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1. Introduction. Let {(s) be the Riemann
zeta-function, and {(s, &) with a parameter a >
0 the Hurwitz zeta-function defined by

(s, )= (n+a)” ([Res>1),
n=0
and its meromorphic continuation over the whole
s-plane. Let I'(s) be the gamma-function, and
(s), = I'(s + n)/I'(s) for any integer n Poch-
hammer’s symbol.

The main aim of this note is to investigate
two types of power series whose coefficients in-
volve the Riemann zeta-function (see Sections 2
and 3) based on Mellin-Barnes’ type integral for-
mulae. Further, as for generalizations of these
power series, we shall introduce hypergeometric
type generating functions of {(s) and derive
their basic properties in the final section. Proofs
of the results in the following sections are only
sketched. Detailed version of the proofs will
appear in a forthcoming paper.

2. Binomial type series. A simple relation

S -1 =1,
n=2

which was firstly mentioned by Goldbach in
1729 (see [10, Section 1]), follows immediately
from the inversion of the order of the double sum

>, Zmoym . This is in fact derived as a spe-
cial case of Ramanujan’s formula

(v)
2.1) (v, 1+2) = Cw+ n)(—2)"

n= 0
for || <1 and any complex v&{—1,01,2,...},
which gives a base of his various evaluations of
sums involving {(s) (see [7, Sections 5 and 6]).
Noting the relations (s, 1) = {(s) and
0/0a)"C(s, @) = (— D"(9),L(s+ n, ), we
see that (2.1) is actually the Taylor series expan-
sion of {(v, 1 + x) as a function of x near x =
0. Srivastava [9][{10] proved various summation
formulae related to (2.1), while Klusch [6] consi-
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dered a generalization of (2.1) to the Lerch
zeta-function. This direction has recently been
pursued by Yoshimoto, Kanemitsu, and the au-
thor [15]. Rane [8] applied (2.1) to study the
mean square of Dirichlet L-functions.

For our later purpose we shall prove (2.1)
as an application of Mellin-Barnes’ type integ-
rals. Suppose first that Re v > 1, and set

1 I'(v+ s)I'(— s

(2.2) F(») = 2, 50) C(u + s)x’ds
for x > 0, where b is fixed with 1 —Rev < b
< 0, and (b) denotes the vertical straight line
from b — 1% to b + 190, We can shift the path of
integration in (2.2) to the right, provided 0 < x
< 1. Collecting the residues at the poles s =
0,1,2,... of the integrand, we see that F,(x) is
equal to the right-hand infinite series in (2.1).
On the other hand, since {(v +5s) = X, n "’
converges absolutely on the path Re s = b, the
term-by-term integration is permissible, and this
gives

F,(x) = S+ =
n=1

Sh+1+n”

n=0
where each term in the resulting expression
could be evaluated by taking — z = x/# in

r@a=2"= 5 [ Ia+ 909 2'as

for |arg(—2) | <7 and —Rea<o<0 (cf
[14], p. 289, 1451, Corollary]). We therefore
obtain (2.1) by analytic continuation.
3. [Exponential type series.
Hawkins [2] found that the sum

G(x)—ZC()

has the asymptotic formula

Chowla and

( -avz

(3.1)Go(x) =xlogx+(27—1)x+%+oe )

as x— + oo, where 7 is Euler’s constant and A
is a certain positive constant. They conjectured
that the error term in (3.1) cannot be essentially
sharpened. Let @ be an arbitrary fixed real num-
ber. Buschman and Srivastava [1] introduced a
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(— x)

more general formulation
G,(x)= 2 (n—a)—7—,
n>a+1

where # runs through all nonnegative integers
with # > a + 1, and studied its asymptotic be-
haviour as x— + o0 . The special cases a =
— 2, — 1 and 1 have been investigated by Ten-
nenbaum [11], Verma [12], and Verma and Pra-
sad [13], respectively.

Let v be an arbitrary fixed complex number.
It is in fact possible to treat a slightly general
sum

2 Ln—v) (_I),

n>Rev+1
based on the formula

(32) 6@ = 557 [ T(= 9L — wa'ds

for x > 0, where ¢ is fixed with Reyv +1 < ¢
< [Re v] + 2. Here [Re v] denotes the greatest
integer not exceeding Re v. (3.2) can be proved
by shifting the path (¢) to the right, and collect-
ing the residues at the poles s = [Rev] + 2,
[Re v] + 3,... of the integrand. While the main
method of [1] is Euler-Maclaurin’s summation de-
vice, our treatment of G,(x) is due to a refine-
ment of original [2].

Shifting the path of integration in (3.2) to
the left in an appropriate manner, we can show

Theorem 1. The following formulae hold for
allz = 1.
() Ifv €{—1,0,1,2,...},

G,(x) =TI'(—v— 1z

[Rev]+1 (-- )"

- 2 Ln—v

n=0

(i) Ifv € {—1,0,1,2,...},

_ v+1
G, (D) = (—z

G,(v) =

+ 9, (v ;

—(—T%T<logx+27—v§l>

n=1 "
~ S0 2" g W,
n=0

wherve empty sums are conszdered to be zero, and
9G,(x) is the error term satisfying the estimate

(3.3) 9,(x) = 0(x™°)

for any C > 0. Here the implied constant depends
only on C and v.

Remark. This theorem gives a refinement
of the results in [1].

Chowla and Hawkins suggested in [2] that
the error term in (3.1) is expressible in terms of
‘almost’ Bessel functions, however, it seems that
the functions have not been precisely determined.
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Let K, (z) be the modified Bessel function of
the third kind defined by

K,(2) = (I, — L)},

where [,(z) is the Bessel function with purely
imaginary argument (see [4, p. b, 7.2.2, (12) and
(13)]). We can indeed show that 9,(x) has the
Voronoi type summation formula involving
K, (2.
Theorem 2.

2 sin Ty

For any x = 1, we have

1
>§(v+1)

X

2

i ——(u+1){ ——(u+1) v+1(2e4 onrz)
v2n7tx)}.

Let (v, m) = I‘(% + v+ m)/m!l(% +v— m)

for any integer m = 0 be Hankel's symbol. Ap-
plying an asymptotic expansion for K, ,(2) (cf.
4, p. 24, 7.4.1, (4)]) to Theorem 2, we can furth-
er prove
Corollary.

9, (x) = 2(—

ZL (u+1)
+ ¢4 K,  (2e”

The asymptotic formula
1 1
— 5 (Z\TT 2vaz
%@ =2 (27‘5)
M-1 T
X {Z (v+1, m)cos(ZWrx +7
m=0
3 _m M
X (u +5+ m>>(327‘rx) 2+ O(x 2)}
holds for all x = 1 and all integers M = 0.
Remark. This gives an affirmative answer
to the conjecture of Chowla and Hawkins men-
tioned above.
4. Generating functions of {(s). Let a and

v be arbitary complex numbers with v & {1,0,
—1,...}. We define

fila; 2 = (a)

z| <),

n= 0

m@—w wahﬂ|<+@.
n=0 '

Since (v + n) — 1 uniformly for » =0,1,2,...,
as Rey— + o | we see that f(a;2)—
(1 — 27 and e,(2) — €°, as Re v— + oo, This
suggests us to define the hypergeometric type
generating functions of {(s) as

o (@), (B) s
4.1) F(a,B;71;2 = nZO D! Cw+mn2"
(Jz| <D,
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where a, B and 7 are arbitrary fixed complex
numbers with y € {0, —1,— 2,...}. Then we
can observe, when Re y— + o0, that
Fla, B;7r;2— Fla,B;7;2,
Fla;r;2) > Fla;r;2,

where F(a, B;71;2 and F(a;7;2 denote
hypergeometric functions of Gauss and Kummer,
respectively.

Corresponding to Euler’s integral formulae
for F(a, B;7;2 and F(a;71;2 (cf [3, p. 59,
2.1.3, (10), and p. 255, 6.5, (1)]), we can deduce
from term-by-term integration that

re)riy —
(4.3) —&@Tg—)i)gu(a, B;r;2

1
= f A G I M N (R Y £
0

for 0 < Ref < Rerand|z| <1, and
r'a)I'y — a)
(4.4) ————F(;)

1
= f 7M1 — D e, (z2)de

)
for 0 < Rea < Re 7 and | z| < + o0. Moreover,
corresponding to Mellin-Barnes’ integral formu-
lae for F(a, B;7;2 and F(a;7;2) (cf. [3, p.
62, 2.1.3, (15), and p. 256, 6.5, (4)]), we can
show by the same path shifting argument as in
Section 2 that

I'(a) T(B) 1

(4.5) —F—(r—)é—g,,(a, Bir;a = o

Ia+ ) I@+ s)I(—s) .
xj(;) e L+ 9) (— 2)°ds

for Rey>1, max(—Rea, —RepB, 1 —Rev)
< b<0and|arg(— 2) | <, and

Fla;7r;2

I 1
(4.6) 1-‘((6;)) Fla;r;2) = i
I'a+ s)I'(— s

© I-v(,r + S) ) C(V + S)("‘ Z)Sds

for Rey > 1, max(—Rea,1 —Rey) <c¢c<0
and | arg(— 2) | < w/2.

Formulae (4.1)-(4.6) are fundamental in de-
riving various properties of ¥, (a, B; 7;2) and
F,(a; 1;2). Further investigations and detailed
proofs will be given in forthcoming papers.
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