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Power Shaping: A New Paradigm for Stabilization of
Nonlinear RLC Circuits

R. Ortega, D. Jeltsema, and J. M. A. Scherpen

Abstract—It is well known that arbitrary interconnections of passive
(possibly nonlinear) resistors, inductors, and capacitors define passive sys-
tems, with port variables the external source voltages and currents, and
storage function the total stored energy. In this note, we prove that for a
class of RLC circuits with convex energy function and weak electromag-
netic coupling it is possible to “add a differentiation” to the port terminals
preserving passivity—with a new storage function that is directly related
to the circuit power. The result is of interest in circuits theory, but also has
applications in control as it suggests the paradigm of power shaping sta-
bilization as an alternative to the well-known method of energy shaping.
We show in this note that, in contrast with energy shaping designs, power
shaping is not restricted to systems without pervasive dissipation and natu-
rally allows to add “derivative” actions in the control. These important fea-
tures, that stymie the applicability of energy shaping control, make power
shaping very practically appealing. To establish our results we exploit the
geometric property that voltages and currents in RLC circuits live in or-
thogonal spaces, i.e., Tellegen’s theorem, and heavily rely on the seminal
paper of Brayton and Moser in 1964.

Index Terms—Nonlinear control, passivity, stability theory.

I. INTRODUCTION

In this note, we are interested in (possibly nonlinear) RLC circuits
consisting of arbitrary interconnections of resistors, inductors, capaci-
tors and voltage and current sources. It is well known that, if the resis-
tors, inductors, and capacitors are passive, i.e., if their energy functions
are positive, then the overall interconnected circuit is also passive with
port variables the external sources voltages and currents, and storage
function the total stored energy [3]. This property was exploited by
Youla in 1959 [15], who proved that terminating the port variables of a
passive RLC circuit with a passive resistor would ensure that “finite en-
ergy inputs will be mapped into finite energy outputs,” what in modern
parlance says that injecting damping to a passive system ensuresL2-sta-
bility. Passivity can also be used to stabilize a nonzero equilibrium point,
but in this case we must modify the storage function to assign a min-
imum at this point. If the storage function is the total energy we refer
to this step as energy shaping, which combined with damping injec-
tion constitute the two main stages of passivity-based control (PBC)
[9]. As explained in [10] and [14], there are several ways to achieve
energy shaping, the most physically appealing being the so-called en-
ergy balancing PBC (or control by interconnection) method. With this
procedure the storage function assigned to the closed-loop passive map
is the difference between the total energy of the system and the energy
supplied by the controller, hence, the name energy balancing. Unfor-
tunately, energy balancing PBC is stymied by the presence of pervasive
dissipation, that is, the existence of resistive elements whose power does
not vanish at the desired equilibrium point. Another practical drawback
of energy-shaping control is the limited ability to “speed up” the tran-
sient response. Indeed, as tuning in this kind of controllers is essentially
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restricted to the damping injection gain, the transients may turn out to
be somehow sluggish, and the overall performance level below par; see
[13] for some representative examples.

Our main contribution in this note is the establishment of a new pas-
sivity property for a class of RLC circuits that provides the basis for
a novel PBC design methodology that does not suffer from the two
aforementioned drawbacks. To define the class, we assume that the en-
ergy functions of the inductors and capacitors are not just positive but
actuallyconvex, and that the electromagnetic coupling between the dy-
namic elements is weak. Henceforth, for the case of RC or RL circuits
the latter condition is conspicuous by its absence [7].

The new passivity property, which is by itself of interest in circuits
theory, has two key features that makes it attractive for control design
as well. First, that the storage function is not the total energy, but a
function directly related with thepower in the circuit. Second, that
the port variables of the new passive system includederivativesof the
sources voltages and/or currents. The utilization of power (instead of
energy) storage functions immediately suggests the paradigm of power
shaping stabilization as an alternative to the well-known method of en-
ergy shaping. We show in the note that, in contrast with energy shaping
designs, power shaping is applicable also to systems with pervasive dis-
sipation, the only restriction for stabilization being the degree of under-
actuation of the circuit. Further, establishing passivity with respect to
“differentiated” port variables allows the direct incorporation of (ap-
proximate) derivative actions, whose predictive nature can speed-up
the transient response.

II. ENERGY BALANCING CONTROL AND A MOTIVATING EXAMPLE

In [11], we presented a new method to stabilize the following class
of nonlinear systems.

Definition 1: We say that them-port system_x = f(x) + g(x)u,
y = ŷ(x), with statex = col(x1; . . . ; xn) 2

n, and power port
variables1 u; y 2 m, satisfies the energy balance inequality if, along
all trajectories compatible withu : [0; t] ! m, we have

E [x(t)]� E [x(0)]

stored energy

�

t

0

u
>(s)ŷ [x(s)] ds

supplied

(1)

whereE : n ! is the stored energy function. IfE(x) � 0 then we
say that the system is passive with port variables (u, y).

The proposition that follows constitutes the basis for energy-bal-
ancing PBC. (For simplicity, we present only the case of static state
feedback, the dynamic case—also called control by interconnec-
tion—may be found in [11] and [14]).

Proposition 1: Considerm-port systems that satisfy the energy bal-
ance (1). If we can find a vector function̂u : n ! m such that the
partial differential equation2

rE
>

a [f (x) + g(x)û(x)] = �û
>(x)ŷ(x) (2)

can be solved for the scalar functionEa : n ! , and the function
Ed(x) := E(x) + Ea(x) has an isolated minimum atx?, then the
state-feedbacku = û(x) is an energy balancing PBC, i.e.,x? is a

1The variablesu andy are assumed conjugate, in the sense that their product
u y has units of power. For instance, voltages and currents or forces and ve-
locities.

2We use the notationr := @=@x,r := @ =@x —when clear from the
context the argument will be omitted. Also, all vectors, including the gradient,
are column vectors.
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stable equilibrium of the closed-loop with Lyapunov functionEd(x)
that satisfies

Ed [x(t)] = E [x(t)]�

t

0

û
> [x(s)] ŷ [x(s)] ds

thus, it equals the difference between the stored and the supplied ener-
gies.

It is shown in [11] that, beyond the realm of mechanical systems,
the applicability of energy balancing control is severely stymied by the
system’s natural dissipation. Indeed, it is easy to see that a necessary
condition for theglobal solvability of the PDE (2) is that̂y>(x)û(x)
vanishes at all the zeros off(x)+g(x)û(x). Now,f(x)+g(x)û(x) is
obviously zero at the equilibriumx?, hence, the power extracted from
the controller should also be zero at the equilibrium. This means that
energy balancing PBC is applicable only if the system does not have
pervasive damping, i.e., if it can be stabilized extracting a finite amount
of energy from the controller.

Let us illustrate with an example how the limitations of energy bal-
ancing PBC can be overcome via power balancing. Consider a voltage-
controlled nonlinear series RL circuit. The behavior of the inductor is
characterized by a function,pL = p̂L(iL), relating the flux linkages
pL and the currentiL, and Faraday’s law:_pL = vL, wherevL is the
inductor voltage. The resistor is a static element described by its char-
acteristic functionvR = v̂R(iR), wherevR, iR are the resistors voltage
and current, respectively. The dynamics of the circuit is obtained from
Kirchhoff’s voltage law as

vL = L(iL)
__

iL= �v̂R(iL) + vS (3)

wherevS is the voltage at the port terminal, which is our control action,
we usediR = iL, and definedL(iL) := rp̂L. The energy stored in an
inductor,EL(pL), is related with the current via the relationiL = rEL.
Of course, if the resistor and the inductor are passive, the circuit de-
fines a passive system with port variables (vS , iS ) and storage function
EL(pL).

We define as control objective the stabilization of an equilibrium
i?L of (3), whose corresponding equilibrium supply voltage is given by
v?S = v̂R(i

?

L). If we further assume that the function̂vR(iR) is zero
only at zero, it is clear that, at any equilibriumi?L 6= 0, the extracted
poweri?Lv̂R(i

?

L) is nonzero, hence, the circuit is not energy-balancing
stabilizable—not even in the linear case. To overcome this problem let
us define the functionG(iR) :=

i

0
v̂R(i

0

R)di
0

R, known in the circuits
literature [12] as the resistorscontent, which has units of power—in
particular, for linear resistors, wherêvR(iR) = RiR, R 2 , it is half
the dissipated power. Furthermore, notice that for passive resistors the
function is nonnegative and nondecreasing.

Proposition 2: Consider a series RL circuit. If the inductor is pas-
sive and has a twice differentiable convex energy function, then along
the trajectories of the system, we have the power balance inequality3

G [iL(t)]�G [iL(0)] �

t

0

v>S (s)
__

iS (s)ds: (4)

Furthermore, if the resistor is passive, then the circuit is passive with

port variables (vS ,
__

iS ) and storage function the resistor content.
Proof: Differentiating the resistors content with respect to time,

we get

_G = vR
__

iL= (�vL + vS)
__

iL= �r2ELv
2

L + vS
__

iS� vS
__

iS

3The name stems, of course, from the analogy with the energy balance in-
equality (1). A more accurate denomination isresistors contentinequality, how-
ever, we will use the former for ease of reference.

where we have used (3) to get the second identity, taken the time
derivative ofiL = rEL to get the third one and used convexity for the
inequality. Integrating from 0 tot establishes (4), while the passivity
property follows invoking nonnegativity of the content for passive
resistors. /

The properties of Proposition 2 differ from the classical energy-bal-
ancing and passivity properties in two important respects: the presence
of the derivative ofiS and the use of a new power-like storage func-
tion. These two properties suggest, similarly to energy balancing PBC,
to shape the resistors content. That is, to look for functionŝvS(iL),
Ga(iL) such that

_Ga � �v̂S(iL)
__

iL : (5)

If we furthermore ensure thati?L = argminfG(iL)+Ga(iL)g, theni�L
will be a stable equilibrium with Lyapunov functionG(iL) +Ga(iL),
that is, the system is stabilized via power shaping.

Clearly, for any choice ofGa(iL), (5) is trivially solved with the con-
trol vS = v̂S(iL) = �rGa. If the resistance characteristic is exactly
known we can takeGa(iL) = �G(iL) + (Ra=2)(iL � i?L)

2, with
Ra > 0 some tuning parameter. However, to assign the desired min-
imum, we obviously only need to “dominate”G(iL) which (together
with the fact thatL(iL) is completely unknown) illustrates the robust-
ness of the design procedure.

Remark 1: An important observation, that will be proved for more
general nonlinear RLC circuits later, is that we can express the circuit

dynamics (3) in terms of the resistor content asL(iL)
__

iL= �rG+vS .
The identification of a gradient-like description of (a class of) RLC
circuits is the main contribution of [2].

III. T ELLEGEN’S THEOREM AND BRANCH BEHAVIOR

Tellegen’s theorem is a fundamental result of general electrical net-
works that plays a central role in our developments and may be stated
as follows [3].4

Proposition 3: (Tellegen’s theorem) Consider an arbitrary lumped
network whose graph hasb branches andN nodes. Suppose that to each
branch we assign arbitrarily a branch voltagevk and a branch currentik
for k = 1; . . . ; b. If these voltages and currents satisfy the constraints
imposed by Kirchhoff’s voltage and current laws, thenv>i = 0, where
we have definedi := col(i1; . . . ; ib) andv := col(v1; . . . ; vb).

The following remarks are in order.

— Sincevk(t)ik(t) is the power delivered at timet by the net-
work to branchk, the theorem may be interpreted as the fol-
lowing conservation of energy statement: at any timet the
sum of the power delivered to each branch of the network is
zero.

— It is of crucial importance to realize thati andv are pickedar-
bitrarily , subject only to Kirchhoff’s laws. Consequently, the
theorem has some rather astonishing consequences. For in-
stance, if we consider two arbitrary lumped networks whose
only constraint is to have the same graph, and denote (i,
v) and (~i, ~v) their corresponding branch currents and volt-
ages, Tellegen’s theorem guarantees thatv>~i = 0 (and also
i>~v = 0). Note that these expressions do not have an energy
interpretation, because they involve voltages of one network
and currents of another.

4We refer the interested reader to the classical references [2] and [3] for fur-
ther details on circuit theory. See also [1], and [4]–[6] for material closely related
with our developments.
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Since Kirchhoff’s voltage and current laws impose algebraic con-
straints, we have the following important corollary of Tellegen’s the-
orem.

Corollary 1: Voltages and currents of an arbitrary lumped network
satisfy

i
> dv

dt
= 0; v

> di

dt
= 0: (6)

In this note, we consider RLC circuits consisting of interconnections
of (possibly nonlinear) lumped dynamic (inductors, capacitors) and
static (resistors and voltage and current sources) elements. We proceed
now to define the behavior of the branch elements. AnnL-port inductor
is defined by a vector functionpL = p̂L(iL), with p̂L : n ! n ,
and Faraday’s law

vL = _pL = L(iL)
diL
dt

(7)

where we defined the inductance matrixL(iL) := rp̂L. Analogously,
for nC -port capacitors we have that the charges are related to the volt-
ages asqC = q̂C(vC), with q̂C : n ! n , and

iC = _qC = C(vC)
dvC
dt

(8)

whereC(vC) := rq̂C . We also have the following relationships for
the energy functionsEL(pL), EC(qC), whereEL : n ! , EC :
n ! ,

iL = rEL; vC = rEC : (9)

In the sequel, we will assume that the energy functions aretwice dif-
ferentiable.

The circuit hasnR resistors, which are 1-ports characterized by a
graphvkR = v̂kR(ikR), k = 1; . . . ; nR, wherev̂kR : ! . (As
explained later, we will sometimes find useful to use instead the graph
ikR = îkR(vkR)). It is clear thatconstantvoltage and current sources
can be easily added as particular instances of resistors. The network
also containsregulatedsources—that will interconnect the circuit with
the controller. We denote their voltages and currents asvS ; iS 2

n ,
respectively. In the sequel we will restrict our attention to regulated
voltage sources. (See the discussion in Section VII for the case of cur-
rent sources).

To simplify the notation, we will group all capacitors of the circuit
into onenC -port and all inductors into onenL-port with corresponding
energies the sum of the energies of all multi-port capacitors and induc-
tors, respectively. Also, we will group all port variables into vectors de-
noted byv := col(vC ;vL; vR; vS), i := col(iC ; iL; iR;�iS), where
we have adopted the standard sign convention for the sources currents.

IV. NEW PASSIVITY PROPERTY FORRL AND RC CIRCUITS

In the sequel, we will assume that the circuit iscomplete, which
means that the currents in the inductors and the voltages in the capaci-
tors, via Kirchhoff’s laws and the laws of the resistors characteristics,
determine the voltages and currents in all the branches. Complete RLC
circuits can be split into two subnetworks�L, �C that, respectively,
contain all the inductors and capacitors; see [2]. According to this par-
tition, we will split the resistors into two sets, the voltage-controlled
resistors belonging to�C , whose port variables will be denoted (iR ,
vR ), and have characteristic functionsikR = îkR (vkR ); and the
current-controlled resistors belonging to�L, with port variables (iR ,
vR ) and characteristic functionsvkR = v̂kR (ikR ).

We now define the concepts ofcontentandco-contentof a resistor,
which are well known in circuit theory [12], and will be instrumental
to formulate our results.

Definition 2: The co-content of a voltage-controlled resistor and the
content of current-controlled resistor are, respectively, defined as

Jk (vkR ) :=

v

0

îkR v0kR dv0kR

Gk (ikR ) :=

i

0

v̂kR i0kR di0kR :

Proposition 4: Arbitrary interconnections of passive capacitors
with convex energy function,EC(qC), voltage-controlled resistors
and controlled sources, satisfy the power balance inequality

t

0

_v>S (� )iS(�)d� � J [vR (t)]� J [vR (0)] (10)

whereJ(vR ) := n

k=1
Jk(vkR ). Hence, if the resistors are pas-

sive, they define passive systems with port variables (iS , dvS=dt) and
storage function the total resistorco-content. Similarly, arbitrary inter-
connections of passive inductors with convex energy function,EL(pL),
current-controlled resistors and controlled sources, satisfy the power
balance inequality

t

0

v
>

S (�)
__

i S (�)d� � G [iR (t)]�G [iR (0)]

whereG(iR ) := n

k=1
Gk(ikR ). If the resistors are passive, they

define passive systems with port variables (diS=dt, vS ) and storage
function the total resistorcontent.

Proof: The proof of passivity of RC circuits is established as fol-
lows. First, differentiate the resistors co-content_J = i>R _vR. Then,
from (8) and (9), we notice thati>C _vC = i>Cr

2ECiC � 0, where the
nonnegativity stems from the convexity assumption. Finally, replacing
the two previous expressions in

i
>

C _vC + i
>

R _vR = i
>

S _vS

which follows from Corollary 1, and integrating from 0 tot we com-
plete the proof.

The proof for RL circuits followsverbatim, but using the second
identity of Corollary 1, the relation for the inductors in (9), and the
definition of the content. /

V. BRAYTON–MOSERMODEL AND GENERATION OF STORAGE

FUNCTION CANDIDATES

The previous calculations show that the content and co-content func-
tions reveal some new properties of RL and RC circuits useful for con-
troller design, in particular identify a new passive system. Unfortu-
nately, Tellegen’s theorem alone does not seem to be enough to study
RLC circuits. In this section, we will strongly rely on some fundamental
results reported in [2] to generate the storage functions needed to es-
tablish similar properties for a class of RLC circuits. We recall first the
following important results of [2].

Lemma 1: Consider a complete RLC circuit with the corre-
sponding partition into subnetworks�C , �L. Denote withnR , nR
the number of resistors in the subnetworks�C and �L, with port
variables (iR , vR ), (iR , vR ), respectively. Then, there exists
matrices��� 2 n �n , ���C 2

n �n , ���L 2
n �n with

elements,+1,�1, 0, such that

i
>

L���vC = i
>

CvC + i
>

R vR (11)

vR =���CvC (12)

iR =���LiL: (13)
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Lemma 2: The dynamics of a complete RLC circuit with regulated
voltage sources in series with inductors is described by

L(iL)
__

i L=�ri P +BSvS

C(vC) _vC =rv P (14)

where

P (iL;vC) := i
>

L���vC +G(���LiL)� J(���CvC) (15)

is the mixed potential function andBS 2 n �n is a (full rank)
matrix with elements+1,�1, or 0.

Remark 2: Replacing (11) and (13) in (15) we see that the mixed
potential equalsi>CvC + i>R vR + G(iRL) � J(vRC). The first
and second right-hand side terms are the power in the capacitors and
voltage-controlled resistors, respectively, and recalling Definition 2,
the other right-hand side terms have also a clear interpretation in terms
of power. (In particular, for linear resistors, the latter are equal to half
the dissipated power). For this reason, we will say that the proposed
controller design, that aims at modifyingP (iL;vC), is shaping the
power.

We will now identify a subclass of these RLC circuits that satisfies
the new passivity property. We find convenient to write the model in
compact form as

Q(iL;vC)

__

i L

_vC
= rPA (16)

where

PA(iL;vC) :=P (iL;vC)� i
>

LBSvS

Q(iL;vC) :=
�L(iL) 0

0 C(vC)
2 n�n (17)

andn := nL + nC . From (16) and noting thatiS = B>S iL, we have
that

_P = (
__

i L)
> _v>C Q(iL;vC)

__

i L

_vC
+ v>S

__

i S : (18)

That is, _P consists of the sum of a quadratic term plus the inner product
of the sources port variables in the desired form—with the derivative
of iS . Unfortunately, due to the presence of the negative sign in the
first main diagonal block,Q(iL;vC) is sign-indefinite, and not nega-
tive definite as desired. Hence, we cannot establish a power balancing
inequality from (18). Clearly, to obtain the passivity property an ad-
ditional difficulty stems from the fact thatP (iL;vC) is also not sign
definite.

To overcome these difficulties we, again, borrow inspiration from
[2] and look for other suitable pairs (~Q(iL;vC), ~PA(iL;vC)), which
we calladmissible, that describe the dynamics of the circuit, that is

~Q(iL;vC)

__

i L

_vC
= r ~PA: (19)

Additional properties that we require from the admissible pairs
( ~Q(iL;vC), ~PA(iL;vC)) are as follows.

P.1) To preserve the controlled sources variables as port vari-
ables, there should be a function~P (iL;vC), such that
~PA(iL;vC) = ~P (iL;vC) � i

>

LBSvS .
P.2) To be able to establish the power balance property, we require

~Q(iL;vC) + ~Q>(iL;vC) � 0: (20)

P.3) Finally, to obtain passivity,~P (iL;vC) should be nonnega-
tive.

A complete characterization of the admissible pairs (~Q(iL;vC),
~PA(iL;vC)) has been reported in [8], but it requires the solution

of a partial differential equation. A more constructive procedure to
generate admissible pairs is given in the following proposition which,
for ease of reference, is enunciated in terms of the original RLC circuit
data.5

Proposition 5: Consider a complete RLC circuit with regulated
voltage sources in series with the inductors. Assume that the energy
functions of the dynamic elements arestrictly convex, i.e.,r2EC ,
r2EL > 0. Then, the following hold.

i) (Sufficiency) For all� 2 , and symmetric matrix functions
M(iL;vC), withM : n ! n�n, the pair

~PA(iL;vC) :=�PA +
1

2
rP>AMrPA (21)

~Q(iL;vC) :=
1

2
(r2

PA)M+
1

2
r(MrPA)+�I Q (22)

is admissible, i.e., is such that (19) holds, withQ andPA as in
(15) and (17).

ii) (Partial converse) Assume the circuit (16) admits only isolated
equilibrium points. Then, given any admissible pair (~Q, ~PA)
there exists�, andM such that, almost everywhere,6 ~PA takes
the form (21).

Proof:

i) Computing the gradient of~PA from (21) gives

r ~PA =
1

2
(r2

PA)M+
1

2
r(MrPA) + �I rPA:

Now, strict convexity ofEC ,EL ensures the matrixQ is full rank.
Hence, from (22) and the aforementioned equation, we can write

r ~PA = ~QQ�1rPA = ~Q

__

i L

_vC
(23)

where the last identity is obtained from (16). Thus (~Q, ~PA) is
admissible.

ii) Since the system (16) has only isolated equilibrium points, we
have thatrPA = 0 only at isolated points. Hence, given any
function ~PA, we can select� = 0 and

M =
2 ~PA

rP>
A
rPA

2
rPA(rPA)

>

for which (21) clearly holds (a.e.). /

Remark 3: Some simple calculations show that a change of (state)
coordinates on the dynamical system (16) acts as a similarity transfor-
mation onQ. Therefore, is of no use for our purposes where we want
to change the sign ofQ to render the quadratic form sign definite.

VI. M AIN RESULTS

In this section, we will use the background material of the previous
section to establish a power balance inequality and the new passivity
property for (a class of) RLC circuits. This, in its turn, will be applied
to stabilize an equilibrium via power shaping.

Theorem 1 (Power Balance Inequality and new Passivity Prop-
erty): Consider a complete RLC circuit with regulated voltage
sources in series with inductors. Assume the following.

A.1) The inductors and capacitors are passive and havestrictly
convexenergy functions.

A.2) The voltage controlled resistors are linear, that is,iR =
R�1

C
vR , withRC = diagfRkCg > 0.

5To simplify the notation, in the sequel we omit the arguments of the func-
tions, writing them explicitly only when the function is first defined.

6As shown in the proof, the qualifier (a.e.) stands for the existence of pos-
sible singular points. These points can be avoided with standard regularization
procedures, but is omitted here for brevity.
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A.3) Uniformly in iL, vC , we have7

C (vC) ~RC���
>
L
� (iL) � 1� �

for some� > 0, where ~R�1
C

:= ���>CR
�1

C
���C is a full rank

matrix, andk � k is the spectral norm of a matrix.
Under these conditions, we have thepower balance in-

equality

t

0

v
>

S (� )
__

i S (�)d� � ~P [iL(t);vC(t)]� ~P [iL(0);vC(0)] (24)

where

~P (iL;vC) =
1

2
���>iL � ~R�1

C vC
>

~RC ���>iL � ~R�1

C vC

+
1

2
i
>

L��� ~RC���
>
iL +G: (25)

Furthermore, if
A.4) the current controlled resistors arepassive

then the circuit defines apassivesystem with port variables (vS ,
__

i S )
and storage function~P (iL;vC).

Proof: The proof consists of defining the parametersM and� of
Proposition 5 so that, under the conditions A.1)–A.4) of the theorem,
the resulting pair (~Q, ~PA) verifies the properties P.1)–P.3).

First, notice that under Assumption A.2) the co-content takes the
formJ(vC) = (1=2)v>C ~R�1

C
vC . To ensure that~PA is linear invS , as

required in P.1), we see from (21) that we can select

M =
0 0

0 2 ~RC

; � = 1: (26)

For which, after some simple calculations with (14) and (22), we get

~Q =
�L 2 ~RC�C

0 �C
: (27)

Assumption A.1) ensures thatC andL are positive definite. A Schur
complement analysis reveals that, under Assumption A.3), (20) of P.2)
holds. This proves the power balance inequality.

To establish P.3), we replace (26) and (15) in (21), and complete
a square to show that~P takes the form (25). The first and second
right hand terms are positive because of positivity of~RC , [Assump-
tion A.2)], and the contentG is also nonnegative in view of Assump-
tion A.4. This completes the proof. /

Remark 4: Assumption A.3) is satisfied if the voltage controlled re-
sistancesRkC are “small.” Recalling that these resistors are in parallel
with the capacitors, this means that thecoupling between inductors and
capacitors is weak—with the capacitors short-circuited in the limiting
caseRkC = 0.

The theorem below proves that complete RLC circuits with strictly
convex energy function and linear voltage controlled resistors are
stabilizable via power-shaping—without requiring Assumptions A.3)
or A.4)—but only provided that the number of control signals is
“sufficiently large” to shape the mixed potential function and add the
damping.

Theorem 2 (Stabilization via Power Shaping):Consider a complete
RLC circuit satisfying Assumptions A.1) and A.2) of Theorem 1, and a
desired (admissible) equilibrium(i?L; v

?

C) 2
n. Assume there exists

a functionPa : n ! verifying the following.

A.5) (Realizability)B?SrPa = 0, whereB?SBS = 0.
A.6) (Equilibrium assignment)rPa(i?L) + riLG(���Li

?

L) +
���~RC���

>
i?L = 0.

7As discussed in Remark 4, this constraint is satisfied if the electromagnetic
coupling is sufficiently “weak.”

A.7) (Damping injection) Uniformly iniL, r2Pa + r2

i G �
RaI, for some sufficiently largeRa > 0.

Under these conditions, the circuit is stabilizable viapower shaping.
More precisely, the control law

vS = � B
>

SBS

�1

B
>

SrPa (28)

ensures that all bounded trajectories satisfylimt!1(iL(t);vC(t)) =
(i?L; v

?

C). Furthermore, if the characteristic functions of the dynamic
elements are such that(pL; qC) = (p̂L(iL); q̂C(vC)) is a global dif-
feomorphism then all trajectories are bounded and the equilibrium is
globally attractive.

Proof: From Lemma 2, we know that the circuit dynamics is de-
scribed by (14) and (15). Now, under Assumption A.5), the control law
(28) satisfiesBSvS = �rPa. This leads to the closed-loop dynamics

Q
i

_v
= rPd, wherePd(iL;vC) := P + Pa. From Assumption

A.1), we have thatQ is full rank and consequently the equilibria are
the extrema ofPd. Now, from (15) and Assumption A.2) we have that

rPd =
���vC +ri G+rPa

���>iL � ~R�1

C
vC

:

Since all admissible equilibria satisfyv�C = ~RC���
>
i�L, we clearly have

thatrv Pd(i
�

L; v
�

C) = 0. On the other hand, Assumption A.2) and
A.7) ensure that the functionPa(iL)+G(���LiL)+(1=2)i>L��� ~RC���

>
iL

is strongly convex, and consequently that it has a unique global min-
imum at the point where its gradient is zero. This, together with
Assumption A.6), ensures (i�L, v�C ) is the unique equilibrium of the
closed-loop system.

Once we have achieved the power shaping we will now apply Propo-
sition 5 to generate another admissible pair (~Q, ~Pd) with ~Q+ ~Q> <
0—notice the strict inequality. We make at this point the important ob-
servation that, sincer ~Pd = ~QQ�1rPd (which follows from (23)),
the extrema of all new mixed potentials~Pd will coincide with the ex-
trema ofPd.

We apply the transformations of Proposition 5 to the closed-loop

system above with the parameters� = �1, M =
(2=Ra)I 0

0 0
,

that yields

~Q =
� 2

R
r2Pa +r2

i G � I L 0

� 2

R
���>L �C

whose symmetric part is negative definite for sufficiently largeRa.
Consequently, along the closed-loop dynamics, which can also be de-

scribed by~Q i

_v
= r ~Pd, we have

_~P d =
1

2
r ~P>d ~Q�>( ~Q+ ~Q>) ~Q�1r ~Pd � ��jr ~Pdj

2

for some� > 0, wherej � j is the Euclidian norm. Convergence of
all bounded trajectories follows immediately from LaSalle’s invariance
principle and the fact thatjr ~Pdj = 0 only at the desired equilibrium.8

To prove boundedness of trajectories we apply the change of coor-
dinates(pL; qC) = (p̂L(iL); q̂C(vC)) to the closed-loop system to
obtain
_pL
_qC

=
0 ����

���> � ~R�1

C

rEL
rEC

�
ri G ���L îL(pL) +rPa îL(pL)

0

where we have denoted the inverse functioniL := îL(pL) and recalled
from (9) thatvC = rEC andiL = rEL.

8The explicit expression of~P is of no interest for our derivations, as
LaSalle’s invariance principle imposes no particular positivity constraint on
this function.
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From Assumption A.1), we have that the total energy,E = EC+EL,
is a positive radially unboundedfunction. Evaluating its time deriva-
tive, we get

_E = �r>EC ~R�1C rEC

�rE>L ri G ���L îL(pL) +rPa îL(pL) : (29)

Assumption A.7) states that the functionG(���LiL)+Pa(iL) isstrongly
convex. The latter ensures that the second right-hand side term in (29)
is positive outside some balljiLj = b, and consequently_E is negative
outside a compact set. This proves global boundedness of the solutions
and completes the proof. /

Remark 5: Clearly, all assumptions of Theorem 2 are constraints
related with the “degree of under-actuation” of the circuit. All condi-
tions are obviated in the extreme case whereBS = I when we can add
an arbitrary power functionPa. Also, the rather restrictive Assumption
A.3) of Theorem 1 is conspicuous by its absence—this means that we
do notassume that the circuit to be controlled is already passive.

VII. CONCLUSION AND OUTLOOK

Our main motivation in this note was to propose an alternative to the
well-known method of energy shaping stabilization of physical sys-
tems—in particular, to the physically appealing technique of energy
balancing (also known as control by interconnection for dynamic con-
trollers) which as pointed out in [11] and [14] is severely stymied by
the existence of pervasive damping. In this note, we have, for nonlinear
RLC circuits, put forth the paradigm of power shaping and shown that
it is not restricted to systems without pervasive dissipation.

The starting point for the formulation of the power shaping idea are
some new power balancing and passivity properties established for a
class of nonlinear RLC circuits with convex energy function and weak
electromagnetic coupling. To enlarge the class of circuits that enjoy
these properties we have made extensive use of Proposition 5 which
provides a procedure to generate alternative circuit topologies that re-
veal, through the new admissible pairs (~Q, ~P ), properties of the original
circuit that we can exploit in our controller design.

The following open issues are currently under investigation.

— Instrumental for our developments is the exploitation of a
geometrical property of RLC circuits, namely that voltages
and currents live in orthogonal spaces, i.e., Tellegen’s the-
orem. Dirac structures, as proposed in [14], provide a natural
generalization to this theorem, characterizing in an elegant
geometrical language the key notion of power preserving in-
terconnections. It seems that this is the right notion to try to
extend our results beyond the realm of RLC circuits, e.g., to
mechanical or electromechanical systems. (A related ques-
tion is whether we can find Brayton–Moser like models for
this class of systems; see [1] and [5]).

— In this note, we have elaborated only on overcoming the
dissipation obstacle of energy balancing, but it has also been
mentioned that power shaping naturally allows the addition
of (approximate) derivative actions in the control to enhance
the transient response. Indeed, following the procedure
of [10, Sec. 3.2] it is possible to show that we can add
to the controller (28) an approximate differentiation term
diagf(�kDis)=(�is+ 1)giL, with kDi, �i > 0, preserving
the same stability properties of Theorem 2. The theoretical
and practical implications of adding derivative actions in
power shaping is currently under investigation.

— We have considered here only voltage sources which suggest
that current sources can be treated analogously using an al-
ternative definition of the mixed potential.

— Parallel to the developments reported in this note we are
investigating linear RLC circuits. In this case there is a clear
interpretation, in terms of the phase of the driving point
impedance, of the circuits that satisfy the new passivity
property. Furthermore, using some well known relationships
between the impedance and the average stored energy, e.g.,
[3, eq. (5.6), Ch. 9], we can fully characterize these circuits
in terms of their energy functions. The outcome of this
research will be reported elsewhere.

— The expression_v>S (t)iS(t) (or v>S (t)_iS(t)) has a direct re-
lationship with the notion ofreactive power, as classically
defined for linear circuits. Indeed, if we take the average of
this signal on a period and expand in Fourier series, the first
component coincides with the standard definition of reac-
tive power for a two terminal circuit with sinusoidal voltage.
Adopting this new “definition” of reactive power for non-
linear circuits might prove instrumental to formally study
problems of reactive power compensation—an area of in-
tense research activity in power electronics.
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