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ABSTRACT The use of large arrays might be the solution to the capacity problems in wireless com-
munications. The signal-to-noise ratio (SNR) grows linearly with the number of array elements N when
using Massive MIMO receivers and half-duplex relays. Moreover, intelligent reflecting surfaces (IRSs)
have recently attracted attention since these can relay signals to achieve an SNR that grows as N2, which
seems like a major benefit. In this article, we use a deterministic propagation model for a planar array
of arbitrary size, to demonstrate that the mentioned SNR behaviors, and associated power scaling laws,
only apply in the far-field. They cannot be used to study the regime where N → ∞. We derive an exact
channel gain expression that captures three essential near-field behaviors and use it to revisit the power
scaling laws. We derive new finite asymptotic SNR limits but also conclude that these are unlikely to
be approached in practice. We further prove that an IRS-aided setup cannot achieve a higher SNR than
an equal-sized Massive MIMO setup, despite its faster SNR growth. We quantify analytically how much
larger the IRS must be to achieve the same SNR. Finally, we show that an optimized IRS does not behave
as an “anomalous” mirror but can vastly outperform that benchmark.

INDEX TERMS Intelligent reflecting surface, reconfigurable intelligent surface, software-controlled meta-
surface, massive MIMO, regenerative MIMO relays, asymptotic limits, power scaling law, near-field,
far-field.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (mMIMO) is
the key physical layer technology in 5G [2]. In a

nutshell, mMIMO uses a base station with many antennas
(e.g., ≥ 64) to deliver large array gains and perform spa-
tial multiplexing of many users on the same time-frequency
resource [3]–[5]. In this way, the spectral efficiency (SE) can
be increased by, at least, an order of magnitude compared to
4G and mmWave communications can be enabled in mobile
networks. Due to the success of mMIMO, it is expected that
beyond 5G systems will make use of even larger arrays and
wider spectrum ranges [6], [7]. The arrays can either consist
of active or passive elements, and both cases are considered
in this article.

The active arrays are essentially mMIMO transceivers but
with many more antenna elements than what is considered in
5G (i.e., much more than 64). To make this clear, the research
community has recently used new names to describe this cat-
egory; for example, large intelligent surfaces [8], extremely
large aperture arrays [9], and holographic MIMO [10].
However, in this article, we will simply refer to it as mMIMO
since asymptotically large arrays have been analyzed since
the inception of mMIMO [3], [11], [12].
The passive arrays are large metasurfaces [13], [14] that

are deployed somewhere in the propagation environment
(in between the transmitter and receiver) to support the
transmission from a source to a destination by creating
and shaping additional propagation paths. A metasurface
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consists of many sub-wavelength-sized elements that each
acts as a diffuse scatterer [13] but with the special fea-
ture of being able to adjust the phase (i.e., time delay) and
polarization. By controlling the phase-shifts of the individual
elements, the metasurface can “reflect” an incident wave as
a beam in the desired direction [14]; the physics is the same
as for beamforming using a phased array, except that the
array then generates the signal locally. The concept of real-
time controllable metasurfaces has recently received much
attention in the communications society and is called intel-
ligent reflecting surface (IRS) [15], [16], software-controlled
metasurface [17], [18], and reconfigurable intelligent sur-

face [19]–[21]. We will call it IRS in this article and consider
the case when the metasurface is used as a relay that reflects
the signal from the source towards the destination in an
effort to maximize the signal-to-noise ratio (SNR). Using
conventional relaying terminology [22], [23], an IRS is a
transparent relay since it processes the received signal in
the analog domain and operates in full duplex since the
signals are received and reflected simultaneously. Different
from conventional relays, the signal is not amplified in the
IRS but it instead improves the SNR by capitalizing on the
array power gain achieved when having a large surface. We
will compare the IRS with the use of a conventional half-
duplex mMIMO relay, which is also deployed in between
a source and destination to improve the propagation condi-
tions; see [24]–[26] and references therein for prior work
on mMIMO relays. We refer to [7], [16], [17], [21] for an
overview of other prospective use cases of the IRS tech-
nology beyond relaying, including how it can be used in
conjunction with other technologies.
A fundamental benefit of using large arrays is that the SNR

grows with the number of elements N. In mMIMO setups,
the SNR is proportional to N if optimal beamforming is
applied [11], [12], [24]–[26]. This implies that the transmit
power needed to achieve a target SNR value during data
transmission reduces as 1/N, which is a so-called asymptotic
power scaling law.1 In contrast, the SNR grows as N2 when
using an IRS that is optimally configured [15]. Hence, a
more aggressive power scaling law can be formulated where
the transmit power is reduced as 1/N2 [15], [20], [27].
A main limitation of the aforementioned SNR analyses

and power scaling laws is that they are derived under an
implicit assumption of far-field operation. When consider-
ing arrays, the far-field refers to the propagation range at
which the direction and channel gain are approximately
the same from all elements in the array to the transmit-
ting/receiving antenna. This is different from the Fraunhofer
distance, which measures the radiative far-field from a single
antenna element and will not be considered in this article.
Since the array size grows with N, we will inevitably operate
in the array’s near-field as N → ∞. The near-field behavior

1. If one also reduces the transmit power in the channel acquisition phase,
the power scaling law changes; we refer to [4], [11], [12] for details.

of the SNR is uncertain since different papers have put for-
ward different hypotheses. For example, several papers have
studied the IRS behavior in the far- and near-field assum-
ing that it operates as a specular reflector (also called an
“anomalous” mirror) [20], [28], [29] and made parallels to
geometrical physics to support this assumption.
The conference version [1] of this article was the first

attempt to mathematically derive the near-field behavior in
both the mMIMO and IRS setups, but the results are approx-
imate since they relied on the propagation model from [8]
that neglects polarization effects. The mismatch between
the polarization of an antenna and of the incident wave
is approximately the same for all antennas in the far-field,
thus one can compute the SNR without polarization and
then multiply with a coefficient accounting for the mis-
match loss [4, Sec. 7.4]. The situation is more complicated
in the near-field (i.e., for large arrays) where the incident
wave is arriving from distinctly different angular directions
to different elements, thus one must model the polarization
on an element-by-element basis to obtain accurate results.
Recently, [30]–[32] provided numerical studies and discus-
sions regarding the near-field behavior, but the results are
approximate since polarization is neglected in these works.
In [30], [32], the effective areas of the elements are also
assumed constant in the array, which is not the case in the
near-field since the elements are observed from distinctly
different angles. This is an additional source of approxima-
tion errors. Nevertheless, the experimental results presented
in [30] show that there are finite-sized setups where the
approximate formulas are matching quite well with measure-
ments. However, we will show later that none of these prior
analytical results can be used to characterize the asymptotic
limit where N → ∞.

A. CONTRIBUTIONS

We derive a novel closed-form expression for the channel
gain when communicating between a single-antenna device
and a planar array of arbitrary size, by taking the varying dis-
tances to the elements, polarization mismatches, and effective
areas into account. We demonstrate that it is necessary to
utilize this model to rigorously study the signal propagation
in the array’s near-field and the asymptotic limits where the
array dimensions grow large, because the approximate mod-
els in previous work give different results. We use the derived
expression to mathematically derive the near-field and far-
field behaviors in three key setups: conventional mMIMO,
half-duplex mMIMO relaying, and IRS-aided communica-
tions. In particular, we explain under which conditions the
SNR grows with N in the ways described above, and when
we instead need to consider the alternative near-field behav-
iors that we establish. The analysis shows that the far-field
approximation is accurate when the distance to the array is
larger than its height/width, which holds in many practical
scenarios but will not hold when studying the asymptotic
limit when N → ∞. We derive new power scaling laws that
are asymptotically accurate. Furthermore, we prove that an
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IRS cannot achieve a higher SNR than any of the mMIMO
setups when the array sizes are equal, despite the fact that the
SNR in the IRS setup grows as N2 in the far-field. We derive
closed-form expressions for how large an IRS must be to beat
conventional mMIMO or half-duplex mMIMO relaying. We
provide a geometric interpretation of an SNR-maximizing
IRS, which is different from the specular reflector scenario
that has been assumed in some prior work. While the main
theory is developed for a free-space line-of-sight setup, we
also extend the results to consider arbitrary deterministic
channel models.

B. OUTLINE

Preliminaries on signal propagation and array gains are
provided in Section II. The channel between a single-
antenna transmitter and a planar antenna array of arbitrary
size is derived in Section III, assuming a free-space line-
of-sight scenario. The asymptotic limits are derived and
the asymptotic deficiencies of previously used models are
exemplified. We define the system models and achievable
spectral efficiencies of three different setups in Section IV:
conventional mMIMO, half-duplex mMIMO relaying, and
IRS-aided communications. The power scaling laws and
near/far-field behaviors of these setups are uncovered in
Section V, by utilizing the results from Section III. The case
with different array sizes is studied in Section VI, to quantify
how much larger an IRS must be to match the spectral effi-
ciencies achieved by the other setups. Next, in Section VII,
we provide a new geometric interpretation of an IRS that
is configured to maximize the SNR. Section VIII discusses
the extension to more general channel models. Finally, the
main results and conclusions are summarized in Section IX.

C. REPRODUCIBLE RESEARCH

The simulation results can be reproduced using code avail-
able at: https://github.com/emilbjornson/near-field-behavior.

D. NOTATION

Boldface lowercase letters, x, denote column vectors and
boldface uppercase letters, X, denote matrices. The super-
scripts T, ∗, and H denote transpose, conjugate, and conjugate
transpose, respectively. The n × n identity matrix is In,
mod(·, ·) indicates the modulo operation, and ⌊·⌋ rounds the
argument to the closest smaller integer. The multi-variate
circularly symmetric complex Gaussian distribution with
covariance matrix R is denoted NC(0,R). We define ‖x‖
as the Frobenius norm of vector x.

II. PRELIMINARIES
This article analyzes the wireless propagation when using
arrays of different sizes and transmitters/receivers at different
distances. We begin by considering the free-space propaga-
tion scenario shown in Fig. 1(a), where an ideal isotropic
transmit antenna sends a signal to a receive antenna located
at distance d. Assume that the receive antenna is lossless,

has an (effective) area A perpendicular to the direction of
propagation, and has a polarization perfectly matching that
of the transmitted signal. Then, from Friis’ formula [33], the
received power is

Prx = A

4πd2
Ptx (1)

where Ptx denotes the transmit power and the factor

βd = A

4πd2
(2)

is the free-space channel gain, also known as pathloss. Note
that this factor is given by the area A of the receive antenna
divided by the total surface area of a sphere with radius d.
We use the subscript d in βd to express that the channel
gain is a function of d. Since the received power Prx can
never be higher than the transmit power Ptx (due to the law
of conservation of energy), it is evident that βd ∈ [0, 1]. In
most cases, βd is much smaller than one, as we will now
exemplify.
Example 1: If the receive antenna is isotropic, its area is

A = λ2/(4π) where λ = c/f is the wavelength and c is the
speed of light. If the transmission has a carrier frequency
of f = 3GHz, then λ = 0.1m. For propagation distances
d ∈ [2.5, 25]m, the channel gain βd ranges from −40 dB to
−60 dB. If the carrier frequency is increased to f = 30GHz,
the antenna area becomes 100 times smaller and thus βd will
instead range from −60 dB to −80 dB for d ∈ [2.5, 25]m.
A way to increase the channel gain in (2) is to make the

receive antenna area larger. In particular, we can deploy N

antennas of the same kind in an array. If they are deployed
on the sphere in Fig. 1(a) and are non-overlapping, and if
each antenna has an orientation and polarization that match
the locally received signal, the total received power is N
times the value in (1):

P
spheric-N
rx = NPrx = NβdPtx. (3)

This setup is illustrated in Fig. 1(b) and the channel gain is
Nβd = NA

4πd2 . Note that the channel gain is proportional to the
total antenna area NA, thus one can achieve the same result
with many physically small receive antennas or a few large
antennas. Clearly, no more than NA = 4πd2 non-overlapping
receive antennas can be deployed on the sphere in the way
shown in Fig. 1(b). In that case, Nβd = 1 and P

spheric-N
rx =

Ptx, so that all the transmitted power is received. Observe that
very many antennas are needed to make this happen. Under
the assumptions in Example 1, we need 104 antennas to
cover the entire sphere for d = 2.5m when communicating
at f = 3GHz, and 106 antennas for d = 25m. Both values
increase by 100 times when communicating at f = 30GHz
since the area of an isotropic receive antenna becomes 100
times smaller.
The linear growth with N in (3) is called an array gain

and is the key motivating factor behind mMIMO communi-
cations using antenna arrays with a large (possibly infinite)
number of antennas. A common assumption in such systems
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FIGURE 1. Examples of basic antenna scenarios.

is that the linear scaling holds true even in the asymptotic
regime where N → ∞ [3], [11], [12], [34]–[37], which has
been utilized to define properties such as channel hardening
and favorable propagation, as well as studying the funda-
mental impact of pilot contamination. This assumption is
physically incorrect since the total channel gain would be
higher than one, thereby invalidating the law of conserva-
tion of energy. On the other hand, the analysis above has

shown that a very large number of antennas is needed to
receive all the transmitted power. Hence, the linear scaling
might hold in practical mMIMO communications, even if
thousands of antennas are used and the propagation distance
is short. The aim of the next section is to revisit the asymp-
totic regime with practical planar antenna arrays and prove
under what conditions the linear scaling is inaccurate versus
approximately correct. These results will be fundamental in
Section V when studying the power scaling laws and near-
field behaviors of different mMIMO systems and IRS-aided
setups.

III. PLANAR ANTENNA ARRAYS
We now turn the attention to the planar array illustrated in
Fig. 1(c), particularly because such arrays are commonly
used in practical mMIMO deployments [6]. The transmit
antenna is at distance d from the center of the array. For
notational convenience, we make the following assumption
that will be considered in the remainder of this article.
Assumption 1: The planar array consists of N antennas that

each has area A ≤ (λ/4)2. The antennas have size
√
A×

√
A

and are equally spaced on a
√
N ×

√
N grid. The antennas

are deployed edge-to-edge, thus the total area of the array
is NA.
These assumptions2 are important when quantifying the

channel gain, because the effective area of each receive
antenna will depend on its physical location and rotation,
with respect to the direction of the transmitter. The physical
area of each antenna is A but the effective area seen from the
transmitter varies. If the receive antenna is fully perpendic-
ular to the direction of propagation, then the effective area
also equals A. In any other case, the effective area is smaller
than A. The antenna gain in a particular direction is deter-
mined by the effective antenna area seen from transmitter
and also by the polarization loss caused by having a rotated
aperture [38].3 When the transmitter is in the near-field of
the array, three fundamental properties must be taken into
account:

1) The distances to the elements vary over the array;
2) The effective antenna areas vary since the elements

are seen from different angles;
3) The losses from polarization mismatch vary since the

signals are received from different angles.

A. EXACT EXPRESSION FOR THE CHANNEL GAIN

The following lemma extends the prior work in [38] to the
case when the transmitter and the receiver are arbitrarily

2. Assumption 1 restricts N to be the square of an integer, but the
analytical results of this article only require a quadratic planar array with
dimension

√
NA×

√
NA. For a given array area NA, we can always adapt

A to make N be the square of an integer.
3. Only the components of the field vectors that are perpendicular to the

boresight of the antenna can be received, irrespective of whether linearly
or circularly polarized signals are considered. When deriving the analytical
results, we consider linear polarization along the Y direction but since
we assume a square array, the results are rotationally invariant. Therefore,
another choice of polarization will lead to the same end results, even if the
individual elements will contribute differently.
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located, thereby providing a general way of computing the
channel gains to each of the N elements of a planar array.4

Lemma 1: Consider a lossless isotropic antenna located at
pt = (xt, yt, d) that transmits a signal that has polarization
in the Y direction when traveling in the Z direction. The
receive antenna is located in the XY-plane, is centered at
pn = (xn, yn, 0), and has area a× a. The free-space channel
gain is upper bounded by

ζpt,pn,a = 1

4π

∑

x∈Xt,n

∑

y∈Yt,n

⎛

⎜
⎝

xy

d2

3
(
y2

d2 + 1
)√

x2

d2 + y2

d2 + 1

+ 2

3
tan−1

⎛

⎝

xy

d2
√

x2

d2 + y2

d2 + 1

⎞

⎠

⎞

⎟
⎠

(4)

where Xt,n = {a/2 + xn − xt, a/2 − xn + xt} and Yt,n =
{a/2 + yn − yt, a/2 − yn + yt}.
The upper bound is tight when the antenna area is

sufficiently small compared to the wavelength: a ≤ λ/4.
Proof: The proof is given in Appendix A in two steps.

The impact of the three fundamental properties mentioned
above is clearly pointed out in (69).
This lemma provides an upper bound on the channel gain

by assuming the received signal’s phase-variations are negli-
gible over the antenna area, which is commonly assumed in
the literature but is only a tight bound for sub-wavelength-
sized antennas, as will be assumed in this article. We will
use the general formula from Lemma 1 later in the paper,
particularly when analyzing an IRS-aided setup. However,
we first notice that a compact expression for the channel gain
and, thus, the total received power can be obtained when the
transmitter is centered in front of the planar array.
Corollary 1: Under Assumption 1, when the transmitter is

centered in front of the planar array, the received power is

P
planar-N
rx = αd,NPtx (5)

where the total channel gain is

αd,N = Nβd

3(Nβdπ + 1)
√

2Nβdπ + 1

+ 2

3π
tan−1

(
Nβdπ√

2Nβdπ + 1

)

(6)

with βd given in (2).
Proof: This formula follows from Lemma 1 by setting

xt = yt = 0, xn = yn = 0, and a =
√
NA, in which case

Xt,n = Yt,n = {
√
NA/2,

√
NA/2}. Even if we might have

a > λ/4, the expression of αd,N is a tight upper bound on
the true channel gain since the individual antennas satisfy√
A ≤ λ/4 and we are summing up their received powers.

By replacing d with
√
A/(4πβd) and rearranging the terms,

we obtain (6) from (4).

4. We disregard the mutual coupling effect in this article, to focus on
the asymptotic behaviors with ideal hardware.

The channel gain in (6) is valid for arbitrarily large pla-
nar arrays, which is different from the models considered
in [30]–[32] that assume equal effective areas of all elements.
The new expression supports the case when the transmitter
is in the near-field of the array.5 We will explore the far-
field approximation and large-array limit appearing in the
near-field.
Remark 1: The exact expression in (6) depends on Nβd,

thus it is the total array area NA that matters and not the
individual values of N and A. Hence, the results in this article
hold for any frequency band and choice of individual antenna
areas, as long as the total area is the same and A ≤ (λ/4)2 so
Lemma 1 provides a tight bound for the individual antennas.
As the wavelength reduces, the area A shrinks and then more
elements are needed to fill the same total array area. In all the
simulation figures, we are considering λ = 0.1m (3 GHz)
when reporting the number of elements N, but the same
behaviors appear in any frequency band under the condition
that the total area NA of the array is the same.

B. FAR-FIELD APPROXIMATION AND LARGE-ARRAY

LIMIT

Suppose the planar array considered in Corollary 1 is in the
far-field of the transmitter in the sense that d ≫

√
NA. In

this case, Nβdπ + 1 ≈ 1 and
√

2Nβdπ + 1 ≈ 1. By using
the first-order Taylor approximation tan−1(x) ≈ x, which is
tight when the argument is close to zero (as is the case when
Nβdπ is small), it follows from (5) that

P
planar-N
rx ≈

(
Nβd

3
+ 2

3π
Nβdπ

)

Ptx = NβdPtx (7)

which is equal to P
spheric-N
rx in (3). Hence, for relatively small

planar arrays, the received power is proportional to N. Both
terms in (6) contribute to the result, but not equally much.
If N grows large, the far-field approximation is no longer

valid and we instead notice that as N → ∞ it holds that
Nβd

3(Nβdπ + 1)
√

2Nβdπ + 1
→ 0, (8)

tan−1

(
Nβdπ√

2Nβdπ + 1

)

→ π

2
. (9)

Hence, the received power in (5) saturates and has the
asymptotic limit

P
planar-N
rx → 2

3π

π

2
Ptx = Ptx

3
as N → ∞. (10)

This value satisfies the law of conservation of energy since
only one third of the transmitted power is received. An
intuitive explanation for why the limit is finite, although the
array is infinitely large, is that each new receive antenna is
deployed further away from the transmitter; the effective area
(perpendicularly to the direction of propagation) becomes
gradually smaller and the polarization loss also increases.

5. Note that we assume throughout this article that d ≫ λ, so the system
does not operate in the reactive near-field of the transmit antenna (even if
it is in the near-field of the array). In fact, this assumption was made in
the proof of the expression in Lemma 1.
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FIGURE 2. The total channel gain P
planar-N
rx /Ptx with a planar array with

√
N ×

√
N

equally spaced antennas. Each antenna has area A = (λ/4)2, the wavelength is
λ = 0.1m, and d = 25m.

From the above discussion, a natural question arises: Will
the received power grow linearly with N for practical array

sizes, so that we can utilize the approximation in (7), or do
we need to use the exact expression?

To answer this question, Fig. 2 shows the total channel
gain P

planar-N
rx /Ptx ∈ [0, 1] as a function of N, using either

the exact expression in (5) or the far-field approximation
in (7). We consider a setup with d = 25m, A = (λ/4)2,
and λ = 0.1m (corresponding to f = 3GHz). The results
of Fig. 2 show that 105 antennas are needed before the far-
field approximation error is noticeable (above 5%), and 108

antennas are needed to approach the upper limit of 1/3.
As a rule-of-thumb, the far-field approximation in (7) is

accurate for all N satisfying NA/9 ≤ d2 or, equivalently,
satisfying

√
NA ≤ 3d. (11)

The value N = 9d2/A that gives equality in this rule-of-
thumb is indicated by a circle in Fig. 2. The interpretation
is that the far-field approximation is accurate as long as the
width/height

√
NA of the array is smaller than three times

the distance d to the transmitter. Hence, if d = 25m, then the
approximation can be applied for arrays up to 75×75m. As
the distance d increases or the carrier frequency increases,
the maximum number of antennas that satisfies the rule-
of-thumb grows quadratically, but the area remains constant.
In conclusion, the far-field approximation is usually accurate
and might be used to predict scaling behaviors, but the exact
expression in Corollary 1 is needed to study the asymptotic
limit.
Several recent works have also analyzed the propagation

effects in the array’s near-field [1], [8], [30]–[32] but using
less detailed models. Recall that three near-field properties
were listed earlier in this section. The models in [30]–[32]
only capture the first property: that the distances to the anten-
nas are different in large arrays. The models in [1], [8] also
capture the second property: that the effective antenna areas
vary over the array. A main novelty of this article is that we
also include the third property: variations in the polarization
mismatch over the array. The importance of considering all

FIGURE 3. The total channel gain P
planar-N
rx /Ptx with a planar array with a varying

number of antennas. The exact curve (“All three properties”) is compared with
approximations that are obtained by neglecting some of the near-field propagation
properties.

three properties when studying the near-field and asymp-
totic limits is emphasized in Fig. 3. The figure considers the
same setup as in Fig. 2 but focuses on the upper tail where
the near-field behavior occurs. If the polarization effects are
neglected (“First two properties”), then the channel gain con-
verges to 1/2 as N → ∞, as previously shown in [1], [8].
The general near-field behaviors are correct but not the chan-
nel gain values. If also the variations in the effective areas are
neglected (“First property”), then the channel gain diverges
as N → ∞ and thereby breaks the law of conservation of
energy. Hence, the models from [30]–[32] are not recom-
mended to use when studying the asymptotic limits (or the
near-field in general). However, all the models are accurate
in the far-field.
Remark 2: In this article, we define the far-field as being

the propagation range between the array and the single-
antenna transmitter where the far-field approximation gives
accurate results. When the transmit antenna is isotropic, the
border between the near-field and far-field is frequency-
independent and proportional to the width/height

√
NA of

the receiving array, as seen from (11). Note that the far-field
definition for an array is conceptually different from the
Fraunhofer distance, which is a frequency-dependent limit
for the radiative far-field from a single antenna element. It
describes the range at which one can neglect the reactive
electromagnetic phenomena that appear within few wave-
lengths from an antenna. When considering large arrays in
this article, we will be in the far-field of the individual
elements but in the near-field of the array.
Remark 3: The propagation models presented in this sec-

tion are physically accurate, under the given assumptions,
and will be used in the remainder of this article. However,
this does not mean that the assumptions are applicable in any
conceivable practical setup—no model is generally applica-
ble. For example, there can be other antenna gains, other
polarization directions, and channels consisting of multiple
paths. We are not focusing on these generalizations since
we aim to provide an intuitive exposition of the fundamen-
tal behaviors. However, a generalization of the results are
discussed in Section VIII.
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IV. THREE DIFFERENT MIMO SETUPS
Next, we introduce the three different setups that are ana-
lyzed and compared in this article, which are all illustrated
in Fig. 4. In the conventional mMIMO setup of Fig. 4(a),
a single-antenna source transmits a signal that is received
by a planar array with N antennas, in the same form as in
Fig. 1(c). In the half-duplex mMIMO relay setup shown in
Fig. 4(b), the same planar array receives the signal from
the source and retransmits it to a single-antenna destina-
tion. In the IRS-aided setup in Fig. 4(c), the planar array is
replaced by an IRS with N passive elements that operate as
a full-duplex relay that “reflects” the incoming signal in a
controllable manner. The signal comes from the source and
is supposed to reach the destination. The IRS is intelligent in
the sense that each of the N reflecting elements can control
the individual phase of its diffusely reflected signal.
Line-of-sight (LoS) propagation is considered in all setups.

Since the channels are deterministic and thus can be esti-
mated arbitrarily well from pilot signals, perfect channel state
information is assumed. Despite simple, the three setups in
Fig. 4 are sufficient to develop the fundamental scaling laws
and near-field behaviors (see Remark 3) and to compare the
setups.

A. CONVENTIONAL UPLINK mMIMO

In the LoS scenario, the deterministic flat-fading channel is
represented by the vector h = [h1, . . . , hN]T ∈ C

N , where
hn = |hn|e−jφn is the channel from the source to the nth
receive antenna with |hn|2 ∈ [0, 1] being the channel gain
and φn ∈ [0, 2π) an arbitrary phase shift. In the uplink, the
received signal rmMIMO ∈ C

N is

rmMIMO = h
√

Ptxs+ n (12)

where Ptx is the transmit power, s is the unit-norm
information signal, and n ∼ NC(0, σ 2IN) is the indepen-
dent receiver noise. Under the assumption of perfect channel
knowledge, linear receiver processing is optimal [4], [39] and
we let v ∈ C

N denote the receive combining vector. It is
well-known that the maximum SNR is achieved with max-
imum ratio (MR) combining, defined as v = h∗/‖h‖ [4].
The SE is

log2(1 + SNRmMIMO) (13)

with

SNRmMIMO =
∣
∣vTh

∣
∣
2

‖v‖2

Ptx

σ 2
= ‖h‖2Ptx

σ 2
=
(

N
∑

n=1

|hn|2
)

Ptx

σ 2
.

(14)

B. HALF-DUPLEX mMIMO RELAY

The half-duplex relay transmission takes place over two
phases: 1) transmission from the source to the relay;
2) transmission from the relay to the destination. No
direct link is present. Among the different relaying pro-
tocols (e.g., [40]–[42] among others), we consider the

FIGURE 4. Illustration of the three different MIMO setups compared in this article.

basic repetition-coded decode-and-forward protocol where
equal time is allocated to the two phases. The first phase
achieves the same SNR as in the mMIMO setup considered
above. Therefore, the SE is 1

2
log2(1 + SNRmMIMO) where

SNRmMIMO is given in (14) and the pre-log factor repre-
sents the fact that each phase is allocated half of the time
resources. In the second phase, the relay retransmits the sig-
nal s with power Prelay using a unit-norm precoding vector w.
The LoS channel from the array to the destination is repre-
sented by the deterministic vector g = [g1, . . . , gN]T ∈ C

N ,
where gn = |gn|e−jψn represents the channel from the nth
antenna to the receiver. The received signal rrelay ∈ C at the
single-antenna destination is

rrelay = gTw
√

Prelays+ n (15)

where n ∼ NC(0, σ 2) is the independent receiver noise. It
is well-known that the SNR is maximized by MR precoding
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with w = g∗/‖g‖ [4], which leads to

SNRrelay = ‖g‖2Prelay

σ 2
=
(

N
∑

n=1

|gn|2
)

Prelay

σ 2
. (16)

The SE of the end-to-end mMIMO relay channel is then
given by the minimum of the two phases:

SErelay = 1

2
log2

(

1 + min
(

SNRmMIMO,SNRrelay
))

. (17)

C. IRS-AIDED COMMUNICATION

The IRS-aided communication is also a relaying setup, thus
the system model resembles the half-duplex mMIMO relay
case with the key differences that each element in the IRS
scatterers the incoming signal with a controllable phase-
shift but without increasing its power or requiring a separate
retransmission phase. The received signal rIRS ∈ C can be
modeled as [31], [43]

rIRS = gT�h
√

Ptxs+ n (18)

where Ptx and s are the same as in the previous setups and
n ∼ NC(0, σ 2) is the noise at the receiver. The reflection
properties are determined by the diagonal matrix

� = diag
(

µ1e
jθ1 , . . . , µNe

jθN
)

(19)

where µ1, . . . , µN ∈ [0, 1] are the amplitude scattering vari-
ables (describing the fraction of the incident signal power
that is scattered) and θ1, . . . , θN ∈ [0, 2π) are the phase-shift
variables (describing the delays of the scattered signals).
These parameters can be optimized based on g and h. With
perfect channel knowledge [15], [44], an achievable SE is6

log2(1 + SNRIRS) (20)

where

SNRIRS =
∣
∣gT�h

∣
∣
2Ptx

σ 2

=
∣
∣
∣
∣
∣

N
∑

n=1

µn|hn||gn|ej(θn−φn−ψn)

∣
∣
∣
∣
∣

2

Ptx

σ 2
(21)

is the SNR at the receiver. We will optimize the amplitude
and phase-shift variables in the next section.

V. POWER SCALING LAWS AND NEAR-FIELD
BEHAVIORS
We will now investigate the asymptotic behaviors of the three
setups defined in Section IV. Particularly, the power scaling
laws, near-field behaviors, and asymptotic SE limits will be
analyzed as N increases. New insights into the fundamen-
tal properties will be obtained by utilizing the deterministic
propagation model derived in Section III. The following
assumption is made for all setups.

6. Note that we are considering relaying operation where the IRS is
unaware of the information. A higher SE can be achieved by also encoding
information into the matrix � [45].

FIGURE 5. Geometric illustration of the setup defined by Assumptions 1 and 2 that
is used for analyzing the SNR behavior in the near- and far-fields.

Assumption 2: The planar array is centered around the
origin in the XY-plane, as illustrated in Fig. 5(a). The source
is located in the XZ-plane at distance d from the center of the
array with angle η ∈ [−π/2, π/2], as illustrated in Fig. 5(b).
It sends a signal that has polarization in the Y direction when
traveling in the Z direction.

Under Assumption 2, the source is located at pt =
(d sin(η), 0, d cos(η)) and the nth antenna is centered at
pn = (xn, yn, 0). If we number the antennas from left to
right, row by row, according to Fig. 5(a), the coordinates xn
and yn of the nth receive antenna for n = 1, . . . ,N are

xn = − (
√
N − 1)

√
A

2
+

√
Amod(n− 1,

√
N) (22)

yn = (
√
N − 1)

√
A

2
−

√
A

⌊
n− 1√
N

⌋

. (23)

A. CONVENTIONAL UPLINK mMIMO

We will now study the mMIMO setup in detail. Following
the geometry stated in Assumption 2, we have that pt =
(d sin(η), 0, d cos(η)) and pn = (xn, yn, 0) where the coor-
dinates xn and yn are defined in (22) and (23). By using
Lemma 1, the channel hn = |hn|e−jφn to the nth receive
antenna is obtained as

|hn|2 = ζ
(d sin(η),0,d cos(η)),(xn,yn,0),

√
A (24)
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with the phase computed based on the propagation delay as

φn = 2π · mod

(‖pt − pn‖
λ

, 1

)

= 2π · mod

⎛

⎝

√

(xn − d sin(η))2 + y2
n + d2 cos2(η)

λ
, 1

⎞

⎠

= 2π · mod

(√

x2
n + y2

n + d2 − 2dxn sin(η)

λ
, 1

)

. (25)

The following result is then obtained.
Proposition 1: Under Assumptions 1 and 2, in the

mMIMO setup, the SNR with MR combining becomes

SNRmMIMO = ξd,η,N
Ptx

σ 2
(26)

where the total channel gain ξd,η,N is given by

ξd,η,N

=
2
∑

i=1

⎛

⎝
B+ (−1)i

√
B tan(η)

6π(B+ 1)

√

2B+ tan2(η) + 1 + 2(−1)i
√
B tan(η)

+ 1

3π
tan−1

⎛

⎝
B+ (−1)i

√
B tan(η)

√

2B+ tan2(η) + 1 + 2(−1)i
√
B tan(η)

⎞

⎠

⎞

⎠

(27)

with B = Nπβd cos(η) = NA
4d2 cos2(η)

.
Proof: This result follows from Lemma 1 with pt =

(d sin(η), 0, d cos(η)), pn = (0, 0, 0), and a =
√
NA.

We stress that the channel gain in (27) depends only on
the total array area NA (see Remark 1), thus the choice of
frequency band only affects how many antennas are needed
to achieve that area. By using Corollary 1, a more compact
expression can be obtained when the transmitter is centered
in front of the array (i.e., η = 0).
Corollary 2: When the transmitter is located in direction

η = 0, the SNR in (26) simplifies to

SNRmMIMO = αd,N
Ptx

σ 2
(28)

where the total channel gain αd,N is given in (6).
We will now use the general expression in Proposition 1

for an arbitrary η to study the far-field behavior in the next
corollary. Note that d cos(η) is the distance from the trans-
mitter to the plane where the array is deployed and

√
NA is

the width/height of the array.
Corollary 3 (Far-Field Approximation): If the transmitter

is in the far-field of the mMIMO receiver, in the sense that
d cos(η) ≫

√
NA, then (28) is well approximated as

SNRmMIMO ≈ SNRff
mMIMO = Nςd,η

Ptx

σ 2
(29)

where

ςd,η = βd cos(η) cos3(η) (30)

and βd cos(η) is given in (2).

Proof: The derivation can be found in Appendix B.
Plugging (2) into (30), we have that (29) reduces to

SNRff
mMIMO = N

A

4π(d cos(η))2
cos3(η)

Ptx

σ 2

= N
Ptx

σ 2

Effective area
︷ ︸︸ ︷

A cos(η)
1

4πd2
︸ ︷︷ ︸

Free-space propagation

(31)

which is equivalent to [46, eq. (17)]. This shows that, in the
far-field, the channel gain per antenna is computed accord-
ing to Friis’ formula with the effective antenna area being
A cos(η) [33]. This is a consequence of the fact that, although
each antenna has a physical size of

√
A×

√
A, its effective

size shrinks to
√
A cos(η) ×

√
A when observed from the

direction of the transmitter.
From Corollary 3, we notice that the far-field SNR in (29)

is proportional to N, which is consistent with previous work
in the mMIMO literature [4], [11], [12]. Hence, when N

increases, the system can either benefit from a linearly
increasing SNR or reduce Ptx as 1/N to keep the SNR
constant. The latter is the conventional power scaling law
for mMIMO, which first appeared in [11], [12]. However,
when computing the asymptotic behavior as N → ∞, these
prior works implicitly assumed the transmitter remains in
far-field of the array and thus that the SNR goes to infinity
as N → ∞ (or the power can be brought down to zero
following the scaling law, while the SNR remains strictly
non-zero). This is not physically possible. As N increases,
the far-field approximation eventually breaks down and the
total channel gain saturates in the near-field, as illustrated in
Fig. 2. We provide the following novel asymptotic limit and
power scaling characterization for the mMIMO receiver.
Corollary 4 (Asymptotic Analysis): As N → ∞ with a

constant transmit power Ptx, the SNR with MR combining
satisfies

SNRmMIMO → 1

3

Ptx

σ 2
. (32)

If the transmit power is reduced with N as Ptx = P/Nρ for
some constant P > 0 and exponent ρ > 0, then as N → ∞

SNRmMIMO = ξd,η,N
P

σ 2Nρ
→ 0. (33)

Proof: The limit in (32) is computed in the same way as
the finite limit in (10). Since Pξd,η,N has a finite limit and
1/Nρ → 0 as N → ∞, the result in (33) follows directly.
This corollary shows that any power scaling for which

Ptx → 0 as N → ∞ will asymptotically lead to zero SNR.
Hence, the asymptotic motivation behind the power scaling
laws in the mMIMO literature [11], [12] is not correct. The
scaling laws are, nevertheless, useful in many practical situ-
ations. To demonstrate this, Fig. 6 shows SNRmMIMO in (28)
when we scale down the transmit power as Ptx = P/Nρ for
ρ ∈ {0, 1/2, 1}, where ρ = 0 corresponds to constant power.
We consider a setup where the transmitter location is given
by d = 25m and η = 0, the antenna area is A = (λ/4)2, the
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FIGURE 6. The SNR value SNRmMIMO in (28) when scaling down the transmit power
as Ptx = P/Nρ for ρ ∈ {0, 1/2, 1}. The setup is given by d = 25m, η = 0, A = (λ/4)2,
λ = 0.1m, and P/σ2 is selected to give SNRmMIMO = 0 dB for N = 1.

wavelength is λ = 0.1m, and the transmit power is selected
so that Pξd,η,N/σ 2 = 0 dB for N = 1. We observe that for
ρ = 0, the far-field behavior, namely, an SNR that grows
linearly with N, approximately holds true for any N ≤ 106.
This probably includes all cases of practical interest since
the array can be up to 25×25m. If one selects ρ = 1/2, the
SNR will instead grow as

√
N for N ≤ 106. Moreover, for

ρ = 1, the SNR is approximately constant for N ≤ 106. For
larger values of N, the SNR goes to zero whenever ρ > 0,
as proved in Corollary 4.
Since this example considers η = 0, we know from

Corollary 2 that ξd,0,N = αd,N . It is the relation between
N and d in αd,N that determines when the far-field behav-
ior breaks down. Since these variables enter into αd,N as
Nβd = NA

4πd2 , the far-field behavior appears as long as

N/d2 ≤ 106/252 = 1600. Hence, even if we would reduce
the propagation distance to d = 2.5m, the approximate scal-
ing laws will be accurate for N ≤ 104 or arrays being up to
2.5 × 2.5m. In conclusion, the conventional power scaling
laws can be safely applied in many practical scenarios, but
if we truly want to let N → ∞ or study the case where
the transmitter is very close to the array, the asymptotically
accurate behavior derived in Corollary 4 must be considered.

B. HALF-DUPLEX mMIMO RELAY

We now turn the attention to the half-duplex mMIMO relay
setup. We assume the destination is equipped with a loss-
less isotropic antenna located in the XZ-plane at distance δ

from the center of the array with angle ω ∈ [−π/2, π/2],
as shown in Fig. 5(b). This means that it is located at
(δ sin(ω), 0, δ cos(ω)). According to the geometry stated in
Assumption 2, the nth transmit antenna at (xn, yn, 0), where
xn and yn are defined in (22) and (23), respectively. We
assume each antenna is sufficiently small to radiate the sig-
nal isotropically into the half-plane in front of it.7 From
Lemma 1, it follows that the channel gn = |gn|e−jψn from

7. This property holds for antennas with a ≤ λ/4 for essentially the same
reason as the approximation in Lemma 1 being tight in this interval. An
illustration of the radiation pattern for a = λ/5 is found in [43, Fig. 2].

the nth antenna to the destination is given by

|gn|2 = ζ
(δ sin(ω),0,δ cos(ω)),(xn,yn,0),

√
A (34)

where the propagation delay implies that

ψn = 2π · mod

(√

x2
n + y2

n + δ2 − 2δxn sin(ω)

λ
, 1

)

. (35)

The following result is then obtained.
Proposition 2: Suppose the destination is located at dis-

tance δ in angle ω ∈ [−π/2, π/2] from the center of the
mMIMO relay. Under Assumptions 1 and 2, the SNR with
MR precoding becomes

SNRrelay = ξδ,ω,N

Prelay

σ 2
(36)

where ξδ,ω,N is given in (27) with B = Nπβδ cos(ω) =
NA

4δ2 cos2(ω)
.

Proof: This result follows from Lemma 1 with pt =
(δ sin(ω), 0, δ cos(ω)), pn = (0, 0, 0), and a =

√
NA.

By utilizing the results in Proposition 1 and Proposition 2,
the end-to-end SE in (17) can be rewritten as

SErelay = 1

2
log2

(

1 +
min

(

ξd,η,NPtx, ξδ,ω,NPrelay
)

σ 2

)

. (37)

Note that, when the receiver is centered in front of the array
(i.e., ω = 0), we have ξδ,0,N = αδ,N .
Just as in the uplink mMIMO setup, the SNR expres-

sion takes a simpler approximate form in the far-field,
which is now jointly represented by d cos(η) ≫

√
NA and

δ cos(ω) ≫
√
NA. Following a similar approach as in the

proof of Corollary 3, we have that

SNRrelay ≈ Nςδ,ω

Prelay

σ 2
(38)

in the far-field, where ςδ,ω is defined as in (30). In conjunc-
tion with the far-field result in Corollary 3, we obtain the
following result in the mMIMO relay setup.
Corollary 5 (Far-Field Approximation): If the source and

destination are both in the far-field of the mMIMO relay,
in the sense that d cos(η) ≫

√
NA and δ cos(ω) ≫

√
NA,

then (37) is well approximated as

SErelay ≈ 1

2
log2

(

1 + N
min

(

Ptxςd,η,Prelayςδ,ω

)

σ 2

)

. (39)

This corollary shows that the end-to-end SNR grows pro-
portionally to N whenever the far-field approximation is
applicable. Hence, one can either keep the transmit powers
fixed and achieve an SNR that grows proportionally to N, or
reduce the transmit powers Ptx and Prelay as 1/N and achieve
the same SNR as with N = 1. Since the half-duplex relay
channel is a time-multiplexed composition of one uplink and
one downlink mMIMO channel, the insights from the last
subsection still apply: the far-field approximation and the
power scaling law hold in most cases of practical interest.
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However, in the asymptotic limit as N → ∞, we have that
ξδ,ω,N → 1

3
which is the same asymptotic limit as in the

first phase where it holds that ξd,η,N → 1
3
. The following

corollary shows that the power scaling law breaks down
asymptotically.
Corollary 6 (Asymptotic Analysis): As N → ∞ with con-

stant transmit powers Ptx and Prelay, the SE with the mMIMO
relay satisfies

SErelay → 1

2
log2

(

1 + 1

3

min
(

Ptx,Prelay
)

σ 2

)

. (40)

If the transmit powers are reduced with N as Ptx = P1/N
ρ1

and Prelay = P2/N
ρ2 for some constants P1,P2 > 0 and

exponents ρ1, ρ2 > 0, then as N → ∞ it follows that

SErelay → 0. (41)

Proof: The proof follows that of Corollary 4 and is
therefore omitted.
This scaling behavior is essentially the same as the one

illustrated in Fig. 6, thus we postpone the numerical com-
parison with uplink mMIMO to Section VI. There are plenty
of previous works that study mMIMO relays and the related
power scaling laws [24]–[26], often in more general setups
(e.g., full-duplex or two-way relaying) than those considered
in this article. Although the power scaling laws developed
in those papers are practically relevant, the non-zero asymp-
totic limits are incorrect since the channel models that are
used are asymptotically inaccurate. Since the total channel
gain is upper bounded by one, any power scaling law that
leads to zero transmit power as N → ∞ must also have
a zero-valued asymptotic SE. Corollary 6 demonstrates this
in a simple decode-and-forward relay setup but the result
naturally extends to more complicated setups.

C. IRS-AIDED COMMUNICATION

We begin by observing that the SNR is maximized in (21)
when all the terms in the summation has the same
phase [15], [44]. This is achieved, for example, by selecting
θn = φn+ψn for n = 1, . . . ,N. In this case, all the N terms
have a positive contribution to the SNR, which is maximized
by setting µ1 = . . . = µN = 1 so that all terms take their
maximum achievable value.8 In doing this, (21) becomes

SNRIRS = Ptx

σ 2

(
N
∑

n=1

|hn||gn|
)2

. (42)

We can compute this expression exactly using (24) and (34),
which provides the values of |hn| and |gn|. We can also obtain

8. Depending on the IRS implementation, the phases and amplitudes
might not be independently controllable but coupled [47]. Moreover, there
are some implementations that allow for controlling the state of an element
over a continuous range, while other implementations have a discrete num-
ber of possible states [48], [49]. To characterize the ultimate performance,
we consider the ideal case when we can optimize the phases and amplitudes
independently with arbitrary precision. A practical IRS might require more
elements to deliver the same SNR as described in this article.

the following simple upper bound that does not involve any
summations and will be shown to be tight.
Proposition 3: The SNR in (42) with optimal phase-shifts

can be upper bounded as

SNRIRS ≤ SNR
upper
IRS =

(
N
∑

n=1

|hn|2
)(

N
∑

n=1

|gn|2
)

Ptx

σ 2

= ξd,η,Nξδ,ω,N
Ptx

σ 2

= ξδ,ω,NSNRmMIMO (43)

with SNRmMIMO given in (26). The equality holds if and
only if the vectors [|h1|, . . . , |hN |]T and [|g1|, . . . , |gN |]T are
parallel.
Proof: The inequality is a direct application of Hölder’s

inequality, followed by computing the total channel gains of
the two links using Proposition 1.
Interestingly, the upper bound in (43) is the product of

the SNR in the mMIMO setup and the term ξδ,ω,N , which
is the total channel gain from the IRS to the destination.
Section III described that the value of ξδ,ω,N must be below
one (or rather 1/3) due to the law of conservation of energy.
Therefore, Proposition 3 implicitly states that the IRS-aided
setup cannot achieve a higher SNR than the corresponding
mMIMO setup, if the array sizes are equal. One way to
interpret this result is that the IRS acts as an uplink mMIMO
receiver that uses the receive combining v = �

Tg, which
has a different directivity than the channel h, except when
[|h1|, . . . , |hN |]T and [|g1|, . . . , |gN |]T are parallel vectors.
Moreover, it also incurs an additional SNR loss given by

‖v‖2 =
∥
∥�

Tg
∥
∥

2 = ‖g‖2 = ξδ,ω,N < 1. (44)

Similar conclusions hold when the IRS is compared to the
half-duplex mMIMO relay. To see this, assume for sim-
plicity that the transmit power is the same in the two
phases (i.e., Prelay = Ptx). In this case, we may equivalently
rewrite (43) as

SNR
upper
IRS = ξd,η,NSNRrelay (45)

which can never be higher than SNRrelay, based on the
same arguments as above. Since the end-to-end SNR of
the mMIMO relay channel is the minimum of the SNRs in
the two phases, i.e., min(SNRrelay,SNRmMIMO), and both
are higher than SNR

upper
IRS , we can conclude that the IRS can

never achieve a higher SNR than the corresponding mMIMO
relay setup with a matching array size and transmit power.
However, the half-duplex relay suffers from the 1/2 pre-log
factor in (17), which can potentially make the IRS more
spectrally efficient, even if the SNR is lower. To investigate
this further, assume that SNRrelay > SNRmMIMO so that (17)
becomes

SErelay = 1

2
log2(1 + SNRmMIMO). (46)
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From (43), the SE with the IRS is upper bounded by log2(1+
ξδ,ω,NSNRmMIMO), which is higher than (46) when

ξδ,ω,N >

√
1 + SNRmMIMO − 1

SNRmMIMO
. (47)

This condition will be satisfied if SNRmMIMO is sufficiently
large. Hence, there are high-SNR cases when the IRS-aided
setup outperforms the mMIMO relay. This observation is in
line with previous results in [19], [44].
We will now study the power scaling law. Recall from (42)

that the SNR is proportional to the square of a sum with
N terms. Intuitively, the SNR may then grow quadratically
with N. That behavior can in fact be observed in the far-field.
Corollary 7 (Far-Field Approximation): If both the source

and destination are in the far-field of the IRS, in the sense
that d cos(η) ≫

√
NA and δ cos(ω) ≫

√
NA, the SNR in (42)

can be approximated as

SNRIRS ≈ SNRff
IRS = N2ςd,ηςδ,ω

Ptx

σ 2
. (48)

Proof: This result is proved in the same way as Corollary 3
and Corollary 5.
The quadratic scaling with N in (39) has been recog-

nized in several recent works [15], [20], [27], but without
explaining that it only holds when the far-field approxi-
mation applies. Moreover, those papers noticed that SNR
growth is faster than the linear scaling with N observed
for mMIMO receiver in (29) and for the mMIMO relay
in (39). Although that implies that an IRS benefits more
from increasing the array size, it does not mean that it will
achieve a higher SNR when N is large. Indeed, we already
know from Proposition 3 and the subsequent discussion that
this cannot happen in neither the far-field nor the near-field.
An instructive way of interpreting the N2 scaling can

be found by factorizing the far-field SNR in (48) into two
factors:

SNRff
IRS =

≤1, Fraction of reflected power reaching destination
︷ ︸︸ ︷

Nςδ,ω × Nςd,η
Ptx

σ 2
︸ ︷︷ ︸

=SNRff
mMIMO

. (49)

The first factor contains one N-term and describes the frac-
tion of power received at the IRS that also reaches the
destination. Since this term is fundamentally upper bounded
by one, this N-term describes a drawback rather than a ben-
efit of using the IRS-type of relay (it is the fraction of power
that is not lost). The second factor in (49) equals the far-field
mMIMO SNR in (29) and its N-term represents the array
power gain that is achieved when having a large array.
To demonstrate these properties, Fig. 7 shows the total

channel gains obtained by the mMIMO receiver and the IRS-
aided setup for a varying number of antennas/elements N.
We consider the setup in Fig. 5(b) with d = 25m, η = π/6,
δ = 2.5m, and ω = −π/6. Each element in the array has
area A = (λ/4)2 with λ = 0.1m. We stress that in the IRS-
aided setup, the destination is in the vicinity of the IRS. The

FIGURE 7. The total channel gain obtained with the mMIMO receiver and with the
IRS-aided setup, for different number of antennas/elements N. The setup in Fig. 5(b) is
considered with d = 25m, η = π/6, δ = 2.5m, ω = −π/6, A = (λ/4)2 , and λ = 0.1m.

figure shows that the total channel gain grows as N2 with the
IRS and as N with the mMIMO receiver, which is consis-
tent with the respective far-field approximations derived in
Corollaries 3 and 7. Nevertheless, mMIMO provides a much
larger channel gain for most values of N, which is consistent
with Proposition 3. The advantage remains asymptotically.
The reason is that each element of the IRS acts as an isotropic
scatterer, thus the IRS is a full-duplex relay that forwards
the signal to the destination without amplifying it [44]. Even
if the destination is close to the IRS, the far-field approx-
imation in (48) is accurate until the IRS has roughly 104

elements. The upper bound in (43) follows the exact curve
closely, even for N > 104, which is why we called it a tight
bound.
Remark 4: The upper bound in Proposition 3 contains

the product of the total channel gain ξd,η,N between the
source and IRS and the total channel gain ξδ,ω,N between
the IRS and the destination. This is the same structure as
for the far-field SNR in (48), which has been analyzed in
a series of previous works (e.g., [30]–[32], [43]). However,
the near-field behavior has not be analytically studied with
the same rigor. The IRS was approximated as a specular
reflector (i.e., an ideal mirror) in [20], [28]–[30] and the
channel gain in the near-field can then be made proportional
to 1/(d + δ)2 [29]. This expression is different from the
upper bound in Proposition 3, where there are no terms that
depend on both d and δ. The following conclusion can be
made: If one can operate an IRS to get a channel gain of
the kind in [20], [28]–[30], the SNR is likely not maximized
by doing so. We return to this matter in Section VII.
We conclude this section by using the upper bound in

Proposition 3 to study the asymptotic behavior of an IRS,
particularly in the near-field.
Corollary 8 (Asymptotic Analysis): As N → ∞ with

constant transmit power Ptx, the SNR in the IRS setup is
asymptotically upper bounded since

SNR
upper
IRS → 1

9

Ptx

σ 2
. (50)

If the transmit power is reduced with N as Ptx = P/Nρ for
some constant P > 0 and exponent ρ > 0, then as N → ∞
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it follows that

SNRIRS =
(

N
∑

n=1

|hn‖gn|
)2

P

Nρσ 2
→ 0. (51)

Proof: The upper bound follows from the fact that
ξd,η,N, ξδ,ω,N → 1/3 as N → ∞, which was also utilized in
Corollary 4. Since the channel gain is upper bounded, the
SNR goes to zero if Ptx goes asymptotically to zero.
This corollary shows, once again, that the asymptotic

SE limit of any conventional power scaling law is zero.
Nevertheless, we can expect the SNR in the IRS-aided setup
to grow as N2 for most practical array sizes. In those cases,
it is also possible to reduce the transmit power as 1/N2 and
keep the SNR constant. In agreement with Proposition 3,
Corollary 8 also shows that an IRS-aided setup can never
reach the same SNR as the mMIMO receiver for any com-
mon value of N. The difference remains as N → ∞ since
the limits are different.

VI. HOW LARGE IRS IS NEEDED TO ACHIEVE THE SAME
SNR?
When looking for suitable use cases for the IRS technology,
one needs to ask the question: How large must the IRS be
to achieve the same performance as with an active mMIMO
receiver or a regenerative half-duplex mMIMO relay? To
answer this question, we now let NmMIMO, Nrelay, and NIRS,
denote the number of elements of the mMIMO receiver,
the mMIMO relay, and the IRS, respectively. We can then
determine how many elements are needed in the IRS to
achieve the same or higher SE than with the competing
technologies.
Corollary 9: When operating in the far-field, the IRS case

provides higher SE than the mMIMO receiver if

NIRS ≥
√

NmMIMO

ςδ,ω

. (52)

Similarly, the IRS case provides higher SE than the half-
duplex mMIMO relay if

NIRS ≥ σ 2

Ptxςd,ηςδ,ω

√

1 + Nrelay
min

(

Ptxςd,η,Prelayςδ,ω

)

σ 2
.

(53)

Proof: This follows from comparing the expressions in
Corollaries 3, 5, and 7.
By inserting values into the expressions in Corollary 9,

Fig. 8 shows how many antennas are needed to achieve
a particular SE in each of the three setups. The same
simulation parameters as in Fig. 7 are considered with
Ptx = Prelay. The first observation is that the IRS needs more
than 100 elements before it provides an SE that is clearly
above zero. After that, the number of elements grows more
gracefully with the SE than for the half-duplex relay and
mMIMO setups, since the SNR grows as N2 for the IRS.
However, it is only for SEs greater than 4.4 bit/s/Hz that

FIGURE 8. The number of elements/antennas needed to achieve a given information
rate in the different setups. The same simulation parameters as in Fig. 7 are
considered with Ptx = Prelay.

NIRS < Nrelay in this example. The IRS must always be larger
than the mMIMO array to deliver the same SE. For exam-
ple, NmMIMO = 100 delivers 3 bit/s/Hz, while NIRS ≈ 4000

is needed to achieve the same SE. Since this example con-
siders a 3 GHz carrier frequency, this corresponds to a
mMIMO receiver that is 0.25 × 0.25m and an IRS that is
1.6×1.6m, thus it is practically possible deploy such an IRS
even in an indoor environment. The difference in physical
size reduces asymptotically but will not vanish, as proved
in the previous section. If one would consider a different
carrier frequency, the physical array dimensions remain the
same but the number of elements required to build the array
change.
Remark 5: Even if the IRS must be physically larger than

the mMIMO counterparts to achieve a given SNR, it might
still be practically preferable since the surface can be thin,
integrated into existing construction elements, and, hope-
fully, cheap and energy-efficient. While the first generation of
mMIMO technology is commercially available, the IRS tech-
nology is in its infancy which makes it impossible to quantify
its cost and energy consumption [23]. It has been possible to
build metasurfaces for many years but the IRS operation also
requires real-time channel estimation and reconfigurability.
This is an active research area [27], [50], [51] that has not
converged to a mature solution yet and it is potentially the
implementation of these functionalities that will dominate
the hardware cost and energy consumption [23].

VII. GEOMETRIC INTERPRETATION OF OPTIMIZED IRS
Some recent works model an IRS as a specular reflector
or an “anomalous mirror” (i.e., a mirror with an unusual
reflection angle) [20], [28]–[30]. This basically means that
the IRS reflects the incoming signal towards the destination
as a flat and perfectly rotated plane mirror would do. Under
these conditions, the total channel gain of the IRS setup
would converge to

ςmirror
d,δ =

(
λ

4π(d + δ)

)2

(54)

as the array size grows large and the near-field is considered.
This asymptotic formula can be motivated by geometrical
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FIGURE 9. The total channel gain obtained with the IRS-aided communication using
either optimal phases or mirror-mimicking phases, for different number of elements N.
The setup in Fig. 5(b) is considered with d = 25m, η = 0, δ = 2.5m, ω = 0, A = (λ/4)2,
and λ = 0.1m.

physics if one considers an equivalent setup where the desti-
nation is behind the mirror and the total propagation distance
is d+δ. Interestingly, the limit in (54) differs from the asymp-
totic upper bound derived in Corollary 8. More precisely,
the two distances d and δ appear in (54) in a joint factor
(d + δ)2 and not within separate multiplicative factors as
in Proposition 3. This reveals that an IRS that is optimized
to maximize the SNR does not operate as a plane mirror.
If a plane wave is impinging on a plane mirror, its specu-
lar reflection is also a plane wave. In contrast, if a plane
wave is impinging on an IRS, each element will scatter a
piece of the wave with a particular phase-shift. By opti-
mizing the phase-shifts so that the N scattered waves add
constructively at the destination, the IRS effectively operates
as a concave mirror that focuses the incoming wave at the
point of the destination. The phase-shift optimization finds
the SNR-maximizing curvature of the concave mirror and
the IRS synthesizes such a mirror without actually changing
its physical shape.
Fig. 9 demonstrates this in a setup where both the source

and destination are centered in front of the array: d = 25m,
η = 0, δ = 2.5m, ω = 0 following the notation in Fig. 5(b).
In this case, a mirror-mimicking IRS has θn = 0 and µn = 1

for all n and the corresponding total channel gain can be
computed using (21) as |

∑N
n=1 |hn||gn|e−j(φn+ψn)|2. Fig. 9

also reports the total channel gain (
∑N

n=1 |hn||gn|)2 of an
optimized IRS with θn = φn + ψn. Each element has area
A = (λ/4)2 with λ = 0.1m. There is no noticeable differ-
ence in Fig. 9 for small IRSs because when the source and
destination are in the far-field, focusing the incoming plane
wave on a far-away point is approximately the same as mim-
icking a plane mirror that reflects the signal towards a point
infinitely far away in the same angular direction. However, at
around N = 360, the channel gain of the mirror-mimicking
IRS starts to converge to (54), while the channel gain of
the optimized IRS continues to increase. At N = 104, the
optimized IRS has a 500 times better channel gain than the
mirror limit in (54). We conclude that the SNR achieved
by an optimized IRS can generally not be described using
the mirror limit; particularly not in the near-field since the

dashed far-field approximation is accurate far beyond the
point where optimized SNR surpasses the mirror limit. This
conclusion is consistent with the results in [31], which were
derived by neglecting polarization effects. However, one can
certainly use the mirror analogy to identify the approximately
optimal phase-shifts when operating in the far-field [43].
By setting the far-field approximation in (48), for an opti-

mized IRS, equal to the mirror limit in (54), we obtain
that

NA =
(

1

d
+ 1

δ

)−1

λ (55)

is the largest array area that a mirror-mimicking IRS can
make use of in this example.9 This point is indicated by a
square in Fig. 9. If the IRS is larger, the remaining area is
essentially wasted on scattering signals in other directions.
The same phenomenon appears when a person is looking
into a large plane mirror and only sees his/her reflection in
a small part of it. Hence, if one uses (54) as a proxy for the
channel gain of an optimized IRS (e.g., as done in [20], [28]),
then the results only hold when the IRS has exactly the area
in (55) and the source/destination are centered in front of it.
If we change δ or λ, the curves in Fig. 9 will be shifted in
different directions, but the quantitative conclusions remain
the same. Note that a larger area NA is obtained in (55)
as the wavelength is increased, thus a much larger area is
needed to mimic a mirror in radio spectrum than in visible
light. In summary, the correct geometric interpretation of
an optimized IRS is that it synthesizes the scattering off an
optimally shaped concave mirror that can focus the incoming
wave onto the point of destination.

A. RECONFIGURABILITY UNDER MOBILITY

The SNR-maximizing configuration focuses the reflected
signal at the location of the destination, while the mirror-
mimicking configuration forms a beam in the angular
direction of the destination. One reason to consider the latter
configuration is that only the angle must be known, thus the
IRS must not be reconfigured if the destination moves along
a trajectory where the angle is constant [21]. However, even
if the optimal focusing requires a continuous reconfiguration
to be withheld under user mobility, one can also focus the
signal at a point in the vicinity of the destination and keep
this IRS configuration fixed as the destination moves.
An example of this is provided in Fig. 10 for a setup

where the source is located at d = 25m from the IRS and
the distance δ to the destination is varied. The figure shows
how the total channel gain varies for δ ∈ [1, 100]m when
using an IRS with N = 104 elements. The setup in Fig. 5(b)
is considered with d = 25m, η = 0, ω = 0, A = (λ/4)2,
and λ = 0.1m. The upper curve represents the optimal SNR-
maximizing configuration which requires reconfiguration of
the IRS as the destination moves (i.e., a different � for

9. The expression is generalized in [31, eq. (35)] to cases where the
source and destination are located in different directions.
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FIGURE 10. The total channel gain when the destination is at different distances δ

from the IRS. The SNR-maximizing configuration (utilizing the value of δ) is compared
with the mirror-mimicking case (only utilizing the angle ω) and two cases where the
signal is focused at a fixed point.

every value of δ). There is a large gap to the dotted curve
that represents the mirror-mimicking case that approximates
specular reflection and beamforms the signal towards a point
infinitely far away in the right angular direction. There are
also two curves where the reflected signal is focused at a
point that is either given by δ = 5m or δ = 25m. These
curves intersect with the optimal curve in the respective
points but are otherwise below that curve, but the practical
benefit is that the IRS is not reconfigured as the destination
moves. We notice that focusing at a nearby point (5m) leads
to an array gain that is only obtained when the destination is
close to the IRS, while the mirror-mimicking configuration
outperforms it at larger distances. When the focus point is
at an intermediate distance (25m), the achievable channel
gain is larger than or approximately the same as in the
mirror-mimicking case at all the considered distances and,
particularly, preferable when the destination is at distances
above 10m. The reason is that a specular reflector focuses the
reflected signal at a point infinitely far away, thus it is only at
very large distances (compared to the size of the IRS) that the
mirror-approximation coincides with the SNR-maximizing
configuration. Whenever there is side-information regarding
the distance interval of where the destination might be, it is
better to focus the signal at some point in that interval and
then keep the configuration fixed even under mobility.

VIII. EXTENSION TO GENERAL PROPAGATION SETUPS
The analytical results have been derived in the free-space
line-of-sight scenario, where the near-field behavior and
asymptotic limits can be rigorously derived. Since the near-
field behavior occurs when the propagation distance is
comparable to the width/height of the array, it will mostly
appear over short distances where the line-of-sight path
exists. However, the channel can also contain additional
scattered paths and the line-of-sight path can be partially
blocked. Each such path can be modeled in the way described
in Section III, making the channel vector a summation of
deterministic multi-path components arriving from different
angles with different amplitude and phase. Any such setup

can be described by a pair of deterministic channel vec-
tors h and g that satisfy the law of conservation of energy:
‖h‖2 ≤ 1 and ‖g‖2 ≤ 1. For any such setup, it follows
from (13) that the SE of the uplink mMIMO is

SEmMIMO = log2

(

1 + ‖h‖2Ptx

σ 2

)

. (56)

From (17), the SE of the half-duplex mMIMO relay is

SErelay = 1

2
log2

(

1 + min

(

‖h‖2Ptx

σ 2
, ‖g‖2Prelay

σ 2

))

. (57)

Furthermore, the SE of the IRS-aided setup is

SEIRS = log2

⎛

⎝1 + Ptx

σ 2

(
N
∑

n=1

|hn||gn|
)2
⎞

⎠

≤ log2

(

1 + ‖h‖2‖g‖2Ptx

σ 2

)

(58)

where the upper bound follows from Proposition 3. The SE
will be strictly lower than that in (58) if the IRS has a limited
ability to control the phase-shift variables, but it seems that
only a few discrete levels are sufficient to keep the SNR loss
below 1 dB [49]. In any case, (58) remains a rigorous upper
bound and the asymptotic limits are theoretically achievable.
If the arrays are equal-sized in all three setups, then

the uplink mMIMO setup achieves the highest SE since
‖h‖2‖g‖2 ≤ ‖h‖2 for any practical channel setup. Whether
the half-duplex mMIMO relay or the IRS-based relay
achieves the highest SE depends on the channel model and
transmit powers. Based on the previous results, we can expect
the half-duplex relay to perform better when the arrays are
small, while the IRS is preferable when the arrays are suffi-
ciently large. The way to understand this is that the smaller
pre-log factor of the half-duplex relay is particularly detri-
mental when the SNR is high, because then its higher SNR
cannot compensate for it. If the IRS is physically larger than
the mMIMO array, it can achieve the same or higher SNRs.
No general relationship can be obtained. When it comes to
the asymptotic SE limits, the mMIMO and IRS-aided setups
will give convergence to the same limit if ‖g‖2 → 1 as
N → ∞. However, this would require that the receiver cap-
tures all of the power that is scattered by the IRS, which
might not occur in practice.

IX. CONCLUSION
The limit of a large number of antennas has been studied in
the multi-antenna literature for decades and is a core moti-
vation behind the mMIMO technology. In this article, we
have noticed that previous asymptotic analyses have used
channel models that are only accurate in the far-field, while
the asymptotic limit can only be approached when operating
in the near-field. Hence, the asymptotic SE behaviors and
asymptotic power scaling laws in the existing literature can
potentially be misleading. To determine when the asymptotic
behaviors break down, we have derived a physically accurate
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channel gain expression for planar arrays, taking both polar-
ization and near-field conditions (such as varying effective
antenna areas) into account. We have used this model to
revisit the power scaling laws and asymptotic limits in three
MIMO setups: conventional mMIMO, half-duplex mMIMO
relays, and IRS-aided communications.
The main observations are as follows. The total channel

gains in the two mMIMO setups grow as N in the far-
field, where N is the number of antennas/elements, while it
grows as N2 in the IRS setup. Numerical results showed that
these behaviors are accurate even when the arrays have many
thousands of elements/antennas, thus the classical scaling
results are accurate in most practical deployments. However,
the growth rate eventually tapers off when entering the near-
field, and the channel gain converges to 1/3 as N → ∞ in
the mMIMO setups, and is upper bounded by 1/9 in the IRS
setup. The near-field behavior begins when the width/height
of the array is comparable (or larger) than the distance to
the transmitter/receiver. A consequence is that any power
scaling law that lets the transmit power go asymptotically
to zero will also lead to zero asymptotic SE.
The IRS will provably always achieve a lower SNR than

the two mMIMO setups for any common value of N, despite
the faster growth rate observed in the far-field. The reason
is that one of the N-terms in the SNR accounts for the
fraction of power that is lost in the IRS’s reflection, thus
it represents a drawback rather than a benefit. However, if
the IRS has a larger array size than in the mMIMO setups,
it can achieve a higher SNR. This qualitative conclusion is
previously known, but we have substantiated it by deriving
exact expressions for when the breaking point occurs and
shown that it appears in practically relevant cases. Needless
to say, the cost per element is lower with an IRS than in
mMIMO, thus future work needs to consider if the total cost
of the IRS technology will also be smaller.
By using the analytical expressions, we have proved that

the SNR of an optimized IRS contains the product of the
channel gains from the source to the IRS and from the
IRS to the destination, in both the near-field and the far-
field. Previous works have interpreted the IRS as being an
anomalous plane mirror (specular reflector) that can control
the angular direction of the “reflected” signal, but we stress
that an optimized IRS synthesizes the scattering of a concave
mirror that can also focus the signal on a point in the near-
field. The optimal concave mirror is approximately plane
when it is physically small and/or when the point is far
away. In these cases, the optimal SNR does not match the
“sum-of-distances” expression in (54) for an infinitely large
plane mirror. In the near-field, the IRS can achieve SNRs
that are orders-of-magnitude above the plane mirror limit.
The asymptotic analysis of this article relies on a determin-

istic channel model, which is valid only for the considered
propagation scenarios with fixed locations of the transmitter,
receiver and arrays. Unlike deterministic models, stochas-
tic approaches are independent of a particular propagation
environment and allow to model random reflections and

scattering, and the channel fading they give rise to. Although
there is no apparent reason to question the asymptotic find-
ings of this article under stochastic propagation conditions,
it must be clear that the classical stochastic channel models
cannot be used for the analysis of near-field behaviors since
they do not capture the essential near-field propagation prop-
erties, such as the three key properties listed in Section III.
The research on this subject is generally open and nontrivial.
In fact, the classical stochastic channel models do not well-
reflect the physical properties of large arrays with a massive
number of antennas in a compact space, not even in the
far-field. A recent attempt to address this deficiency is [52],
where a spatially-stationary model for the small-scale fading
in the far-field of non-isotropic random scattering environ-
ments is developed on the basis of a Fourier plane-wave
spectral representation.

APPENDIX A
PROOF OF LEMMA 1
The proof proceeds in two steps. In the first step, we compute
the channel gain of the nth antenna element using electro-
magnetic arguments (extending the work by [38]) and show
numerically how it can be tightly upper bounded when its
area a × a is small (compared to the wavelength λ). In
the second step, the upper bound on the channel gain is
computed in closed form.

A. CHANNEL GAIN COMPUTATION AND UPPER BOUND

The electric field E(pt,pn) ∈ C
3 generated in a point r =

[rx, ry, 0] from a point source (isoptropic antenna) located
in pt = [xt, yt, d] is [38, eq. (4)]

E(pt, r) = G(r − pt)J(pt) (59)

where J(pt) = Jx(pt)ûx+Jy(pt)ûy+Jz(pt)ûz (with ûx, ûy, ûz
representing the unit vectors in the x, y, z directions) and
G(r − pt) ∈ C

3×3 is the Green function which, under
the condition that ‖r − pt‖ ≥ λ, is well-approximated
as [38, eq. (3)]

G(r) = −jη e
−j 2π

λ
‖r‖

2λ‖r‖
(

I3 − r̂r̂H
)

(60)

with r̂ = r
‖r‖ . This approximation is tight when the trans-

mitter is beyond the reactive near-field of the receive
antenna.
If only the Y direction of J(pt) is excited at the point

source, then we have that J(pt) = Jy(pt)ûy. The electric
field reduces to

E(pt, r) = Gy(r − pt)Jy(pt) (61)

where Gy(r−pt) = G(r−pt)ûy is the second column of the
Green function in (60). The complex-valued channel from a
point source located in pt to the receive point r located in
the XY-plane is

h(pt, r) = |h(r − pt)|e−j
2π
λ

‖r−pt‖ (62)
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where

|h(r − pt)|2 =

Power gain
︷ ︸︸ ︷

4

η2

∥
∥Gy(r − pt)

∥
∥

2

Projection on the Z direction
︷ ︸︸ ︷

(r − pt)
Tûz

‖r − pt‖

= 1

4π

d
(

(rx − xt)
2 + d2

)

(

(rx − xt)
2 +

(

ry − yt
)2 + d2

)5/2
(63)

denotes the channel gain along the Z direction (perpendicular
to the array) where r−pt

‖r−pt‖ denotes the pointing direction of
the electric field. If the nth antenna has the area a× a, the
effective channel is

hn(pt) = 1

a

∫ xn+a/2

xn−a/2

∫ yn+a/2

yn−a/2

h(pt, r)∂rx∂ry. (64)

The total channel gain is thus

|hn(pt)|2 =
∣
∣
∣
∣
∣

∫ xn+a/2

xn−a/2

∫ yn+a/2

yn−a/2

h(pt, r)∂rx∂ry

∣
∣
∣
∣
∣

2

≤
∫ xn+a/2

xn−a/2

∫ yn+a/2

yn−a/2

|h(pt, r)|2∂rx∂ry = ζpt,pn (65)

where the inequality follows from the Cauchy-Schwarz
inequality and |h(pt, r)|2 = |h(r − pt)|2 in (63).
Fig. 11 numerically evaluates the normalized channel gain
|hn(pt)|2/ζpt,pn as a function of a/λ when pn = (xn, 0, 0)

with xn = 0, 5 and 10m and pt = (0, 0, d) with d = 10 m.
The carrier frequency is f = 3GHz. The results of Fig. 11
show that ζpt,pn is a tight upper bound of |hn(pt)|2 for
a ≤ λ/4 since the relative error in the channel gain is below
1 dB. An antenna element a ≤ λ/10 is needed to approach
0 dB. Motivated by this, we assume a ≤ λ/4 and replace
|hn(pt)|2 with ζpt,pn , which can be computed in closed form
as shown next.

B. CLOSED-FORM EXPRESSION OF CHANNEL GAIN

BOUND

We will make use of the following primitive functions:
∫

∂x
(

x2 + a
)3/2

= x

a
√
x2 + a

+ C (66)

∫
∂x

(x2 + a)5/2
= x

3a
(

x2 + a
)3/2

+ 2x

3a2
√
x2 + a

+ C (67)

∫
∂x

(x2 + a)
√
x2 + a+ b

= 1√
ab

tan−1

( √
bx

√
a
√
x2 + a+ b

)

+ C (68)

where a, b are arbitrary scalars and C is an arbitrary constant.
From (63), it follows that ζpt,pn in (65) requires to solve

the following integral:

ζpt,pn

= 1

4π

∫ xn+a/2

xn−a/2

∫ yn+a/2

yn−a/2

d
(

(rx − xt)
2 + d2

)

∂rx∂ry
(

(rx − xt)
2 +

(

ry − yt
)2 + d2

)5/2

FIGURE 11. Normalized channel gain |hn(pt)|2/ζpt ,pn in dB as a function of a/λ
when pn = (xn, 0, 0) with xn = 0, 5 and 10m and pt = (0, 0, d) with d = 10m.

=
∫ xn+a/2

xn−a/2

∫ yn+a/2

yn−a/2

d
√

(rx − xt)
2 +

(

ry − yt
)2 + d2

︸ ︷︷ ︸

Reduction in effective area from directivity

× (rx − xt)
2 + d2

(rx − xt)
2 +

(

ry − yt
)2 + d2

︸ ︷︷ ︸

Polarization loss factor

× ∂rx∂ry

4π
(

(rx − xt)
2 +

(

ry − yt
)2 + d2

)

︸ ︷︷ ︸

Free-space pathloss

(69)

where rx, ry are integration variables representing the loca-
tion of the receive antenna. The contributions of the three
fundamental properties when operating in the near-field of
the array (i.e., the distance to the elements, the effective
antenna areas, the loss from polarization) are clearly expli-
cated. Next, we make the change of variables χ = rx − xt
and υ = ry − yt, so that (69) becomes

1

4π

∫ xn+a/2−xt

xn−a/2−xt

∫ yn+a/2−yt

yn−a/2−yt

d
(

χ2 + d2
)

∂υ∂χ
(

χ2 + υ2 + d2
)5/2

= 1

4π

∫ xn+a/2−xt

xn−a/2−xt

[
υd

3(χ2 + υ2 + d2)3/2

]yn+a/2−yt

yn−a/2−yt
∂χ

+ 1

4π

∫ xn+a/2−xt

xn−a/2−xt

[

2υd

3(χ2 + d2)
√

χ2 + υ2 + d2

]yn+a/2−yt

yn−a/2−yt

∂χ

(70)

= 1

4π

⎛

⎝

∑

y∈Yt,n

∫ xn+a/2−xt

xn−a/2−xt

yd

3
(

χ2 + y2 + d2
)3/2

∂χ

+
∑

y∈Yt,n

∫ xn+a/2−xt

xn−a/2−xt

2yd

3(χ2 + d2)
√

χ2 + y2 + d2
∂χ

⎞

⎠

(71)

by utilizing (67). The first integral in (71) can now be
computed using (66) as

∫ xn+a/2−xt

xn−a/2−xt

yd

3(χ2 + y2 + d2)3/2
∂χ
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=
∑

x∈Xt,n

xyd

(y2 + d2)
√

x2 + y2 + d2
. (72)

Moreover, the second integral in (71) can be computed
using (68) as

∫ xn+a/2−xt

xn−a/2−xt

2yd

3(χ2 + d2)
√

χ2 + y2 + d2
∂χ

=
∑

x∈Xt,n

2

3
tan−1

(

xy

d
√

x2 + y2 + d2

)

. (73)

Substituting (72) into (70) and (73) into (71) yield the final
result in (4), after dividing the numerators and denominators
by d.

APPENDIX B
PROOF OF COROLLARY 3
When d cos(η) ≫

√
NA, it follows that B + 1 ≈ 1 and

2B+ 1 ≈ 1. We can then utilize that tan−1(x) ≈ x for x ≈ 0

to approximate (27) as

ξd,η,N ≈
2
∑

i=1

B+ (−1)i
√
B tan(η)

2π

√

tan2(η) + 1 + 2(−1)i
√
B tan(η)

. (74)

Furthermore, we can utilize that
√

1 + x ≈ 1+x/2 for x ≈ 0

to approximate the denominator of (74) and obtain

ξd,η,N ≈
2
∑

i=1

B+ (−1)i
√
B tan(η)

2π
√

1 + tan2(η)
(

1 + (−1)i
√
B tan(η)

1+tan2(η)

)

=
2B− 2B tan2(η)

1+tan2(η)

2π
√

1 + tan2(η)
(

1 +
√
B tan(η)

1+tan2(η)

)(

1 −
√
B tan(η)

1+tan2(η)

)

≈ B

π(1 + tan2(η))3/2
= N βd cos(η) cos3(η)

︸ ︷︷ ︸

=ζd,η

(75)

where we first simplified the expression by writing the
two fractions as a single fraction and then utilized that

1 − (−1)i
√
B tan(η)

1+tan2(η)
≈ 1 and finally that 1 + tan2(η) =

1/ cos2(η).
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