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Power Series with the Riemann Zeta-function in the Coefficients

By Masanori KATSURADA *)

Department of Mathematics, Faculty of Science, Kagoshima University

(Communicated by Shokichi IYANAGA, M. J. A., March 12, 1996)

1. Introduction. Let (s)be the Riemann dered a generalization of (2.1) to the Lerch
zeta-function, and (s, c)with a parameter c > zeta-function. This direction has recently been
0 the Hurwitz zeta-function defined by pursued by Yoshimoto, Kanemitsu, and the au-

(s, a)= (n + o) -s (Re s > 1) thor [15]. Rane [8] applied (2.1) to study the

n=0 mean square of Dirichlet L-functions.
and its meromorphic continuation over the whole For our later purpose we shall prove (2.1)
s-plane. Let F(s)be the gamma-function, and as an application of Mellin-Barnes’ type integ-

(s), F(s + n)/F(s) for any integer n Poch- rals. Suppose first that Re v > 1, and set

hammer’s symbol. 1 fi,. Y(v + s)Y(- s)
The main aim of this note is to investigate

(2.2) F(x)=-.) F(v) (v+ s)xSds

two types of power series whose coefficients in- for x > 0, where b is fixed with 1- Re < b
volve the Riemann zeta-function (see Sections 2 < 0, and (b)denotes the vertical straight line

and 3) based on Mellin-Barnes’ type integral for- from b ic to b + i. We can shift the path of
mulae. Further, as for generalizations of these integration in (2.2) to the right, provided 0 < x
power series, we shall introduce hypergeometric < 1. Collecting the residues at the poles s
type generating functions of (s) and derive 0,1,2,... of the integrand, we see that F,(x) is

their basic properties in the final section. Proofs equal to the right-hand infinite series in (2.1).
of the results in the following sections are only On the other hand, since ( + s) n= n
sketched. Detailed version of the proofs will converges absolutely on the path Re s b, the

appear in a forthcoming paper, term-by-term integration is permissible, and this

2. Binomial type series. A simple relation gives

E ((n) 1} 1, F,(x) E (n+x) -’= E (n+ 1 +x) -’,
n=2 n=l n=0

which was firstly mentioned by Goldbach in where each term in the resulting expression

1729 (see [10, Section 1]), follows immediately could be evaluated by taking z x/n in

from the inversion of the order of the double sum

--2 --2 m-. This is in fact derived as a spe-
cial case of Ramanujan’s formula

()
(2.1) (v, 1 +x) =., n! ( + n)(-- x)

for Ixl < 1 and any complex {-- 1,0,1,2,...}.

_
1 f, F(a + s) F(- s) (- z) SdsF(a)(1-z) =2ri

for arg(-- z)[< 7r and Re a < a < 0 (cf.
[14], p. 289, 14.51, Corollary]). We therefore
obtain (2.1) by analytic continuation.

3. Exponential type series. Chowla and

which gives a base of his various evaluations of Hawkins [2] found that the sum

sums involving (s)(see [7, Sections 5 and 6]). Go(X)- (n)
(- x)n

Noting the relations (s, 1) (s) and n= n!
(/Oo)n(s, ) (-- 1)n(s)n(S + n, o), we has the asymptotic formula

1 (e_AJx)see that (2.1) is actually the Taylor series expan-
(3 1)G0(x) xlogx + (27"- 1)x +-+ 0

sion of (v, 1 + x) as a function of x near x
0. Srivastava [9l[10l proved various summation as x -- + oo, where 7" is Euler’s constant and A
formulae related to (2.1), while Klusch [6] consi- is a certain positive constant. They conjectured

that the error term in (3.1) cannot be essentially
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more general formulation
(- x)

G,(x)
n>a+l ///!

where n runs through all nonnegative integers
with n > a + 1, and studied its asymptotic be-
haviour as x--- + . The special cases a-
--2, 1 and 1 have been investigated by Ten-
nenbaum [11], Verma [12], and Verma and Pra-
sad [13], respectively.

Let be an arbitrary fixed complex number.
It is in fact possible to treat a slightly general
sum

(- x)
Gv(x)

n>nev+l /!

based on the formula
1 f, F(- s) (s(3.2) Gv(x)- 2ri

)xSds

for x> 0, where c is fixed with Re + 1 < c
< [Re v] + 2. Here [Re ] denotes the greatest
integer not exceeding Re v. (3.2) can be proved
by shifting the path (c) to the right, and collect-
ing the residues at the poles s [Re ] + 2,
[Re v] + 3,... of the integrand. While the main

method of [1] is Euler-Maclaurin’s summation de-
vice, our treatment of G,(x)is due to a refine-
ment of original [2].

Shifting the path of integration in (3.2) to
the left in an appropriate manner, we can show

Theorem 1. The following formulae hold for
all x >-- 1.
(i) Ifv {-- 1,0,1,2 },

G(x) F(--
[Rev] +1 (-- X) n

2 (n-- v) + ,(x)"
n=O r!

(ii) If (-- 1,0,1,2,...),

( + 1) logx + 2)--
-----1

n=o n! + v(x),
where empty sums are considered to be zero, and

v(x) is the error term satisfying the estimate

(3.3) fv(x) O(x-c)
for any C > O. Here the implied constant depends
only on C and

Remark. This theorem gives a refinement

of the results in [1].
Chowla and Hawkins suggested in [2] that

the error term in (3.1) is expressible in terms of
’almost’ Bessel functions, however, it seems that
the functions have not been precisely determined.

Let Kv(z) be the modified Bessel function of
the third kind defined by

K,(z) 2 sin :rv {I_,(z) I,(z)},

where Iv(z)is the Bessel function with purely
imaginary argument (see [4, p. 5, 7.2.2, (12) and

(13)]). We can indeed show that cv(x)has the
Vorono type summation formula involving

K,+I (z).
Theorem 2. For any x >_ 1, we have

:--1/2(p+1)’i ’i

{e-T(+I)K+ (2eT/2nTrx)
n’-’l

+ e-(v+l)Kv+(2e-T)}.

/1\/1\
Let (, m)=

for any integer 0 be Hankel’s symbol. Ap-
plying an asymptotic expansion for K+(z)(cf.
[4, p. 24, 7.4.1, (4)]) to Theorem 2, we can furth-
er prove

Corollary. The asymptotic formula

(x) e

x
-o

x +g+m (2x)-+O(z-)

holds for all 2 1 and all integers M 20.
Remark. This gives an affirmative answer

to the conjecture of Chowla and Hawkins men-
tioned above.

4. Generating functions f (s). Let and
be arbitary complex numbers with {1,0,
1,...). We define

(

e(= (+ (zl< +.
Since ( +) 1 uniformly for 0,1,2,...,
as Re
(1 )- and G() e", as Re + . This
suggests us to define the hypergeometric type
generating functions of (s) as

(4.) (a,
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(r) n n
(4.2) (Cr T Z)

n=o" (T)n. (v -I- n) z

<lzl<
where or, and T are arbitrary fixed complex
numbers with T {0,- 1,- 2,...}. Then we
can observe, when Re v--, 4- oo, that

oq(cr, ; T;z) -- F(cr, fl T;z),
(cr T ;z) -- F(cr T z),

where F(cr, fl T ;z) and F(cr T ;z) denote
hypergeometric functions of Gauss and Kummer,
respectively.

Corresponding to Euler’s integral formulae
for F(cr,/;T;z) and F(cr;T;z) (cf. [3, p. 59,
2.1.3, (10), and p. 255, 6.5, (1)]), we can deduce
from term-by-term integration that

(4.3)
F(fl)F(T fl)

F(r) (a,/ r;z)

01
r’-i (1 r)r-’-’f(a.

for0 < Refl< ReTand ]z[ < 1, and
F(cr) F(T or)

(4.4) F(T) v(cr T;z)

a-1 -a-1v (1 v) r e(vz)dv

for 0 < Re cr ( Re T and zl < -t- oo. Moreover,
corresponding to Mellin-Barnes’ integral formu-
lae for F(cr, fl;T;z) and F(cr;T;z) (cf. [3, p,
62, 2.1.3, (15), and p. 256, 6.5, (4)]), we can
show by the same path shifting argument as in
Section 2 that

F(a) F(fl) 1
(4.5) F(T) (cr, ;T;z) 2ri

f F(a + s)F(fi + s)F(- s)
F(T + s) (v + s) (-- z)Sds

,(b

for Re v > 1, max (-- Re a, Re fl, 1 Re v)
< b < 0 and arg(-- z) < re, and

F(a) 1
(4.6) F(T) (cr T ;z) 2ri

F(cr + s)F(-- s)
x F(T + s) (v + s) (-- z) Sds

for Rev> 1, max(-- Recr, 1-Rev) < c<0
and larg(- z) < r/2.

Formulae (4.1)-(4.6) are fundamental in de-
riving various properties of oq(cr, ;T;z)and
v(cr; 7";z). Further investigations and detailed
proofs will be given in-forthcoming papers.
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