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POWER SERIES EXPANSIONS
OF RIEMANN'S £ FUNCTION

J. B. KEIPER

Abstract. We show how high-precision values of the coefficients of power se-

ries expansions of functions related to Riemann's í function may be calculated.

We also show how the Stieltjes constants can be evaluated using this scheme and

how the Riemann hypothesis can be expressed in terms of the behavior of two

of the sequences of coefficients. High-precision values for the coefficients of

these power series are found using Mathematica ™ .

1. Introduction

The functional equation for the Ç function is normally expressed [3, p. 16]

as

(1) His) = til-s),

where

(2) ^) = J(5-i)^/2r(0c(5).

It is this function E, and related functions which we will examine via power

series expansions.

Riemann showed [5] that

(3) 2Zis) =1+ T (fZ e-"2A ̂-V'-i)/2 + ts'2) dt

and suggested that t, can be expanded as a power series in is - 1/2)2 "which

converges very rapidly." We will instead look at the power series expansion

about the point s = 1 .
In addition to £(s) we also look at the expansions of <f(s)/¿;(s),

<i;'(l/s)/<!;(l/s) , and log¿;(l/s). Note that the zeros of ¿;, i.e., the nontrivial

zeros of Ç, are singularities of the functions log^(i) and Ç'(s)/Ç(s) and that

the mapping s i-> l/s maps the critical line to the circle of radius 1 centered

at 5 = 1. Thus, the Riemann hypothesis can be expressed in terms of the

growth of the coefficients of the power series expansion of Ç'(l/s)/Ç(l/s) or of
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766 J. B. KEIPER

logeai/s) : the Riemann hypothesis is equivalent to the radius of convergence

being 1.

2. Power series expansion of Ç(s) about 5 = 1

To find the power series coefficients of Ç(s), we examine the derivatives of

Ç(s) at s = 1. In particular, if we let

oo

(4) 2<^) = 5>;(s-iy,
7=0

then by induction on (3), we get

(5) a0 = 1       and       a, = /3,_2 + /3,_i    for j > 1,

where

(6) /?-i=0,        y90=l + i-log(2v^),

and

2

(logv^y
(7) ß} = jj^e-^y^^i^t + i-iy)dt   for;>l.

3. Power series expansion of Ç'(s)/Ç(s)

We also wish to get the values of ak+l , where

(8) f^ = E^+-(1-^-
(The reason for the factor of (-l)k and the subscript of k + 1 will become

apparent below.) To find the values of ok+i, we can multiply the power se-

ries expansion of 2Ç'(s) by that of l/(2£(s)). We note that the power series

expansion of l/(2<^(s)) is given by

DC

(9) l/(2í(í)) = 5]fl„(í-l)",
«=o

where

n

(10) a0 = 1   and   an = -'YZaian-j,

7=1

as can be seen by examining the product of the expansions of 2£,(s) and

l/(2£(s)).
For small values of k this method of computing the coefficients ak+i works

well. However, the cost of computing each coefficient increases linearly with

the index. Because, as we shall see below, there is another method whose cost

per term does not increase at all, we only use this method for small k . There is

also an issue of numerical ill-conditioning in the calculation of the ok+i from

the ßj. However, this ill-conditioning is not nearly so bad as that of Lehmer's

method, which loses nearly 0.85 digits per coefficient [4, equation (12)].
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We use a different approach for large k . From the well-known product over

all nontrivial zeros of the Ç function [3, p. 20],

(11)

we get

(12)       logfts)

(13)

«.>-èn(«-i)

log2 + ^log
p-l

+E1°g(1-
p-l

-*♦^H)-t^im
Note that at s = 1 we get the identity £ loB(l -!//>) = 0 since £(1) = 1/2.

Differentiating (13), we get

(14)
TO = E

fc=i
£

1

(1-/7)*
(1-5)

k-1

and we see that

(15) °k     Ç(l-/»)*     Ç/'
Note that the functional equation for £ applied to ( 13) at s = 1 yields

(16)

OO      j

/t=l

zZffk-
k=\

and applied to ( 14) at s = 1 yields

(17) ax -

In general, the functional equation applied to the yth derivative of ( 14) yields

(is) oj+x = (-irxjz(k'l)ok.
k=l ^   J    '

We can use these identities as consistency checks on the values of ak .

For k large, the sum of the —k powers of the nontrivial zeros of the zeta

function is rapidly convergent. For k small we must get the values of ok from
the values of a.¡.

4. Power series expansions of related functions

To get the power series expansions for

(19)

and

(20)

Í(1/í)
= £>(!-*)*

k=0

log(2¿(l/S)) = £A,(l-5)fc,

fc=0
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we need the following: if

oo

(2i) /(z) = 5>„(z-iy,

then

n=0

(22) ffà-o+t zZ(m   i11
m=l Ln=

which can be seen from the fact that

n- 1

(23) (L-iY=   (1~z)"   =(i-zrU  V   [i-(i-z)]»  (1 zj

(l-z)*,

Jt=0

and collecting like powers of ( 1 -z). Using this, we get the following expressions

for the coefficients:

(24)

(25)

(26)

(27)

to = ox,

k-l
T* = E(/_;)(-1)^+'    forfc>l

7 = 1

¿0 = 0,

k

7 = 1 J
7-1

As with ok , further identities can be derived, which can be used for checking

consistency. In particular, substituting ( 18) into the expressions for xk and Xk ,

we get

(28)

(29)

7=2
OC

j + k - 2\

k rtfc = - E i

-l^(j + k-\\

7 = 1   V 7

5. Further observations

From (28) we see that

oo

(30) tm_i = -£
j=m

Jm-l)aj-

(31)

(32)

(33)

= -E E
j=m

L~-\ I -m-2

= -zZ(P-irmP
p

/ \ rn-Ç^î   '

m-2
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Likewise, from (29), Xk can be expressed in terms of a sum over p, namely

(34) ¿-n
m ^—'

1
p-\

In fact, xm is just the second central difference of mXm :

(35) xm = (m + l)Xm+x - 2mXm + (m - l)Aw_i.

From (33) it is clear that the Riemann hypothesis implies that the values of

\xk\ are bounded by

(36) 5>l 0.04619141793224206762862.

Conversely, if the \xk\ are bounded, then by (19) the Riemann hypothesis must

be true. It is also clear that the failure of the Riemann hypothesis (if such is the

case) would be rather difficult to observe in the growth of the numerical values

of the coefficients xk , since k would have to be extremely large before a (large)

p which is off the critical line would yield \p/(p - l)\k large.
Likewise, from (34) it is clear that the Riemann hypothesis implies that Xm >

0 for all positive m . In fact, if we assume the Riemann hypothesis, and further

that the zeros are very evenly distributed, we can show that

log m      log(27î) + 1 - y
(37) Xn

2 2

This comes from the fact [3, p. 132] that the number of zeros p in the critical

strip with 0 < Im p < T is

T        T       T
(38)

15

10   h

!. ;     !

'Â\àA
im' m\

|! '1000 ï   ï  :     20d0 3000    J        L

î

-5

-10

I   I

Figure 1
Plot Of m (Xm - (=|2Î _ log(2*)+l-y^
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and (34). Note that this asymptotic conjecture is much stronger than the Rie-

mann hypothesis. Even the coefficient of the log m (not to mention the constant

term) could be altered by a slight preference of the zeros to cluster at, or avoid,

the points 1/2 + 2itan((2k + l)n/(2m)). This approximation to Xm agrees

rather well with the observed behavior of these numbers (cf. Figure 1).

6. Stieltjes constants

The Stieltjes constants are the numbers y„ in the Laurent expansion

(39)
«V^) = 73T + E(-1)'IS(J"1)',

n=0

In this section we show how the coefficients o¡ can be used efficiently to evaluate

the Stieltjes constants.
Taking the logarithm of both sides of (2), we see that

(40) log(5-l)C(s) = log2{(s)-i-ilog7r2—        2   ■l°8K-log[ir(!)].

Employing equation 6.1.33 (p. 256) of [1] with I + z = s/2, we find that

1

(41)

iog[,r(i) = [log2 + ̂ iU5'

0-1

-(1

+E^n+(i-*)r.
H=2

Substituting this into (40), we get that

log(j-l)C(j)=log2{(j) +
1 1 -y
2 log ti- log 2 + —— E C(«) - 1

(42)
1, y-\
-log7T+^- + E

n=l

C{n)-l

2"

B=2

(I-S)

n2"

Now we know that

and that

OO. OO/ .N.OO .

~Ey 2wL-_iJE(2fcjïï
7=2 J      n=j   XJ / k=2 V      '

lOg(s - l)Ç(S) = 7(5-1) +

oo    <

log2£(5) = -£7a;(l-5y

(i-sy.

7=1

Hence, to get the coefficients of the constant and linear terms to be correct, we

must have that

3 C(n)-l      1-7
(43)

and

(44)

n=2
«2"

C(H)-1

n=2
2n

log 2-
1
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Furthermore, since for large x

OO       i . \

(45) El/Ii)*""^*-1)-'.
n=j ^ '

we get that (42) simplifies to

OO      .

(46)      log(j-l)C(s) = y(s-l)-E7
7=2 J

<7, + £(2fc-l)
k=l

(1-5)

By taking the exponential of this series we get that 7o = 7 and

(47)

yk 1     ( Ç(k + 1,3/2) yk_x
k\~ k + l\ak+x + ~      2*+> 7(^-l)!

fc-i

^O'-l)!7=1  u '

,   C(fc+l-;,3/2)
CT^+i-7 +-2^+TZ>-

It should be noted that we could also map s to l/s in (46) and get the

series expansion of log(l/s - l)Ç(l/s) about 5=1. If we do this, we find

that the behavior of these coefficients is very similar to the behavior of the Xm .

In particular, we empirically find that these coefficients are approximated by

Xm - (0.75 - 0.134/m)/ra . Since the evaluation of these coefficients is much

more ill-conditioned than that of the Xm , and the results are so similar, we do

not pursue this further.

We note here that the values we found for the Stieltjes constants are not

consistent with those presented in Table 2 of [2]. In particular, the number

of correct digits presented there decreases linearly from about ten for 736 to

about three for 750. The value for 755 is correct to ten digits, however. (It

is clear that the error is not in our values, since we can use (39) to evaluate

£(30) with an absolute error of less than 10-26 while the term involving 750

has magnitude greater than 1010 .)

7. Practical considerations

The computations associated with this paper were performed over a period of

several months using Mathematica ™ on a Sun SPARC-station 1. (A few of the

results are presented in the appendix. More complete results are available by e-

mail from the author.) With careful coding these computations can probably be

extended by at least an order of magnitude, more on a more powerful computer.

Here we discuss some of the practical considerations in such computations.

A major difficulty is the evaluation of ßj using (7). In fact there are two

things that can be done here to make the computation efficient. First the theta

function Y^x e" nt can De evaluated for any t with a single evaluation of

the exponential function and relatively few multiplications. The sum converges

rapidly and we include only the significant initial terms. The terms cn in the

sum are evaluated as follows:

1. Let ci — e~nt, a = c\, and bi — aci.

2. Let cn+i =cnb„ and b„+i =b„a.

This algorithm is based on the fact that the differences of successive square

integers are the successive odd integers.
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The other thing that can be done to make (7) efficient is to use a double-

exponential quadrature routine. In particular, by reparametrizing the integral

with t = 1 +eT and using the trapezoid rule with sufficiently small stepsize (i.e.,

progressively halving the stepsize until the estimated error is sufficiently small),

the error converges to 0 faster than any power of the stepsize. Since we have

(17) and ( 18), we can check for consistency in the values of ak and do not need

to go to great lengths to estimate the error incurred in the quadrature routine.

Another point to be aware of is that, as mentioned in §3, only the first several

hundred values of ak can be efficiently calculated by dividing the series expan-

sion of £'(5) by the series expansion of £(5) ; for larger values of k , ok is best

evaluated by directly summing inverse powers of the zeros of the £ function.

Finally, for very extensive calculations, Xk calculated using (27) suffers from

ill-conditioning. Since Xk can also be calculated using (34), we can combine

these two formulae and express Xk using (34), where only the first several hun-

dred zeros are included, and (27), where the first several hundred zeros are not

included in the a¡. In particular,

(48) mAm = £l-(^i_)      -£(-l);(7K„,
¡=1 7=1

J I

where
¡V

°j,N = oJ~YJplJ = E pi3-
i=l i=N+l

This splitting was not used in the calculations presented in the appendix.

Appendix

0 +1.000000000000000000000000000000000000000000000000000000000000000000000000000000000000 (0)
1 +2 30957083er. 12103381 4 31024 790649529102 19321 27 1520507595253920 7221 297 13564 767245 7997060 (-2)

2 +2.334386453422618313488235688581048104526888044078135299348696644526116274679Ü96133916 (-2)

3 + 4 979R384992294867235117177438948835315334 051190311104 49 7297362224907169515900015794 28 (.4)
4 +2.5318173031652 70050561210841163734781216247612468051093200452509966062325514970559737 (-4)

5 +5 050254 79221917416958523522501318480215504985511594 6521 G106529482787922163094854 32300 (-6)

G + 1.72098704 1861535577 78015497390409413208675 7701702736404 92732653541994 761232 7570250219 (-6)

7 +3.2378414618810 76960348065919673406208942012226904286279830767694 63572375809859074 94 85 (.g)

8 +8.315968250027721630708768786514767520775647323890266412483461676055203222011449340850 (-9)

9 +1.4 8524 1921491894004 522583848964 37075315909 7364 504236458 74 51720514 704 54227592811777777 (-10)

10 +3.06556023276333135102794999684 7607133510104395172773667917752758424 7165585867914 34 523 (-11)

20 + 1.21347796228754351135596625351326168271961297368943G922822958351364232532287469188071 (.24)

50 +1 070429069154838313385730657548585059360262503178231537091411311695927258846590593 155 (-71 )

100 + 1.24088282362506620893037291526482665236798782180111971835151016271037166227273 i 271696 (-161)

150 + 9.301133713519577941106852678425151215251212111733219503319190171539887089162064C16490 (-260)

0 -6.931 4718055994 53094172321214 58176568075500134360255254120660009493393G21969G94715C059 (.1)

1 +2.309570896612103361431024 79064952916219321271520507595253920722129713564 76724 5799 7060 (-2)

2 +1.6172867611023335192864 24 30960339433870601083141232516998162989669920916015580577058G (.2)

3 +6.92129735181082679304 9 7348872601068994212026393200243617482708163383C2839264945530537 (-2)

4 +9.219761987306040964762787240943901806554167349021320120577971421273G5C330664447565730 (-2)

5 +1 151085428922351901862212810985727667131913230359599079058195163871909012767247281564 (-1)

6 + 1.3792766671372988290416713700341G6635613896607865118343234 142993649G63991732212866017 (.1)

7 +1.60G371596529912129404028725738536629228244204616261630354868022262189016191508610357 (.1)

8 +1.8321915964338257908193931774 72185984899809827343160582307322192294 7437856544 54 74 3098 (-1)
9 +2.05657336709170461702893874 2134 330171123655311001356019608197727988730111162823206002 (-1)

10 +2.279339363193157713693031057368115338071838591273812761961181306973082998101113724070 (-1)

20 + 4.36463843G046607504799730676723601114195612735190971614216281556533840G97163660121700 (.1)

50 +8.70621929767480365979039399697231372288809100489981120578374477336128 70S 2489659362130 (.1)

100 + 1.166037753767913299273616983979379269329870235932278763121893659002312G2503G57581723 7 (0)

200 +1.53327862125672383206361275 7853109720910012178584 4 99538589934990609065918305397665939 (0)
500 +1.9638001859844898940936675926629833651284 4152193691632641423273119401230374 7101292110 (0)

1000 +2.3260531616864C6457406504694083223815804 498204109294 22268906325081761229530101l763630 (0)

2000 +2 675879769130751756905349140785670258231G9O6027478G7O421829608707310228043OG8C8201l18 (0)

4 000 + 3.017616905899266567675908190706132690834964073030616134616701738744 134221G81561687322 (0)
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1 +2 30957089CG12103381431024790C19529162193212715205075952539207221297135C17672157997080 (-2)

2 -1.61543172958O46O275710799O379O7730353026796232414499O3188181535O8O1267621966695517O13 (-2)
3 -1   111582311521059227626682389115781739611892189865187702731526728912130006262102206830 (.4)

1 + 7.362722126168951832G77130703060151131283159027110029011631235763037817581718916822111 (-5)

5 + 7.15093355762G07735801093913132151322106619331527568 768924307 734997388079534 3345379681 (-7)

6 -2.814364169387S62616067156101761237675859726123079019572032672000607516813119833830262 (.7)
7 -1.57119111970177211116269258988882906750035353990880912081053306128244 1704 505957969250 (.9)

8 +1.268868110950 76071901254 7573198133930329211114577861293367633398192232650203209798305 (-9)

9 + 2.827437155055S87089334396878061404036954927289641233391634424272672199400527476371615 (-11)

10 -5.997714847151874594892026289791394537726526162047541113570098071851241127703763514117 (-12)

20 +1.482399329662907928147936992117261052747149970744927574926928515355GG51 73366555369365 (-23)

50 +1   101679157979498095115971305675098351333604072745152565985494150992931702385953078565 (-58)

100 -1 62353377913204 GO 137199270264 2202705650063963968 789967681589052949981761719081733920 7 (-115)

200 +1 089 7295967 77509865119694 218110721704 667264958 70504 37821739970196065104 721692114 78264 (-230)

400 -7 751997439598467511592699186293675133724454 69444 74 772622803612990996333646308224 24 4 85 (-463)

k Stieltjes     constants     i^.

0 +5.77215664 90153286060651209008240243104 2159335939923598805767234884867 7267 77664 6709369 (-1)
1 -7.281584548367672486058637587490131913773633833133795259900655971110113357151118187809 (-2)
2 -9 690363192872318181530386035212529359065806101310719880701365151850755382280111171060 (-3)

3 +2 053831120303315866160016512 753381285 715801115110616215181183336913831192112970053571 (-3)

1        +2.325370065167300057168170177526068000904169113781850990 758010907121811005315521900302 (-3)

5 +7.933238173010627017533318771114448307315394O4584887O7573125626982314821180I7152023797 (-4)

6 -2 387693454301996098724 21841908004 27778371515635807863147612530739106755999296387143G9 (-4)
7 -5.272895670577510460740975054788582819962534729698953310134042268856827321651111821110 (.1)

8 -3.521233538030395096020521650012087117291805337923503566573315073612617 765060653010601 (-1)

9 -3.139177111808801817791162379822739062078953859111102975929190181315010331116152837090 (-5)
10 +2.05332811909061791683722289237065302959853 771166761303810208 7113530090210 710691751985 (-1)

20 +4.663435615115594494005918211335505251131131739256889976707266280985115821300329007011 (-1)

50        +1.266236026513227165967252536486575555384835759448901701980956993469732544041271419075 (2)
100         -4.25340157170802696231443851972783582470289310534 7346897162131985636211871067986720565 (17)

150        +8 02885373150681299325661612598989201184246 738789731123900011950061424 09263025740 (35)
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