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Power-scalable subcycle pulses 
from laser filaments
A.A. Voronin1,2,3,4 & A.M. Zheltikov1,2,3,4

Compression of optical pulses to ultrashort pulse widths using methods of nonlinear optics is a well-
established technology of modern laser science. Extending these methods to pulses with high peak 
powers, which become available due to the rapid progress of laser technologies, is, however, limited by 
the universal physical principles. With the ratio P/Pcr of the peak power of an ultrashort laser pulse, P, to 
the critical power of self-focusing, Pcr, playing the role of the fundamental number-of-particles integral 
of motion of the nonlinear Schrödinger equation, keeping this ratio constant is a key principle for the 
power scaling of laser-induced filamentation. Here, we show, however, that, despite all the complexity 
of the underlying nonlinear physics, filamentation-assisted self-compression of ultrashort laser pulses 
in the regime of anomalous dispersion can be scaled within a broad range of peak powers against the 
principle of constant P/Pcr. We identify filamentation self-compression scaling strategies whereby 
subcycle field waveforms with almost constant pulse widths can be generated without a dramatic 
degradation of beam quality within a broad range of peak powers, varying from just a few to hundreds 
of Pcr.

Methods of pulse compression are of key signi�cance for ultrafast optical science, playing a central role in the 
rapid progress of laser technologies toward unprecedentedly short pulse widths and extremely high peak pow-
ers1,2. At the forefront of this burgeoning �eld of research, technologies enabling the generation of electromag-
netic lightwaves with temporal envelopes shorter than the �eld cycle have been developed3–7, o�ering unique 
tools for time-resolved studies of the fundamental physics behind light–matter interactions and paving the ways 
toward an ultimate time resolution in electron-dynamic studies and subcycle precision in lightwave sculpting. 
However, for high-peak-power ultrashort laser pulses, which become available due to rapidly progressing laser 
technologies, practical pulse-compression options are usually not many, if any at all, as laser damage severely 
limits conventional solid-state pulse-compression solutions.

Fortunately, laser-induced �lamentation o�ers physical scenarios whereby high-peak-power ultrashort laser 
pulses can be compressed to few-cycle pulse widths8–12. With the advent of e�cient and convenient parametric 
sources of ultrashort pulses in the mid-infrared13–20, the range where many solid-state materials exhibit anoma-
lous dispersion, interesting and practically promising scenarios of �lamentation-assisted pulse compression in 
the regime of anomalous dispersion have been realized21–26, opening the routes toward compact all-solid-state 
sources of few-cycle21,22, single-cycle27, and even subcycle28 pulses in the mid-infrared. If scaled from pulse ener-
gies of a few microjoules to tens of millijoules, these methods of pulse compression would ideally address the 
needs of rapidly developing technologies of short-pulse generation in the mid-infrared20,29.

Such a scaling, however, is nontrivial, and its very possibility is not obvious. While the key parameters of the 
most practically signi�cant scenarios of laser-induced �lamentation are known to obey, to a reasonable approxi-
mation, a set of physically transparent scaling laws in their behavior as functions of laser pulse widths, propaga-
tion paths, and beam-focusing geometries30–32, any scaling with respect to the ratio P/Pcr of the laser peak power, 
P, to the critical power of self-focusing, Pcr, is inherently limited as this ratio controls the number of �laments 
that a high-P laser beam breaks up into and de�nes the limits of the single-�lamentation regime30–33. Keeping this 
ratio constant is therefore one of the key principles in power scaling of laser �laments.

To make matters even more complicated, spatial modulation instabilities (MIs), which tend to build up in a 
laser beam with P well above Pcr

34, give rise to �eld hot spots across the beam30,31,35, increasing the risk of laser 
damage of any solid-state material, needed to provide an anomalous dispersion. Moreover, as a result of spatial 
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MIs, which, in the case of su�ciently high �eld intensities, act jointly with ultrafast �eld-induced ionization, a 
laser beam breaks into multiple �laments, losing its quality and, eventually, its spatial coherence. With all these 
factors being a part of the picture, the question arises as to whether any reasonably power-scalable pulse compres-
sion scenario is possible in this regime.

Here, we show that, despite all the complexity of the underlying nonlinear physics, �lamentation-assisted 
self-compression of ultrashort laser pulses in the regime of anomalous dispersion can be scaled within a broad 
range of peak powers against the principle of constant P/Pcr. Based on the results of (3 +  1)-dimensional super-
computations, we identify �lamentation self-compression scaling strategies whereby subcycle �eld waveforms 
with almost constant pulse widths can be generated without a dramatic degradation of beam quality within a 
broad range of P, varying from just a few to hundreds of Pcr, enabling the generation of subcycle �eld waveforms 
with energies from tens of microjoules to several millijoules.

General concept: Soliton self-compression
In one-dimensional pulse evolution, i.e., when the �eld in an optical waveform is allowed to be a function of only 
one, longitudinal spatial coordinate, while the dependence on the radial coordinates is suppressed, temporal 
self-compression is a universal behavior of ultrashort light pulses in the regime of anomalous dispersion36. �is 
e�ect is widely used for pulse compression in optical �bers37 and is described by the canonical version of the 
nonlinear Schrödinger equation (NSE)36,37. As a part of their 1D soliton dynamics, ultrashort light pulses propa-
gating in an anomalously dispersive medium with an instantaneous cubic nonlinearity with no high-order disper-
sion are known to display well-resolved cycles37, in which the phase of pulse compression is followed by pulse 
stretching. �is oscillatory, breathing dynamics is fully controlled by the soliton number N =  (ld/lnl)

1/2, where 

τ β=l /d
2

2  ld is the dispersion length, lnl =  λ(2πn2I)–1 is the nonlinear length, I is the �eld intensity, n2 is the 
nonlinear refractive index, τ is the pulse width, β2 is the group-velocity dispersion coe�cient, and λ is the wave-
length. In this approximation, the minimum pulse width of a breathing soliton is achieved at the length 
lN ≈  πld/2(0.32/N +  1.1/N2)37.

Because of high-order dispersion, pulse self-steepening, and the inertial part of optical nonlinearity, the �eld 
waveform dynamics can substantially di�er from this textbook scenario already in the 1D case. �ese di�erences 
become especially drastic if the pulse width achieved as a part of pulse self-compression dynamics becomes close 
to the �eld cycle38. Field evolution becomes even more complicated when the laser peak power P becomes higher 
than the critical power of self-focusing, Pcr =  Cλ2/(8π n0n2), where λ is the wavelength, n0 is the �eld-free refrac-
tive index, n2 is the nonlinear refractive index, and C is a beam-pro�le-sensitive constant (for a Townes mode, 
C ≈  3.72). In this regime, the �eld evolution in the time domain is strongly coupled to complex beam dynamics, 
which, in its turn, may drastically vary from the leading to the trailing edge of the pulse. Finally, in the P ≫  Pcr 
regime, any 1D treatment is expected to fail as the beam becomes inherently unstable with respect to spatial mod-
ulation instabilities, producing hot spots, breaking up into multiple �laments, eventually losing its connectedness 
and spatial coherence. Still, within a limited parameter space, clear signatures of solitonic pulse self-compression 
can be isolated even in this extreme regime of �eld evolution, enabling the generation of extremely short, subcycle 
optical �eld waveforms39. �e main goal of our analysis here is to examine whether the power of these subcycle 
�eld waveforms can be scaled in the P ≫  Pcr regime of laser �lamentation without dramatic degradation of beam 
quality.

One of the main di�culties of such a strategy when applied to a solid-state material is that, for such a material, 
there is no easy way to vary the critical power of self-focusing Pcr, e.g., by changing the density of a nonlinear 
medium, as it would be possible in the gas phase. �us, varying the laser peak power P will change the P/Pcr ratio 
as well. �e strategy we are a�er should therefore enable power scaling of self-compression in a laser �lament in 
violation of the principle of constant P/Pcr. Such an approach can, of course, work only to a certain approximation, 
allowing, at best, a certain parameter, e.g, the pulse width τс at the point of maximum pulse compression, as in 
our approach, to be kept approximately constant within a reasonably broad range of P. While the key principles of 
this power scaling are based on qualitative physical arguments, including those borrowed from the 1D analysis, 
some elements of blind optimization within a limited parameter space will be inevitably needed to �nely tune 
parameters for the most accurate power scaling of pulse self-compression in a laser �lament.

Modeling
Our numerical analysis is based on the three-dimensional time-dependent generalized nonlinear Schrödinger 
equation30,31 for the amplitude of the �eld, which is referred to hereina�er as the (3 +  1)-d GNSE model. �is 
generalization of the nonlinear Schrödinger equation (NSE) includes all the key physical phenomena that have 
been identi�ed as signi�cant factors behind the spatiotemporal evolution of ultrashort optical pulses in nonlinear 
media, such as dispersion and absorption of the medium, beam di�raction, space-time focusing, Kerr nonline-
arities, pulse self-steepening, spatial self-action phenomena, as well as ionization-induced loss, dispersion, and 
optical nonlinearities. In this model, the �eld evolution equation is solved jointly with the rate equation for the 
electron density ρ(t), which includes impact ionization and photoionization with the photoionization rate calcu-
lated using the Keldysh formalism40. Simulations are performed for typical parameters of YAG. �e band gap is 
estimated as the band-edge value for YAG41, Eg ≈  6.4 eV, although no signi�cant changes were observed in simu-
lations when the direct band-gap value of YAG41, E’g ≈  6.5 eV, was used. �e Kerr-e�ect nonlinear refractive index 
is taken as n2 =  4 ×  10−16 cm2/W to provide the best �t between simulations and experiments42–44. �is value is 
within a factor of 1.75 of the n2 coe�cient used in some of the earlier studies (e.g., in ref. 45), which is acceptable 
for a phenomenologically de�ned constant. Agreement between simulations and experiments42–44 also dictates a 
higher order Kerr e�ect (HOKE) coe�cient n4 ≈  − 1 ×  10−29 cm4/W2. �is HOKE term is, in fact, one of the key 



www.nature.com/scientificreports/

3SCieNTifiC RePoRts | 6:36263 | DOI: 10.1038/srep36263

limiting factors for the minimum pulse widths achieved in our simulations – compression to much shorter pulse 
widths becomes possible with n4 =  0.

Dispersion of YAG crystal was included in the model through a Sellmeier relation46. �e zero group-velocity 
dispersion wavelength for YAG is λz ≈  1610 nm. Similar to many other suitable materials, YAG exhibits anoma-
lous dispersion in the long-wavelength part of the near-IR and in the mid-IR range. We therefore choose to work 
with an input �eld at a central wavelength λ =  3.9 µ m. Sub-100-fs pulses with peak powers orders of magnitude 
higher than the self-focusing threshold for YAG (Pcr ≈  30 MW at λ =  4 µ m) can be delivered at this central wave-
length by mid-infrared OPCPA sources13,20,29,47. Spatial modulation instabilities leading to the formation of mul-
tiple �laments are seeded in our model by superimposing a Gaussian-noise modulation on the input beam pro�le 
with a standard deviation of 4%35. Simulations were performed using an MPI parallel programming interface and 
the CUDA graphical architecture on the Lomonosov supercomputer cluster of Moscow State University.

Soliton self-compression in 3D dynamics
Results of (3 +  1)-d GNSE simulations presented in Figs 1 and 2 illustrate the key tendencies of �lamentation 
dynamics of ultrashort laser pulses in an anomalously dispersive medium. In the time domain (Fig. 1c), the pulse 
is seen to undergo self-compression at the �rst stage of its spatiotemporal evolution, reaching, for suitably chosen 
input parameters (Fig. 1c), subcycle pulse widths at the point of maximum pulse compression, z ≈  lc. �is pulse 
compression stage is followed by post-compression pulse stretching, accompanied, in the P ≫  Pcr regime, by beam 
break up into multiple �laments (to the right of the vertical dashed lines in rows V–VII in Fig. 1a,b).

Although pulse self-compression dynamics in the regime of anomalous dispersion has been thoroughly under-
stood for optical �bers, in the case of freely propagating beams, this self-compression behavior, as can be seen in 
Figs 1 and 2, is observed as a part of complex spatiotemporal �eld evolution, involving di�raction, self-focusing 
due to the Kerr nonlinearity, defocusing and scattering by the transverse pro�le of the electron density induced 
by ultrafast photoionization, as well as beam �lamentation, spatial modulation instabilities, ionization-induced 
blue shi�, shock waves, and the high-order Kerr e�ect. Results of simulations presented in rows V–VII of Fig. 2b,d 
show that, in the regime of P ≫  Pcr, not only the one-dimensional analysis, but any treatment assuming that the 
beam preserves its radial symmetry fails as the beam becomes intrinsically unstable with respect to spatial mod-
ulation instabilities (rows V–VII in Fig. 2b,d), amplifying random �eld-intensity �uctuations, which feature no 
symmetry whatsoever. �ese instabilities give rise to hot spots randomly distributed across the laser beam (rows 
V–VII in Fig. 2b), induce random, asymmetric sidelobes in the angular spectra (rows V–VII in Fig. 2d), and lead 
to beam breakup into multiple �laments (rows V–VII in Figs 1a and 2b), increasing the risk of optical damage 
and dramatically lowering the output beam quality. �e input parameters in simulations presented in Figs 1 and 2  
are chosen in such a way as to keep the electron density ρ at any point of a �lament below 0.1ρcr (shown by the 
horizontal dash–dotted line in Fig. 3a,b), ρcr being the critical plasma density for given λ. However, with plasma 
refraction enhanced for longer wavelengths, excessive ionization can also give rise to unwanted beam scattering, 
which tends to grow toward the trailing edge of the pulse, giving rise to conical patterns in output beam pro�les 
(rows II–VII in Fig. 2a), thus also lowering the beam quality of compressed pulses.

Simulations presented in Figs 1 and 2 are instructive in showing that a �nite length lm is needed for modu-
lation instabilities to build up across a laser beam from the noise level, giving rise to multiple �laments at later 
stages of �eld evolution. With input beam parameters in all simulations presented in Figs 1 and 2 chosen in such 
a way as to keep the di�raction length ldf =  kw0

2 (k =  2πn0/λ and w0 is the beam radius) long compared to lm, a 
simple estimate lm ≈  5lnl, which corresponds to an MI gain of exp(5) according to the Bespalov–Talanov (BT) MI 
theory34, agrees reasonably well with the MI buildup length in (3 +  1)-d simulations. Moreover, as long as the 
soliton compression length lc is kept shorter than both ldf and lm, both the length at which the minimum pulse 
width is achieved in (3 +  1)-d simulations in Fig. 1c and the minimum pulse width τc in these simulations are 
in almost perfect agreement (Fig. 3a,b) with predictions of the 1D GNSE model37 – one-dimensional general-
ization of the NSE, which includes high-order dispersion, inertia and dispersion of optical nonlinearity, and 
�eld-induced ionization30,31.

Based on these observations, we use the results of 1D analysis and predictions of the BT theory as a refer-
ence and a guide to de�ne, in a rough approximation, a limited area within the parameter space within which 
P-scalable subcycle pulse generation with approximately constant pulse width τс at the point of maximum pulse 
compression can be expected in laser �laments. Full (3 +  1)-dimensional simulations are then performed to �nely 
tune parameters within this area, o�en via a blind search, for the best P scalability of this regime of subcycle pulse 
generation.

To include limitations related to the laser damage in our model, we use a standard quantitative measure for the 
laser breakdown threshold48,49, loosely de�ned as ρth ≈  0.1ρcr, with ρcr being the critical plasma density for given λ, 
and require that the global maximum electron density, ρm, achieved at any point inside the material at any instant 
of time be less than 0.1ρcr. For relatively low laser peak powers, the global maximum of the electron density is typ-
ically observed on the beam axis (Fig. 1a). In the high-P regime, however, this maximum can be achieved at one 
of the MI-induced �eld hot spots, randomly distributed over the laser beam (Fig. 2b,d). In Fig. 3a,b, we show ρm 
calculated as a function of the �eld intensity I for three di�erent input pulse widths. �e limiting admissible laser 
intensities and, hence, the input peak powers are found from the points where the ρm(I) dependences cross the 
ρth =  0.1ρcr line (dashed horizontal lines in Fig. 3a,b). In particular, for an input pulse width τ0 =  80 fs, that is, the 
τ0 value used in simulations presented in Figs 1 and 2, laser-damage considerations dictate a limiting admissible 
input intensity of about 5.8 TW/cm2.

Power-scalable subcycle pulses
Power scalability of subcycle waveform generation through �lamentation-assisted pulse self-compression is illus-
trated in Fig. 4a–c, which present the pulse width at the point of maximum pulse compression calculated as a 
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Figure 1. Spatiotemporal (3 +  1)-dimensional dynamics of a laser pulse with the central wavelength 
λ0 =  3.9 µ m and the initial pulse width τ0 =  80 fs in an anomalously dispersive nonlinear medium: (a) the 
radial distribution of the �eld intensity integrated over the pulse as a function of the propagation coordinate, 
(b) electron density in the wake of the pulse, (c) spatiotemporal evolution of the �eld intensity, and (d) 
temporal envelope (top) and the spectrum (bottom) of the pulse on the beam axis at the point of maximum 
pulse compression. �e peak power, P, energy, W, and beam diameter, d, of the input laser pulse are P =  5Pcr, 
W =  13 µ J, d =  70 µ m (row I), P =  15Pcr, W =  40 µ J, d =  120 µ m (row II), P =  30Pcr, W =  75 µ J, d =  170 µ m (row 
III), P =  100Pcr, W =  0.25 mJ, d =  260 µ m (row IV), P =  200Pcr, W =  0.5 mJ, d =  370 µ m (row V), P =  300Pcr, 
W =  0.75 mJ, d =  450 µ m (row VI), and P =  500Pcr, W =  1.25 mJ, d =  590 µ m (row VII).
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Figure 2. Multiple �lamentation dynamics of a laser pulse with the central wavelength λ0 =  3.9 µ m and the initial 
pulse width τ0 =  80 fs in an anomalously dispersive nonlinear medium: (a,b) transverse beam pro�les and (c,d) the 
angular spectra at the point of maximum pulse compression (a,c) and at z =  6 mm (b,d). Parameters of the input 
pulse in rows I–VIII are as speci�ed in Fig. 1.
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Figure 3. �e length of maximum pulse compression ((a) le� axis) and the pulse width τc at the point of 
maximum pulse compression ((b) le� axis) as functions of the input �eld intensity calculated using the 
(3 +  1)-dimensional model (�lled circles, open circles, and diamonds) and the 1D GNSE (solid lines). �e right 
axes show the maximum electron density ρm within a �lament calculated as a function of the driver intensity 
using the (3 +  1)-dimensional model (�lled circles, open circles, and diamonds) and the 1D GNSE (dotted 
lines). Also shown (dashed line) is the MI buildup length lm as predicted by the Bespalov—Talanov theory. �e 
horizontal dash—dotted line shows the 0.1ρcr level of electron density, taken in our analysis as a criterion of 
increased risk of laser damage of the material. �e input pulse width is τ0 =  80 fs (blue line and �lled circles), 
150 fs (red line and open circles), and 250 fs (green line and diamonds). �e central wavelength of the laser pulse 
is λ0 =  3.9 µ m.

Figure 4. (a–c) �e minimum on-axis pulse width τc (green), the minimum beam-integrated pulse width τ’с 
(blue), and the whole-beam energy throughput ξ (purple) calculated using the (3 +  1)-dimensional model as 
functions of the P/Pcr ratio. �e input pulse width is τ0 =  80 fs (a), 150 fs (b), and 250 fs (c). �e input �eld intensity 
is 1.0 TW/cm2 (�lled circles), 1.5 TW/cm2 (asterisks), 2.0 TW/cm2 (open circles), 3.0 TW/cm2 (triangles), 4.0 TW/
cm2 (diamonds), and 5.5 TW/cm2 (squares). �e central wavelength of the laser pulse is λ0 =  3.9 µ m. (d) Two-
dimensional map of the beam pro�le evolution in a vacuum behind a YAG plate with a thickness set exactly equal 
to lc with a 3-cm-focal-length lens or mirror placed at a distance of llens ≈  7 mm from the exit surface (shown by the 
vertical dashed line). �e input peak power is 500 Pcr. �e input pulse width is 80 fs.
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function of the P/Pcr ratio. Each point in these plots represents a full (3 +  1)-d simulation for an individual set of 
initial parameters (speci�ed in the �gure caption) chosen in such a way as to meet the conditions lc <  ldf, lm and 
ρm <  0.1ρcr. �e lower curves show the minimum pulse width τс on the beam axis, while the upper curves display 
the pulse width τ′с of the temporal envelope or the laser power integrated over the entire beam, 

∫ ∫′ =
−∞

∞

−∞

∞
P t I x y t dxdy( ) ( , , ) . �e optimal sets of parameters needed to achieve the most e�cient pulse com-

pression on the beam axis and within the entire beam, as well as the propagation paths needed to achieve these 
minima, as can be seen from Fig. 4a–c, are generally di�erent.

Due to the remarkably e�cient pulse self-compression within the entire beam (the upper curves in Fig. 4a–c), 
no beam diaphragming with a �nite-diameter pinhole is necessary for a high energy throughput of pulse com-
pression. �e energy throughput for such whole-beam pulse self-compression, de�ned as the ratio ξ =  Wc/W0 of 
the energy Wc within the entire beam at the point of maximum pulse compression, z =  lc, to the input pulse energy 
W0 is also presented in Fig. 4a–c, showing that whole-beam self-compression to sub-30-fs pulse widths with an 
energy throughput above 90% is possible within a broad range of P/Pcr ratios (e.g., for P/Pcr ranging from 30 to 500 
in Fig. 4a,b and P/Pcr from 100 to 500 in Fig. 4c).

With the conditions lc <  ldf, lm and ρm <  0.1ρcr satis�ed for all the calculations presented in Figs 1 and 2, the 
adverse e�ect of MIs and multiple �lamentation on the beam quality at z =  lc is minimized. �is is veri�ed by 
the transverse beam pro�les at the point of maximum pulse compression and their angular spectra presented in 
Fig. 2a,с. However, as the optical �eld propagates further on along the z-axis, well-resolved signatures of grow-
ing MIs show up in both transverse beam pro�les (rows V–VII in Fig. 2b) and angular spectra (rows V–VII in 
Fig. 2d), indicating a rapid degradation of beam quality.

As the most striking result, simulations presented in Figs 1c,d and 3a–c show that subcycle pulse widths τс can 
be maintained within a broad range of laser peak powers, varying from just a few to hundreds of critical powers of 
self-focusing. As can be seen from these simulations, optical waveforms with a minimum pulse width of 12–13 fs 
can be generated for laser peak powers from, roughly, 5Pcr up to at least 500Pcr. �e main physical factors that 
limit power scalability of subcycle waveforms to even higher P include the increased risk of optical damage, the 
exponentially growing gain of MIs, excessive plasma scattering, as well as pulse breakup before the point of max-
imum pulse compression through the �ssion of soliton transients enhanced by ultrafast ionization38.

As a typical behavior of their temporal envelope, optical waveforms produced at the point of maximum pulse 
compression feature an intense subcycle peak with a pulse width τс ≈  12–13 fs, which is shi�ed toward the back 
of the pulse (Fig. 1d). �is time shi� is due to optical shock-wave e�ects which, similar to 1D pulse compression 
scenarios in gas-�lled hollow waveguides38, play a signi�cant role in subcycle pulse generation in laser �laments. 
In the regime considered here, shock-wave e�ects enhance the spectral broadening of the high-frequency part 
of the spectrum and steepen the trailing edge of the �eld waveform (Fig. 1c,d). With this waveform steepening, 
the energy is no longer uniformly distributed over multiple individual pulses forming a breathing soliton, but 
is concentrated within one of the soliton transients toward the back of the pulse. �is e�ect, acting jointly with 
ionization-induced enhancement of the high-frequency part of the spectrum (Fig. 1d), assists a synthesis of an 
isolated subcycle soliton feature shi�ed toward the trailing edge of the pulse, as shown in Fig. 1d.

At the carrier wavelength λ =  3.9 µ m, the pulse width τс ≈  12–13 fs of the most intense peak in the compressed 
pulse envelope (Fig. 1d) corresponds to 0.9 �eld cycles. Being shi�ed toward the back of the original laser pulse, 
this subcycle �eld transient is preceded by a pedestal, which contains 20–23% of the total energy of the compressed 
pulse and whose peak intensity is 10–15 times lower than the intensity at the center of the 12–13-fs main peak. 
For the input peak power P =  500Pcr, input energy W =  1.25 mJ, and beam diameter of the input pulse d =  590 µ 
m (row VII in Figs 1 and 2), the 12-fs peak of the compressed pulse has an energy of 0.4 mJ, translating into a 
peak power of 35 GW, which is 2.1 times higher than the input peak power. With the thickness of the nonlinear 
medium set exactly equal to lc, a 3-cm-focal-length lens or mirror placed at a distance of 7 cm from the exit sur-
face will focus this beam into a spot with a diameter of about 140 µ m, giving rise to a �eld intensity of 100 TW/cm2  
at the focal plane (Fig. 4e).

Unlike (3 +  1)-d simulations, which provide a quantitative understanding of hot-spot formation and multiple 
�lamentation across a laser beam in the P/Pcr ≫  1 regime (Figs 1 and 2), (2 +  1)-d models can at best only o�er 
qualitative insights, but cannot quantitatively describe high-P beam breakup and multiple �lamentation, as they 
rely on the assumption that the beam preserves its axial symmetry, which fails for P/Pcr ≫  1. When dealing with 
the beam breakup due to MIs and multiple �lamentation, (2 +  1)-d studies have to rely on simple qualitative cri-
teria, which can be formulated, e.g., in terms of quite arbitrary limitations on the B integral (e.g., ref. 50). Such an 
approach can help de�ne the parameter space where MIs and multiple �lamentation can be avoided, but cannot 
help examine the in�uence of MIs and multiple �lamentation on pulse evolution. �is explains why the use of 
much more powerful computer resources (supercomputer simulations are usually necessary for (3 +  1)-d anal-
ysis, while (2 +  1)-d simulations can be run on a personal computer) is indeed justi�ed whenever quantitative 
picture of multiple �lamentation is needed, e.g., when the results of simulations have to be used for a predictive 
modeling of �lamentation self-compression experiments42–44.

We emphasize that the scaling of �lamentation-assisted self-compression of high-P laser pulses identi�ed in 
this work is more general than and is not reduced to the scaling of pulse self-compression based on the inten-
sity dependence of small-scale self-focusing (e.g., ref. 50). While the latter approach suggests that the peak 
power of the pulse can be scaled by simply keeping its intensity constant, the approach advocated here is not 
reduced to a limiting case of large Marburger self-focusing lengths, but also extends the scaling of �lamentation 
pulse self-compression to the case when the Marburger self-focusing length lM is comparable with the pulse 
self-compression length lc, so that the beam undergoes self-focusing as a whole. In particular, in lines I, II, and 
III in Fig. 1, the self compression length lc is estimated as 1.0, 1.1, and 1.2 mm, respectively, while the Marburger 
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length lM is 0.95, 1.3, and 1.7 mm, respectively. As a result, the beam dynamics, as can be seen from the maps pre-
sented in lines I, II, and III in Fig. 1 is dominated by the self-focusing of the beam as a whole.

3D soliton self-compression in laser filaments versus light bullets
Simulations presented in Fig. 1c demonstrate that the �lamentation-assisted soliton pulse self-compression con-
sidered in the previous sections of this paper can take place in the regimes where the generation of light bullets51–53 
is also possible (Fig. 1c, rows I–III). Generally, even when light bullet formation and �lamentation-assisted soliton 
self-compression occur in the same parameter space (Fig. 1c, rows I–III), these phenomena are separated in space 
(Fig. 1c, rows II and III) unless the parameters are chosen in a special way, such that lM ≈  lc. In this special case, 
the point of maximum soliton pulse compression can coincide with the point where light bullets are generated 
(Fig. 1c, row I). A distinctly di�erent physics behind these two processes is illustrated in Fig. 5, which presents the 
details of spatiotemporal pulse evolution shown in row II of Figs 1 and 2. Here, the laser pulse is seen to undergo 
pulse self-compression, reaching a minimum on-axis pulse width of 12 fs at z ≈  lc ≈  1.1 mm (Fig. 5a). Formation 
of a light bullet, on the other hand, is not observed until z ≈  2 mm (Fig. 5a,b). Starting with this point, typical fea-
tures of a light bullet can be readily recognized. Unlike the self-compressed pulse at z ≈  lc ≈  1.1 mm (Fig. 5c), the 
light bullet is shi�ed along the time axis, with its maximum localized at τ ≈  − 0.1 ps at z ≈  4 mm (Fig. 5b,d), due to 
a characteristic phase matching in a light bullet54,55.

While light bullets need a reservoir of energy to support their propagation even in vacuum26, 
�lament-compressed subcycle pulses studied in this work, once created, can propagate without any external 
energy supply. In particular, unlike light bullets, such pulses can be refocused and transmitted over large dis-
tances, of course, subject to the laws of dispersion and di�raction. As a result, the temporal properties of light bul-
lets and subcycle pulses generated through soliton self-compression are very di�erent. �e pulse width in the light 
bullet on the beam axis is very short, about 12 fs at z ≈  4 mm (Fig. 5a). However, because of the energy reservoir 
needed for the existence of a light bullet26,56, when integrated over the entire beam, the pulse width at z ≈  4 mm is 
about 80 fs (Fig. 5b). For a self-compressed pulse at z ≈  lc ≈  1.1 mm, on the other hand, the beam-integrated pulse 
width is much shorter, about 28 fs (Fig. 5b), since this pulse does not require an external energy reservoir.

In simulations presented in rows II and III of Fig. 1c, the Marburger self focusing length, lM ≈  1.3 and 1.7 mm 
for rows II and III in Fig. 1, respectively, is larger than the soliton self-compression length, lc ≈  1.1 mm. As a result, 
a�er the �rst compression at z ≈  lc ≈  1.1 mm, the pulse undergoes a second cycle of compression at a distance 
z ≈  1.8 mm in row II in Fig. 1c (also Fig. 5a) and z ≈  2.9 mm in row III in Fig. 1c, which in both cases is slightly 
larger than lM because of ionization-induced defocusing.

�e di�erence in phase matching controlling the generation of new frequency components in the light bul-
let and in the self-compressed pulse at z ≈  lc ≈  1.1 mm is also clearly seen in the angular spectra presented in 
Fig. 5e,f. Speci�cally, signature circular fringes seen in Fig. 5f are typical of light bullets57,58, indicating e�cient 
generation of new frequency components at large angles with respect to the beam axis. �e angular spectrum 

Figure 5. Spatiotemporal (3 +  1)-dimensional dynamics of a laser pulse with λ0 =  3.9 µ m, τ0 =  80 fs, P =  15Pcr, 
W =  40 µ J, and d =  120 µ m: (a,b) spatiotemporal evolution of (a) the on-axis �eld intensity and (b) �eld intensity 
integrated over the beam, (c,d) the maps of the �eld intensity resolved in time and the radial coordinate x at 
z =  1.1 mm (c) and z =  4 mm (d), (e,f) the angular spectra of the pulse at z =  1.1 mm (e) and z =  4 mm (f).



www.nature.com/scientificreports/

9SCieNTifiC RePoRts | 6:36263 | DOI: 10.1038/srep36263

of the compressed pulse at z ≈  lc ≈  1.1 mm, on the other hand, does not exhibit such circular fringes, as new fre-
quency components are predominantly generated along the beam axis, explaining, in particular, why the insights 
obtained from 1D treatment are so helpful for the full 3D analysis of this pulse self-compression scenario.

While light-bullet formation is distinctly di�erent from the �lamentation-assisted pulse self-compression 
scenario examined in this work, dynamics of soliton self-compression is, on the opposite, very relevant, o�ering 
important physical insights into the considered scenario of subcycle pulse generation. Well-resolved soliton fea-
tures can be readily identi�ed in the considered �lamentation pulse self-compression dynamics. Indeed, behind 
the point of maximum pulse self-compression (z ≈  1.1 mm in row II of Fig. 1c and in Fig. 5a), the pulse under-
goes a stretching phase again, following the evolution of a high-order soliton with a soliton number N ≈  2.5. In 
particular, the length of maximum pulse compression in 1D dynamics of an N =  2.5 soliton, lN ≈  1.16 mm, agrees 
very well with the length of maximum pulse compression in 3D simulations, lc ≈  1.1 mm.

Conclusion
To summarize, we have shown that, despite all the complexity of the underlying nonlinear physics, 
�lamentation-assisted self-compression of ultrashort laser pulses in the regime of anomalous dispersion can 
be scaled within a broad range of peak powers against the principle of constant P/Pcr. Based on the results of 
(3 +  1)-dimensional supercomputations, we have identi�ed �lamentation self-compression scaling strategies 
whereby subcycle �eld waveforms with almost constant pulse widths can be generated without a dramatic degra-
dation of beam quality within a broad range of P, varying from just a few to hundreds of Pcr, enabling the genera-
tion of subcycle �eld waveforms with energies from tens of microjoules to several millijoules.
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