
 Open access Journal Article DOI:10.1007/S11265-007-0136-8

Power Signature Watermarking of IP Cores for FPGAs — Source link

Daniel Ziener, Jürgen Teich

Institutions: Fraunhofer Society, University of Erlangen-Nuremberg

Published on: 01 Apr 2008 - Signal Processing Systems

Topics: Watermark and Digital watermarking

Related papers:

 Fingerprinting techniques for field-programmable gate array intellectual property protection

 IPP@HDL: Efficient Intellectual Property Protection Scheme for IP Cores

 Differential Power Analysis

 Signature hiding techniques for FPGA intellectual property protection

 Watermarking techniques for intellectual property protection

Share this paper:

View more about this paper here: https://typeset.io/papers/power-signature-watermarking-of-ip-cores-for-fpgas-
47bhzue67u

https://typeset.io/
https://www.doi.org/10.1007/S11265-007-0136-8
https://typeset.io/papers/power-signature-watermarking-of-ip-cores-for-fpgas-47bhzue67u
https://typeset.io/authors/daniel-ziener-1bo468dnfw
https://typeset.io/authors/jurgen-teich-1og1afyx9v
https://typeset.io/institutions/fraunhofer-society-17zb9jzp
https://typeset.io/institutions/university-of-erlangen-nuremberg-3tbb1h8m
https://typeset.io/conferences/signal-processing-systems-3c8lsrea
https://typeset.io/topics/watermark-w6hf3eha
https://typeset.io/topics/digital-watermarking-3c1l00p4
https://typeset.io/papers/fingerprinting-techniques-for-field-programmable-gate-array-1uhmu20bkn
https://typeset.io/papers/ipp-hdl-efficient-intellectual-property-protection-scheme-qmqpddy1ke
https://typeset.io/papers/differential-power-analysis-4t7fjmuc7b
https://typeset.io/papers/signature-hiding-techniques-for-fpga-intellectual-property-2wqswt35pp
https://typeset.io/papers/watermarking-techniques-for-intellectual-property-protection-3m52gyng1x
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/power-signature-watermarking-of-ip-cores-for-fpgas-47bhzue67u
https://twitter.com/intent/tweet?text=Power%20Signature%20Watermarking%20of%20IP%20Cores%20for%20FPGAs&url=https://typeset.io/papers/power-signature-watermarking-of-ip-cores-for-fpgas-47bhzue67u
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/power-signature-watermarking-of-ip-cores-for-fpgas-47bhzue67u
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/power-signature-watermarking-of-ip-cores-for-fpgas-47bhzue67u
https://typeset.io/papers/power-signature-watermarking-of-ip-cores-for-fpgas-47bhzue67u

1

Power Signature Watermarking of IP Cores for

FPGAs
Daniel Ziener #1, Jürgen Teich ∗2

#Fraunhofer Institute for Integrated Circuits IIS
Am Wolfsmantel 33, 91058 Erlangen, Germany

1znr@iis.fraunhofer.de
∗Department of Computer Science 12, University of Erlangen-Nuremberg

Am Weichselgarten 3, 91058 Erlangen, Germany
2teich@cs.fau.de

Abstract— In this paper, we introduce a new method for
watermarking of IP cores for FPGA architectures where the
signature (watermark) is detected at the power supply pins of the
FPGA. This is the first watermarking method where the signature
is extracted in this way. We are able to sign IP cores at the netlist
as well as the bitfile level, so a wide spectrum of cores can be pro-
tected. In principle, the proposed power watermarking method
works for all kinds of FPGAs. For Xilinx FPGAs, we demonstrate
in detail that we can integrate the watermarking algorithms and
the signature into the functionality of the watermarked core. So
it is very hard to remove the watermark without destroying the
core. Furthermore, we introduce a detection algorithm which can
decode the signature from a voltage trace with high reliability.
Additionally, two enhanced robustness algorithms are introduced
which improve the detection probability in case of considerable
noise sources. Using these techniques, it is possible to decode the
signature even if other cores operate on the same device at the
same time.

I. INTRODUCTION

In the 1970s, only basic functions like discrete logical gates

were implemented on integrated circuits. With improvements

in chip manufacturing, the size of the transistors was drasti-

cally reduced and the maximum size of a die was increased as

well. Now, it is possible to integrate one billion transistors [1]

on one chip. On the other hand, the market requires shorter

product cycles. The only solution is to reuse cores, which

have been written for other projects or were purchased from

other companies. The number of companies that just produce

cores constantly increases. The advantages of reuse of IP cores

(Intellectual Property cores) are enormous. E.g., they offer a

modular concept and fast development cycles.

IP cores are licensed and distributed like software. One

problem of the distribution of IP cores, however, is the lack

of protection against unlicensed usage. The cores can be

easily copied. Some core suppliers encrypt their cores and

deliver special development tools which can handle encrypted

cores. The disadvantage is that common tools cannot handle

encrypted cores and that the shipped tools can be cracked that

unlicensed cores can also be processed.

Journal of Signal Processing Systems, Volume 51, Number 1,
April 2008, pages 123-136, c© Springer New York, Available at
http://www.springerlink.com/content/u63810741m470174/

Another approach is to hide a signature into the core, a

so called watermark, which can be used as a proof of the

original ownership. There exist many concepts and approaches

on the issue of implementing a watermark into a core. But

most of these concepts are not applicable due to the lack of

verification capabilities. A good verification strategy satisfies

that the signature (watermark) can be read out only using

the bought product. So no extra files or information must be

obtained from the accused company.

Here, we present a strategy to verify a watermark by

measuring the core supply voltage of an FPGA. The voltage

can be sampled with a standard oscilloscope, analyzed and

decoded with an algorithm developed to run on a PC. The

decoded signature can be compared with the original signature,

and thus, the watermark can be verified. This method is not

destructive and can be applied using only the given product

(see Fig. 1).

This work is organized as follows. In Section I, a short in-

troduction and motivation of watermarking is given. In Section

II, a short overview of related work for IP-Watermarking is

provided. Section III describes the analysis of the core voltage.

Section IV presents the implementation, and Section V the

process of embedding the watermark. In Section VI and VII,

the detection algorithms are described. Section VIII presents

experimental results and Section IX concludes the paper.

II. RELATED WORK

Hiding a unique signature into user data such as pictures,

video, audio, text, program code, or IP cores is called wa-

termarking. Embedding a watermark into multimedia data is

achieved by altering the data slightly at points where human

sense organs have lower perception sensitivity. For example,

one can remove frequencies which cannot be perceived by the

human ear by coding an audio sequence into an MP3 file.

Now, it is possible to hide a signature into these frequencies

without decreasing quality of the coded audio sequence [2].

The watermarking of IP cores is different from multimedia

watermarking, because the user data which represents the

circuit must not be altered, since functional correctness must

be preserved. Watermarking procedures can be categorized

into two groups of methods: additive methods and constraint-
based methods.

2

Fig. 1. Watermark verification using power signature analysis: From a
signature (watermark), a power pattern inside the core will be generated that
can be probed at the voltage supply pins of the FPGA. From the trace, a
detection algorithm verifies the existence of the watermark.

In additive methods, the signature is added to the functional

core, for example, by using unused lookup-tables in an FPGA

[3]. The constraint-based methods were originally introduced

by [4] and restrict the solution space of an optimization

algorithm by setting additional constraints which are used to

encode the signature.

Some methods for constraint-based watermarking in FPGAs

• exploit the scan-chain [5],

• preserve nets during logic synthesis [6],

• place constraints for CLBs in odd/even rows [7], or

• route constraints with unusual routing resources [7].

The major drawback of these approaches are the limitations

of the verification possibilities of the watermarked core. With

a good watermarking strategy, the verification can be done

only with the given product and without additional information

from the producer. The bitfile of an FPGA can be extracted

by wire tapping the communication between the PROM and

the FPGA. Unfortunately only the approaches presented in [3]

and [8] have the possibility to detect the watermark from these

bitfiles.

The approach in [8] is using the content of the lookup

tables in an FPGA for identification of a core. From the FPGA

bitfile, all lookup table contents and positions are extracted and

compared with the lookup table contents of the netlist IP core.

Then, a covering is calculated to show that the core is included

in the FPGA design or not. But some FPGA suppliers provide

an option to encrypt the bitstream. The bitfile is stored in the

PROM in encrypted form and will be decrypted inside the

FPGA. Monitoring the communication between PROM and

FPGA in this case is useless, because only the encrypted file

will be transmitted. In this case, only the verification over

a scan chain is possible [5]. An overview and evaluation of

existing watermark techniques is given in [9].

Also, the approaches at the HDL- and netlist-levels turn out

not to be applicable due to the lack of verification possibilities.

The only exceptions are [8] and the scan chain approach [5],

but a scan chain is very unusual in FPGA designs. However,

many cores are delivered in HDL or at the netlist level, so

more watermarking strategies for these cores would be very

useful.

The problem of applying watermarking techniques to FPGA

designs is not the coding and insertion of a watermark, rather

the verification with an FPGA embedded in a system. Hence

our methods concentrate on the verification of watermarks.

There are four potential sources of information:.

• Bitfile,

• Ports,

• Power [10], and

• Electromagnetic (EM) radiation [11].

The basic idea behind our approach is to extract the core

signature from the FPGAs power consumption pattern. This

idea is new and differs from [10] and [11] where the goal of

using power analysis techniques is not watermarking and intel-

lectual property protection, but the detection of cryptographic

keys and their security issues.

There is no way to measure the power consumption of an

FPGA directly, only through measuring the voltage or the

current. We decide to measure the voltage of the core close to

the voltage supply pins, so the smoothing from the plane and

block capacities are minimal and so no shunt is required. Most

FPGAs have ball grid array (BGA) packages and the majority

of them have vias to the back of the printed circuit board

(PCB) for the supply voltage pins. So, it is easy to measure

the voltage with an oscilloscope on the rear side of the PCB.

III. CONCEPT OF POWER WATERMARKING

The consumed power of an FPGA can be divided into

two parts, namely the static and the dynamic power. The

static power consumption is founded in the leakage current

from CMOS transistors and does not change over time if the

temperature is not changed. The dynamic power consists of the

power of the short circuit current and the power of reloading

the capacities of the transistors and the wires. The short circuit

current occurs, if both transistors, the PMOS and the NMOS,

are conducting for a short time during the switching activity.

Both parts of the dynamic power consumption depend on the

switching frequency [12]. As shown in [13], the main part of

the FPGA’s dynamic power results from capacity reloading.

So, what happens to the core voltage, if many switching

activities occur at the same time, such on the rising edge of

a clock signal? The core supply voltage drops and rises (see

Fig. 2). The real behavior of the core voltage depends on the

individual FPGA, the individual printed circuit board and the

individual voltage supply circuits.

In the frequency domain, the clock frequency with harmon-

ics and even integer divisions of the clock frequency is present

(see Fig. 3).

In the following, we present two methods to encode a

watermark into the core voltage characteristics. First, we vary

the frequency and second, we change the amplitude.

In the first case, a watermark can be identified if we produce

another frequency line in the spectrum of the core voltage,

which is not an integral multiple or a rational fraction of the

clock frequency. For achieving this, we need a circuit that

3

Fig. 2. A measured voltage signal from the voltage supply pin of an FPGA.
The core supply voltage drops and rises.

Fig. 3. The spectrum of the measured signal in Fig. 2. The clock frequency
of 50 MHz and harmonics can be seen. Also, a peak at the half of the clock
frequency is visible which is caused by switching activities from the logic.

consumes a considerable amount of power and generates a

signature-specific power pattern, and a clock which can be

identified in the spectrum. The power consumer can be, for

example, an additional shift register. If we would derive the

clock source from the operational clock, we would not be

able to distinguish the frequency line in the spectrum from

operational logic. Another opportunity is to generate a clock

using combinatorial logic. This clock could be identified as a

watermark, but the jitter of a combinatorial clock source might

be very high, and no clean frequency line could be seen in

the spectrum. This means that we need a higher additional

power consumption to make the watermark readable. Another

drawback is that we have only limited possibilities to encode

a signature reliably in these frequency lines.

In our approach, we therefore alter the amplitude of the

interferences in the core voltage. The basic idea is to add

a power pattern generator (e.g., shift registers), and clock

them with the operational clock or an integer division of

the operational clock. Further, we control these power pattern

generator according to the characteristic watermark. A logical

’1’ lets the power consumer operate one cycle (e.g., perform

a shift), a zero ’0’ leads to no operation. In the voltage profile

over time, we detect higher amplitudes corresponding to the

ones and smaller amplitudes according to the zeros. Note that

the amplitude for the no operation state is not zero, because

the operational logic and the clock tree is still active.

The advantage of power watermarking methods is that the

signature can easily be read out from a given device. Only the

core voltage of the FPGA must be measured and recorded. No

bitfile is required which needs to be reverse-engineered. Also,

these methods work for encrypted bitfiles whereas methods

where the signature is extracted from the bitfile fail. Moreover,

we are able to sign netlist cores, because our watermarking

algorithm does not need any placement information. So, also

cores at this level can be protected.

IV. THE METHOD

Our power watermarking method uses two shift registers,

a large one for causing a recognizable signature-dependent

power consumption pattern, and a shift register storing the

signature itself (see Fig. 1). The signature shift register is

clocked by the operational clock and the output bit enables

the power pattern generator. If the output bit is a ’1’, the

power pattern register will be shifted at the next rising edge

of the operational clock. At a ’0’, no shift is done. To

avoid interference from the operational logic in the measured

voltage, the signature is only generated during the reset phase

of the core.

Fig. 4. In the Xilinx Virtex architecture, a lookup table (LUT4) can also be
configured as a 16 Bit shift register (SRL16).

In some FPGA architectures (e.g., Xilinx Virtex), the lookup

tables (LUTs) can also be used as a shift register [14]. A 4

Bit lookup table can also be used as a 16 Bit shift register

(see Fig. 4). And, also for the Xilinx Virtex architecture, the

content of such a shift register can be addressed by the LUT

input ports. So, the shift register can be also used as a lookup

table. This allows us to use functional logic for implementing

the power pattern generator. The core operates in two modes,

the functional mode and the reset mode. In the functional

mode, the shift is disabled and the shift register operates as a

normal lookup table. In the reset mode, the content is shifted

according to the signature bits and consumes power which can

be measured outside of the FPGA. To prevent the loss of the

content of the lookup table, the output of the shift register is

fed back to the input, so the content is shifted circularly. When

the core changes to the functional mode, the content must be

4

shifted to the proper position to have a functional lookup table

for the core.

The amplitude of the generated power signature depends on

the number and content of the converted lookup tables. It will

be assumed that the transitions between zeros and ones in the

bit pattern of the lookup table contents are enough to produce

a recognizable pattern on the supply voltage.

Also, it is possible to initialize the content of the power

consumption shift register shifted, which are also part of the

functional logic. Only during the reset state, when the signa-

ture is generated can the functional logic can be initialized

correctly. So, normal core operation cannot start before the

signature was generated. The advantage is that the core is only

able to work after ”sending” the signature. Also, to avoid a

too short reset time in which the watermark cannot be exactly

detected, the right functionality will only be established if the

reset state is longer than a predefined time. This prevents the

user from leaving out or shorten the reset state with the result

that the signature cannot be properly detected.

The signature itself can be implemented as part of the func-

tional logic in the same way. Some lookup tables are connected

together and the content, the function of the LUTs, represents

the signature. This principle makes it almost impossible for an

attacker to change the content of the signature shift register.

Altering the signature would also affect the functional core,

thus resulting in a corrupt core.

The advantages of using the functional logic of the core

also as a shift register are the reduced resource overhead

for watermarking and the robustness of this method, because

these shift registers are embedded in the functional design,

and it is hard if not impossible to remove shift registers

without destroying the functional core. Also, our watermarking

procedure is difficult to be detected in a netlist file, because the

main part of the required logic for signature creation depends

on the functional logic for the proper core. Another benefit is

that our watermark cannot be removed by an optimization step

during the mapping into CLBs (Configurable Logic Blocks).

Nevertheless, if an attacker had special knowledge of the

watermarking method and of the EDIF netlist format, he may

reverse engineer the alternation of the embedding algorithm

and remove or disable the sending method. This can be avoided

by initializing the power pattern register with shifted lookup

table contents (see above). If sending of the signature is

prevented, the core will not function properly.

V. EMBEDDING OF THE WATERMARK

In this section, we describe the procedure of watermarking a

core. The watermarking procedure is easy to use and consists

of only two steps. First, the core must be embedded in a

wrapper, which contains the control logic for emitting the

signature. This step is done at the HDL-level and before

synthesis. The second step is at the netlist level after synthesis.

A program converts suitable four input lookup tables (LUT4)

into shift registers for the generation of the power pattern

generator and attaches the corresponding control signal from

the control logic in the wrapper (see Fig. 5).

The wrapper contains the control logic for emitting the

watermark and the shift register, holding the signature. If func-

Fig. 5. The core and the wrapper before (above) and after (below) the netlist
alternation step. The signal ”wmne” is an enable signal for shifting the power
pattern generator shift register.

tional lookup tables are used for implementing the signature

shift register, we add or convert this shift register in the second

step so that the wrapper contains only the control logic. Some

control signals have no sink yet, because the sink will be

added in the second step (e.g., the power pattern generator

shift register). So we must use synthesis constraints to prevent

the synthesis tool from optimizing these signals away. The

ports of the wrapper are the same for the core, so we can

easily integrate this wrapper into the hierarchy. The control

logic shifts the signature shift register, while the core is in

reset state. Also, the power pattern shift register is shifted

corresponding to the output of the signature shift register. If

the reset input of the wrapper gets inactive, the function of the

core cannot start at the same cycle, because the positions of

the content in the shift register are not in the correct state. The

control logic shifts the register content into the correct position

and leaves the reset state to start the normal operation mode.

The translation of four input lookup tables (LUT4) of the

functional logic into 16 Bit shift registers (SRL16) is done

at the netlist level. The usage of a LUT4 as a SRL16 is

only possible if the LUT4 is not part of a multiplexer logic.

This is not possible, because the additional shift logic and the

multiplexer share common resources in a slice. Also, if the

lookup table is a part of an adder, the mapping tool splits the

lookup table and the carry chain. In these two cases, additional

slices would be required, so we do not convert these lookup

tables into shift registers.

The above conversion is done by a program which reads

an EDIF-netlist and also writes a modified EDIF-netlist. First,

the program reads all LUT4 instances, checks if the following

logic is not a ”MUXF5” or a ”MUXCY” or a ”XORCY”.

Then, the instances are converted to a shift register (SRL16), if

required, initialized with the shifted value and connected to the

clock and the watermark enable (wmne) signal to these shift

registers. Always two shift registers are connected together to

5

rotate their contents. Finally, the modified netlist is written.

VI. BASIC DETECTION ALGORITHMS

The measured voltage will be probed, digitized and decoded

by a signature detection algorithm (see Fig. 6). To decode

the digitalized voltage signal, the sampling rate, the clock

frequency of the shifted signature and the bit length of the

signature is needed. The clock frequency can be extracted from

the Fast Fourier Transformation of the measured signal. Our

detection algorithm consists of five steps: down sampling, dif-

ferential step, accumulation, phase detection and quantization

(see Fig. 6). After the quantization step, the decoded signature

can be simply compared with the signature from the core

supplier bit by bit.

Fig. 6. The different steps of the detection algorithms.

As mentioned before, the main characteristic caused by

a switching event is the drop of the voltage followed by

a subsequent overshoot. This results in extreme slopes. Our

detection algorithm can find each rising edge as follows:

First, the measured signal will be down sampled from the

recorded sample rate to the quadruple of the clock frequency,

so each signature bit is represented by four samples. Then,

the discrete derivative of the signal will be calculated. This

transforms the rising edges of the switching events into peaks.

The easiest way to calculate the discrete derivative is to take

the difference of two subsequent samples over time (see Fig.

7).

D(k) = s(k) − s(k − 1), (1)

where s is the sampled probed voltage signal and D the

discrete derivative and k denotes the sample index.

Since the signature is repeated many times during the reset

state, the signal can be accumulated and averaged to reduce

the level of noise. To accumulate the coherent pattern, we need

to know the bit length of the signature. If we record a longer

signal sequence, we can accumulate more patterns and reduce

noise and also switching events which do not belong to the

Fig. 7. An example voltage signal which represents the signature ”0011”
(above). The example voltage signal after the differential step (below).

power consumption register of the watermarking algorithm,

for example from other cores on the chip. The disadvantage

is that we would need a longer time for the reset phase.

After this third step, we have a signal where each signature

bit is represented by four samples. But only one sample has

the information of the rising edge. Since the measurement is

not synchronized with the FPGA clock, the phase (position) of

the relevant sample of a bit is unknown. We divide the signal

into four new signals, where one signature bit is represented

in one sample. The four signals have a phase shift of 90o to

each other. Let

S[k], k = 0, 1, .., 4n− 1 (2)

denote the sampled voltage signal after the accumulation step

where n is the length of the signature. Then, we obtain the

four following phase shifted signals

S0 = S[4k], k = 0, 1, .., n− 1 (3)

S90 = S[4k + 1], ” (4)

S180 = S[4k + 2], ” (5)

S270 = S[4k + 3], ” (6)

where S is the accumulated signal and S0, S90, S180 and S270

are the phase signals (see Fig. 8).

We are able to extract the right phase of the signal if we

calculate the mean value of each phase-shifted signal. The

maximal mean value corresponds to the correct phase, because

the switching event should cause the greatest rising edge in

the signal.

Now, we have a signal in which each sample is represented

by the accumulated switching activities on one bit of the sig-

nature. The decision if the sample corresponds to a signature

bit ’1’ or ’0’ can be done by comparing the sample value with

the mean value of the signal. If the sample value is higher than

the mean value, the algorithm decides a ’1’, in the other case

a ’0’.

6

Fig. 8. The example voltage signal after the accumulation step (above) and
the four phase shifted signal (below). Here, S180 corresponds to the right
phasing.

VII. ENHANCEMENTS

A. Enhanced Robustness Encoding Method

Experimental results (see Section VIII) have shown that

the decoding of the signature with the basic method works

well, but on some targets, problems occur in the decoding

of signatures with long runs of ’1’ followed by many zeros,

like ”1111111100000000”. For the first 8 bits, we see a huge

amplitude. Then, a phase in where the amplitude is faded

out is observed (see Fig. 9). The phase can be many clock

cycles long and could lead to a wrong detection result of the

following bits.

Fig. 9. Measured voltage supply signal when sending ”FFFF0000” with a
large power pattern generator shift register.

This fading out amplitude belongs to an overlaid frequency

which might be produced by a resonance circuit which consists

of the capacitances and resistance from the power supply plane

and its blocking capacitances. This behavior is dependent on

the printed circuit board and the power supply circuit.

To avoid such a false detection, the transmission time of one

signature bit is extended over the time for the swing out of

the printed circuit board. The repetition rate for each signature

bit is m clock cycles. If we connect two SRL16 together, one

cycle for this shift register needs 32 steps. If the reset phase

ends and we have finished sending one bit, the content in the

shift register which also represents a part of the logic of the

core, is in the correct position.

The detection algorithm differs for this method. First, the

signal will be down sampled and the approximate derivation

will be calculated as in the original method (see Section VI).

Now, we average the signal to suppress the noise. But here,

the length of one signature word is the length of the signature

(n) multiplied by the number of times each bit is sent (m). As

defined before, this is the square of the length of the signature.

D[k], k = 0, 1, .., K − 1 (7)

N =
⌊ K

4m · n

⌋

, (8)

S =
1

N

N−1
∑

r=0

D[4m · n · r, .., 4m · n · r + 4m · n − 1], (9)

where D is the voltage signal after the differential step with

index k and N being the number of repetitions of the pattern

in D.

The phase detection of the shift clock is the same as in

the original method (see Section VI), but we also need the

position p where a new signature bit starts. This is done in a

loop to detect this position. In the beginning, we assume that

the starting position is the beginning of our trace (p = 0). First,

we accumulate m successive values, where m is the repetition

of one bit:

Ap[q] =

m−1
∑

u=0

Sφ[u + p + mq], q = 0, 1, .., n− 1 (10)

where Sφ is the signal after the phase detection step. Now, we

subtract the mean value and generate the absolute value and

calculate the sum of it.

Fp =
n−1
∑

q=0

∣

∣

∣
Ap[q] −

1

n

n−1
∑

a=0

Ap[a]
∣

∣

∣
(11)

Fp identifies how good our signature bit starting position

p fits to the real position. Now, we shift our trace one value

(p = 1) and calculate the fitting value again, and so on. This is

done m times. The starting position with the best fitting value

will be used.

The decoding of the watermark signature is done like in

the basic method (see Section VI) by comparing the sample

values with the mean value of the samples.

7

B. BPSK Detection Method

The enhanced robustness method works well, but if other

cores with the same clock frequency have a very high toggle

rate in the reset phase of our core, the quality of decoding

suffers. In the worst case, the decoding is not possible, because

our signal is too weak according to the interferences with the

same frequency generated of the high toggle rate of the other

cores (see in experimental results Table II case C Arithmetic

Coder Core).

To enhance the robustness of decoding in case of inter-

ferences with the same frequency of our transmit signal,

we combine a new sending scheme with a new detection

algorithm. The base idea is to shift the carrier frequency of

our watermarking signal away from the clock frequency of the

chip, where we expect most of the interferences.

We introduce a new binary signal Sc with the frequency

fc, where the signature bits are modulated with Binary Phase

Shift Keying (BPSK) modulation. Using BPSK modulation,

each value of a signature bit {0, 1} is represented by a phase

(usually 0◦ and 180◦). Practically, by sending a ’0’, the carrier

signal is not altered, and is inverted by sending a ’1’ (see Fig.

10).

Fig. 10. This figure shows a carrier signal Scarrier and the BPSK modulated
signal SBPSK . The signature bit value ’0’ is decoded with 0

◦ and the value
’1’ is decoded with 180

◦ .

We generate the new frequency fc by an on-off keying

(OOK) modulation, a binary amplitude modulation (AM), of

the clock frequency fclk. So, the frequency fc must be a

rational fraction of the the clock frequency fclk. But, interfer-

ences from working cores have also an impact here, because

these frequencies could also be produced by working cores

with different toggle rates. Frequencies f = fclk

2n have high

interference from working cores whereas other frequencies

have lower interference. The interferences decrease as well

at lower derived frequencies. In the following, we choose

fc = fclk

10 as our carrier frequency.

To generate the new watermark signal, the power pattern

generator is driven by the signal Sc, and performs the OOK
modulation. To send one period of the signal Sc, we first

send five ones (the power pattern shift register is shifted five

times) and then five zeros (the power pattern shift register

is not shifted) in the case of the signature bit is ’1’. If the

signature bit is ’0’, first five zeros and then five ones are sent

(see Fig. 11). For each signature bit, we repeat this period

32 times to ensure that the content of the power pattern shift

register, which are also functional lookup tables, are in the

Fig. 11. The signal Sc is the BPSK modulated signal from the signature
above. The signal below is the voltage signal, which is the OOK modulated
signal from Sc. This figure also illustrate the different frequencies.

correct positions after sending one signature bit. Repetition

also allows to detect the signature with a higher probability.

The decreased bit rate results in a smaller bandwidth for our

watermarking signal. Using this method, we need a longer time

than the previously presented method to send the signature.

The signature bit rate fwm is:

fwm =
fc

32
=

fclk

10 ∗ 32
=

fclk

320
(12)

The watermark control inside the wrapper (see Section V) is

altered to control the power pattern generator in this way. Only

few additional resources are used for the enhanced watermark

control.

Fig. 12. The spectrum of a measured signal. The clock frequency of 50 MHz
and the two side bands of the modulated signal Sc are shown at 45 MHz and
55 MHz.

If we look at the spectrum of the recorded signal (see Fig.

12), we see the clock frequency fclk and two side bands from

the OOK modulation fclk − fc and fclk + fc.

The detection algorithm for this method is different than

from the other methods. Only the first (down sampling) and

the last step (quantization) are identical (see Fig. 13). After

down sampling, the two side bands of carrier signal are mixed

down into the base band (Sc1 and Sc2) and are combined (Scc)

8

Fig. 13. The different steps of the BPSK detection algorithm.

as follows:

s[k], k = 0, 1, .., K − 1 (13)

Sc1[k] = s[k] · e−j2π·(1

4
−

1

40
)·k, (14)

Sc2[k] = s[k] · e−j2π·(1

4
+ 1

40
)·k, (15)

Scc[k] = Sc1 + Sc2, (16)

where s is the voltage signal after down sampling with index

k. The clock frequency is fclk = 1
4 ·fsample, and the frequency

fc = 1
10 · fclk = 1

40 · fsample. The sample frequency of the

recorded voltage signal is fsample. After low pass filtering of

Scc, we get the complex carrier signal Sc (see Fig. 14).

Fig. 14. The constellation diagram of the down mixed complex signal Sc.
Here, the two different BPSK constellation points for the signature bit ’1’ and
’0’ are shown.

Scc is filtered with a matched filter to obtain the limits of

one signature bit and the correct sample point. All samples

of Sc which belong to one signature bit are summed up into

this sample point by the matched filter. At the down sampling

step, only these points are used to represent the signature bits.

Now, the angle of the signal is calculated from the signature

bit with the highest amplitude, and the signal is rotated into

the real plane. From the real signal, the value of the bits and

the quality of the signal are determined similar to the other

detection algorithms (see Section VI).

The advantage of the BPSK method is its the robustness

with respect to interferences which are coupled with the clock

frequency. The disadvantages are the longer reset phase and

the fact that we can only detect bit value changes and not

the signature bit value directly due to the BPSK modulation.

Using proper encoding methods and preambles, the bit values

can be reconstructed.

VIII. EXPERIMENTAL RESULTS

In the following experiments, we used two FPGA-boards,

the Digilent Spartan-3 Starter Board [15], and a board

equipped with a Xilinx Virtex II XC2V250 FPGA. On the

second board, many other components, such as an ARM micro

controller and interface chips are integrated to demonstrate

that the algorithm is also working on multi-chip boards. The

Spartan-3 board operates with a clock frequency of 50 MHz,

the Virtex II board at 74.25 MHz.

On both boards, the voltage is measured on the back of

the printed circuit board directly on the via which connects

the FPGA with the power plane of the printed circuit board.

We used a 50 Ohm wire with a 50 Ohm terminating resistor.

This wire is directly soldered on the vias. We have used a

DC block element and a 25 MHz high pass filter to filter the

DC component and the interferences of the switching voltage

controller. We used a LeCroy Wavepro 7300 oscilloscope with

20 Giga Samples per second to measure the voltage. The

voltage amplitude of the measured switch peak is very small,

so we used a digital enhanced resolution filter to improve the

dynamics, at the cost of a decrease in bandwidth. The signal

of the length of 200 µs is recorded on the internal hard disc

of the oscilloscope. This signal file is transferred to a personal

computer and analyzed there.

The functionality of our proposed watermark detection

methods is evaluated for a DES Core with 56 Bit from

opencores.org [16] and an arithmetic coder core. Arithmetic

coders are used within JPEG2000 [17]. Research within the

European Union project ”WorldScreen” focuses on hardware

implementation of JPEG2000 encoders.

After the synthesis step, only 16 out of 715 lookup tables

from the DES56 core have been transformed into SRL16 and a

n = 32 Bit signature has been added. Also, for the arithmetic

coder core, 92 out of 1332 lookup tables have been trans-

formed into SRL16. Both core inputs were stimulated using a

pseudo random sequence generated by a linear feedback shift

register to simulate input data.

The decoded sequence was compared with the encoded

signature from the core to evaluate the bit error rate. Further

from the signal, where the bit decision is done, two quality

indicators were calculated. One is the signal to noise ratio
(SNR) of these signals. Because we make a threshold decision,

9

SNR values under 4 dB are difficult to decode. We also

calculate the SNR from the decoded sequence, so bit errors

falsified our SNR. In these cases, the real SNR is lower than

the calculated SNR. The second indicator called bit gain is the

difference from the mean level of the bits and the threshold

level. This indicator shows how big the difference of the

voltage swing between ones and zeros of the signature is. Also,

the root mean square (RMS) from the recorded signal without

the DC part is measured. Figure 15 shows a signal of good

quality before the bit decisions with an SNR value of 37 dB.

The signal shown in Figure 16 is of lower quality and has a

SNR of 9 dB.

Fig. 15. A signal of good quality for the bit decisions with an SNR value
of 37 dB.

Fig. 16. A signal of lower quality with a SNR of 9 dB, but without bit
errors.

First, the basic method described in Section VI is evaluated

(see Table I). We decoded the signature with both boards and

the DES56 core where only 16 lookup tables are transformed

into SRL16. We have evaluated two cases, one where only

the watermarked core is implemented (case A) and one where

the watermarked core and the original core is implemented to

TABLE I

RESULTS OF THE BASIC METHOD

Case Board Bit Error Rate Signal RMS SNR Bit Gain

in % in mV in dB

Signature S1

A Spartan3 0 0.376 8.5 0.126

B Spartan3 9.4 0.511 4 0.112

A VirtexII 21.9 0.821 4 0.277

B VirtexII 31.2 1.047 4 0.263

Signature S2

A Spartan3 0 0.374 8.5 0.147

B Spartan3 3.1 0.513 4.5 0.137

A VirtexII 6.2 0.859 4 0.561

B VirtexII 0 1.063 8.5 0.632

Signature S3

A Spartan3 6.2 0.380 4 0.111

B Spartan3 12.5 0.516 3 0.122

A VirtexII na 0.841 3.5 0.368

B VirtexII 9.4 1.073 3.5 0.381

check the functionality of the watermarked core (case B). This

is done by connecting both cores to the same pseudo random

input data and compare the output when the cores are not in

the reset state. We embedded three signatures (S1, S2 , S3) in

the core. The Signature S1 is ”5C918CBA” and represents a

realistic random signature. Signature S2 is ”333333333” and

signature S3 is ”FF335500”. With these signatures, we can

evaluate the decoding method with different bit toggle rates.

Table I shows that decoding does not always work without

bit errors, but here, we have transformed only 16 lookup tables

into SRL16.

In case A, the detection works better than in case B. In

case B, more logic is used, but this logic is in the reset state.

Nevertheless, the clock tree is still active which can be seen in

the higher signal RMS value. The signature S3 is difficult to

decode, because there are many equal bits lumped together and

so the printed circuit board works as a resonator (see Section

VII-A).

To evaluate the enhanced robustness method described in

Section VII-A, we use the same test cases and implement only

the signature S3, which is harder to decode (see Table II). Also,

we define two additional test cases. In C, the unwatermarked

core has an inverted reset, so the core is working when the

watermark is sending the signature. In D, two cores are

working, while the signature is emitted. Not all combinations

in D are possible because the FPGA is too small to implement

all three cores. Additionally, we have evaluated this method

with the arithmetic coder core.

Table II shows that the detection of the watermarked sig-

nature works much better than with the basic method. The

decoding for the DES56 core works fine even if one or two of

the same DES56 cores operate at the same time the signature

is emitted. Also here, we use only 16 SRL16 in the DES56

core. For the arithmetic coder core, we use more lookup tables,

and if no other core operates, the decoding results are better

than for the DES56 core. But if another arithmetic coder core

is active, the decoding fails. The signal RMS indicates that

10

TABLE II

RESULTS OF THE ENHANCED METHOD

Case Board Bit Error Rate Signal RMS SNR Bit Gain

in % in mV in dB

DES 56 Core

A Spartan3 0 0.384 22 0.087

B Spartan3 0 0.508 23 0.110

C Spartan3 0 1.21 22 0.109

D Spartan3 0 2.15 10.5 0.0539

A VirtexII 0 0.794 18 0.067

B VirtexII 0 1.022 22.5 0.191

C VirtexII 0 2.698 12 0.067

Arithmetic Coder Core

A Spartan3 0 0.618 37 0.758

B Spartan3 0 0.617 38 0.720

C Spartan3 na 4.488 3 0.216

A VirtexII 0 1.347 37.5 1.248

B VirtexII 0 1.343 37 1.191

TABLE III

RESULTS WITH DECREASED RECORD TIME

200 µs 100 µs 50 µs

Case SNR Bit Gain SNR Bit Gain SNR Bit Gain

in dB in dB in dB

A 22 0.087 21.5 0.091 16 0.090

B 23 0.110 19.5 0.110 16.5 0.111

C 22 0.109 18 0.107 18.5 0.107

D 10.5 0.054 10 0.057 9.5 0.061

the arithmetic coder core has a very high toggle rate.

In Table III, we decreased the recording length to see the

impact of the quality of our results. This is done using the

DES56 core in all four cases. The quality degenerates but

with the recording length of 50 µs, it is still possible to detect

the watermark without bit errors in case D even if two other

cores are simultaneously active.

Finally, the evaluation of the BPSK detection algorithm,

described in Section VII-B, is done using the same test cases

as for the enhanced robustness method (see Table IV). Also,

the number of lookup tables which are converted into shift

registers is the same. The results show that error-free decoding

is possible in all test cases, also in the critical test case for the

arithmetic coder C with the Spartan3 FPGA, where decoding

is not possible with the enhanced robustness method. This

shows that the BPSK method can deal better with test cases,

which have high interferences on the clock frequency like

other working cores with a high toggle rate.

IX. CONCLUSIONS

We have presented a new watermark technique for IP cores

implemented on FPGA targets where the signature is easily

extracted over the power pins of the chip. So, it is possible

to read out the watermark only with the given device without

further information from the vendor of the product, and to

decide with high reliability, whether an IP core of a certain

vendor is present on th FPGA or not. We have shown how the

TABLE IV

RESULTS OF THE BPSK METHOD

Case Board Bit Error Rate Signal RMS SNR Bit Gain

in % in mV in dB

DES 56 Core

A Spartan3 0 0.431 22 0.091

B Spartan3 0 0.530 22.5 0.086

C Spartan3 0 1.410 25.5 0.093

D Spartan3 0 1.432 20 0.044

A VirtexII 0 1.003 19 0.152

B VirtexII 0 1.353 19 0.073

C VirtexII 0 3.030 23 0.178

Arithmetic Coder Core

A Spartan3 0 0.593 23.5 0.322

B Spartan3 0 0.703 29.5 0.438

C Spartan3 0 4.207 14 0.188

A VirtexII 0 0.340 27 0.654

B VirtexII 0 0.510 19 0.239

watermark is easily integrated into a core. For Xilinx FPGAs,

it is possible to integrate the watermark algorithm and the

signature into the functionality of the core, so it is hard to

remove the watermark, and only very few additional resources

were required for control. In Section VI, we also introduced

a basic algorithms to detect a signature over the power trace

of the FPGA, and experimental results have shown that the

functionality of the core is not altered. Also, we introduced

an enhanced robustness technique for the basic method, and a

new decoding method based on BPSK (Binary Phase Shift

Keying) modulation, which improves the decoding quality

of the signature even further. With these enhanced decoding

methods, we are able to decode a signature even if other cores

are simultaneously active on the same hardware device. We

also introduced quality indicators to evaluate the result of the

decoded signature. With these indicators, we have proven the

reliability of our techniques.

The experimental results have shown that decoding is pos-

sible in all test cases, but we can further improve the quality

of the results if we transform more lookup tables into shift

registers or if we extend the recording time. Additionally, the

signature width might be increased to insert error codes or

cyclic redundancy check (CRC) values.

If an FPGA design includes multiple watermarked cores,

mutual interference between different signatures may occur,

lowering the detection probability. Our transmission scheme

is prepared for these constraints by having different repetition

periods, but further enhancement could incorporate a sending

scheme which addresses better the sending of multiple signa-

tures. Further research on this topic is envisaged.

ACKNOWLEDGMENT

Part of this work was funded under the sixth Framework

Programme (FP6) of the EU within the project ”WorldScreen

- Layered Compression Technologies for Digital Cinematog-

raphy and Cross Media Conversion” Project No. 511333,

http://www.worldscreen.org

11

REFERENCES

[1] Xilinx, Inc. Next-Generation Virtex Family From Xilinx to top
one Billion Transistor Mark. 03131 nextgen.htm. [Online]. Available:
www.xilinx.com/prs rls/silicon vir/

[2] L. Boney, A. H. Tewfik, and K. N. Hamdy, “Digital watermarks
for audio signals,” in International Conference on Multimedia
Computing and Systems, 1996, pp. 473–480. [Online]. Available:
citeseer.ist.psu.edu/boney96digital.html

[3] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “Signature
hiding techniques for FPGA intellectual property protection,” in
proceedings of ICCAD, 1998, pp. 186–189. [Online]. Available:
citeseer.ist.psu.edu/lach98signature.html

[4] Kahng, Lach, Mangione-Smith, Mantik, Markov, Potkonjak, Tucker,
Wang, and Wolfe, “Constraint-based watermarking techniques for
design IP protection,” IEEETCAD: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 20, 2001.
[Online]. Available: citeseer.ist.psu.edu/kahng01constraintbased.html

[5] D. Kirovski and M. Potkonjak, “Intellectual property protection using
watermarking partial scan chains for sequential logic test generation,”
in ICCAD, 1998. [Online]. Available: citeseer.ist.psu.edu/218548.html

[6] D. Kirovski, Y.-Y. Hwang, M. Potkonjak, and J. Cong, “Intellectual
property protection by watermarking combinational logic synthesis
solutions,” in proceedings of ICCAD, 1998, pp. 194–198. [Online].
Available: citeseer.ist.psu.edu/article/kirovski98intellectual.html

[7] A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker,
H. Wang, and G. Wolfe, “Robust IP watermarking methodologies for
physical design,” in Design Automation Conference, 1998, pp. 782–787.
[Online]. Available: citeseer.ist.psu.edu/kahng98robust.html

[8] D. Ziener, S. Aßmus, and J. Teich, “Identifying FPGA IP-Cores based on
Lookup Table Content Analysis,” in Proceedings of 16th International
Conference on Field Programmable Logic and Applications, Madrid,
Spain, Aug. 2006, pp. 481–486.

[9] D. Ziener and J. Teich, “Evaluation of Watermarking methods for
FPGA-based IP-cores,” University of Erlangen-Nuremberg, Department
of CS 12, Hardware-Software-Co-Design, Am Weichselgarten 3, D-
91058 Erlangen, Germany, Tech. Rep. 01-2006, Mar. 2006.

[10] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Lecture
Notes in Computer Science, vol. 1666, pp. 388–397, 1999. [Online].
Available: citeseer.ist.psu.edu/kocher99differential.html

[11] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The em side-
channel(s),” in CHES ’02: Revised Papers from the 4th International
Workshop on Cryptographic Hardware and Embedded Systems. Lon-
don, UK: Springer-Verlag, 2003, pp. 29–45.

[12] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-
Power CMOS Digital Design,” 1992. [Online]. Available:
citeseer.ist.psu.edu/chandrakasan95low.html

[13] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic power consumption
in Virtex-II FPGA family,” in FPGA ’02: Proceedings of the 2002
ACM/SIGDA tenth international symposium on Field-programmable
gate arrays. New York, NY, USA: ACM Press, 2002, pp. 157–164.

[14] Xilinx, Inc. Virtex-ii platform fpgas: Complete data sheet. ds031.pdf.
[Online]. Available: direct.xilinx.com/bvdocs/publications

[15] Digilent, Inc. Spartan-3 board. S3BOARD.cfm. [Online]. Available:
www.digilentinc.com/info

[16] Opencores.org. Basic des crypto core: Overview. overview. [Online].
Available: www.opencores.org/projects.cgi/web/basicdes

[17] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression
Fundamentals, Standards and Practice. Norwell, MA, USA: Kluwer
Academic Publishers, 2001.

Daniel Ziener received his diploma degree (Dipl.-
Ing. (FH)) in Electrical Engineering from Univer-
sity of Applied Science Aschaffenburg, Germany,
in August 2002. In 2003 he joined the Fraunhofer
Institute of Integrated Circuits (IIS) in Erlangen,
Germany as a research staff in electronic imaging
group, and the Department of Hardware-Software-
Co-Design at the University of Erlangen-Nuremberg
headed by Prof. Jürgen Teich as Ph.D. student. His
main research interests are IP core watermarking,
the efficient usage of the FPGA structures, design

of signal processing FPGA cores, and reliable and fault tolerant processors.

Jürgen Teich received his masters degree (Dipl.-
Ing.) in 1989 from the University of Kaiserslautern
(with honors). From 1989 to 1993, he was PhD
student at the University of Saarland, Saarbrücken,
Germany from where he received his PhD degree
(summa cum laude). His PhD thesis entitled ‘A
Compiler for Application-Specific Processor Arrays’
summarizes his work on extending techniques for
mapping computation intensive algorithms onto ded-
icated VLSI processor arrays. In 1994, Dr. Teich
joined the DSP design group of Prof. E. A. Lee

and D.G. Messerschmitt in the Department of Electrical Engineering and
Computer Sciences (EECS) at UC Berkeley where he was working in the
Ptolemy project (PostDoc). From 1995-1998, he held a position at Institute
of Computer Engineering and Communications Networks Laboratory (TIK)
at ETH Zürich, Switzlerland, finishing his Habilitation entitled Synthesis and
Optimization of Digital Hardware/ Software Systems in 1996. From 1998-
2002, he was full professor in the Electrical Engineering and Information
Technology department of the University of Paderborn, Germany, holding
a chair in Computer Engineering. In Paderborn, he also worked in two
Collaborative Research Centers sponsored by the German Science Foundation
(DFG). Since 2003, he is appointed full professor in the Computer Science
Institute of the University Erlangen-Nuremberg, holding the new Hardware-
Software-Co-Design chair.

Mr. Teich has been a member of multiple program committees of well-
known conferences such as the DATE (Design, Automation, and Test in
Europe) as well as editor of several books. Furthermore, he has started
a successful German research initiative on reconfigurable systems in May
2003. Since 2004, Prof. Teich is also elected reviewer of the German
Science Foundation (DFG) for the area of Computer Architectures and
Embedded Systems. He is member of the IEEE and author of a textbook on
hardware/software codesign edited by Springer in 2007. His special interests
are massive parallelism, embedded systems, hardware/software codesign, and
computer architecture.

