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Power Shaping: A New Paradigm for Stabilization of restricted to the damping injection gain, the transients may turn out to

Nonlinear RLC Circuits be somehow sluggish, and the overall performance level below par; see
[13] for some representative examples.
R. Ortega, D. Jeltsema, and J. M. A. Scherpen Our main contribution in this note is the establishment of a new pas-

sivity property for a class of RLC circuits that provides the basis for
Abstract—t is well known that arbitrary interconnections of passive afnovel PtI_BC d(;ezlgn quTOd_l?lc:jgﬁ. thattth?S not suffer frorr:htklethtwo
(possibly nonlinear) resistors, inductors, and capacitors define passive sys- aroremen .lone raw acks. 1o define e,C ass, we as.sume .a. een-
tems, with port variables the external source voltages and currents, and €rgy functions of the inductors and capacitors are not just positive but
storage function the total stored energy. In this note, we prove that for a actuallyconvexand that the electromagnetic coupling between the dy-

class of RLC circuits with convex energy function and weak electromag- namic elements is weak. Henceforth, for the case of RC or RL circuits

netic coupling it is possible to “add a differentiation” to the port terminals P . .
preserv_ing _passivity—with a new storage fgnc_tion_that is directly related thi_Latter Condltlc_)r! IS ConSpICUOl;? Ey Itsbat.)seﬂcef [.7]' L
to the circuit power. The result is of interest in circuits theory, but also has e new passivity property, which is by itself of interest in circuits

applications in control as it suggests the paradigm of power shaping sta- theory, has two key features that makes it attractive for control design
bilization as an alternative to the well-known method of energy shaping. as well. First, that the storage function is not the total energy, but a
We show in this note that, in contrast with energy shaping designs, power f,nction directly related with th@owerin the circuit. Second, that
shaping is not restricted to systems without pervasive dissipation and natu- . . . L
rally allows to add “derivative” actions in the control. These important fea- the port variables of the new passive syst.e.m |r.1ckdmiwat|vesn.f the
tures, that stymie the applicability of energy shaping control, make power sources VOltageS and/or currents. The utilization of power (lnstead of
shaping very practically appealing. To establish our results we exploit the energy) storage functions immediately suggests the paradigm of power
geometric property that voltages and currents in RLC circuits live in or-  ghaping stabilization as an alternative to the well-known method of en-
Lh;’se(;”;' ;P;/Ctgi’ ;fd'h}-ﬁ!‘z??: f;gj_orem' and heavily rely on the Semlnalerg)./ shaping. We show in the note that, in contrast with energy shaping
designs, power shaping is applicable also to systems with pervasive dis-
sipation, the only restriction for stabilization being the degree of under-
actuation of the circuit. Further, establishing passivity with respect to
|. INTRODUCTION “differentiated” port variables allows the direct incorporation of (ap-

) ) ] ) ) ~_proximate) derivative actions, whose predictive nature can speed-up
In this note, we are interested in (possibly nonlinear) RLC circuitge transient response.

consisting of arbitrary interconnections of resistors, inductors, capaci-
tors a_md voltage and curre_nt sources. It_|s well k_nowr_1 that, if the resisy, ENERGY BALANCING CONTROL AND A MOTIVATING EXAMPLE
tors, inductors, and capacitors are passive, i.e., if their energy functions

are positive, then the overall interconnected circuit is also passive within [11], we presented a new method to stabilize the following class
port variables the external sources voltages and currents, and storfggonlinear systems.

function the total stored energy [3]. This property was exploited by Definition 1: We say that then-port systemx = f(x) + g(x)u,
Youla in 1959 [15], who proved that terminating the port variables ofa = ¥(x), with statex = col(z1,...,2,) € R", and power port
passive RLC circuit with a passive resistor would ensure that “finite eviariable$ u, y € R™, satisfies the energy balance inequality if, along
ergy inputs will be mapped into finite energy outputs,” what in moderaill trajectories compatible with : [0,¢] — R™, we have

parlance says that injecting damping to a passive system ersusta-

Index Terms—Nonlinear control, passivity, stability theory.

t

bility. Passivity can also be used to stabilize a nonzero equilibrium point, - - T
but in this case we must modify the storage function to assign a min- Ex(1)] - £[x(0)] < /11 ()3 [x(s)] ds 1)
imum at this point. If the storage function is the total energy we refer stored energy 2

to this step as energy shaping, which combined with damping injec-
tion constitute the two main stages of passivity-based control (PBC)
[9]. As explained in [10] and [14], there are several ways to achievghereS : R” — R is the stored energy function.df(x) > 0 then we
energy shaping, the most physically appealing being the so-called g8y that the system is passive with port variablesy).

ergy balancing PBC (or control by interconnection) method. With this The proposition that follows constitutes the basis for energy-bal-
procedure the storage function assigned to the closed-loop passive @&&fing PBC. (For simplicity, we present only the case of static state
is the difference between the total energy of the system and the enefgatiback, the dynamic case—also called control by interconnec-
supplied by the controller, hence, the name energy balancing. Unfgén—may be found in [11] and [14]).

tunately, energy balancing PBC is stymied by the presence of pervasiveroposition 1: Considern-port systems that satisfy the energy bal-
dissipation, thatis, the existence of resistive elements whose power dggse (1). If we can find a vector functian: R® — R™ such that the

not vanish at the desired equilibrium point. Another practical drawbaglrtial differential equatich

of energy-shaping control is the limited ability to “speed up” the tran-

sientresponse. Indeed, as tuning in this kind of controllers is essentially Ve f(x) + g(x)u(x)] = —u ' (x)¥(x) 2

supplied

M int ived June 1. 2002 revised May 5. 2003. R p dcgn be solved for the scalar functiéh : R" — R, and the function
anuscript received June -, , revised Viay >, - Recommende y(x) = &(x) + &.(x) has an isolated minimum at*, then the

Guest Editors W. Lin, J. Baillieul, and A. Bloch. This work was supported by Edg— “ . . o
ropean sponsored project GeoPlex with reference code IST-2001-34 166. [ipte-feedback = 1(x) is an energy balancing PBC, i.&] is a
ther information is available at http://www.geoplex.cc. ) ) ) )
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stable equilibrium of the closed-loop with Lyapunov functiéinx) where we have used (3) to get the second identity, taken the time

that satisfies derivative ofi;, = V&7, to get the third one and used convexity for the
; inequality. Integrating from 0 to establishes (4), while the passivity
£a[x(1)] = & [x()] - /ﬁT [2(5)] 9 [x(s)] ds property follows invoking nonnegativity of the content for passive
resistors. q

0 The properties of Proposition 2 differ from the classical energy-bal-
thus, it equals the difference between the stored and the supplied eaeeing and passivity properties in two important respects: the presence
gies. of the derivative ofis and the use of a new power-like storage func-

It is shown in [11] that, beyond the realm of mechanical systemgon. These two properties suggest, similarly to energy balancing PBC,
the applicability of energy balancing control is severely stymied by the shape the resistors conterfhat is, to look for functiongs(iz),
system'’s natural dissipation. Indeed, it is easy to see that a necesﬁan(if‘) such that
condition for theglobal solvability of the PDE (2) is thag " (x)1(x)
vanishes at all the zeros fifx) + g(x)i(x). Now, f(x) +g(x)i(x) is
obviously zero at the equilibrium™, hence, the power extracted from

the controller should also be zero at the equilibrium. This means th]gt furth hét — are mind C(i GG theni®
energy balancing PBC is applicable only if the system does not hdvie furthermore ensure t a‘Lt._ arg min{G(ir)+ ‘{(‘L)}’t enp
be a stable equilibrium with Lyapunov functigd(ir,) + Ga.(ir.),

pervasive damping, i.e., if it can be stabilized extracting a finite amouW{
of energy from the controller. that is, the system is stabilized via power shaping.

Let us illustrate with an example how the limitations of energy bal- (lileaiy,Afor’anyi:hmcﬁe O@af 7’?’ (5).|StrIV|a||thO|V6d V,V'th the con-l
ancing PBC can be overcome via power balancing. Consider a voltafj8! s = ?s(ir.) = —VGa. If the resistance characteristic is exactly

e ; a2
controlled nonlinear series RL circuit. The behavior of the inductor 10WN We can taker, (i) = =G(iL) + (R”/Q)(’_L i) with
R, > 0 some tuning parameter. However, to assign the desired min-

characterized by a functiop;, = pr.(ir.), relating the flux linkages : . ) .
y P = prlir) g g imum, we obviously only need to “dominaté&(i,) which (together

p. and the current,,, and Faraday’s law;, = v, wherev,, is the
inductor voltage. The resistor is a static element described by its ch‘%lth the fact thatl.(i,. ) is completely unknown) illustrates the robust-
ness of the design procedure.

acteristic functionz = 9 (ir), Wwherevg, i r are the resistors voltage R K1 Ani b ) h ilb df
and current, respectively. The dynamics of the circuit is obtained from™~cM&! n important observation, that will be proved for more

Kirchhoff's voltage law as general nonlinear RLC circuits later, is that we can express the circuit

G = —is(in) ir . ®)

" dynamics (3) in terms of the resistor contenfas,, ) iL= —VG+us.
vy, = L(in) ip= —ir(iL) + vs (3) The identification of a gradient-like description of (a class of) RLC

) ) o ~ circuits is the main contribution of [2].
wherevs is the voltage at the port terminal, which is our control action,

we usedr = i, and defined.(ir) := V.. The energy stored in an
inductor,&r.(pr.), is related with the current via the relation= V¢&r..
Of course, if the resistor and the inductor are passive, the circuit de-Tellegen’s theorem is a fundamental result of general electrical net-
fines a passive system with port variables (i ) and storage function works that plays a central role in our developments and may be stated
Er(pr). as follows [3]#

We define as control objective the stabilization of an equilibrium Proposition 3: (Tellegen’s theorem) Consider an arbitrary lumped
i1, of (3), whose corresponding equilibrium supply voltage is given byetwork whose graph hasranches and” nodes. Suppose thatto each
vy = 0r(i7). If we further assume that the functiém (i r) is zero branch we assign arbitrarily a branch voltageand a branch current

Ill. TELLEGEN' S THEOREM AND BRANCH BEHAVIOR

only at zero, it is clear that, at any equilibriuih # 0, the extracted for k = 1,...,0. If these voltages and currents satisfy the constraints
poweri iz (i%) is nonzero, hence, the circuit is not energy-balancinignposed by Kirchhoff's voltage and current laws, thehi = 0, where
stabilizable—not even in the Iinear case. To overcome this problem Ve¢ have defined := col(i1,...,i5) andv := col(vi, ..., vs).
us define the functiofi(i ) := fo r(i;)di’;, knowninthe circuits ~ The following remarks are in order.
literature [12] as the reS|stom)ntent WhICh has units of power—in Sincevg (t)ix (t) is the power delivered at timeby the net-
particular, for linear resistors, whetg(ir) = Rir, R € R, itis half work to branchk, the theorem may be interpreted as the fol-
the dissipated power. Furthermore, notice that for passive resistors the lowing conservation of energy statement: at any tinike
function is nonnegative and nondecreasing. sum of the power delivered to each branch of the network is
Proposition 2: Consider a series RL circuit. If the inductor is pas- zero.
sive and has a twice differentiable convex energy function, then along— Itis of crucial importance to realize thisandv are pickedar-
the trajectories of the system, we have the power balance ineguality bitrarily , subject only to Kirchhoff’s laws. Consequently, the
¢ theorem has some rather astonishing consequences. For in-
. . T, N stance, if we consider two arbitrary lumped networks whose
Gliz(®)] = Gliz(0)] / vs (3) is (5)ds. @ only constraint is to have the sa}r/ne gFr)aph, and denigte (
0 v) and {, ¥) their corresponding branch currents and volt-
Furthermore, if the resistor is passive, then the circuit is passive with ages, Tellegen’s theorem guarantees that = 0 (and also
port variables s, is) and storage function the resistor content, i’ v = 0). Note that these expressions do not have an energy
Proof. Differentiating the resistors content with respect to time, interpretation, because they involve voltages of one network
we get and currents of another.
G =vpit,= (—'UL + ’Us) i,= . ve LLU + vs 75< vs L;;

3The name stems, of course, from the analogy with the energy balance in¥We refer the interested reader to the classical references [2] and [3] for fur-
equality (1). A more accurate denominatiomgsistors conterinequality, how- ther details on circuit theory. See also [1], and [4]-[6] for material closely related
ever, we will use the former for ease of reference. with our developments.
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Since Kirchhoff’s voltage and current laws impose algebraic con- Definition 2: The co-content of a voltage-controlled resistor and the
straints, we have the following important corollary of Tellegen’s thezontent of current-controlled resistor are, respectively, defined as

orem. ke

Corollary 1: Voltages and currents of an arbitrary lumped network . , ,
satisfy T (vkre) = / tkRc (Uch) dvkre
0
.T dv T di ikH,L
1 EZO. v EZO (6) ) . . . ,
Gr (ixr,) == / VLR, (ZkRL)dlkRL-
In this note, we consider RLC circuits consisting of interconnections 0

of (possibly nonlinear) lumped dynamic (inductors, capacitors) ar'dProposition 4: Arbitrary interconnections of passive capacitors

static (resi_stors and volt_age and current sources) eIemenFs. We progeed . onvex energy functiongc(qc), voltage-controlled resistors
now t9 define the behavior 9f the brfinc.h elemenfs‘“ﬁ‘ﬂort |ndu7(7:tor and controlled sources, satisfy the power balance inequality
is defined by a vector functiop;, = pr.(ir), withpr : R — R"L,

t

and Faraday’s law -

[ @is@ir > Twre 0] = e O] @)
7 (7) 0
i : o e whereJ (v, ) := > B Ji(vir.). Hence, if the resistors are pas-
where we defined the inductance mafitd, ) := V... Analogously, slve, they define passive systems with port variablesdv s /d¢) and

for rlc-pqrt_cap éCItorS W-ethh?\{e_t%it Cthe C[gfrcges Zre related to the vg ttirage function the total resistoo-contentSimilarly, arbitrary inter-
ages asic = qe(ve), withqe - »an connections of passive inductors with convex energy funcigtip . ),

vr, = pr. = L(ir,

s dve current-controlled resistors and controlled sources, satisfy the power
lc=qc =Cve)— (®)  palance inequality

whereC(ve) := Ve . We also have the following relationships for ! N

the energy function§.(p.), Ec(qe), where€,, : R": — R, ¢ : /vg(r) is (r)dr > Glir, (t)] — G ir,(0)]

R"¢ — R, s

©) whereG(ig, ) := Y B Gi(ixr, ). If the resistors are passive, they
define passive systems with port variabldgs(/dt, vs) and storage
function the total resistarontent

ir = V&, ve = Véc.

In the sequel, we will assume that the energy functionswiee dif-

ferentiable Proof: The proof of passivity of RC circuits is established as fol-
. . . . - .T -
The circuit has: . resistors, which are 1-ports characterized by WS- First, differentiate the resistors 9$-ant€nt= ipvr. Then,
graphvir = trr(ickr), k = 1,...,nr, Wwhereigr : R — R. (As from (8) and (9), we notice thaf.vc = i V*Ecic > 0, where the

explained later, we will sometimes find useful to use instead the grapfnnegativity stems from the convexity assumption. Finally, replacing

irr = ixr(ver)). Itis clear thatonstanivoltage and current sourcest€ tWo previous expressions in

can be easily added as particular instances of resistors. The network

also containsegulatedsources—that will interconnect the circuit with

the controller. We denote their voltages and currentsass € R"s,  which follows from Corollary 1, and integrating from 0 tove com-

respectively. In the sequel we will restrict our attention to regulatgilete the proof.

voltage sources. (See the discussion in Section VII for the case of curThe proof for RL circuits followsverbatim but using the second

rent sources). identity of Corollary 1, the relation for the inductors in (9), and the
To simplify the notation, we will group all capacitors of the circuitdefinition of the content. <

into onen-port and all inductors into oney, -port with corresponding

energies the sum of the energies of all multi-port capacitors and induc- V. BRAYTON—MOSERMODEL AND GENERATION OF STORAGE

tors, respectively. Also, we will group all port variables into vectors de- FUNCTION CANDIDATES

noted byV = COl(V(j, Vi, VR, Vs'), i:= COl(ic, ir,, in, —ig), where

we have adopted the standard sian convention for the Sources curr n,[The previous calculations show that the content and co-content func-
P 9 &i0Rs reveal some new properties of RL and RC circuits useful for con-

troller design, in particular identify a new passive system. Unfortu-
nately, Tellegen’s theorem alone does not seem to be enough to study
In the sequel, we will assume that the circuitcismplete which RLC circuits. In this section, we will strongly rely on some fundamental
means that the currents in the inductors and the voltages in the captgsults reported in [2] to generate the storage functions needed to es-
tors, via Kirchhoff's laws and the laws of the resistors characteristid@plish similar properties for a class of RLC circuits. We recall first the
determine the voltages and currents in all the branches. Complete Riptiowing important results of [2].
circuits can be split into two subnetwori,, S¢ that, respectively, ~Lemma 1: Consider a complete RLC circuit with the corre-
contain all the inductors and capacitors; see [2]. According to this p&Ponding partition into subnetworks:, Xr.. Denote witnr, nr,
tition, we will split the resistors into two sets, the voltage-controllethe number of resistors in the subnetwo®s and X, with port
resistors belonging t& ¢, whose port variables will be denoteik(,, ~ variables {z., Vi), (ir,, vz, ), respectively. Then, there exists
vk, ), and have characteristic functions:. = irr. (vir,.);andthe matricesT € R">*"¢, T € R"#e "¢, Ty € R"Fr™"L with
current-controlled resistors belongingXo,, with port variablesi(;,, elementst-1,—1, 0, such that
vr, ) and characteristic functiong.z, = txr, (ikr, ).
We now define the concepts obntentandco-contenbf a resistor,
which are well known in circuit theory [12], and will be instrumental Vre =love (12)
to formulate our results. ir, =T'rir. 13)

ST ST ST
1o0Ve +1pVR = 19Vs

IV. NEW PASSIVITY PROPERTY FORRL AND RC QRCUITS

LT .T LT
17, I've = 1cvVe + 1R~ VRec (11)
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Lemma 2: The dynamics of a complete RLC circuit with regulatedf a partial differential equation. A more constructive procedure to

voltage sources in series with inductors is described by generate admissible pairs is given in the following proposition which,
- for ease of reference, is enunciated in terms of the original RLC circuit
L(ir) ir=—- Vi, P+ Bsvs data®
C(vc)ve =V P (14) Proposition 5: Consider a complete RLC circuit with regulated
voltage sources in series with the inductors. Assume that the energy
where functions of the dynamic elements astictly convex, i.e.,.VZ&c,

PliL.ve) = i—LrI‘vc +G(TLiL) — J(Teve) (15) V2&r, > 0. Then, the following hold.
i) (Sufficiency) For allA € R, and symmetric matrix functions

is the mixed potential function anBs € R"Z*"s is a (full rank) M(iz,ve), with M : R — R"*" the pair
matrix with elements+1, —1, or 0. e '
Remark 2: Replacing (11) and (13) in (15) we see that the mixed Pa(in,ve) :=APs + %VPIMVPA (21)

potential equals’ve + ik, Ve, + G(ir.) — J(vre). The first

and second right-hand side terms are the power in the capacitors and Q(i,ﬂvC) = 1(V2P4)M+1\7(MVPA )+ M|Q (22)

voltage-controlled resistors, respectively, and recalling Definition 2, 2 2

the other right-hand side terms have also a clear interpretation in terms  is admissible, i.e., is such that (19) holds, w@hand P4 as in

of power. (In particular, for linear resistors, the latter are equal to half ~ (15) and (17).

the dissipated power). For this reason, we will say that the proposedi) (Partial converse) Assume the circuit (16) admits only isolated

controller design, that aims at modifyinB(ir., vc), is shaping the equilibrium points. Then, given any admissible pai},(P4)

power. there exists\, andM such that, almost everywheﬁrePA takes
We will now identify a subclass of these RLC circuits that satisfies  the form (21).

the new passivity property. We find convenient to write the model in  proof:

compact form as i) Computing the gradient aP, from (21) gives

Q(ir,ve) [ ‘ L1 =VP4 (16) VP, = %(VZPA)M + %V(MVPA) + AI}VR‘.
Vo
where Now, strict convexity o, £, ensures the matriQ is full rank.
- Hence, from (22) and the aforementioned equation, we can write
Pu(ir,ve) :=P(ir,ve) —ipBsvs .
. _[-LG) 0 nxn VP, =QQ lvPi=Q | iL (23)
Q(ip,ve) := { 0 C(VC):| €R (17 vo
andn := n;, + nc. From (16) and noting that, = Bli,, we have where the last identity is obtained from (16). Th@, (P4) is
that admissible.
) . - . i) Since the system (16) has only isolated equilibrium points, we
P= {( i)' VI} Q(ir.ve) [ ol 4viis.  (18) have thatv P, = 0 only at isolated points. Hence, given any
Vo function P4, we can seleck = 0 and
Thatis, P consists of the sum of a quadratic term plus the inner product M — 2P, VP (VPT
of the sources port variables in the desired form—with the derivative - A(VPa)

. ST (VPIVP,)®
of i5. Unfortunately, due to the presence of the negative sign in the ’

first main diagonal blockQ(iz,vc) is sign-indefinite, and not nega- for which (21) clearly holds (a.e.). 4

tive definite as desired. Hence, we cannot establish a power balancinfteémark 3: Some simple calculations show that a change of (state)

inequality from (18). Clearly, to obtain the passivity property an adtoordinates on the dynamical system (16) acts as a similarity transfor-
ditional difficulty stems from the fact tha(iz, v ) is also not sign mation onQ. Therefore, is of no use for our purposes where we want

definite. to change the sign df to render the quadratic form sign definite.
To overcome these difficulties we, again, bprrow inspiration from
[2] and look for other suitable pair€)(ir,vc), Pa(iL, ve)), which VI. MAIN RESULTS

we calladmissiblethat describe the dynamics of the circuit, that is In this section, we will use the background material of the previous

. section to establish a power balance inequality and the new passivity
= VPDa. (19) property for (a class of) RLC circuits. This, in its turn, will be applied
to stabilize an equilibrium via power shaping.
_Additional properties that we require from the admissible pairs Theorem 1 (Power Balance Inequality and new Passivity Prop-
(Q(iL,ve), Pa(iL, ve)) are as follows. erty): Consider a complete RLC circuit with regulated voltage
P.1) To preserve the controlled sources variables as port vaxpurces in series with inductors. Assume the following.
ables, there should be a functiof(ir,vc), such that A1) The inductors and capacitors are passive and bigtly

Qliz, ve) [ i

vo

Palip,ve) = P(iLZVC‘) —i/Bsvs. _ convexenergy functions.
P.2)  Tobe able to establish the power balance property, we requirgy 2)  The voltage controlled resistors are linear, thatiis, =
. - —1 i — dia
Q(iﬁ,v(i‘) + QT(ili,Vc) <0. (20) RC VR(,,Wlth Ro = dldg{ch} > 0.
P.3) Finally, to obtain passivit)l,:’(iL,vc) should be nonnega- 5To simplify the notation, in the sequel we omit the arguments of the func-

tive tions, writing them explicitly only when the function is first defined.
’ 6As shown in the proof, the qualifier (a.e.) stands for the existence of pos-

_ A complete characterization of the admissible pal@i(..vc), sible singular points. These points can be avoided with standard regularization
P4(ir,ve)) has been reported in [8], but it requires the solutioprocedures, but is omitted here for brevity.
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A.3) Uniformly iniz, vc, we havé A.7) (Damping injection) Uniformly iniz, V*P, + Vi, G >
R.1I, for some sufficiently largek, > 0.

Under these conditions, the circuit is stabilizable p@awver shaping

More precisely, the control law

Hc%(vc)f{CPTL*%(iL)H <l-e

for somee > 0, whereR;' := I/R;'T¢ is a full rank )
matrix, and|| - || is the spectral norm of a matrix. Vs = — (BgBS) B.iVP, (28)
Under these conditions, we have thewer balance in- ) : ) L
equality ensures that all bounde_d trajectories saﬁgfytﬁm(_u(t,)./vo(t)) =
(iz, v ). Furthermore, if the characteristic functions of the dynamic
‘. - . B elements are such th@br,, qc ) = (pr.(ir.), dc(ve)) is a global dif-
/Vs* (1) is (m)dm > Plic(t),ve ()] — P[iL(0),ve(0)] (24)  feomorphism then all trajectories are bounded and the equilibrium is
0 globally attractive
where Proof: From Lemma 2, we know that the circuit dynamics is de-

1 - scribed by (14) and (15). Now, under Assumption A.5), the control law
P(ip.vo) = 5 (I‘TiL - REIVU) Ro (I“TiL - f{glvcv) (28) satisfiedBsvs = —V P,. This leads to the closed-loop dynamics
Q[lr] = VP, wherePy(is.vc) := P+ P,. From Assumption
A.1), we have thaf) is full rank and consequently the equilibria are
Furthermore, if the extrema of’;. Now, from (15) and Assumption A.2) we have that

+%iIrR0rTiL +G. (25)

A.4) the current controlled resistors grassive Tve + Vi, G+ VP,

then the circuit defines passivesystem with port variables/, i s) VE r'i; - REIVC
and storage functio®(iz.,vc ).

Proof: The proof consists of defining the parametdfsand of
Proposition 5 so that, under the conditions A.1)-A.4) of the theore
the resulting pairQ, ) verifies the properties P.1)-P.3).

First, notice that under Assumption A.2) the co-content takes t
form.J(ve) = (1/2)vEi R ve. To ensure thaP, is linear invs, as
required in P.1), we see from (21) that we can select

0 0
0 2R

*k

Since all admissible equilibria satiséy: = RcT'"i}, we clearly have
atVy, Pa(it, ve) = 0. On the other hand, Assumption A.2) and
'7) ensure that the functioR, (i, ) + G(T i)+ (1/2)i/ TRcT iy,

%sestrongly convex, and consequently that it has a unique global min-

iImum at the point where its gradient is zero. This, together with

Assumption A.6), ensuredj(, v¢;) is the unique equilibrium of the

closed-loop system.

Once we have achieved the power shaping we will now apply Propo-
sition 5 to generate another admissible péjr ;) with Q + Q" <
ep—notice the strict inequality. We make at this point the important ob-
servation that, sinc¥ P; = QQ ™'V P; (which follows from (23)),
the extrema of all new mixed potentialy will coincide with the ex-
trema of Py.

We apply the transformations of Proposition 5 to the closed-loop

[(2/RG)I 0],

M:{ ] A=1. (26)

For which, after some simple calculations with (14) and (22), we g
-~ [-L 2RcTC
Q= { 0 _C } . (27)

Assumption A.1) ensures thé&t andL are positive definite. A Schur _
complement analysis reveals that, under Assumption A.3), (20) of PS¥stem above with the parameters= —1, M =

holds. This proves the power balance inequality. that yields 0 0
To establish P.3), we replace (26) and (15) in (21), and complete 9 o 9

a square to show tha® takes the form (25). The first and second Q= [_?a (V Pat Vi G) - I] L 0

right hand terms are positive because of positivityRaf, [Assump- —ff—aI‘TL -C

tion A.2)], and the conterti7 is also nonnegative in view of ASSUMP-\,hose symmetric part is negative definite for sufficiently lade.

tion A.4. This completes the proof. < Consequently, along the closed-loop dynamics, which can also be de-
Remark 4: Assumption A.3) is satisfied if the voltage controlled re- -~

sistances,.c: are “small.” Recalling that these resistors are in parall&cribed byQ[} *] = VP, we have
with the capacitors, this means that ttwaipling between inductors and - I s ox aTeom = .
capacitors is weak-with the capacitors short-circuited in the limiting Pq= §VPJ Q" (Q+Q Q™ VP < —a|VFE|

caselic = 0. o __for somea > 0, where| - | is the Euclidian norm. Convergence of
The theorem below proves that complete RLC circuits with strictlyy 5 ,nded trajectories follows immediately from LaSalle’s invariance

convex energy function and linear voltage controlled resistors @i inje and the fact thd¥ ;| = 0 only at the desired equilibriufh.
stabilizable via power-shapingwithoutrequiring Assumptions A.3) * 1, prove boundedness of trajectories we apply the change of coor-

or A.4)—but only provided that the number of control signals iﬁinates(pf‘.qn) = (pr.(ir). Gc(ve)) to the closed-loop system to
“sufficiently large” to shape the mixed potential function and add thgy-ir, o T
damping. . _ .
Theorem 2 (Stabilization via Power Shapingfonsider a complete LI.)L] = [IE)T RI:l:| {g?]
RLC circuit satisfying Assumptions A.1) and A.2) of Theorem 1, and ac T ¢ . R
desired (admissible) equilibriugi; , v) € R™. Assume there exists _ [Vi,,G (I‘TIIL(PL)) + VP, (lrl(Pf‘))]
a functionP, : R"* — R verifying the following. 0
A.5) (Realizability)Bs VP, = 0, whereByBs = 0. where we have denoted the inverse funciior= i, (pr,) and recalled

A.6) (Equilibrium assignment)VF.(if) + ViLG(TLiL) +  from (9) thatve = VE- andi, = VEL.
TR:I7i5 = 0. )
8The explicit expression of?; is of no interest for our derivations, as
7As discussed in Remark 4, this constraint is satisfied if the electromagnétigSalle’s invariance principle imposes no particular positivity constraint on
coupling is sufficiently “weak.” this function.
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From Assumption A.1), we have that the total enefyy; £c +&r,
is apositive radially unboundetlinction. Evaluating its time deriva-
tive, we get

5 Te B-lue
E==V ER- Vo

—vel [V, G (Teie))+V P (i(pn))] . (29)

Assumption A.7) states that the functiéiil’ iz, ) + P, (ir ) is strongly
convex The latter ensures that the second right-hand side term in (29)
is positive outside some badil,| = b, and consequentlg is negative
outside a compact set. This proves global boundedness of the solutions
and completes the proof. q
Remark 5: Clearly, all assumptions of Theorem 2 are constraints
related with the “degree of under-actuation” of the circuit. All condi-
tions are obviated in the extreme case wiBre= I when we can add
an arbitrary power functiof, . Also, the rather restrictive Assumption
A.3) of Theorem 1 is conspicuous by its absence—this means that we
do notassume that the circuit to be controlled is already passive.

VIl. CONCLUSION AND OUTLOOK

Our main motivation in this note was to propose an alternative to the
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Parallel to the developments reported in this note we are
investigating linear RLC circuits. In this case there is a clear
interpretation, in terms of the phase of the driving point
impedance, of the circuits that satisfy the new passivity
property. Furthermore, using some well known relationships
between the impedance and the average stored energy, e.g.,
[3, eq. (5.6), Ch. 9], we can fully characterize these circuits
in terms of their energy functions. The outcome of this
research will be reported elsewhere.

The expression/, (t)is(t) (or v (t)is(t)) has a direct re-
lationship with the notion ofeactive poweras classically
defined for linear circuits. Indeed, if we take the average of
this signal on a period and expand in Fourier series, the first
component coincides with the standard definition of reac-
tive power for a two terminal circuit with sinusoidal voltage.
Adopting this new “definition” of reactive power for non-
linear circuits might prove instrumental to formally study
problems of reactive power compensation—an area of in-
tense research activity in power electronics.
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RLC circuits, put forth the paradigm of power shaping and shown that
it is not restricted to systems without pervasive dissipation.

The starting point for the formulation of the power shaping idea are
some new power balancing and passivity properties established for &l
class of nonlinear RLC circuits with convex energy function and weak
electromagnetic coupling. To enlarge the class of circuits that enjoy 2]
these properties we have made extensive use of Proposition 5 whic!ﬁ
provides a procedure to generate alternative circuit topologies that ref3)
veal, through the new admissible pai€s,(P), properties of the original
circuit that we can exploit in our controller design.

The following open issues are currently under investigation.
Instrumental for our developments is the exploitation of a [5)
geometrical property of RLC circuits, namely that voltages
and currents live in orthogonal spaces, i.e., Tellegen's the- [6]
orem. Dirac structures, as proposed in [14], provide a natural
generalization to this theorem, characterizing in an elegant
geometrical language the key notion of power preserving in-
terconnections. It seems that this is the right notion to try to
extend our results beyond the realm of RLC circuits, e.g., to [8]
mechanical or electromechanical systems. (A related ques-
tion is whether we can find Brayton—Moser like models for 9
this class of systems; see [1] and [5]). (]
In this note, we have elaborated only on overcoming they;q
dissipation obstacle of energy balancing, but it has also been
mentioned that power shaping naturally allows the addition
of (approximate) derivative actions in the control to enhancel11]
the transient response. Indeed, following the procedure
of [10, Sec. 3.2] it is possible to show that we can add[lz]
to the controller (28) an approximate differentiation term
diag{(—kp;s)/(mis + 1)}ir, with kp;, 7 > 0, preserving  [13]
the same stability properties of Theorem 2. The theoretical
and practical implications of adding derivative actions in
power shaping is currently under investigation. [14]
We have considered here only voltage sources which suggests
that current sources can be treated analogously using an al-
ternative definition of the mixed potential.

[4]

(71

REFERENCES

G. Blankenstein, “A joined geometric structure for Hamiltonian and
gradient control systems,” igroc. IFAC Workshop Lagrangian Hamil-
tonian Methods Nonlinear Systen8ville, Spain, Apr. 3-5, 2003.

R. K. Brayton and J. K. Moser, “A theory of nonlinear networks—I,”
Quart. Appl. Math, vol. 22, pp. 1-33, April 1964.

C. A. Desoer and E. S. KuhBasic Circuit Theory New York:
McGraw-Hill, 1969.

D. Jeltsema and J. M. A. Scherpen, “On nonlinear RLC circuits: Port-
controlled Hamiltonian systems dualize the Brayton—Moser equations,”
presented at the IFAC World Conf., Barcelona, Spain, 2002.

A. Kugie, Nonlinear Control Based on Physical ModelsNew York:
Springer-Verlag, 2000, vol. 260.

B. M. Maschke, A. J. van der Schaft, and P. C. Breedveld, “An intrinsic
Hamiltonian formulation of LC-circuits,|EEE Trans. Circuits Syst.
vol. 42, pp. 45-54, Feb. 1995.

R. Ortega and B. E. Shi, “A note on passivity of nonlinear RL and
RC circuits,” presented at the IFAC World Conf., Barcelona, Spain,
2002.

R. Ortega, D. Jeltsema, and J. Scherpen, “Power-shaping of RLC cir-
cuits,” presented at the IFAC Latinoamerican Control Conf., Guadala-
jara, Mexico, Dec. 3-6, 2002.

R. Ortega and M. Spong, “Adaptive motion control of rigid robots: a
tutorial,” Automaticavol. 25, no. 6, pp. 877-888, 1989.

] R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez, “Passivity-

based control of Euler-Lagrange systems,”@ommunications and
Control Engineering Berlin, Germany: Springer-Verlag, Sept. 1998.
R. Ortega, A. J. van der Schaft, |. Mareels, and B. M. Maschke, “Putting
energy back in control,JEEE Control Syst. Mag.vol. 21, no. 2, pp.
18-33, Apr. 2001.

P. Penfield, R. Spence, and S. Duinkeg|legen’s Theorem and Elec-
trical Networks Cambridge, MA: MIT Press, 1970.

H. Rodriguez, “Interconnection and damping assignment control of
hamiltonian systems,” Ph.D. dissertation, LSS-Supelec, Gif-sur-Yvette,
France, Mar. 2002.

A. J. van der Schaft{.-Gain and Passivity Techniques in Nonlinear
Control.  London, U.K.: Springer-Verlag, 2000.

] D. Youla, L. Castriota, and H. Carlin, “Bounded real scattering ma-

trices and the foundations of linear passive networl®E Trans. Circuit
Theory vol. 4, no. 1, pp. 102-124, 1959.



