stressed 

with sustained fault currents.  

4.2 Protection System Description 

The detailed schematic of the proposed power router, with the protection elements 

highlighted in bold, is shown in Figure 4.1. The two main protection elements are the 

fail-normal switch and the DC-link voltage limiting chopper. The DC-link can accrue 

additional energy during the flow of line fault currents. The DC-limiting chopper 

dissipates the excess energy in the DC-link capacitor and limits the voltage across the 

devices. Also the chopper is used to discharge the DC-link capacitors during the 

shutdown.  

The fail-normal switch is connected in shunt with the power converter and it consists 

of an antiparallel SCR and a passive switch. In case of a fault either in the system or in 

the converter, the fail-normal switch provides the bypass path for the line current, thereby 

isolating the converter from the network. The SCR will provide the fast response time in 

the range of µs and will carry line/fault current for the initial few cycles. The passive 

switch, which has a response time of few cycles, will provide the bypass path on a steady 

state basis. The impedance of the passive switch is substantially less than that of the SCR, 

and hence will provide a low-loss path for continuous operation. Effectively, the 

combination of SCR and passive switch will provide fast dynamic response, low-loss 

operation capability, and redundancy to assure safe bypass operation. The filter capacitor    will also act as a SCR snubber capacitor to limit the  𝑑𝑣 𝑑𝑡  of the SCR. The filter 

capacitor discharges into the SCR when the SCR is turned on. The inductor      
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connected in series with    will limit the SCR 𝑑  𝑑𝑡. The combination of    and      

can resonate and hence a resistor      is connected in series to provide damping.  

 

Figure 4.1: FR-BTB converter with protection elements highlighted. 

4.3 Protection Scheme 

The protection scheme for the proposed power router is shown in Figure 4.2. It 

consists of three-tier monitoring and protection systems. The three systems interact with 

each other but are also designed to act independently. The reason for multiple and 

independent protection schemes is to avoid single point-of-failure. The three schemes 

have some common monitoring variables, but are prioritized by choosing increasingly 

higher limits for the protection scheme to act.  

The first one is the main controller which can be implemented on a FPGA or the 

DSP.  The main controller monitors the bus voltage, line current, the DC-bus voltage, the 

filter inductor current and the filter capacitor current. On detection of fault, which is 

indicated by abnormal current or voltage, the main controller disables the converter 

switches and also sends a command to the SCR gate drive. In case of an overvoltage on 
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the DC-link, the main controller will activate the limiting chopper. The main controller 

also monitors the SCR current to evaluate the SCR status. If the SCR is turned on at any 

time, except the initial startup period, the main controller turns the converter pulses off. 

 

Figure 4.2: Power-router protection scheme 

The second controller in the three-tier protection system is the peripheral controller. It 

is an analog based system which is powered by the voltage across the taps. The peripheral 

protection system is designed to act in case of failure of the main controller to detect a 

fault. The peripheral protection system monitors the filter inductor current and on 

detection of fault issues a command to turn on the SCR.  The set point on the filter 

current fault detection is chosen to be at a higher value than the main controller to accord 

a higher priority to the master controller. 

The third element in the three-tier protection system is the self-monitoring circuit for 

the active devices. The IGBTs are provided with a fault monitoring circuit, which would 

turn off the IGBT on detection of higher than nominal IGBT current. Similarly, the SCR 

is provided a self-triggering circuit, which would turn on the SCR on detection of 

abnormally higher voltages across the SCR. The third tier protection system is 

independent of the other two systems and have higher set points compared to the main 

and the peripheral protection systems.     
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The intercommunication between each of the protection system is based on active low 

logic, which will make the protection unit assume a fault in the case of interconnection 

failure. The three-tier protection system will avoid a single point-of-failure of the 

protection scheme by providing a backup for failure of each critical element in the 

protection scheme. The critical elements and the protection logic in case of element 

failure are shown in Table 4.1. As it is not possible to design for multiple cascaded 

failures, the table shows the backup plans considering one failure at a time. The 

protection logic to be implemented in the three-tier protection scheme is shown in Figure 

4.3. The protection logic is chosen in such a way that any catastrophic failure will not 

result from any one failure at a time.  

Table 4.1: Backup protection plans for failure of protection and sensing elements. 

Failure Backup action 

Sensor for Line current/ Bus voltage/ 
filter voltage 

Peripheral controller will continue to monitor line faults while 
the algorithm on the main controller can detect feedback failure 
and shutdown the system. 

Filter inductor current sensor Main controller can continue monitoring faults 

Power supply for main controller The peripheral controller turns on the FN switch to enter by-
pass mode. 

Power supply for the peripheral 
controller 

The SCR gate drive turns on the FN switch to enter by-pass 
mode. 

Power supply for IGBT gate drives Main controller detects a converter fault and enters by-pass 
mode. 

Control software delay/failure Peripheral control will provide protection against faults. 

SCR command from the main controller 
to the peripheral controller 

Peripheral controller will detect fault. 

SCR command from peripheral 
controller to SCR gate drive 

SCR gate drive will act to enter by-pass mode. 

Feedback failure from IGBT gate drives Main controller assumes a fault and enters by-pass mode. 

SCR gate drive SCR self-triggering circuit will continue to monitoring faults 
while the main controller detects the gate drive failure. 
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Figure 4.3: Fault protection logic to avoid catastrophic failure. 
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4.4 Fail-Normal Switch Design 

The fail-normal switch is a critical element in the power-router protection scheme, 

requiring robust design. The selection of individual components of the fail-normal switch 

is described below. 

4.4.1 SCR Selection 

SCRs are capable of handling large fault currents. The popular application of SCRs 

for handling large fault currents is in a series-type, solid-state fault-current limiter (SS-

FCL) [108]. In an SS-FCL, the thyristors are used to carry peak fault currents up to 40 kA 

for 8 ms [109, 110]. The typical response time, from the time of fault initiation to the 

time of device activation, is in the range of 40-60 µs [109, 110]. SCR was also used as 

bypass switch in TCSC and TPSC applications [111].  

The SCR selection is primarily determined by the current and the voltage rating. In 

the fail-normal switch application, the SCR carries the fault current for a few cycles and 

hence the SCR selection can be based on transient current rating. The SCR should be 

electrically, thermally, and mechanically capable of handling the peak fault current for a 

duration determined by the turn-on delay time of the mechanical switch. The SCR should 

also be capable of handling the peak voltage across the converter filter capacitor, which 

also acts as a SCR snubber capacitor. 

4.4.1.1 Filter/ Snubber Capacitor Selection 

The filter capacitor which is connected in shunt with the SCR also acts as a snubber 

capacitor for the SCR. As a snuber capacitor,    limits the 𝑑𝑣 𝑑𝑡 stress on the SCR. As 

will be explained in the line-ground fault analysis, the fault current initially flows through    leading to increase in voltage across it. The minimum value of    is limited by the 

maximum allowable voltage across    as given by Equation (31). 
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                ( 𝑡)   (                   )        (31) 

where   𝑡                      ,         is the peak bus voltage,      is the fault line impedance,        is the maximum allowed voltage across   ,              is the peak voltage injected by the FR-BTB converter,          is the fault current limit at which the SCR is triggered to turn on. 

A small capacitor value will result in a higher voltage rating for both the capacitor 

and the SCR, while a large value will result in large current in the SCR. When the SCR is 

turned on,    is shorted through the SCR resulting in a large current. The selection 

criterion for the capacitor is given by Equation (32a). 

                 𝑡      (32a) 

                     (            )   (32b) 

where         is the peak fault current expected,  𝑡 is the time between the fault incidence and fail-normal switch turn on,       is the SCR 𝑑  𝑑𝑡 limiting inductor,         is the peak SCR current allowed,       is the voltage rise allowed on   , and          is the nominal voltage across   . 

4.4.1.2 SCR Inductor Selection 

The function of the SCR inductor is to limit the 𝑑  𝑑𝑡 across the SCR. Hence, the 

minimum value of      is determined by the maximum 𝑑  𝑑𝑡 capability of the SCR as 

given by Equation (33). 
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                𝑑 𝑑𝑡       (33) 

where        is the maximum allowed voltage across   , 

and 
         is the maximum 𝑑  𝑑𝑡 stress on the SCR. The maximum value of the SCR 

inductor is determined by its impact on the converter filter performance. The SCR 

inductor, which is in series with the filter capacitor, can impact the filter capability to 

absorb high frequency currents. Hence, by choosing      <<      , the impact of      on 

filter performance can be minimized. 

4.4.1.3  SCR Resistor Selection 

The function of the SCR resistor is to damp oscillations caused by the      and the    

when the SCR is turned on. The minimum value of      is determined by the value of      and    as shown in Equation (34). 

        √(        )  (34) 

The value of      is limited on the higher side by the steady state losses in resistor 

because of the capacitor current. The losses in      are given by  

                                (       √      )      
(35) 

where           is the loss in the SCR resistor,           is the maximum converter injection,    is the fundamental frequency in radians,     is the DC bus voltage,    is the filter inductor, and     is the switching frequency in Hz. 
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4.4.2 SCR Self-Triggering Circuit Design 

In the protection scheme it was stated that the self-triggering circuit for the SCR is the 

final mode of protection when the main controller and the peripheral protection system 

fails. Hence, to ensure robust operation of the self-triggering scheme it is designed to 

have the following features: 

 Self-powered, thereby, avoiding dependence on external power sources. 

 Self-triggered at a preset value. 

 Minimal components and simplistic design to reduce probability of failure.  

A number of self-powered and self-triggered gate drives are available, with each one 

specific to the application [112]. Of particular significance is the SCR gate drive scheme 

suggested in [113, 114], which is self-powered, uses minimal number of components, but 

is triggered externally. The gate drive scheme has been modified to implement the self-

triggering feature. The proposed gate drive scheme for each SCR in the fail-normal 

switch is shown in Figure 4.4. It consists of a self-powered block and self-triggered 

block.  

 

Figure 4.4: SCR self-powered and self-triggering gate drive. 
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value to detect a fault and trigger the SCR. The selection criterion for various 

components of the proposed SCR self-powered and self-triggering gate drive is given 

below: 

4.4.2.1 Capacitor Divider  

The capacitor divider consists of two capacitors,    and   , with voltage sharing 

resistors,    and   , connected across the capacitors. The value of    and    are selected 

to meet the following design criterion: 

 The voltage across    is always greater than the control voltage (5 V/12 V) by a 

sufficient margin (2 V) for all voltages greater than half the set point voltage at 

which the self-triggering circuit is set to turn the SCR on. 

 The effective capacitance of    and     is much lower than      to ensure the most 

of the fault current flows through     and not    and    . 

The value of    and    are chosen in such a way that the current in the resistors is at 

least five times the leakage current in the capacitors to ensure static voltage sharing 

between both the capacitors. The leakage current of the capacitors will be different and 

for choosing the    and   , the higher of the two leakage currents should be used. The 

criterion for selecting   ,    ,    and    are given below. 

                             
(36) 

              
(37) 

           
(38) 

                       
(39) 

where    is the lower capacitor in the voltage divider,    is the higher capacitor in the voltage divider,    is the voltage sharing resistor across    , 
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   is the voltage sharing resistor across    ,          is the voltage at which the SCR is triggered on by the gate drive, and           , is the leakage current of the    and   , whichever is higher. 

4.4.2.2 Voltage Regulator 

The function of the voltage regulator is to maintain a steady control voltage to the 

self-triggering circuits, irrespective of load and supply fluctuations. A linear regulator is 

better suited to this application because of the relatively lower load (10 mA), less noise 

and higher reliability compared to switching regulators. The power rating of the linear 

regulator can be calculated by Equation (40). 

                                   
(40) 

where           is the power loss in the linear voltage regulator,          is the voltage at which the SCR is triggered on by the gate drive, and              , is the current drawn by the electronic load in the self-triggering circuit with 

the gate off. The linear regulator is protected from high voltage transients by a voltage 

clamp at its input. The voltage clamp is typically implemented with a zener regulator. 

4.4.2.3  Energy Storage Capacitor 

The function of the energy storage capacitor is to deliver the required transient energy 

at the time of SCR gate turn on without resulting in significant drop in gate voltage. The 

linear regulator has a time delay in responding to the load fluctuations and hence the 

energy storage on the regulator output is used to absorb the load fluctuations. The value 

of capacitor     to supply gate energy at turn on with the gate voltage dropping down by 

not more than 1 V is given by Equation (41). 

                   
(41) 

where     is the energy storage capacitor, 
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   is the gate resistor,    is the gate driving voltage, and        is the SCR turn-on pulse width. The value of    is typically chosen to deliver gate 

current, which is more than five times the minimum gate trigger current of the SCR. 

4.4.2.4 Self-Triggering Gate Drive 

The function of self-triggering gate drive is to turn on the SCR when the SCR voltage 

exceeds a predetermined value.  It consists of a comparator and a buffer. The comparator 

compares the SCR voltage with a reference value to generate on/off signal. The 

comparator output is then fed to a buffer, which is rated to drive the SCR gate.   

Since the proposed SCR driving scheme is a self-powered circuit, it is necessary to 

optimize gating energy. Gating energy depends on the pulse width, required gate voltage 

and the gate current. While the gate voltage and gate current are available directly from 

the data sheet, the gate pulse width can be calculated from the SCR turn-on delay time 

and rise time. Once the SCR current rises above the latching current, the SCR will stay on 

without the gate supply. 

4.4.3 Experimental Evaluation of Self-Triggering SCR Gate Drive 

The functionality of the proposed self-powered and self-triggering gate drive is 

experimentally evaluated. The schematic of the experimental setup to test the proposed 

gate drive is shown in Figure 4.5 (a) and the picture of the experimental setup is shown in 

Figure 4.5 (b). The experiment setup consists of 1 kV 1-ph source, 1700 V 400A SCR 

and the proposed gate drive. The gate drive is designed to power form the SCR blocking 

voltage and trigger the SCR when the voltage exceeds 600 V. The current in the SCR at 

turn on is limited by a load resistor of 100 Ω. 
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(a) (b) 

Figure 4.5: (a) SCR self-triggering circuit test schematic. (b) Picture of SCR self-triggering experimental 
setup. 

  The experimental results of the SCR voltage, current are shown in Figure 4.6. The 

results show that the SCR self-triggering circuit turns the SCR on when the voltage 

exceeds 600 V as designed. The self-triggering and self-powered circuit behavior at gate 

turn on is shown in Figure 4.7. The 12 V bus of the self-powered circuit drops by 1 V 

because of the gate current at SCR turn on and remains stable thereafter.  

 

Figure 4.6: SCR self-triggering test results 
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Figure 4.7: SCR gate self-powered circuit results. 

4.5 Fault Analysis 

4.5.1 Line-Ground (L-G) Fault Analysis 

The test system used to simulate the converter and the fail-normal switch operation 

under line-to-ground fault is shown in Figure 4.8. The test system consists of a 138 kV 2-

bus system connected by a 30 mile line (0.17+j0.79 Ω/mile). The power router, which has 

a control range of +/- 4 kV, is installed at the midpoint of the line. The system is 

simulated for a zero impedance L-G fault next to the converter for different system 

conditions such as bus voltage, injected voltage, and the line current. The results 

presented here correspond to the worst case response time before which the protection 

mechanism should operate to limit the stress on the converter.    

 

Figure 4.8: Test system for L-G fault analysis 
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converter switches are turned off and the fail-normal switch is turned on. Once the SCR 

turns on, the fault current is now transferred to the SCR. The passive switch gets turned 

on after a cycle and the fault current in the SCR is now transferred to the passive switch. 

The fault current will flow through the passive switch till it is cleared by the external 

breakers on the line. The process ensures that there is a continuous path for the fault 

current at all instants and also the converter is not stressed with large line-fault currents. 

 

Figure 4.9: Fail-normal switch operation for L-G fault. 
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4.5.2.1 Case 1 

The transient response of the converter and the SCR during the fault is shown in 

Figure 4.10. The fault has occurred when the bus voltage is at its positive peak and the 

converter injected voltage is at its negative peak. On fault occurrence, the line current 

starts to increase at a rate determined by the line impedance. The protection circuit gets 

triggered by either the over current or the over voltage. In this case, the protection 

mechanism is triggered when the current reaches 500 A, which is twice the nominal 

current peak. The fault current initially flows through the filter capacitor because for the 

transient currents the capacitor will provide low impedance compared to the inductor as 

shown in Figure 4.11. It implies that the converter switches are not stressed by the fault 

current. The flow of fault current will result in increase of the capacitor voltage. 

 

Figure 4.10: L-G Fault Case 1: Power router response with the converter turned off and the SCR turned on 
by the main controller. 
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Figure 4.11: Initial transient flow of L-G fault current through the FR-BTB converter 

The fault is detected 200 µs after the occurrence of the fault. The capacitor voltage 

has increased by 1 kV to 6.5 kV because of the flow of the fault current through it for 200 

µs. On detection of fault the converter switches are turned off and the fail-normal switch 

is turned on. The SCR is assumed to turn on after a delay of 20 µs, which accounts for the 

sensor delay, controller delay, and gate drive delay. Once the SCR turns on, the fault 

current is now transferred to the SCR. Simultaneously, the energy in the filter capacitor 

and the      is dissipated in the SCR and the damping resistor. The      will limit the 𝑑  𝑑𝑡 stress on the SCR caused by the filter capacitor discharge. 

Isolation of the converter from line faults is critical, and hence it is necessary to 

consider all protection mechanism failure modes. In this case, the protection mechanism 

failure can be any or all of the following: current sensor failure, current sensor to 

controller communication failure, controller to SCR gate drive communication failure, 

and SCR gate drive failure. In all the above cases, the SCR will not turn on even when a 

fault has occurred. As described in the fail-normal design, the last line of protection in 

this case would be the SCR self-triggering circuit. The SCR self-triggering circuit 

monitors the SCR voltage, which is the same as the filter capacitor voltage, and when it 

exceeds the limit, the SCR is turned on. The converter can either be turned off on 

detection of fault or wait till the SCR is turned on. Case 2 and Case 3 show the converter 

response in each case. 
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4.5.2.2 Case 2:  

In Figure 4.12, the case where the converter is turned off on detection of fault 

irrespective of the SCR status is shown.  As in the above case, the fault current flows 

through the filter capacitor resulting in an increase in the capacitor voltage. The converter 

is turned off once the fault current exceeds 500 A.  The self-triggering circuit turns on the 

SCR when the filter capacitor voltage exceeds 9 kV, which is 50 % more than the 

nominal voltage of the filter capacitor.  Significantly, the converter is not stressed by the 

large fault current even though the master controller fails to turn the SCR on.  

 

Figure 4.12: L-G Fault Case 2: Power router response with the converter turned off by the main controller 
before the SCR is turned on by the self-triggering circuit. 
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increase in the capacitor voltage. But now the fault energy is also transferred to the filter 

inductor indicated by the increasing current in the filter inductor. It implies that in this 

case, the converter switches are stressed unlike the above cases. Also the filter inductor is 

not rated to handle such high currents and hence will saturate resulting in device short 

circuit. The comparison of the Case 2 and Case 3 shows that turning off the converter 

devices irrespective of the SCR status avoids additional stress on the devices.   

 

Figure 4.13: L-G Fault Case 3: Power router response with the converter turned off by the main controller 
after the SCR is turned on by the self-triggering circuit. 
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fault can occur because of either the device failure or incorrect switching. In both cases, 

the healthy device has to be turned off to avoid sustained fault currents, which can 

destroy the devices and the DC bus.  Sustained shoot-through fault currents may also 

result in fire hazard. As with any fault protection, the shoot-through fault protection 

scheme also consists of fault detection, fault management, and fault recovery. The shoot 

through fault can be detected by the following methods: 

 Fault sense resistor connected in the load current path. 

 Current transformer. 

 Desaturation (desat) detection which includes monitoring voltage across the 

collector and the emitter in the IGBT on state. 

The fault sense resistor has the advantage of simple implementation to provide an 

analog feedback of the current. But the parasitic inductance of the resistor can impact the 

transient response and significantly, the sense resistor is not isolated from the main power 

circuit. The current sensor can provide current measurement with required isolation 

between control and power circuits. But it is difficult to design a current transformer with 

wide bandwidth sufficient enough to measure fundamental frequency currents and also 

fast rising fault currents. The desat detection circuit monitors the collector to emitter 

voltage to detect a fault. In the IGBT on state, the collector-emitter voltage     will be 

low on-state voltage (< 3 V). But when the fault occurs, the device voltage tries to reach 

the supply voltage resulting in high     even in the IGBT on state. The rise in voltage     in IGBT on state is used to detect the shoot-through fault. The desat detection circuit 

is fast because of low inductance, has high bandwidth, and is inexpensive to integrate. 

The desat circuit is not isolated from the power circuit, and hence the fault management 

circuit has to be implemented locally. 
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4.5.3.1 Shoot-Through Fault Management 

On detection of fault, the gate voltage can be removed at the fastest rate possible to 

break the fault current. But a steep fall in IGBT current during turnoff can result in a 

large voltage across the IGBT because of the parasitic inductance in the circuit. If the 𝑑  𝑑𝑡 at turnoff and the parasitic inductance is sufficiently high then the resultant voltage 

can permanently damage the device. In addition, if the gate pulse is turned off even 

before the IGBT voltage reaches its clamp, the device physics can result in a condition 

called latch up, leading to permanent damage. To avoid the above two conditions, a two-

step approach is usually followed on short circuit detection. In the first step, the gate 

voltage is reduced to a value where the peak current is limited to be just within the safe-

operating area (SOA) of the device.  The gate voltage is held at this value till the device 

voltage reaches the full DC-link voltage. The duration of this period depends on gate 

resistance, device construction, and device capacitances. It is difficult to calculate this 

value and it is usually chosen to be the maximum short-circuit withstand time, which is 

available from the datasheet. Since the current is within the SOA, the device will be able 

to turn off without any permanent damage. In the second step, the gate voltage is reduced 

gradually at a much slower rate compared to the first step. The gradual decrease in the 

gate voltage limits the 𝑑  𝑑𝑡 of the fault current at the IGBT turnoff. The two step 

process can be implemented using simple RC circuits either as two decaying exponentials 

or as a single exponential as shown in Figure 4.14(b). Most commercial gate drives 

implement a desat detection circuit and make provision for a soft turnoff at a desired rate 

on fault detection. 
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Figure 4.14: (a) Desat detection circuit. (b) IGBT soft turn-off mechanism. 

The two step process for fault management is simulated in SABER™ for a typical 

17000 V, 200 A IGBT. The test system used for simulation, consisting of a half-bridge 

converter is shown in Figure 4.15. The parasitic inductances of the switches and the 

capacitor are assumed to be 100 nH and 1.0 µH respectively.  

 

Figure 4.15: Test system for simulating shoot-through fault. 
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current in the circuit to 500 A. The gate voltage is maintained in this period for 1 µs 

during which the top switch voltage    _    has reached its clamp.  The gate voltage is 

then reduced gradually to a negative bias of -8.0 V to limit the fault current 𝑑  𝑑𝑡.  By 

limiting the 𝑑  𝑑𝑡 of the current, the voltage spike on the    _    is controlled to be 

within the device blocking capability. After the     is completely turned off the load 

current continues to flow though the free-wheeling diode in the    . 

 

Figure 4.16: Shoot-through-fault protection results. 
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fault on the system is not significant with the desat protection and fail-normal feature 

enabled.  

 

Figure 4.17: Power router response for shoot-through fault on the FR-BTB converter. 

It is necessary to consider the case where the main controller fails to turn on the SCR. 

In this condition, the filter capacitor is connected in series with the line inductor and the 

equivalent circuit is similar to the fixed series capacitor (FSC) application. The line 

current will tend to flow through the filter capacitor and depending on the system 

conditions, the filter capacitor voltage can raise enough for the SCR self-triggering circuit 

to act. The system conditions determining the filter capacitor voltage in this condition are 

the line inductance, filter capacitance, and the voltage difference between the two buses. 

In case the capacitor voltage does not increase enough to trigger the self-triggering circuit 

of the SCR, then the system will continue to work as in a FSC application. To avoid this 

situation, a provision to turn on the bypass contactor from an external control circuit, 

such as the SCADA™ system, has to be implemented. 
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4.5.4 LSC IGBT/Diode Open 

The simulation results for the case where any IGBT on the line-side-converter (LSC) 

is open either because of the device failure or the gate-drive failure are shown in Figure 

4.18. With the IGBT open, the generated LSC injected voltage is non-sinusoidal because 

of the uneven positive- and negative-voltage injection. The uneven injection will result in 

a DC component and unwanted harmonics in the injected voltage leading to a DC 

component in the line current. The line current DC component will lead large fluctuations 

at fundamental frequency in the DC bus voltage. The large fluctuations in the DC bus 

voltage will also result in DC injection and harmonics in the differential current. The 

main controller can detect the LSC IGBT failure by monitoring the DC component in the 

injected voltage, the DC component in the line current, and the fundamental ripple in the 

DC bus voltage. On detection of fault, the converter will be turned off and the fail-normal 

switch will be turned on to enter the bypass mode of operation. In case the main 

controller fails to detect the fault, the peripheral controller will sense the increasing line 

current and will turn on the fail-normal switch. 

 

Figure 4.18: Power-router response for the LSC IGBT open fault. 
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The impact of LSC diode failure is similar to that of the LSC IGBT failure, resulting 

in DC injection in the line current. The simulation results for the LSC diode failure case 

are shown in Figure 4.19. As in the case of the LSC IGBT failure, the main controller can 

detect this type of fault by monitoring the converter injection voltage and the line current. 

On detection of fault, the converter will be turned off and the fail-normal switch will be 

turned on to enter the bypass mode of operation. 

 

Figure 4.19: Power-router response for the LSC diode open fault. 
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IGBT failure by monitoring the DC-bus voltage and the DC component of the differential 

current. On detection of fault, the converter will be turned off and the fail-normal switch 

will be turned on to enter the bypass mode of operation. In case the main controller fails 

to detect the fault, the DC bus voltage will continue to either increase or decrease. In 

either case, the increased differential current is detected by the peripheral controller, 

which will turn on the fail-normal switch.   

 

Figure 4.20: Power-router response for the TSC IGBT open fault. 
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Figure 4.21: Power-router response for the TSC diode open fault. 

4.5.6 Open Filter Inductor  

The simulation results for the case where the filter inductor fail open are shown in 

Figure 4.22. With the filter inductor open, the converter cannot inject any voltage in the 

line. In this condition, the filter capacitor, effectively, acts as a series capacitor as in a 

FSC application. The voltage across the filter capacitor will now depend on system 
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work as in a FSC application until it is bypassed by the contactor, which has to be 

operated from an external control circuit. 
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Figure 4.22: Power-router response for the filter inductor open fault. 
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on the fail-normal switch. The device will be protected from overvoltage on the DC bus 

by the DC-limiting chopper. 

 

Figure 4.23: Power-router response for the differentail inductor open fault. 

4.5.8 Open Filter Capacitor 

The simulation results for the case where the filter capacitor fail open are shown in 

Figure 4.24. The loss of filter capacitor will result in injection of increased voltage and 
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turned off and the fail-normal switch will be turned on to enter the bypass mode of 

operation. In case the main controller fails to detect, the PR will continue to operate with 

increased current harmonic injection in the line until it is bypassed by the contactor, 

which has to be operated from an external control circuit. 
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Figure 4.24: Power-router response for the filter capacitor open fault. 

4.6 Conclusion 

In this section the protection system based on a fail-normal switch, which is critical in 

isolating the converter from the grid faults, is presented. The detailed design of the 

various protection elements is presented. A three-tier protection scheme to avoid single 

point-of-failure is proposed. The converter response for various faults and the system 

parameters that can be used to detect the faults are presented through simulations. The 

operation of proposed protection system in isolating the converter and the grid in the 

event of faults is verified through simulation. 
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CHAPTER 5                                                                      

CONTROL OF MULTIPLE POWER ROUTERS 

5.1 Introduction 

Power routing on a meshed grid may require operation of multiple power routers 

(PRs). It is important to show how stable operation can be obtained under steady state, 

dynamic and fault conditions with multiple power routers. Also, as units are 

geographically dispersed, communication latencies and failure can cause instability and 

poor controllability. This has not been addressed before. A main objective of the 

proposed research is to evaluate the PR-controller requirements to ensure stable operation 

of multiple power routers.  

With multiple power routers installed on the network, each trying to control the 

system parameters to achieve its own objective, high-frequency interaction between 

different controllers may occur. Consider the four-bus 138 kV system shown in Figure 

5.1. The system has two power routers controlling the power in Line 1-2 and Line 3-2.  

 

Figure 5.1: Four-bus test system with multiple power router devices. 

The system was simulated in PSCADTM using fourth-order generator models to 

mimic the system dynamics accurately. The simulation results are shown in Figure 5.2. 
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82 MW. The change in power in Line 1-2 caused a change in power in Line 3-2 from 20 

MW to -4 MW, indicating the electrical coupling between Line 1-2 and Line 3-2. PR1 

was disabled at 50 s, and PR2 is enabled at 60 s to reduce the power in Line 3-2 to 0 

MW. Again, the change in power in Line 3-2 caused a change in power in Line 3-2, 

indicating the electrical coupling between both lines. When enabled individually, both 

power routers reached steady state within one second after initial oscillations. But when 

PR1 is enabled in presence of PR2 at 70 s, the power routers entered into oscillation 

mode, also called ‘hunting’. In the example case, the system had a damped oscillatory 

response, but under certain conditions can be unstable. In the following sections, the 

impact of system conditions leading to hunting or instability between multiple power 

routers is discussed. 

 

Figure 5.2: Power-flow control with multiple power routers. 

5.2 Stability Analysis with a Single Power Router 

The first step to understand the interactions between multiple power routers is to 

study the controller design of a single power router and identify the factors influencing 
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can be reduced to the system shown in Figure 5.3. The equivalent network is valid under 

the following assumptions: 

 Only active-power-flow control is considered. 

 The generator dynamics are much slower than the control dynamics of the power 

router. 

 The change in bus voltage and the corresponding change in load are negligible. 

 

Figure 5.3: Equivalent system for the power-router controller design 

The plant model is the sum of the compensated-line (line with power router) 

impedance,                   , and the equivalent impedance of the rest of the 

system,                . The corresponding power-router controller model, with 

cross-coupling control in synchronous reference frame (𝑑   ), is shown in Figure 5.4 

[95]. 

 

Figure 5.4: Power-router controller in synchronous (d-q) reference frame. 
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controller decreases as the system impedance      decrease. Reducing phase-margin 

implies that the system is moving towards instability. The impact of system impedance 

on the system stability is shown in Figure 5.5. The step response of the system indicates 

increasing oscillations with decreasing system impedance. 

 

Figure 5.5 Impact of system impedance on the step response of the power-router controller. 

The analysis showed that besides the controller parameters, the controller 

performance is also influenced by the equivalent system impedance seen by the 

controller. Even though the controller is designed for a non-oscillatory response for a 

specific network condition, the varying system impedance can result in instability. 
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In the presence of ‘n’ multiple controllers, PR1-PRn, the stability of PR1 is analyzed 
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respective equivalent impedances. A disturbance sensitivity function (DSF) is used to 

derive the equivalent impedance of a compensated line. In general, DSF defines the 

controller response for a disturbance. For a compensated line with active-power control, 

the DSF is defined as the change in in-phase line current    ( ) for a change in 

quadrature voltage between the buses    ( ). For an nth compensated line, with a power 

router     controlling the active power, the DSF given by Equation (42). 
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    ( ) 𝑣 ( )        ( )        ( )        ( )        ( )   (42) 

For an uncompensated line, the DSF is just the plant model       ( ) which is same 

as the line model. For the stability analysis, a compensated line can be replaced by 

equivalent frequency-dependent impedance, which is derived by comparing the 

equivalent uncompensated-line DSF with the compensated-line DSF. At frequency   the 

equivalent resistance of the     compensated line          ( ) is given by Equation (43) 

and the equivalent reactance of the compensated line          ( ) is given by Equation 

(44). 

          ( )               (   (  )   (  ))      ( )  (43) 

          ( )         (   (  )   (  ))        (44) 

Using Equations (43) and (44), the equivalent impedance for each compensated line 

(PR2-PRn), at a given frequency   is derived. The network is reduced to a system with 

single power router (PR1) by replacing the rest of the compensated lines with their 

respective equivalent impedances. Now, the stability of PR1 is analyzed using the same 

procedure described in the preceding section. To determine the stability of the network, 

the stability analysis is repeated for PR2-PRn. 

5.4 Demonstration of the Proposed Stability-Analysis Technique  

The four-bus system, shown in Figure 5.1, was used to demonstrate the proposed 

stability-analysis technique. The example system had power routers PR1and PR2 on Line 

1-2 and Line 3-2, respectively. The proposed stability-analysis technique was used to find 

the control parameters of PR1 at which the system will be quasi-stable, in presence of 

PR2. The proposed stability-analysis technique was demonstrated by verifying the 

control parameters derived through analytical methods with simulation results. 
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The line parameters, plant model for the PR2 controller, PI block for chosen control 

parameters, and the chosen low-pass filter are given by Equations  (45), (46), (47), and 

(48), respectively. The low-pass filter has a cutoff frequency of 62.8 rad/s. 

                                             (45) 

       ( )                           (46) 

       ( )     (        )  (47) 

       ( )                        (48) 

Figure 5.6: DSF of compensated (                        ) and uncompensated Line 1-2. 

The stability of PR1 was analyzed by replacing the compensated Line 3-2 by its 

equivalent impedance as shown in Figure 5.7. The equivalent impedance is calculated 

using Equations (43) and (44). Since the equivalent impedance of Line 3-2 is frequency 

dependent, the plant model of PR1 was recalculated at each frequency. The low-pass 

filter of the PR1 controller and the proportional constant of the PR1-controller block were 

the same as that of PR2. The integrator constant    of the PR1-controller was the variable 

to be calculated at which the system will be quasi-stable. The loop-gain equation       ( )      ( )      ( )     is satisfied at 63.0 rad/s with         kV/A2, 

indicating quasi-stability. 

 

Figure 5.7: The equivalent circuit for evaluation of stability of PR1 in presence of PR2. 

The four-bus system shown in Figure 5.1 was simulated in PSCADTM. The simulation 
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achieved by trial-and-error method by varying the gain    for PR1. PR1 and PR2 had 

stable response when enabled individually at 40 s and 60 s, respectively. But at 70 s, the 

power routers entered quasi-stable state when PR1 was enabled in presence of PR2. Both 

the power routers oscillate at 62.8 rad/s around their respective reference powers.  

 

Figure 5.8: Quasi-stable results for the four-bus system with             and               . 

The proposed analytical method is tested for two other conditions and the results are 

shown in Table 5.1. The condition for quasi stability obtained through analytical method 

closely matches with the results from simulation study, verifying the proposed stability-

analysis technique. The results also show that an improperly designed power-router 

controller acts as negative impedance at certain frequencies and degrades the 

performance of the other power routers on the network at those frequencies. This can be a 

serious problem in the operation of multiple power routers. 

Table 5.1: Verification of proposed stability-analysis technique. 

Test Condition Analytical Simulation 

Case        

(V/A) 

       

(kV/A2) 

            

(rad/s) 

       

(V/A) 

            

(rad/s) 

       

(kV/A2) 

     

(rad/s) 

       

kV/A2) 

     

(rad/s) 

1 2.3 3.45 62.8 2.3 62.8 4.64 63 4.5 62.8 

2 2.3 2.3 62.8 2.3 62.8 5.49 63.25 5.37 62.8 

3 2.3 3.45 62.8 2.3 75.4 5.86 75.5 5.53 75.4 
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5.5 Impact of Negative Impedance on System Stability 

Consider Case 1, shown in Table 5.1, the parameters for which are shown to result in 

a quasi-stability state.  For the chosen gains, the DSF of the compensated Line 3-2 is 

compared with the uncompensated line in Figure 5.6. The DSF of uncompensated Line 3-

2 is calculated using Equation (46), and the DSF of the compensated system is evaluated 

using Equation (42). At around 62 rad/s, the compensated system has a higher gain than 

the uncompensated system. The DSF represents the equivalent admittance of the line, and 

hence a higher gain implies effective negative impedance at these frequencies. It is 

inferred that the negative impedance introduced by PR2 reduces the effective system 

impedance for PR1 and hence causes oscillations in PR1 response. 

 

Figure 5.9: Comparison of DSF of compensated Line 3-2 (line with power router PR2) with DSF of 
uncompensated Line 3-2 (line without power router). 

To show the impact of negative impedance, the system is now designed so that no 

negative impedance is introduced. PI gains for PR2 are chosen to be                

and                to achieve an over damped response. For the chosen gains, the 

DSF of the compensated Line 3-2 has lower gain than the uncompensated Line 3-2 at all 

frequencies, as shown in Figure 5.10. Similarly, PI gains for PR1 are chosen to be                and               . Since the network is symmetrical for Line 3-2 

and Line 1-2 and both controllers have same gains, the DSF for Line 3-2 is same as DSF 

for Line 1-2. 
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Figure 5.10: DSF of compensated Line 3-2 (              ,               ) and uncompensated Line 

3-2. 

The simulation results with the chosen control gains are shown in Figure 5.11. The 

response of the power routers when enabled individually is damped and stable. The 

response of PR1, with PR2 enabled, was still over damped and there was no hunting 

between the controllers. The results when compared with the earlier design, where the 

PR2-controller introduced negative impedance, shows that an improperly designed 

power-router controller acts as negative impedance at certain frequencies and degrades 

the performance of the other power routers on the network, at those frequencies. 

 

Figure 5.11: Simulation results for the four-bus system with gains               ,               ,                 and                . 
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5.6 Design Conditions for Guaranteeing Stability and Avoiding Hunting 

In the previous section, it was shown that an improperly designed power-router 

controller introduces negative impedance at certain frequencies and degrades the 

performance of the other power routers on the network, at those frequencies. Based on 

the observations, the condition for guaranteeing stability and the condition for avoiding 

hunting are stated below. 

Condition for stability: The interactions between multiple power routers in a given 

network will be stable if, at all frequencies, each power router is designed to be stable, 

and if the DSF of each compensated line has less gain than the corresponding 

uncompensated-line DSF.  

Condition for avoiding hunting: The hunting between multiple power routers will 

be avoided if, at all frequencies, each power router is designed to have an over-damped 

response, and if the DSF of each compensated line has less gain than the corresponding 

uncompensated-line DSF. 

5.7 Stability Analysis on IEEE 39-Bus System 

In this section, the proposed controller design to ensure stable operation of multiple 

power routers is demonstrated on an IEEE-39 bus system. The chosen IEEE-39 bus 

system is shown in Figure 5.12 and the system parameters are given in Appendix B 

[115]. The system is divided into four hypothetical regions each connected by assumed 

tie-lines. Four power routers are installed on some of these imaginary tie lines as shown 

in Figure 5.12. The four power routers control the power flow in their corresponding tie 

lines by injecting an appropriate series voltage. The mutual coupling between the power 

routers is shown in Figure 5.13, where a 100 MW change in Line 4-14 caused by PR1 

results in a 25 MW decrease in Line 18-17, a 30 MW decrease in Line 3-4, and a 35 MW 

decrease in Line 17-16.  
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Figure 5.12: Schematic of IEEE 39-bus system with multiple PRs installed on assumed tie-lines. 

 

Figure 5.13: Electrical coupling between chosen controlled lines. 

To verify the proposed controller design, two test cases are simulated on the chosen 

IEEE-39 bus system. In the first case, the controllers for the power routers are designed 
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Case 1: In the first case, all the four power-router controllers are designed in the 

standard method, where each power-router controller is designed through Bode-plot 

techniques without considering the proposed stability constraints. The PI gains of the 

power-router controllers are designed to get the fastest response while ensuring that 

overshoot is less than 10%. For example, the step response of the PR1 controller with the 

chosen gains,                         , is shown in Figure 5.14. The controller 

parameters for the power routers are given in Table 5.2.  

 

Figure 5.14: Step response of PR1 with traditional controller design. 

Table 5.2: System and controller parameters for Case 1. 

      (ohms)      (mH)        (V/A)        (kV/A2) 

PR1 3.5 125 5.6 1.34 

PR2 6 191 5.6 1.8 

PR3 6.2 224 5.6 1.9 

PR4 7.8 264 5.6 2.3 

The traditional controller design has resulted in reduced impedance, as shown in 

Figure 5.15. For the chosen gains, the DSF of the compensated Line 4-14 has higher gain 

in the region 25-100 rad/s compared to the uncontrolled line. The corresponding 

impedance of the Line 4-14, calculated using Equation (43) and (44) is shown in Figure 

5.16. The impedance plot indicates that an effective peak negative impedance of 15 Ω is 

introduced by the PR1 controller. Similarly, the remaining power-router controllers 

introduce negative impedance.  
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Figure 5.15: DSF of uncompensated and compensated Line 4-14 for Case1. 

 

Figure 5.16: Impedance of uncompensated and compensated Line 4-14 for Case 1. 

The performance of the PR controllers when enabled individually and collectively is 

simulated in PSCAD™. The performance of the four power routers when enabled 

individually at 15 s is shown in Figure 5.17.  

 

Figure 5.17: Response of power routers when enabled individually for Case 1. 
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routers when operating individually have a stable and non-oscillatory response with an 

overshoot less than 10%. The response of the power routers when enabled collectively is 

shown in Figure 5.18. All the four power routers now have oscillatory response compared 

to when each of them is enabled individually. The frequency of the oscillations also 

indicates that the power routers are oscillating against each other i.e. hunting. 

 

Figure 5.18: Response of power routers when enabled together for Case 1. 

Case 2: In the second case the controllers of all four power routers are designed to 

meet the proposed stability conditions. For example, the PI gains of PR1 controller                         are chosen so that the system has a damped response and 

no negative impedance is introduced. This is illustrated in the DSF plots and the 

impedance plots shown in Figure 5.19 and Figure 5.20 respectively. The integral gain     
for PR2, PR3 and PR4 is 168 V/A2, 224 V/A2 and 281 V/A2 respectively.  

 

Figure 5.19: DSF of uncompensated and compensated Line 4-14 for Case 2. 
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Figure 5.20: Impedance of uncompensated and compensated Line 4-14 for Case 2. 

The performance of the four power routers when enabled individually at 15 s is 

shown in Figure 5.21. PR1, PR2, PR3, and PR4 are controlling the power flow in 

corresponding lines at 310 MW, 150 MW, 150 MW, and 50 MW, respectively. As shown 

in the plot, the power routers when operating individually have a stable and damped 

response. The response of the power routers when enabled together is shown in Figure 

5.22. All the four power routers still have damped response unlike in Case 1.  

 

Figure 5.21: Response of power routers when enabled individually for Case 2. 
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Figure 5.22: Response of power routers when enabled together for Case 2. 

The proposed conditions to guarantee stable operation of multiple power routers are 

verified through simulation results. It is important to note that the proposed design is 

decentralized in nature: the controller design does not need information of other power 

routers in the system. 

5.7.1 System Response for Transients 

In this section, the response of the power routers for system transients such as line 

switching is compared for the tradition design and the proposed design. The controller 

gains for the traditional design and the proposed design case are the same as defined in 

the previous section for Case 1 and Case 2, respectively. A hypothetical test case of a 

new parallel line across Line 3-18 is considered. Because of the new parallel line, the 

impedance of Line 3-18 has reduced from 400 mH to 200 mH. The response of PR1 in 

presence of other power routers for Case1 is shown in Figure 5.23. The response of the 

power router before the line switching is shown in blue and the response after the line 

switching is shown in red. As shown in Figure 5.23, the response has become more 

oscillatory because of the new line. The response of PR1 in presence of other power 

routers for Case 2 is shown in Figure 5.24. There is no deterioration in response of PR1 

even though the effective impedance is reduced because of the additional line.   
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Figure 5.23: Response of PR1 before and after line switching for Case 1. 

 

Figure 5.24: Response of PR1 before and after line switching for Case 2. 
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hence degrades the performance of other controllers in the network. Based on the stability 

analysis, the necessary conditions for the PR-controller design to ensure stable operation 

of a system with multiple power routers are proposed. These necessary conditions are 

verified through simulation studies on a four-bus system with two power routers. The 

proposed conditions to ensure stable operation of multiple controllers are verified on the 

IEEE 39-bus system with four power routers. Also, the system stability is evaluated for 

system disturbances such as line switching. Though intuitively it is known that lower 

gains can lead to lower interactions between multiple power routers, this research 

provides an analytical basis to choose the controller gains that can ensure stable operation 

of multiple power routers. The analysis is equally applicable for any series voltage 

injection controllers like UPFC, SSSC, BTB etc. 
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CHAPTER 6                                                                

APPLICATIONS IN DISTRIBUTION SYSTEMS 

 

This chapter describes the potential applications of proposed power router in 

distribution system and the associated challenges in implementation. The applications can 

be categorized into two main groups: power-flow control and voltage regulation. The 

power-flow control is achieved by out-of-phase voltage injection and the voltage 

regulation is achieved by in-phase voltage injection. 

6.1 Power-Flow-Control Applications 

6.1.1 Main-tie-main Arrangements 

In a typical distribution system, two transformers are sited at a substation to serve the 

feeders. The arrangement, called as main-tie-main, has the two transformer buses 

connected with a normally-open (N.O) switch, as shown in Figure 6.1. Under normal 

conditions, the transformers share the load. If one transformer fails, the healthy 

transformer can serve the total load, thereby avoiding disruption of service.  

 

Figure 6.1: Replacing a N.O switch with a power router in a typical main-tie-main arangment. 

PR
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The N.O switch is controlled manually or through an automatic transfer scheme 

(ATS). The manual transfer has a delay of 20 minutes, while the ATS scheme will switch 

to alternate transformer within three seconds [116]. As shown in Figure 6.1, by replacing 

the N.O switch with a power router, the disruption time could be reduced to a sub-cycle 

period. During normal operation, the power router will control the power from each 

transformer, thereby, balancing transformer loading. In case of faults, the service to the 

faulted feeder can be quickly restored, improving the reliability considerably. 

6.1.2 Feeder Supply from an Alternate Path 

In a typical radial system, a N.O switch is provided at the feeder ends. In case of fault 

on one feeder, the N.O switch is closed to allow supply of loads downstream of the fault 

using the second feeder. As in case of main-tie-main switch, the N.O switch is either 

manually controlled or through ATS [117].  

A normally-closed (N.C) switch will improve the reliability of the system, but the 

implementation results in operational issues. The major issue is the loading of the two 

feeders. Different possible configurations of the radial system with feeder-end support are 

shown in Figure 6.2. With both the feeders supplied from the same transformer, the 

impact of N.C switch on loading levels is not significant [118]. But feeding from 

different transformers (b) or from different substations (c), can result in overload of the 

feeders [118]. Connecting two feeders supplied from different substations (c), can form a 

parallel path for the transmission system, resulting in unnecessary loop flows. As shown 

in Figure 6.2, the proposed power router can replace the N.C switch. The power router 

can limit the loop flows in normal conditions and can reduce the disruption time to a sub 

-cycle period under fault conditions.  
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Figure 6.2: Radial systems with feeder-end support through a power router. (a) Feeders supplied from same 
transformer. (b) Feeders supplied from different transformers in the same substation. (c) Feeders supplied 

from different substations. 

6.1.3 Mesh Grid Enabler 

The advantage of meshed systems over radial systems is their increased reliability. If 

a single line in a meshed system goes out-of-service, other lines in the mesh compensate 

to satisfy the load that is unable to be fed by the faulted line. In a radial system if one line 

goes out-of-service, all loads downstream of the line experience an outage. Distribution 

systems in other countries such as in the United Kingdom and in specific areas such as 

the downtown areas in some US cities are meshed. However, most distribution systems 

are radial because it is hard to control power flows within a meshed system. The power 

router, by providing the power-flow controllability, can enable conventional radial 

distribution systems to be configured as meshed systems.  

6.1.4 Load Balancing 

In the proposed power router each phase is controlled independently, and hence there 

is an opportunity to correct for inherent imbalances in a distribution system. A number of 
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anomalies, such as increased power losses, misfiring of power converters and ill-tripping 

of protective relays, have been traced to the existence of power flow imbalances. The 

power router would be controlled to balance the three phases by slightly adjusting the 

power flow in each phase. Balancing the phases in a distribution system would be greatly 

beneficial as it will contribute to less current flowing in the neutral wire.  

6.2 Voltage Regulator Applications 

6.2.1 Mitigation of LTC Operation on Feeders with High PV Penetration 

Photovoltaics (PV) are being integrated more and more into power systems at the 

distribution level. High penetration of PV increases the variability of voltages in the 

distribution system because the energy production from PV is itself variable. The 

increased variation of voltage levels in the distribution system can have dire 

consequences. Load-tap-changing (LTC) transformers located in these distribution 

systems have been experiencing an increase in the number of operations up to 30 times 

more than normal, due to these increased voltage fluctuations, and have caused premature 

deterioration of LTC transformers. A power router can be used to reduce LTC 

degradation by providing enhanced voltage regulation, which would effectively filter 

high PV-associated voltage variability.  

6.2.2  Voltage Regulation in Distribution Systems 

Voltage regulation is an important function in radial distribution systems. This is due 

in part because the voltage in radial distribution systems tends to drop along the feeder. 

To compensate for low voltages at the end of the feeders, the voltage can be regulated at 

certain points within the distribution system to set points that ensure that the voltage does 

not sag beyond specified limits at the end of the feeder. The power router can be used to 

regulate the voltage because it can control both the amplitude and phase of the voltage it 

inserts into the line. 
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6.2.3 Conservation Voltage Reduction (CVR) 

Conservation voltage reduction (CVR) is the practice of lowering the voltage 

supplied to a distribution system in order to reduce the demand of the system, specifically 

during peak load hours. CVR is effective in the distribution systems with lots of constant 

impedance or constant current loads. Such loads decrease their power consumption when 

their input voltage is decreased. The power router could be used to target certain loads 

identified for energy conservation. The power-router power flows could then be adjusted 

to levels that the utility operator is comfortable supplying at that instance of time. If all 

three phases are present at the service drop, distribution transformers used to service 

households could even use power-router technology to precisely control power 

conservation down to the household. 

6.3 Implementation Challenges 

6.3.1 Fault Current 

The protection system in the traditional radial distribution system is designed for 

power flowing from a single source to the load in one direction. With the power router 

installed, the peak fault current in the system can increase and affect the existing 

protection mechanism. For example consider the case where the power router is 

connected between two substation transformers to balance the load between the 

transformers. As shown in Figure 6.3, without the power router, the load is sourced from 

a single transformer and the peak fault current is 10 kA. The power router installed 

between the transformers will bypass the line faults, and hence the peak fault current 

increases to 20 kA. The existing protection system designed for 10 kA will now have to 

handle 20 kA.  

The power router may be fitted with breakers on either side, but then the breakers will 

add to additional cost. Also the breakers operation should be coordinated with the 
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breakers down the radial line, requiring modification of the entire feeder protection 

scheme. 

  

Figure 6.3: Impact of power router on fault current in distribution applications. 

6.3.2 Differential Voltage Between Buses 

The fractional-rating advantage of the power router is based on the fact that the power 

flow in a line can be controlled by injecting a fractional voltage in series in the line. This 

assumption is applicable for meshed systems where the voltage difference between the 

two buses δ is typically < 10⁰.  In tie-line applications, where the two feeders are fed 

from different points in the transmission system as shown in Figure 6.4, the δ may be of 

large value. At large δ, the power router will have to be rated at relatively higher value to 

create any significant impact on the line power flow.  

 

Figure 6.4: Significance of δ on power router rating in distribution applications. 
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6.4 Conclusion 

In this chapter a number of applications of the proposed power router in distribution 

system are presented. The power router can be used as out-of-phase voltage injection 

device in tie-line power flow control or transformer/feeder load balancing application and 

as an in-phase voltage injection device for voltage magnitude control applications. The 

main constraint for power router in distribution applications is its impact on the fault 

current. The power router can increase or alter the flow of fault currents, the scenarios for 

which the radial distribution system might not have been designed. In addition, the 

fractionally rated power router might be ineffective for interconnecting systems with 

significant voltage difference between the buses, which is a possibility in interconnecting 

systems sourced from different sources in the transmission system. The application of 

proposed power router in distribution systems is system specific and requires detailed 

system analysis.  
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CHAPTER 7                                                                      

HARDWARE IMPLEMENTATION AT 13 KV, 1 MVA 

The primary application of the proposed power router (PR) is to achieve power flow 

control on meshed networks, which are typically found at transmission (> 69 kV) and sub 

transmission (> 39 kV) levels. The demonstration of the proposed concept at reasonably 

high voltage and power will be a more realistic approach to reflect on the challenges 

associated with high voltage and high power applications. As a part of this research, the 

functionality of the proposed power router is experimentally demonstrated at 13 kV, 1 

MVA. In this chapter, the 13 kV 1 MVA experimental test setup built to test the power 

router is presented. The operation of the power router and the salient features of the 

power router are demonstrated through experimental results. 

7.1 Test Setup Design 

The schematic of the 1-ph, 13 kV, 1 MW setup to test the proposed power-router 

functionality is shown in Figure 7.1. The test setup consists of a two-bus system with the 

interconnecting line represented by a 4 mH inductor. The two buses are built using 167 

kVA, 13 kV/ 1.3 kV transformers connected in auto transformer mode. The low voltage 

windings of both the transformers are excited from a 0-1.3 kV powerstat through an 

isolation transformer. The isolation transformer isolates the two-bus system from the 

power source, thereby, providing the freedom to choose the ground on the two-bus 

system at a desired terminal. With isolated grounds, the FR-BTB converter can be 

grounded by connecting the converter terminal to the system ground. The grounded 

converter provides a safer and convenient platform, especially in the initial part of the 

converter testing and debugging. Once the controls are established the converter can be 

floated at 13 kV, similar to a real application, by moving the ground to the lower terminal 
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of the transformers as shown in the Figure 7.1. The FR-BTB converter is connected across 

the +/- 650 V taps of the Bus1 transformer, and hence can inject a maximum voltage of  

650 V. The transformer at Bus1 and the FR-BTB converter together represent the 

proposed power router, with the ability to control the Bus1 voltage magnitude and phase. 

Without the FR-BTB converter the line current will be zero because both the buses are at 

same voltage level as they are fed from the same supply. The proposed power router can 

demonstrate the power flow controllability by injecting a series voltage and controlling 

the line-inductor current. The rating and selection criterion for major components are 

given below. 

 

 

Figure 7.1: 1 MVA two-Bus Experimental Setup for FR-BTB-based power router 

7.1.1 Component Selection 

7.1.1.1 Bus Transformers (Bus1, Bus2) 
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least 100 kVA (74 A * 1.3 kV). The transformers selected are rated for 167 kVA, 13/1.3 

kV with center tapped secondary.  

7.1.1.2 Isolation Transformer 

A 2.4 kV/ 2.4 kV transformer was chosen to provide isolation between the power 

source and the two-bus system. Since the power source only provides for the loss in the 

two-bus system, the power rating of the isolation transformer can be determined by the 

Equation (49).                                (       )              (           ) (49) 

where              is the kVA rating of the isolation transformer,       is the efficiency of the transformer,          is the kVA rating of the transformer,        is the number of bus transformers,            is the efficiency of the line inductor, and               is the kVA rating of the line inductor. The bus transformer efficiency, the 

converter efficiency and the line inductor efficiency is assumed to 98 %, 95 % and 99 % 

respectively. Based on the assumptions, a 10 kVA 1.3 kV/ 1.3 kV isolation transformer is 

sufficient for the application. A readily available 2.4 kV/ 2.4 kV 50 kVA isolation 

transformer was used for the application. 

7.1.1.3 Powerstat 

The powerstat provides a variable supply to enable testing the converter at lower 

voltages before ramping up to the final 13 kV voltage level. As in the case of the isolation 

transformer, the power rating of the powerstat is chosen to provide the loss in the 2-bus 

system.  A 10 kVA, 0 – 1.3 kV powerstat is used in the test setup. 
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7.1.1.4 Line Inductor  

The line inductor       represents the transmission line in an electric network. The 

inductor should be rated to handle 77 A corresponding to 1 MVA power flow at 13 kV. 

The maximum voltage across the inductor is equal to the maximum voltage the converter 

can inject, which is 650 V. Ideally, the inductance value should be such that a current of 

77 A flow at 650 V across it. In this application a 4 mH inductor is chosen to optimize 

cost and space.  

7.1.1.5 FR-BTB Converter 

The detailed schematic of the 3-level FR-BTB converter is shown in Figure 7.2. It 

consists of a 1-ph 3-level converter with four half-bridge legs. Two of the legs constitute 

the transformer-side converter, which will be working in full-bridge mode. The other two 

legs constitute the line side converter and are operated in phase-staggered mode. The DC 

bus is chosen to operate at 10 % higher than the peak of the converter input voltage. 

Since the FR-BTB converter is connected across +/- 650 V taps, the DC bus is regulated 

at 2100 V. The chosen semiconductor devices should be able to block the DC voltage and 

carry the full line current. The FR-BTB converter also consists of a DC capacitor, output 

filter, differential inductors, DC-limiting chopper, and starting resistors. The selection of 

each individual component is described below. 

 

Figure 7.2: Schematic of the FR-BTB converter used for 13 kV, 1 MVA experimental evaluation. 
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7.1.1.6 Semiconductor Devices 

The IGBTs are selected to handle a nominal voltage of 1100 V and a nominal current 

of 110 A. The neutral-clamped diodes are selected to handle a nominal voltage of 1100 V 

and an average current of 60 A. The IGBTs for the DC-limiting chopper are chosen to be 

the same as the IGBTs for the main converter to maintain uniformity. The semiconductor 

devices chosen for this application are given below. 

 IGBTs: 1700 V, 200 A Dynex DIM200MHS17 IGBT module. 

 Neutral clamped diodes: 1600 V, 60 A Semikron SKKD60F17 module. 

7.1.1.7 DC Capacitor (   ) 

 The primary purpose of the DC capacitor     is to maintain a firm DC voltage and to 

limit the DC-voltage ripple to be within acceptable limit. In addition, the grid connected 

inverters choose the DC capacitor as an energy storage element to ride through the grid 

transients. Accordingly, the DC capacitor is chosen to meet the following criterion:                                    (50) 

                              
(51) 

where         is the converter rating in MVA,          is the peak line current,    is the fundamental frequency,     is the DC-link voltage. The DC capacitor should also be rated to carry continuous 

current              . A 730 µF, 3200 V DC-capacitor bank built using 16 numbers of 

730 µF, 800 V capacitors was selected for this application.  
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7.1.1.8 Filter Inductor (  ) 

The value of the filter inductor    is designed to limit the worst case line current 

peak-to-peak ripple to < 10%.  In the chosen FR-BTB converter configuration, there are 

two filter conductors, one per each phase leg of the LSC. Since the two LSC legs are 

operated in phase-staggered mode, the effective current ripple will be at twice the 

converter switching frequency and would reduce by half in magnitude. Hence, each filter 

inductor is designed to achieve a maximum of 20% current ripple and handle half of the 

fundamental line current. The value of the inductor for the chosen current ripple, DC-link 

voltage, and switching frequency can be calculated by Equation (52).       (    )               
(52) 

where     is the maximum DC-link voltage which is 2100 V with the converter,      is the switching frequency, and        is the maximum current ripple allowed. For the setup, an inductor of 10 mH is 

chosen, which can limit the ripple to < 10% at 10 kHz switching frequency and 2100 V 

DC-link voltage. The core material for the inductor is chosen such that it has low core 

loss even at switching frequencies. The inductor specifications are given below: 

 Inductance: 10 mH, built using Finemet AMCC 1000 

 Current: 38 A (rms) at 60 Hz and 11 A (pk-pk ripple) at 10 kHz 

 Losses:  < 100 watts 

7.1.1.9 Differential Inductor (     ) 

The differential inductors       act as an energy exchange medium between the 

transformer taps and the TSC phase legs. In such applications, the inductors are usually 

rated at 10 % of the exchanged power. In the power-router application, the power 

exchange by the TSC depends on the load on the DC bus. In the chosen test setup, the 

only load on the DC bus is the loss in the transformers, the FR-BTB converter, and the 
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line inductor. Hence the differential inductors are rated to be at least 10 % of the sum of 

the transformer, converter, and the line loss, which is calculated to be 4.5 kVA. The other 

function of the differential inductors is also to limit the differential current peak-to-peak 

ripple to <10 %. The specifications of the chosen differential inductor are given below.  

 Inductance: 35 mH each (Built using Finemet AMCC 1000 cores) 

 Current: 5 A (rms) at 60 Hz and 1 A (pk-pk ripple) at 10 kHz. 

 Losses:  < 20watts 

7.1.1.10 Starting resistor (      ) 

Initially when the supply is turned on, the DC-link capacitor, which is effectively a 

short, will see a large current and it can be detrimental for the transformers, inductors, 

and the capacitor. To limit the current at the startup, a resistor is connected in series with 

the supply as shown in Figure 7.1. The DC-link capacitor slowly charges to the peak of 

the input supply. After the capacitor is completely charged the resistor is bypassed by a 

contactor. The value of the resistor will determine the peak current during charging and 

also the charging time constant. The peak charging current should be less than the rated 

current of the differential inductor and the DC capacitor. With a 50 kΩ resistor connected 

in series with each leg of the TSC, the peak current is limited to 65 mA and the time 

constant for charging is 15 s. The power rating of the resistor can be calculated using the 

peak current. The specifications of the chosen starting resistor are given below: 

 Resistance: 100 Ω each for a maximum current of 2 A. 

 Power: Maximum of 400 watts for 0.2 s. 

7.1.1.11 DC-limiting Chopper and Resistor (     ) 

During the fault conditions or transient conditions energy can accumulate in the DC-

link capacitor and can result in overvoltage conditions. To avoid the DC-link overvoltage, 

a chopper and a resistor are connected in shunt with the capacitor. The chopper helps in 

transferring excessive energy in the capacitor to the resistor for dissipation. The chopper 
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is controlled like a buck converter in voltage control mode, with a reference value set at 

maximum allowed DC-link voltage. The reference voltage for the chopper is chosen to be 

well within the capacitor rating and also to avoid chopper interfering with the normal 

operation of the converter. The value of the resistor should be as low as possible to have a 

small time constant (           ) and is only limited by the peak current capability of 

the chopper switch.  

 DC-limiting chopper: IGBT of the same rating as that of the main switches in the 

converter                                                                                                         

(1700V, 200A). 

 DC-limiting resistor:   22 Ω at 2.5 kW for 0.1 s. 

7.1.1.12 Laminated Busbar 

Parasitic inductance between the DC capacitor and the semiconductor devices can 

lead to significant voltage spikes across the device leading to device failure. The 

industrial practice for minimizing parasitic inductance is to use a laminated busbar for 

interconnecting the DC-bus capacitors, IGBTs, and diodes. The laminated bus bar 

consists of conductions planes interleaved with insulating material. It provides the 

shortest path between the interconnecting elements. The parallel path for the forward and 

the return currents cancel the flux of each conductor, thereby, reducing the parasitic 

inductance. The design of the laminated busbar should provide enough clearance and 

creepage distances between different buses to avoid flashover at transient voltage peaks. 

The laminated busbar should also be rated to handle the DC-bus voltage and the line 

current. The temperature rise on the busbar because of the line current should be well 

within the temperature ratings of the capacitor and the semiconductor devices. The 

specifications for the laminated busbar built for this application are as follows: 

 Maximum voltage: 2*2.1 kV (nominal) + 1 kV = 5 kV. 

 Maximum current: 100 A (rms). 

 Temperature rise at nominal current: 20 degC. 
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7.1.1.13 Snubber Capacitor (     ) 

In addition to the large DC-link capacitor, the DC link usually consists of small (< 1 

µF) snubber capacitors with very low inductance. The function of the snubber capacitor 

is to provide a path for the current in the DC-capacitor leakage inductance and the 

patristic inductance between the capacitor and the switches. While the main DC-link 

capacitors provide energy storage, the snubber capacitors absorb the switching noise and 

protect the devices from high 
      noise. The value of the snubber capacitance is dependent 

on the estimated patristic inductance and is given by Equation (53). 

      (    )                             
(53) 

where    is the estimated patristic inductance between the DC link and the devices,            is the peak current in the devices,         is the nominal DC bus voltage, and     is the maximum voltage spike allowed. The specifications of the snubber capacitor 

built for this application are as follows: 

 Maximum voltage: 1600 V. 

 Maximum current: 100 A (rms). 

 Parasitic inductance: < 1 nH. 

7.1.1.14 IGBT Gate Drives 

In addition to providing the required energy to drive the IGBT, the gate drive should 

also provide desat protection to protect the device from shoot through faults. Also the 

gate drive should provide isolation between the power and the control circuits.  

The specifications of the IGBT gate drives selected built for this application are as 

follows: 
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 Gate drive voltage: +15 V/-8 V  

 Peak current: 5 A 

 Isolation: 5000 V 

 Desat detection and protection 

7.1.1.15 Passive Cooling System 

One of the important factors affecting the life of converters is the cooling system. 

Traditional cooling systems typically involve fans or other moving parts that could limit 

the life of the system. In this test setup a passive cooling system that does not use any 

moving parts was used. The design inputs for the cooling system are the estimated loss in 

the converter and the acceptable temperature rise. The loss in converter for a given 

operating condition can be estimated from the device characteristics [120]. The device 

characteristics are obtained from the datasheet and are modeled to develop loss models. 

Using the device loss models and the converter operating waveforms the converter loss is 

calculated. The device loss models for the selected IGBTs and diodes are described 

below.  

The turn-on loss (   ), turn-off loss (    ), and diode recovery loss data (    ) 

gathered from the device data sheet were modeled by 2nd order polynomial as seen in 

Equation (54).       (     )              (           ) 
(54) 

where   is the voltage,       is the voltage at which the actual data is available from the datasheet,    is the temperature,       is the temperature at which the actual data is available from the datasheet,    is the current, 

       and    are the model coefficients. The temperature and voltage dependence of loss 

was modeled linearly. The linear relationship does not exactly represent the actual 

temperature dependence of the devices. But the main concern will be the worst case 
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condition at the device maximum operating temperature and voltage. The modeled loss 

data and the data obtained from the datasheet are compared in Figure 7.3.  

 

Figure 7.3: Dynex 1700V, 200 A IGBT loss model evaluation. 

The on-state voltage drop of the IGBT (   ), free-wheeling diode (    ), and 

neutral-clamping diode (          ) is similarly modeled using a second-order 

polynomial. The diode drop is divided into two regions for the lower currents and the 

higher currents and two separate polynomials are used to model the data. Conduction loss 

can be calculated from the product of the on-state voltage and the device current. The 

modeled on-state voltage data and the data obtained from the datasheet are compared in 

Figure 7.4. The values for each coefficient of the developed models are given in 

Appendix. 

 

Figure 7.4: Dynex 1700V, 200 A IGBT and Semikron 1700 V, 60 A on-state voltage model evaluation. 
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The device loss models are then used to calculate the converter loss for different 

operating conditions, as shown in Figure 7.5. The passive cooling system was designed to 

limit the device temperature to be < 110 °C at a peak loss of 1800 watts. The details of 

the passive cooling technology are presented in [119]. The front and rear views of the 

passive cooling system rated to dissipate 2500 watts while maintaining device junction 

temperature below 125°C are shown in Figure 7.6. 

 

Figure 7.5: Estimated converter loss for the 13 kV, 1 MVA power router. 

 

Figure 7.6: Front and rear images of the passive cooling system rated to dissipate 2.5 kW. 
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7.1.1.16 Controller 

The controller that was developed and used in the 50 kVA lab prototype was used for 

the 1 MVA test setup. The controller implements the algorithm for controlling the grid 

synchronization, DC-bus voltage, line current/power, generating PWM pulses for the 

three-level converter, and protection logic. The controller code is shown in Appendix B. 

The major components, ratings and prices are listed in Table 7.1.  

Table 7.1: Major components used for 13 kV, 1 MVA test setup. 

Component Ratings Part Number Manufacturer Quantity Cost 
($) 

Transformers 167 kVA, 13 kV/ 1300 
V,  

taps at +/- 650V  

-- Florida 
transformer 

2 4300 

Isolation 
transformer 

2200V/2200V, 50 kVA -- Hammond 1 2500 

IGBTs 1700V, 200A  DIM200MHS17 Dynex 8 250 

Freewheeling 
diodes 

1600V, 100A  SKKD60F17 Semikron 4 80 

Laminating bus 
bar 

5 kV, 100 A  Eldre 1 2500 

Line inductor 4 mH, 120A  -- Hammond 1 1400 

Differential 
inductor 

35 mH, 15A 
High frequency  

AMCC 1000 
cores 

Assembled on 
Metglass cores 

2 400 

DC-bus capacitor 730 µF, 800V  947C731K801C
DMS 

Cornell 
Dubilier 

16 75 

Starting resistor 10k, 50 watts -- Ohmite 2 5 

Braking resistor 22 Ohms, 2500 watts -- -- 4 40 

Gate drives 12 A(pk), 2500V 
isolation, +15V/-8V o/p 

Based on  
VLA 500-01 

Powerex 9 60 

IGBT for 
braking chopper  

1700V, 200A DIM200MHS17 Dynex 1 270 

Voltage sensor 1500V (rms) AV100-
1500/SP3 

LEM 3 400 

Current sensor 200A (rms) LF 205-S LEM 3 45 

Control board 1.5 MHz Fixed point 
DSP 

TMS320F2812 TI 1 1000 

 

7.1.1.17 Assembled Test Setup 

The images of the partially assembled FR-BTB converter are shown in Figure 7.7 (a), 

and the completely assembled FR-BTB converter is shown in Figure 7.7 (b). The 

partially assembled converter shows the passive cooling system, IGBTs mounted on the 

cold plate, and the DC capacitors at either end forming the DC bus. The fully assembled 



145 
 

converter image shows the laminated busbar interconnecting the IGBTs and the DC 

capacitors. The image of the entire test setup is shown in Figure 7.7 (c). The power block 

is partitioned from the control region by a grounded framework to ensure operator safety. 

 (a)  (b) 

 (c) 
 

Figure 7.7: (a) Semi-assembled FR-BTB converter. (b) Fully assembled FR-BTB converter. (c) 13 kV, 1 
MVA power router test setup. 
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7.2 13 kV, 1 MVA Test Results 

7.2.1 Active-Power Control 

Without the FR-BTB converter, the two buses of Figure 7.1 had the same voltage, 

and no power flowed across the line. With the FR-BTB converter, the effective voltage of 

Bus1 was controlled in magnitude, or phase, or both, to induce power flow across the 

line. Figure 7.8 shows the power router successfully injecting the appropriate voltage to 

generate 1 MW of active power flow in the line. The top two waveforms show the bus 

voltage and line current, which is in-phase with the voltage indicating active power flow. 

The third waveform shows the differential current while the fourth and fifth waveforms 

show the TSC and the LSC 10 kHz switching voltage, respectively. The relatively low 

differential current was proportional to the losses of the converter, and can be seen to be 

small compared to the line current. The 13 kV, 1 MVA power router results for active 

power flow in reverse direction, leading reactive power and lagging reactive power are 

shown in Figure 7.9, Figure 7.10 and Figure 7.11, respectively. The results demonstrate 

the four-quadrant power-flow controllability of the proposed power router. 

 

Figure 7.8: Power router active-power-flow control at 13 kV, 1 MW in forward direction. 

-20

0

20

-200

0

200

-10

0

10

-1

0

1

0 0.02 0.04 0.06 0.08 0.1

-1

0

1

time (s)

V
d

c 
(k

V
)

Il
in

e
 (

A
)

Id
if

f 
(A

)
V

_
LS

C
 (

k
V

)
V

_
T

S
C

 (
k

V
)



147 
 

 
 Figure 7.9: Power router active-power-flow control at 13 kV, 1 MW in reverse direction. 

 

Figure 7.10: Power router leading reactive-power-flow control at 13 kV, 1 MVA. 

 

Figure 7.11: Power router lagging reactive-power-flow control at 13 kV, 1 MVA. 
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7.2.2 DC-Bus Control 

In Figure 7.12 the startup procedure and DC-bus control for the power router is 

shown. The DC bus was initially charged to the peak of the converter input voltage. The 

transformer-side converter was then enabled to charge the DC bus to 10% above the peak 

voltage. After the DC-bus voltage reached its reference value, the line-side converter was 

enabled, and the line current was ramped up to the final desired value. As the line current 

ramped up, the increasing energy in the line inductor was supplied from the DC bus. 

Consequently, the DC-bus voltage tended to drop. The DC-bus control acted to maintain 

the DC-bus voltage at its reference value, as seen by the oscillations in the DC-bus 

voltage around the reference value.   

 

Figure 7.12. Startup results for the 1 MVA power-router prototype. 

7.2.3 Dynamic Control 

Figure 7.13 demonstrates the dynamic power-flow-control capabilities of the power 
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voltage at 13 kV. The red plot shows the line current varying in proportion to the line 

power. The differential current shown in pink is controlling the dc-bus voltage, shown in 

green, at its reference value. The average power is evaluated from the bus voltage and the 

line current and is shown in Figure 7.13 (b). The voltage and current waveforms at 

positive active-power flow and negative active-power flow are shown in Figure 7.13 (c) 

and Figure 7.13 (d), respectively   

 
 

 (c)  (d) 

Figure 7.13. (a) 13 kV, 1 MW dynamic power-flow-control with the FR-BTB based power router: (b) 
Power flow calculated from oscilloscope data via Matlab,  (c) Active power flow at t = 5 s, (d) Active 
power flow in opposite direction at t = 85 s. 
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In the experiment, the active is varied from 1 MW to -1 MW in 100 s. When the line 

power is varied, the transient energy is supplied form the dc bus. By either choosing a 

large dc capacitor or an adequately rated LSC that can compensate the DC bus variations, 

the response of the system can be improved further. 

7.2.4 Efficiency Estimation 

The losses for the 1 MVA setup were calculated by measuring the difference between 

the input and the output powers of the converter. The measurements for estimating the 

power loss are shown in Figure 7.14.  

 
Figure 7.14: Measurements for converter loss estimation. 

The converter input power was calculated from the bus voltage and the differential 
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Figure 7.15: BTB Converter voltage and current waveforms for loss calculations at 1 MW. 

The transformer efficiency could not be calculated experimentally because of the 

circulating-power nature of the test setup chosen. A conservative efficiency value of 98 

% is assumed for the transformer loss calculations. Because the converter is connected 

across the +/- 5 % taps, the transformer loading will be 10 % of the controlled power in 

the line. So a 100 kVA transformer loading is assumed when the line power is 1 MVA, 

and is similarly calculated for other loading levels. The efficiency of the PR is calculated 

by the standard equation given by (55).     (                                     )      
(55) 

where     is the efficiency of the power router,                is the loss in the converter calculated from the experiments,                 is the transformer loss , and       is the controlled power in the line. 

The power router loss and the efficiency levels for different power levels are shown 

in Figure 7.16. The estimated power router efficiency is greater than 99.5% over a wide 

range of controlled power of 600 kVA to 1000 kVA.   
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Figure 7.16: FR-BTB based power router efficiency. 

7.3 Conclusion 

The dynamic power flow controllability of the proposed power router was 

demonstrated at 13 kV, 1 MVA. Power-flow control of 1 MVA is achieved with a 

converter rated for 50 kVA. Significantly, the converter was rated to handle 1.3 kV while 

controlling the power flow at 13 kV. The fractional converter rating advantage of the 

proposed power router is experimentally demonstrated. The neutral-point-clamped three-

level converter and the phase staggered approach used in the experimental prototype 

demonstrate the voltage scaling and current scaling methodology, respectively. The 

effectiveness of the proposed control algorithm in achieving power flow control is 

experimentally proved.  The power router efficiency was determined to be at least 99.6 % 

at 1.0 MVA, again demonstrating the advantage of fractionally rated converter in 

achieving lower loss per controlled power compared to the standard BTB system. The 1.0 

MVA experimental prototype also demonstrated passive cooling without fans, which can 

ensure longer operating life and less maintenance compared to actively cooled systems. 
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CHAPTER 8                                                                      

CONCLUSIONS AND RECOMMENDED FUTURE WORK                               

8.1 Conclusions 

This work has presented a low-cost power router (PR), capable of dynamic, 

independent control of active- and reactive-power flows on meshed grids. The proposed 

power router consists of a transformer augmented with a fractionally-rated back-to-back 

(FR-BTB) converter. The converter is connected across the transformer taps. The main 

advantage of the proposed converter compared to traditional FACTS solutions is the 

fractional rating of the BTB converter. The FR-BTB configuration has a unique 

advantage since the converter achieves the fractional rating via fractional voltage rather 

than fractional current. At very high voltages, the converter can be easily scaled by 

implementing a multi-level converter based on neutral-point-clamped (NPC) approach, 

which is an industry standard. The proposed power router consists of a fail-normal switch 

connected across the converter. The fail-normal switch assures that the system reliability 

is not impacted even when a lower reliability converter is used to impact the system 

performance. 

The proposed power router achieves power flow control by injecting a series voltage 

like in a traditional UPFC or a BTB based solution. But because of the difference in 

implementation, the control of FR-BTB converter is different from traditional FACTS 

implementations. The various operating modes and the control structure to achieve the 

desired objective of power flow control are presented in detail. The control architecture is 

verified through simulations and hardware implementation. Starting from basic time-

domain equations, detailed small-signal and frequency-domain models are developed, 

which are necessary tools for system-level studies.  
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Ensuring reliable operation of the power router, which is designed for utility 

applications, is essential. In the proposed power router, unlike the UPFC or the SSSC, the 

semiconductor devices are directly connected in series with the line, which exposes the 

devices to line fault currents. To avoid converter damage the fail-normal switch is used to 

isolate the converter from the line faults. The protection system based on the fail-normal 

switch and the detailed design of the various protection elements are presented. A three-

tier protection scheme to avoid single point-of-failure is proposed. The converter 

response for various faults and the system parameters that can be used to detect the faults 

are presented through simulations. The operation of proposed protection system in 

isolating the converter and the grid, in the event of faults, is verified through simulation. 

Power routing on a meshed grid may require operation of multiple power routers. It is 

important to show how stable operation can be obtained under steady state, dynamic and 

fault conditions with multiple power routers. This research proposed conditions for PR- 

controller design that can ensure stability even in presence of other power-router 

controllers. In contrast with the coordinated controller design, the proposed approach is 

independent of other controllers even at the design stage. An analytical method to 

evaluate the stability of a system with multiple power routers is proposed. The analytical 

method is used to show that an improperly designed controller acts as negative 

impedance at certain frequencies, and hence degrades the performance of other 

controllers in the network. Based on the stability analysis, the necessary conditions for 

the PR-controller design to ensure stable operation of a system with multiple power 

routers are proposed. These necessary conditions are verified through simulation studies. 

Though intuitively it is known that lower gains can lead to lower interactions between 

multiple power routers, this research provides an analytical basis to choose the controller 

gains that can ensure stable simultaneous operation of multiple power routers. The 

analysis is equally applicable for any series voltage injection controllers like UPFC, 

SSSC, BTB etc. 
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The proposed power router is designed for power flow control on meshed networks. 

Though the meshed networks are primarily present in transmission and sub transmission 

networks, there are some applications in distribution systems where the power router can 

be implemented. This research describes the potential applications of proposed power 

router in distribution system and the associated challenges in implementation. The power-

router can be used either for power-flow control or for voltage control. A main constraint 

for power router in distribution applications is its impact on the fault current. It was 

shown that the application of proposed power-router in distribution systems is system 

specific and requires detailed system analysis.  

The dynamic power flow controllability of the proposed power router was 

demonstrated at 13 kV, 1 MVA. Power-flow control of 1 MVA is achieved with a 

converter rated for 50 kVA. Significantly, the converter was rated to handle 1.3 kV while 

controlling the power flow at 13 kV. The fractional converter rating advantage of the 

proposed power-router is experimentally demonstrated. The NPC and the phase staggered 

approach used in the experimental prototype demonstrate the voltage scaling and current 

scaling methodology, respectively. The control algorithm, device gate signal generation, 

and protection mechanism were implemented on a DSP based platform. The effectiveness 

of the proposed control algorithm in achieving power flow control is experimentally 

demonstrated.   

8.1.1 Summary of contributions 

To summarize, this work has made the following contributions: 

 Presented a low-cost power router (PR), capable of dynamic, independent 

control of active- and reactive-power flows on meshed grids. 

 

 Presented the operating principle, detailed schematics, and various possible 

implementations of the proposed power router.  
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 Various operating modes are identified and a control algorithm has been 

proposed and verified through simulations. 

 Developed small-signal and frequency-domain models of the power router 

from basic time-domain equations. 

 Presented a three-tier protection system based on the fail-normal switch to 

avoid single point-of-failure.  

 Verified the operation of proposed protection system in isolating the converter 

and the grid in the event of faults through simulation. 

 Proposed an analytical method to evaluate the stability of a system with 

multiple power routers. 

 Proposed necessary conditions for the PR-controller design to ensure stable 

operation of a system with multiple power routers. These necessary conditions 

are verified through simulation studies. 

 Presented potential applications of proposed power router in distribution 

system and the associated challenges in implementation. 

 Experimentally demonstrated the functionality and advantages of the proposed 

power router at 13 kV, 1 MVA. 
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8.2 Recommended Future Work 

8.2.1 Experimental demonstration of stable operation of multiple PRs 

This research has developed an analytical method to evaluate the stability of a system 

with multiple power routers and proposed controller design conditions to ensure stable 

operation of multiple power routers. The stability conditions have also been verified 

through simulation studies. It would be beneficial to experimentally validate the proposed 

stability conditions. The proposed stability conditions have been validated only for active 

power-flow control. It would be desirable to extend the analytical analysis to reactive 

power-flow control.  

8.2.2 Impact of communication latency on operation of multiple PRs  

In the proposed control architecture, each power router has local controller, which 

acts to control the power flow in the line at the desired value.  But the desired value itself 

might be set from a remotely located central controller. In case of communication failure, 

the power-router controller will operate at the most recently updated power reference. It 

would be beneficial to simulate the impact of the communication failure on the system 

stability. In addition, it is necessary to understand the impact of any power-router failure 

on the operation of the rest of the power routers in the system. 

8.2.3 Economic benefit of power routers  

This research has demonstrated the technical advantages of the proposed power router 

compared to other power-flow-control solutions. It has also shown the cost advantage of 

the proposed power router compared to UPFC and CNT. It would be beneficial to show 

the economic advantages by evaluating the pay-back period for the investor.  
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8.2.4 Implementation of floating converters at very high voltages   

In this research, the proposed power router was demonstrated at 13 kV. The actual 

implementation of the power-router will be at transmission and sub transmission levels, 

which is > 69 kV. The implementation of floating converters at such high voltages is 

associated with its own challenges. Though similar challenges have been addressed in 

case of FACTS devices like TCSC, which have been practically implemented with 

floating converters at voltages up to 369 kV, the challenges unique to the proposed 

system would be more apparent when it is implemented at higher voltages. Of importance 

would be the implementation of low power electronics at floating voltages. Also 

interesting would be to evaluate the cost involved in designing the power router to meet 

the appropriate basic-insulation-level (BIL) requirements.  
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APPENDIX B  

Device Loss Model Coefficients           ,            a1 a2 a3 

IGBT turn-off loss -0.19 1.3365 -0.2649 

IGBT turn-on loss 0.0347 1.388 -0.4233 

IGBT reverse recovery loss 0.0447 1.3208 -0.2851 

 

Device On-State Voltage Model Coefficients           ,          a1 a2 a3 

IGBT  0.3833 0.4014 0.0 

Free-wheeling diode 0.26 0.3275 0.0 

NPC diode 0.1203 1.2387 -0.9916 

 

IEEE 39 Bus data 

Generators: 

Unit 

No. 

H Ra x’d x’q Xd Xq T’do T’qo xl 

1 500.0 0 0.006 0.008 0.02 0.019 7.0 0.7 0.003 

2 30.3 0 0.0697 0.170 0.295 0.282 6.56 1.5 0.035 

3 35.8 0 0.0531 0.0876 0.2495 0.237 5.7 1.5 0.0304 

4 28.6 0 0.0436 0.166 0.262 0.258 5.69 1.5 0.0295 

5 26.0 0 0.132 0.166 0.67 0.62 5.4 0.44 0.054 

6 34.8 0 0.05 0.0814 0.254 0.241 7.3 0.4 0.0224 

7 26.4 0 0.049 0.186 0.295 0.292 5.66 1.5 0.0322 

8 24.3 0 0.057 0.0911 0.290 0.280 6.7 0.41 0.028 

9 34.5 0 0.057 0.0587 0.2106 0.205 4.79 1.96 0.0298 

10 42.0 0 0.031 0.008 0.1 0.069 10.2 0.0 0.0125 
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Line/Transformers: 

Line Data Transformer Tap 

From Bus To Bus R X B Magnitude Angle 

1 2 0.0035 0.0411 0.6987 0.000 0.00 

1 39 0.0010 0.0250 0.7500 0.000 0.00 

2 3 0.0013 0.0151 0.2572 0.000 0.00 

2 25 0.0070 0.0086 0.1460 0.000 0.00 

3 4 0.0013 0.0213 0.2214 0.000 0.00 

3 18 0.0011 0.0133 0.2138 0.000 0.00 

4 5 0.0008 0.0128 0.1342 0.000 0.00 

4 14 0.0008 0.0129 0.1382 0.000 0.00 

5 6 0.0002 0.0026 0.0434 0.000 0.00 

5 8 0.0008 0.0112 0.1476 0.000 0.00 

6 7 0.0006 0.0092 0.1130 0.000 0.00 

6 11 0.0007 0.0082 0.1389 0.000 0.00 

7 8 0.0004 0.0046 0.0780 0.000 0.00 

8 9 0.0023 0.0363 0.3804 0.000 0.00 

9 39 0.0010 0.0250 1.2000 0.000 0.00 

10 11 0.0004 0.0043 0.0729 0.000 0.00 

10 13 0.0004 0.0043 0.0729 0.000 0.00 

13 14 0.0009 0.0101 0.1723 0.000 0.00 

14 15 0.0018 0.0217 0.3660 0.000 0.00 

15 16 0.0009 0.0094 0.1710 0.000 0.00 

16 17 0.0007 0.0089 0.1342 0.000 0.00 

16 19 0.0016 0.0195 0.3040 0.000 0.00 

16 21 0.0008 0.0135 0.2548 0.000 0.00 

16 24 0.0003 0.0059 0.0680 0.000 0.00 
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17 18 0.0007 0.0082 0.1319 0.000 0.00 

17 27 0.0013 0.0173 0.3216 0.000 0.00 

21 22 0.0008 0.0140 0.2565 0.000 0.00 

22 23 0.0006 0.0096 0.1846 0.000 0.00 

23 24 0.0022 0.0350 0.3610 0.000 0.00 

25 26 0.0032 0.0323 0.5130 0.000 0.00 

26 27 0.0014 0.0147 0.2396 0.000 0.00 

26 28 0.0043 0.0474 0.7802 0.000 0.00 

26 29 0.0057 0.0625 1.0290 0.000 0.00 

28 29 0.0014 0.0151 0.2490 0.000 0.00 

12 11 0.0016 0.0435 0.0000 1.006 0.00 

12 13 0.0016 0.0435 0.0000 1.006 0.00 

6 31 0.0000 0.0250 0.0000 1.070 0.00 

10 32 0.0000 0.0200 0.0000 1.070 0.00 

19 33 0.0007 0.0142 0.0000 1.070 0.00 

20 34 0.0009 0.0180 0.0000 1.009 0.00 

22 35 0.0000 0.0143 0.0000 1.025 0.00 

23 36 0.0005 0.0272 0.0000 1.000 0.00 

25 37 0.0006 0.0232 0.0000 1.025 0.00 

2 30 0.0000 0.0181 0.0000 1.025 0.00 

29 38 0.0008 0.0156 0.0000 1.025 0.00 

19 20 0.0007 0.0138 0.0000 1.060 0.00 
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DSP Code For Controller 

#include "DSP281x_Device.h"          // DSP281x Headerfile Include File (chose device) 

#include "DSP281x_Examples.h"    // DSP281x Examples Include File (Set CPU clock) 

#include "math.h"       // ANSI C Include File 

#include "stdlib.h" 

#include "IQmathLib.h" 

#define N 256    // Number of Samples per period 

#define pi 3.14159265358979   // PI 

#define  Conv_Start      GpioDataRegs.GPFDAT.bit.GPIOF8 

#define  PLL              GpioDataRegs.GPBDAT.bit.GPIOB15 

#define  FMain            GpioDataRegs.GPDDAT.bit.GPIOD1 

#define  START_CONT      GpioDataRegs.GPBDAT.bit.GPIOB13 

#define  Sys_Healthy    GpioDataRegs.GPBDAT.bit.GPIOB14 

#define  Spare_op    GpioDataRegs.GPFDAT.bit.GPIOF10 

#define   EGPIO1     GpioDataRegs.GPFDAT.bit.GPIOF4 

/* --- Start: Prototype statements for functions found within this file. --- */ 

 void init_ev(void); 

 void InitGPIO(void); 

 void spi_init(void); 

 void dac_send(double x,double xmin, double xmax, int channel);  

 interrupt void t1uf_isr(void);   

 void filter( _iq *flt_ip, _iq *flt_op_stg1,_iq *flt_op, int ctr1); 

/* ----- end: Prototype statements for functions found within this file. --- */ 

/* ----------- Start: Global variables used in this example ---------------- */ 

 int      Tp=3720;                             // updown counting mode, 75MHz/Tp = 10 kHz 

 int      Tp_EVB=7440;  

 _iq      sine[N];                             // sine table  

   // 2nd order filter constants, f(cutoff) = 10 Hz. F(samp) = 10 KHz 

 _iq      flt_coeff_b[3] = {_IQ(0.00000983),_IQ(0.00001965),_IQ(0.00000983)}; 

 _iq   flt_coeff_a[3] = {_IQ(1.0),_IQ(-

1.991114292201654),_IQ(0.991153595868935)}; 
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// sine wave generator for PLL testing 

Uint16   theta, delta_theta = 6; 

_iq      sinetheta; 

// PI compensator constants 

_iq      freq = _IQ(1.0), theta_pll=_IQ(45), pll_gain = _IQ(2.0);       // Initial freq and theta 

_iq      Ki_pll = _IQ(0.00005), Kp_pll = _IQ(0.1);        // PI loop constants 

_iq      Vdc_Ref = _IQ(0.24);   

_iq      Vdc_max = _IQ(0.75); 

_iq      MI  = _IQ(0.065), mi_act = _IQ(0.0); 

_iq      Ki_Vdc = _IQ(0.000005), Kp_Vdc = _IQ(0.1), Id_lmt = _IQ(0.02);     // Vdc PI 

loop constants 

_iq      Ki_Id = _IQ(0.00001), Kp_Id = _IQ(0.1);         // Id loop constants 

_iq      Ki_Iq = _IQ(0.00001), Kp_Iq = _IQ(0.1);         // Iq loop constants 

_iq      Vdc_temp; 

int      Vdc_flt_flag = 0; 

// PI compensator variables 

_iq      e_pll, iop_pll , temp2; 

_iq      e_Vdc, iop_Vdc, Id_Ref; 

_iq      e_Id, iop_Id, Vq_Ref; 

_iq      e_Iq, iop_Iq, Vd_Ref; 

// PLL Variables 

_iq      S,C, CS; 

Uint16  theta_index;                                  // for debugging 

int     check;      

// Filter variables 

_iq      pll_flt_ip[3], pll_flt_op_stg1[3], pll_flt_op[3]; 

_iq      Vdc_flt_ip[3], Vdc_flt_op_stg1[3], Vdc_flt_op[3]; 

_iq      Vin_flt_ip[3], Vin_flt_op_stg1[3], Vin_flt_op[3]; 

_iq      Id_flt_ip[3], Id_flt_op_stg1[3], Id_flt_op[3]; 

_iq      Iq_flt_ip[3], Iq_flt_op_stg1[3], Iq_flt_op[3]; 

// ADC signals 
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 _iq      Vin=0.0, Vdc = _IQ(0.0), Vcap = _IQ(0.0), Pwr_Ref = _IQ(0.0);  

_iq      Iline = _IQ(0.0), Idiff1 = _IQ(0.0), Idiff2 = _IQ(0.0); 

_iq      Idiff; 

int      Phi_Ref = 0, Phi_act = 0; 

int      index_i =0,temp; 

long     temp3; 

// PLL variables 

_iq D_rect, D_inv; 

// Counters 

Uint16   i=0,ctr1=0,ctr2=0,a=0; 

int16    k=0; 

// Flags 

int Flt_flag; 

int Start_flag; 

// get_sign() variables 

int max_count=5,counter1=0; 

int aS1=1; 

/* -------------- End: Global variables used in this example --------------- */ 

// Start. For Flash loading 

extern Uint16 RamfuncsLoadStart; 

extern Uint16 RamfuncsLoadEnd; 

extern Uint16 RamfuncsRunStart; 

// End. For Flash loading 

void main(void) 

{ 

/* ---------------------------------------------------------------------  

 Initialize System Control: PLL, WatchDog, enable Peripheral Clocks 

 This example function is found in the DSP281x_SysCtrl.c file.         

--------------------------------------------------------------------- */ 

 InitSysCtrl(); 

/* ---------------------Initalize GPIO:--------------------------------- */ 
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 InitGPIO(); 

/* ------Clear all interrupts and initialize PIE vector table:---------- */ 

 DINT;                                    // Disable CPU interrupts  

/* --------------------Flash Initialization----------------------------- */ 

 // MemCopy(&RamfuncsLoadStart, &RamfuncsLoadEnd, &RamfuncsRunStart); 

 // InitFlash(); 

/* ---------------------------------------------------------------------  

 Initialize PIE control registers to their default state. 

 Default state: PIE interrupts disabled and all flags cleared.   

 This function is found in the DSP281x_PieCtrl.c file. 

--------------------------------------------------------------------- */ 

 InitPieCtrl(); 

/* Disable CPU interrupts and clear all CPU interrupt flags:*/ 

 IER = 0x0000; 

 IFR = 0x0000; 

/*  ---------------------------------------------------------------------  

  Initialize the PIE vector table with pointers to the shell Interrupt  

           Service Routines (ISR).This will populate the entire table, even if  

  the interrupt is not used in this example. This is useful for debug  

  purposes. The shell ISR routines are found in DSP281x_DefaultIsr.c.  

  This function is found in DSP281x_PieVect.c.  

 --------------------------------------------------------------------- */ 

 InitPieVectTable(); 

/* --------------ISR functions found within this file.------------------ */ 

 EALLOW;                     // This is needed to write to EALLOW protected register 

 PieVectTable.T1UFINT = &t1uf_isr; 

 EDIS;                // This is needed to disable write to EALLOW protected registers 

/* --Initialize all Device Peripherals: (in DSP281x_InitPeripherals.c)-- */ 

 // InitPeripherals(); // Not required for this example 

 /* -------------Initialize ADC,EVA, EVB and SPI------------------------- */ 

 AdcRegs.ADCTRL1.bit.ACQ_PS = 0x0;      // S/H width in ADC module periods 



168 
 

 AdcRegs.ADCTRL1.bit.SEQ_CASC = 1;        // 1  Cascaded mode 

 AdcRegs.ADCTRL1.bit.CONT_RUN = 0;        // Setup start stop mode  

 AdcRegs.ADCTRL3.bit.ADCCLKPS =0x4;       // ADC clock = 

HSPCLK/(2*ADC_CKPS) =       75MHz/8 = 9.375 MHz     

 AdcRegs.ADCMAXCONV.bit.MAX_CONV1 =0xF;   // Setup number of conv's 

on SEQ1 

 AdcRegs.ADCCHSELSEQ1.all = 0x3210; 

 AdcRegs.ADCCHSELSEQ2.all = 0x7654; 

 AdcRegs.ADCCHSELSEQ3.all = 0xBA98; 

 AdcRegs.ADCCHSELSEQ4.all = 0xFEDB; 

 InitAdc();                                // For this example, init the ADC 

 init_ev();                                // Initialize Event Manger A and Event Manger B 

 //init_evb();                             // Initialize Event Manger B 

 spi_init();                // init SPI 

 EvaRegs.CMPR1 = 0;                       // Initialize PWM/compare  registers 

 EvaRegs.CMPR2 = Tp;                     // Initialize PWM/compare registers 

/* ------------- User defined variable Iitialization.------------------- */ 

 for(i=0;i<N;i++) 

 { 

 sine[i] = _IQ(sin(0.5*pi*i/N));   // Populate Sine table (0 to 90 deg)  

 } 

 for (i=0;i<3;i++)                        // Init filter arrays 

 { 

 pll_flt_ip[i] = _IQ(0.0); 

 Vdc_flt_ip[i] = _IQ(0.0); 

 Vin_flt_ip[i] = _IQ(0.0); 

 Id_flt_ip[i] = _IQ(0.0); 

 Iq_flt_ip[i] = _IQ(0.0); 

 pll_flt_op_stg1[i] = _IQ(0.0);  

 Vdc_flt_op_stg1[i] = _IQ(0.0);  

 Vin_flt_op_stg1[i] = _IQ(0.0); 



169 
 

 Id_flt_op_stg1[i] = _IQ(0.0);  

 Iq_flt_op_stg1[i] = _IQ(0.0);  

 pll_flt_op[i] = _IQ(0.0);              

 Vdc_flt_op[i] = _IQ(0.0);  

 Vin_flt_op[i] = _IQ(0.0);            

 Id_flt_op[i] = _IQ(0.0);              

 Iq_flt_op[i] = _IQ(0.0);              

     } 

 iop_pll = _IQ(0.0); 

 iop_Vdc = _IQ(0.0); 

 START_CONT = 0;                              // Init debugging digital o/p 

/* ----------Enable interrupts required for this example---------------- */ 

 PieCtrlRegs.PIECRTL.bit.ENPIE = 1;        // Enable the PIE block 

 PieCtrlRegs.PIEIER2.bit.INTx6 = 1;       // Enable PIE Group 2, INT 6 (T1UF) 

 IER=0x2;                                 // Enable CPU INT3 

 EINT;                                      // Enable Global Interrupts 

 ERTM;                  // Enable Global realtime interrupt DBGM 

/* ----------------Just sit and loop forever:--------------------------- */ 

 Flt_flag = 0; 

 Start_flag = 0; 

 Spare_op = 0; 

 for(;;);       // Triangular Period 

} 

// ISR's used in this example 

// INT 2.6          

interrupt void t1uf_isr(void)                    // Interrupt from EV-A 

{ 

// EGPIO1=0;   

      EvaRegs.T1PR = Tp;                          // Reload for EVA    

     EvbRegs.T3PR = Tp_EVB;                // Reload for EVB    

/* ---------------------- Start:  ADC Code------------------------------  
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  1) Clear interrupt 

  2) Reset counter 

  3) Start conversion 

  4) Will till end of conversion 

--------------------------------------------------------------------- */ 

     AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;       // clear interrupt 

 AdcRegs.ADCTRL2.bit.RST_SEQ1=1;           //Reset counter to CONV00  

                                               

 AdcRegs.ADCTRL2.bit.SOC_SEQ1=1;         // start of secuence by software  

 while( AdcRegs.ADCST.bit.INT_SEQ1 == 0);  // wait till End of conversion                                        

 //temp = (AdcRegs.ADCRESULT0>>4) - 2100;     

 Vin = (((long)(AdcRegs.ADCRESULT0))<<9) - _IQ(1.035);     

 Vdc = (((long)(AdcRegs.ADCRESULT1))<<9) - _IQ(1.05);       

          //Vdc = _IQmpy(Vdc, _IQ(0.5));  // sensor connected across whole dc bus 

 Vcap =(((long)(AdcRegs.ADCRESULT2))<<9) - _IQ(1.02 

 //Iline = (((long)(AdcRegs.ADCRESULT8))<<9) - _IQ(1.03 

 Idiff1 = (((long)(AdcRegs.ADCRESULT9))<<9) - _IQ(1.04); 

 //Idiff2 = (((long)(AdcRegs.ADCRESULT10))<<9) - _IQ(1.024 

 //Idiff = Idiff1-Idiff2; 

 //Idiff = _IQmpy(Idiff, _IQ(0.5)); 

 Idiff = Idiff1; 

 Pwr_Ref = (((long)(AdcRegs.ADCRESULT4))<<8); // to convert 3.0V to 

_iq(1.0) (iq 24 by default)      

/* ------------------------ End:  ADC Code------------------------------ */ 

/* -----------------------Start:  Theta increment-----------------------  

 1) Increment internally generated refernce sine wave 

 2) Increment actual theta (PLL o/p) 

 3) Find Cos (theta) 

  Theta in pu form (1.0 = 360 deg = 1024 array size) 

 --------------------------------------------------------------------- */     
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 theta_pll += _IQmpy(_IQ(0.006),freq); // Increment theta (PLL o/p) 60*freq 

(pu)/Fs 

 if(theta_pll  >= _IQ(1))  

 { 

 theta_pll = theta_pll - _IQ(1.0); 

     EGPIO1 = 1; 

          } 

 // find Sin theta  

 theta_index =  (int)(_IQ18int(_IQ18mpyIQX(theta_pll,24,_IQ18(1024),18))); 

 if (theta_index >= 1024) theta_index = theta_index - 1024; 

 if (theta_index < 256)    {S =  sine[theta_index];} 

 else if (theta_index < 512)  {S = sine[511-theta_index];} 

 else if (theta_index < 768)  {S = -sine[theta_index - 512];} 

 else                         {S = -sine[1023-theta_index];} 

 // for slow variation of Phi in cos(wt+Phi) for inv cotrol 

if (theta_index < 8) 

 { 

          if (Pwr_Ref < 0) Pwr_Ref = 0; 

          Phi_Ref =  (int)(_IQ18int(_IQ18mpyIQX(Pwr_Ref,24,_IQ18(1024),18))); 

          if (Phi_act < Phi_Ref )  Phi_act += 1; 

 else if (Phi_act > Phi_Ref )  Phi_act -= 1; 

         } 

 dac_send(theta_index,0, 1024,1); 

 // find Cos theta (add 256 (90 deg) to theta_index) 

 theta_index +=  256; 

 if (theta_index >= 1024) theta_index = theta_index - 1024; 

 if (theta_index < 256)    {C =  sine[theta_index];} 

 else if (theta_index < 512)  {C = sine[511-theta_index];} 

 else if (theta_index < 768)  {C = -sine[theta_index - 512];} 

 else                         {C = -sine[1023-theta_index];} 

/* ------------------------- End:  Theta increment---------------------- */ 
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         ctr1 += 1;                                  // used for filtering satges 

          if (ctr1>2) ctr1=0; 

/* -------------------------- Start:  PLL code ------------------------- */ 

 Vin = _IQmpy(Vin,pll_gain); 

 pll_flt_ip[ctr1] =  _IQmpy(Vin,C);           //multiply with Cos and average 

 //pll_flt_ip[ctr1] =  _IQmpy(pll_flt_ip[ctr1],pll_gain); 

 filter(pll_flt_ip,pll_flt_op_stg1,pll_flt_op,ctr1);       // call filter 

/* ------------------------- PI loop for PLL ----------------------- */ 

 e_pll = pll_flt_op[ctr1];         

 iop_pll += _IQmpy(e_pll,Ki_pll);    

 freq    = _IQ(1.0) + iop_pll + _IQmpy(Kp_pll,e_pll); 

 if (iop_pll > _IQ(0.025)) iop_pll = _IQ(0.025);        // Limit the integrator 

 else if (iop_pll < _IQ(-0.025)) iop_pll = _IQ(-0.025); 

   if (freq > _IQ(1.025))  freq = _IQ(1.025);             // Limit PI output 

     else if (freq < _IQ(0.975)) freq = _IQ(0.975); 

/* ------------------------- End:  PLL code ---------------------------- */ 

 //Vin_flt_ip[ctr1] =  _IQabs(Vin);           //get mean value 

 //filter(Vin_flt_ip,Vin_flt_op_stg1,Vin_flt_op,ctr1);       // call filter 

 Vdc_flt_ip[ctr1] =  Vdc;           

 filter(Vdc_flt_ip,Vdc_flt_op_stg1,Vdc_flt_op,ctr1);       // call filter 

 if ((Vdc > Vdc_max)||(Vcap > Vdc_max)) Vdc_flt_flag =1 ; 

 //else Vdc_flt_count = 0; 

 //if (Vdc_flt_count > 1)  Vdc_flt_flag = 1; 

EvaRegs.T1CMPR = Tp; // open BR 

 EvaRegs.T2CMPR = Tp; // open BR 

if ((Conv_Start == 1) && ( FMain == 0) && (Vdc_flt_flag == 0)) 

 { 

 Vdc_temp = Vdc_flt_op[ctr1]; 

            Sys_Healthy = 1; 

            START_CONT = 1; 

 //EvaRegs.T1CMPR = 3600; // dc load on 
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 //EvaRegs.T2CMPR = 3600; // dc load on 

if (Flt_flag == 1)  

 { 

EvaRegs.ACTRA.all = 0x0000; // 0x00066 

 EvbRegs.ACTRB.all = 0x0066; 

             } 

 Flt_flag = 0; 

            if (Start_flag == 0) 

 { 

 if ((theta_index >= 508) && (theta_index <= 516)) // wait for voltage peak 

 { 

 EvaRegs.ACTRA.all = 0x0000; // 0x00066 

 Start_flag = 1;      

               } 

            } 

/* ------------------------- Start  Vdc loop ---------------------------- */ 

 // generate id_ref and limit to 0.2 

          e_Vdc = Vdc_Ref-Vdc;        

  // ref = mean*1.57*1.2        

 iop_Vdc += _IQmpy(e_Vdc,Ki_Vdc);    

 Id_Ref  = iop_Vdc + _IQmpy(Kp_Vdc,e_Vdc); 

 if (iop_Vdc > Id_lmt) iop_Vdc = Id_lmt;        // Limit the integrator 

 else if (iop_Vdc < -Id_lmt) iop_Vdc = -Id_lmt; 

 if (Id_Ref > Id_lmt)  Id_Ref = Id_lmt;             // Limit PI output 

 else if (Id_Ref < -Id_lmt) Id_Ref = -Id_lmt; 

/* ------------------------- End:  Vdc loop ---------------------------- */ 

/* ------------------------- Start  Id loop ----------------------------  

 // generate Vq_ref and limit to 0.2 

 // to increase id increase Vq in negative direction 

 Id_flt_ip[ctr1] =  _IQmpy(Idiff,S);           

 filter(Id_flt_ip,Id_flt_op_stg1,Id_flt_op,ctr1);       // call filter 
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 e_Id = Id_Ref - Id_flt_op[ctr1];       

  

 iop_Id += _IQmpy(e_Id,Ki_Id);    

 Vq_Ref  = -(iop_Id + _IQmpy(Kp_Id,e_Id)); 

 if (iop_Id > _IQ(0.2)) iop_Id = _IQ(0.2);        // Limit the integrator 

 else if (iop_Id < _IQ(-0.2)) iop_Id = _IQ(-0.2); 

 if (Vq_Ref > _IQ(0.2))  Vq_Ref = _IQ(0.2);             // Limit PI output 

 else if (Vq_Ref < _IQ(-0.2)) Vq_Ref = _IQ(-0.2); 

 ------------------------- End:  Id loop ---------------------------- */ 

/* ------------------------- Start  Iq loop ----------------------------  

 // generate Vd_ref and limit  

 // to increase id increase Vd 

 Iq_flt_ip[ctr1] =  _IQmpy(Idiff,C);           

 filter(Iq_flt_ip,Iq_flt_op_stg1,Iq_flt_op,ctr1);       // call filter 

 e_Iq =  0.0 - Iq_flt_op[ctr1];       

  

 iop_Iq += _IQmpy(e_Iq,Ki_Iq);    

 Vd_Ref  = _IQ(0.8) + iop_Iq + _IQmpy(Kp_Iq,e_Iq); 

 if (iop_Iq > _IQ(0.2)) iop_Iq = _IQ(0.2);        // Limit the integrator 

 else if (iop_Iq < _IQ(-0.2)) iop_Iq = _IQ(-0.2); 

 if (Vd_Ref > _IQ(1.0))  Vd_Ref = _IQ(1.0);             // Limit PI output 

 else if (Vd_Ref < _IQ(0.6)) Vd_Ref = _IQ(0.6); 

 ------------------------- End:  Id loop ---------------------------- */   

/* ------------------------- Start: PWM signal generation -------------- */ 

 //D_rect = _IQmpy(Vd_Ref,S) + _IQmpy(Vq_Ref, C); 

 D_rect = _IQmpy(_IQ(0.94),S) + _IQmpy(_IQ(0.09), C);  

// DC bus controlled at 1.2 pu 

 D_rect = D_rect - _IQmpy(Id_Ref, C); 

 //D_rect = _IQmpy(_IQ(0.4),S); 

 D_rect  = _IQ(0.5) + _IQmpy(D_rect,_IQ(0.5)); 

 if (D_rect > _IQ(0.98)) D_rect = _IQ(0.98); 
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 else if (D_rect < _IQ(0.02)) D_rect = _IQ(0.02); 

 if (D_rect >= _IQ(0.5)) 

 { 

 D_rect = _IQmpy(_IQ(2.0),D_rect)-_IQ(1.0); 

 EvaRegs.CMPR1=Tp -(int)(_IQ18int(_IQ18mpyIQX(D_rect,24,_IQ18(Tp),18))); 

 EvaRegs.CMPR2  =  0 ;    

 } 

 else  

 { 

 D_rect = _IQmpy(_IQ(2.0),D_rect); 

 EvaRegs.CMPR1  =  Tp;     

 EvaRegs.CMPR2=Tp- (int)(_IQ18int(_IQ18mpyIQX(D_rect,24,_IQ18(Tp),18))); 

 } 

 // for calculation of Cos (wt +Phi) 

theta_index+=Phi_act ; //+(int)(_IQ20int(_IQ20mpyIQX(theta_pll,24,_IQ20(1024),20))); 

 if (theta_index >= 1024) theta_index = theta_index - 1024; 

 if (theta_index < 256)    {CS =  sine[theta_index];} 

 else if (theta_index < 512)  {CS = sine[511-theta_index];} 

 else if (theta_index < 768)  {CS = -sine[theta_index - 512];} 

 else                         {CS = -sine[1023-theta_index];} 

 if (theta_index < 8) 

 { 

 if (mi_act < MI) mi_act += _IQ(0.00002); 

 } 

 D_inv = _IQ(0.5)+ _IQmpy(mi_act,CS); 

 dac_send(_IQtoF(D_inv),0.0, 1.0,2); 

 if (D_inv >= _IQ(0.5)) 

 { 

 D_inv = _IQmpy(_IQ(2.0),D_inv)-_IQ(1.0); 

 EvbRegs.CMPR4=Tp_EVB(int)(_IQ16int(_IQ16mpyIQX(D_inv,24,_IQ16(Tp_E

VB),16))); 
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 EvbRegs.CMPR5  =  0 ;    

 //EvaRegs.CMPR3=Tp-(int)(_IQ18int(_IQ18mpyIQX(D_inv,24,_IQ18(Tp),18))); 

 //EvbRegs.CMPR6  =  0 ;    

 } 

 else  

 { 

 D_inv = _IQmpy(_IQ(2.0),D_inv); 

 EvbRegs.CMPR4  =  Tp_EVB;  

 EvbRegs.CMPR5=(Tp_EVB+1)-

(int)(_IQ16int(_IQ16mpyIQX(D_inv,24,_IQ16(Tp_EVB),16))); 

 //EvaRegs.CMPR3 =   Tp; 

 //EvbRegs.CMPR6  =  (Tp+1) - 

(int)(_IQ18int(_IQ18mpyIQX(D_inv,24,_IQ18(Tp),18))); 

 } 

 } 

         else  

         {        

 Sys_Healthy = 0; 

 if (FMain == 1) 

             { 

 START_CONT = 0; 

 Flt_flag = 0; 

             EvaRegs.ACTRA.all = 0x0000; 

 EvbRegs.ACTRB.all = 0x0000; 

 EvaRegs.T1CMPR = 0; // discharge cap 

 EvaRegs.T2CMPR = 0; // discharge cap 

           } 

 if (Conv_Start == 0) 

 { 

               Start_flag = 0; 

               EvaRegs.ACTRA.all = 0x0000; // sw1-sw8 off 
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 EvbRegs.CMPR4  =  Tp_EVB;       // sw9/12 off 

 EvbRegs.CMPR5  =  0;        // sw10/11 on      

 //EvaRegs.CMPR3  =  Tp;       // sw13/16 off 

 //EvbRegs.CMPR6  =  0;        // sw14/15 on 

 mi_act = _IQ(0.0); 

 iop_Vdc = _IQ(0.0);      

 } 

 if (Vdc_flt_flag == 1) 

 { 

         START_CONT = 0; 

 Flt_flag = 0; 

 EvaRegs.ACTRA.all = 0x0000; 

 EvbRegs.CMPR4  =  Tp_EVB;       // sw9/12 off 

 EvbRegs.CMPR5  =  0;        // sw10/11 on      

 //EvaRegs.CMPR3  =  Tp;       // sw13/16 off 

 //EvbRegs.CMPR6  =  0;        // sw14/15 on  

 if (Vcap >= Vdc_max) EvaRegs.T1CMPR = 0;      // Turn on BR1 

 else EvaRegs.T1CMPR = Tp;                 // Turn off BR1 

               if (Vdc >= Vdc_max) EvaRegs.T2CMPR = 0;      // Turn on BR12 

 else EvaRegs.T2CMPR = Tp;                 // Turn off BR2 

             } 

               }  

 //START_CONT = 1;                                // START1 for contactor 

 //Sys_Healthy = 1; 

/* ------------------------- End: PWM signal generation -------------- */ 

 //EGPIO1=0;  

 // Enable more interrupts from this timer 

 EvaRegs.EVAIMRA.bit.T1UFINT = 1; 

 // Note: To be safe, use a mask value to write to the entire 

 // EVAIFRB register.  Writing to one bit will cause a read-modify-write 

 // operation that may have the result of writing 1's to clear  
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 // bits other then those intended.  

 EvaRegs.EVAIFRA.all = BIT9; 

 // Acknowledge interrupt to receive more interrupts from PIE group 2 

 PieCtrlRegs.PIEACK.all = PIEACK_GROUP2; 

} 

void filter( _iq *flt_ip, _iq *flt_op_stg1,_iq *flt_op, int ctr1) 

{ 

     int k,i;  

/* ---Start: Butterworth 4th order (2 *2) Filter implementation----- */         

/* ----------------- Start: Filter Stage1 ---------------------- */ 

 k = ctr1-1; 

 flt_op_stg1[ctr1] = _IQmpy(flt_coeff_b[0],flt_ip[ctr1]); 

 for(i=1;i<3;i++) 

 {    

            if (k < 0) k = 2; 

  flt_op_stg1[ctr1] += _IQmpy(flt_coeff_b[i],flt_ip[k])-\ 

 _IQmpy(flt_coeff_a[i],flt_op_stg1[k]); 

 k = k-1; 

 }   

/* ------------------- End: Filter Stage1 ---------------------- */ 

/* ----------------- Start: Filter Stage2 ---------------------- */ 

 k = ctr1-1; 

 flt_op[ctr1] = _IQmpy(flt_coeff_b[0],flt_op_stg1[ctr1]); 

 for(i=1;i<3;i++) 

 {    

 if (k < 0) k = 2; 

 flt_op[ctr1] += _IQmpy(flt_coeff_b[i],flt_op_stg1[k])-\ 

  _IQmpy(flt_coeff_a[i],flt_op[k]); 

 k = k-1; 

 }   

/* ------------------- End: Filter Stage1 ---------------------- */ 
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/* ---End: Butterworth 4th order (2 *2) Filter implementation------- */               

} 

void init_ev() 

{ 

/* ------------- EVA Configure T1PWM, T2PWM, PWM1-PWM6 ----------------- */ 

/* -----------------Initalize EVA Timer2 ---------------------------  

 For synchronization of timer1 and timer2 of EVA: 

 1) Set Timer2 to start with TENABLE bit of timer1 and 

 2) Set Timer2 to use period reg of Timer1                      

----------------------------------------------------------------- */ 

 //EvaRegs.T2PR = Tp;                  

// Timer2 period, not needed if synchronized with timer1 

   EvaRegs.T2CMPR = Tp;                 // Initializ Timer2  compare reg 

   EvaRegs.T2CNT = 0x0000;                  // Timer2 counter 

 EvaRegs.T2CON.all = 0x0883;              // TMODE = cont up/down, T2 compare 

enable 

/* -----------------Initalize EVA Timer1 --------------------------- */ 

 EvaRegs.T1PR = Tp;                     // Timer1 period 

   EvaRegs.T1CMPR = Tp;                 // Timer1 compare for chopper 

     EvaRegs.T1CNT = 0x0000;                  // Timer1 counter           

/* -----------------Initalize EVB Timer3 --------------------------- */ 

 EvbRegs.T3PR = Tp_EVB;                     // Timer3 period 

    EvbRegs.T3CNT = 0x0000;                  // Timer3 counter         

/* ----------------Setup T1/T2 compare outputs (chopper)------------ */ 

           // Polarity of GP Timer 2 Compare = Active high 

 EvaRegs.GPTCONA.bit.T2PIN = 2;      // Timer 2 Compare polarity= Active high         

 EvaRegs.GPTCONA.bit.T1PIN = 2;      // Timer 1 Compare polarity= Active high         

 EvaRegs.GPTCONA.bit.TCMPOE = 1;          // Enable Timer compare o/p  

/* --------- Enable Period interrupt bits for GP timer 1 ----------- */ 

 EvaRegs.EVAIMRA.bit.T1UFINT = 1; 

 EvaRegs.EVAIFRA.bit.T1UFINT = 1;   
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/* ------------------ Enable EVA Timers ---------------------------- */ 

 EvaRegs.T1CON.all = 0x0842;             

// TMODE = cont up/down, T1& T2 enable, T1 compare enable           

  

/* ------------------ Enable EVB Timers ---------------------------- */ 

 EvbRegs.T3CON.all = 0x0842;               

// TMODE = cont up/down, T3& T4 enable, T3 compare enable           

/*--------------- Initialize Compare registers---------------------- */ 

 EvaRegs.CMPR1 = Tp; 

  EvaRegs.CMPR2 = 0x0000; 

 EvaRegs.CMPR3 = Tp; 

 EvbRegs.CMPR4 = Tp_EVB; 

EvbRegs.CMPR5 = 0x0000; 

     EvbRegs.CMPR6 = 0x0000; 

/* ----- Compare action control.  Action that takes place ----------  

      output pin 1 PWM1, PWM3, PWM5 - active high 

        output pin 2 PWM2, PWM4, PWM6 - active low         

 ----------------------------------------------------------------- */ 

     EvaRegs.ACTRA.all = 0x0000; //0x0000-rectifier // 0x00966 -ph staggering 

 EvbRegs.ACTRB.all = 0x0066; // 0x00966 

/* ------------------- Dead band control --------------------------- */ 

 EvaRegs.DBTCONA.all = 0x08F0;            // Enable deadband,  150MHz/(16*4) 

                                             // control time with second digit 

  EvbRegs.DBTCONB.all = 0x08F0;            // Enable deadband,  150MHz/(16*4) 

                                             // control time with second digit 

/* ----------------- Enable PWM/compare operation------------------- 

  Compare enable 

  Reload condition, CNTR = 0 

  Compare o/p enable 

------------------------------------------------------------------ */ 

     EvaRegs.COMCONA.all = 0x8600;            
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 EvbRegs.COMCONB.all = 0x8600;    

} 

void spi_init() 

{     

 SpiaRegs.SPICCR.all =0x000F;          // Reset on, rising edge, 16-bit char bits   

 SpiaRegs.SPICTL.all =0x000E;       // Enable master mode, delay phase, 

  // enable talk, and SPI int disabled. 

 SpiaRegs.SPIBRR =0x000A;        

 SpiaRegs.SPICCR.all =0x009F;   // Relinquish SPI from Reset    

 SpiaRegs.SPIPRI.bit.FREE = 1;           // Set so breakpoints don't disturb xmission 

} 

void dac_send(double x,double xmin, double xmax, int channel) 

{ 

 double Ftest, offset,span; 

 Uint16 data,AB; 

  if(x<xmin)x=xmin; 

  if(x>xmax)x=xmax; 

 offset = - xmin; 

 span = xmax-xmin; 

 Ftest=(x + offset)/span*511.0; 

 data = ((int)(Ftest))<<7; 

  if (channel == 2) AB= 1024; 

 else AB=0; 

 SpiaRegs.SPIDAT= AB + 768 + (data>>8); 

}   

void InitGPIO(void) 

{ 

     EALLOW; 

/* ----------- Initialize all GP as inputs ----------------------------- */ 

 GpioMuxRegs.GPAMUX.all = 0x0000;                // GPIOA registers as I/O 

 GpioMuxRegs.GPADIR.all = 0x0000;  // Set pins as inputs 
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 GpioMuxRegs.GPBMUX.all = 0x0000;             // GPIOB registers as 

I/O 

 GpioMuxRegs.GPBDIR.all = 0x0000;     // Set pins as inputs 

 GpioMuxRegs.GPDMUX.all = 0x0000;             // GPIOD registers as 

I/O 

 GpioMuxRegs.GPDDIR.all = 0x0000;             // Set pins as inputs 

 GpioMuxRegs.GPEMUX.all = 0x0000;             // GPIOE registers as 

I/O 

 GpioMuxRegs.GPEDIR.all = 0x0000;             // Set pins as inputs 

 GpioMuxRegs.GPFMUX.all = 0x0000;             // GPIOF registers as 

I/O 

 GpioMuxRegs.GPFDIR.all = 0x0000;                     // Set pins as inputs 

 GpioMuxRegs.GPGMUX.all = 0x0000;             // GPIOG registers as 

I/O 

 GpioMuxRegs.GPGDIR.all = 0x0000;             // Set pins as inputs 

/* -------------------- Setting SPI pins ------------------------------- */ 

 GpioMuxRegs.GPFMUX.bit.SPICLKA_GPIOF2 = 1;     

// SPICLKA (CLK,P8-25) register as SPI function 

 GpioMuxRegs.GPFMUX.bit.SPISTEA_GPIOF3 = 1;     

 // SPISTEA (Enable, P8-26)register as SPI function 

 GpioMuxRegs.GPFMUX.bit.SPISIMOA_GPIOF0 = 1;     

 // SPISIMOA (Data, P8-23) register as SPI function 

/* ------------------------Selecting PWM pins -------------------------- */ 

 GpioMuxRegs.GPAMUX.bit.PWM1_GPIOA0 = 1;          

// Set GPIOA0 (P8-9) as PWM function 

 GpioMuxRegs.GPAMUX.bit.PWM2_GPIOA1 = 1;       

// Set GPIOA1 (P8-10) as PWM function 

 GpioMuxRegs.GPAMUX.bit.PWM3_GPIOA2 = 1;       

// Set GPIOA2 (P8-11) as PWM function 

 GpioMuxRegs.GPAMUX.bit.PWM4_GPIOA3 = 1;       

// Set GPIOA3 (P8-12) as PWM function 
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 GpioMuxRegs.GPAMUX.bit.PWM5_GPIOA4 = 1;       

// Set GPIOA4 (P8-13) as PWM function 

 GpioMuxRegs.GPAMUX.bit.PWM6_GPIOA5 = 1;      

 // Set GPIOA5 (P8-14) as PWM function 

 GpioMuxRegs.GPAMUX.bit.T1PWM_GPIOA6 = 1;      

// T1PWM register (P8-15) as PWM function  

 GpioMuxRegs.GPAMUX.bit.T2PWM_GPIOA7 = 1;      

// T2PWM register (P8-16) as PWM function  

 GpioMuxRegs.GPBMUX.bit.PWM7_GPIOB0 = 1;         

 // Set GPIOA0 (P8-9) as PWM function 

 GpioMuxRegs.GPBMUX.bit.PWM8_GPIOB1 = 1;       

// Set GPIOA1 (P8-10) as PWM function 

 GpioMuxRegs.GPBMUX.bit.PWM9_GPIOB2 = 1;       

// Set GPIOA2 (P8-11) as PWM function 

 GpioMuxRegs.GPBMUX.bit.PWM10_GPIOB3 = 1;      

 // Set GPIOA3 (P8-12) as PWM function 

 GpioMuxRegs.GPBMUX.bit.PWM11_GPIOB4 = 1;       

// Set GPIOA4 (P8-13) as PWM function 

 GpioMuxRegs.GPBMUX.bit.PWM12_GPIOB5 = 1;       

// Set GPIOA5 (P8-14) as PWM function  

/* ------------------ Selecting XINT pins  ----------------------------- */ 

GpioMuxRegs.GPEMUX.bit.XINT1_XBIO_GPIOE0 = 1; // P8-5 as XINT1 

GpioMuxRegs.GPEMUX.bit.XINT2_ADCSOC_GPIOE1 = 1;    // P4-2 as XINT2 

/* --------------- Setting LEDs pins as DSP outputs -------------------- */ 

 GpioMuxRegs.GPBDIR.bit.GPIOB13 = 1;       // Set GPIOB13 (P7-5) as output 

 GpioMuxRegs.GPBDIR.bit.GPIOB14 = 1;        // Set GPIOB14 (P7-6) as output 

 GpioMuxRegs.GPFDIR.bit.GPIOF10 = 1;         // Set GPIOF10 (P4-5) as output 

 //GpioMuxRegs.GPDDIR.bit.GPIOD1 = 1;         // Set GPIOD1 (P7-4) as output 

/* ----------- Setting Debugging pins as DSP outputs ------------------- */ 

 //GpioMuxRegs.GPFDIR.bit.GPIOF4 = 1;          // Set GPIOF4 (P8-3) as output 

 //GpioMuxRegs.GPFDIR.bit.GPIOF5 = 1;          // Set GPIOF5 (P8-4) as output  
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 EDIS; 

} 

//============================================================== 

// No more. 

//============================================================== 
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