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ABSTRACT
The bulk of recent cosmological research has focused on the adiabatic cold dark matter model and its

simple extensions. Here we present an accurate Ðtting formula that describes the matter transfer func-
tions of all common variants, including mixed dark matter models. The result is a function of wavenum-
ber, time, and six cosmological parameters : the massive neutrino density, number of neutrino species
degenerate in mass, baryon density, Hubble constant, cosmological constant, and spatial curvature. We
show how observational constraintsÈe.g., the shape of the power spectrum, the abundance of clusters
and damped Lya systems, and the properties of the Lya forestÈcan be extended to a wide range of
cosmologies, which includes variations in the neutrino and baryon fractions in both high-density and
low-density universes.
Subject headings : cosmology : theory È dark matter È large-scale structure of universe

1. INTRODUCTION

Most popular cosmologies rely on density perturbations
generated in the early universe and ampliÐed by gravity to
produce the structure observed in the universe such as gal-
axies, galaxy clustering, and the anisotropy of the micro-
wave background. It is of particular interest that the
spectrum and evolution of these Ñuctuations depend on the
nature of the dark matter as well as upon the ““ classical ÏÏ
cosmological parameters. Hence, by the study of the observ-
able signatures of the perturbations, one hopes to learn not
only about quantities such as the density of the universe or
the Hubble constant, but also what fraction of the matter in
the universe is in baryons, cold dark matter (CDM), massive
neutrinos, and so forth.

The calculation of how the various types of dark matter
and the background cosmology a†ect the power spectrum
can be treated for much of the history of the universe using
linear perturbation theory. Numerically, this reduces to
integrating the coupled Boltzmann equations for each mode
as a function of time. For modes above the Jeans scales of
the gravitating species, the growth of perturbations is inde-
pendent of scale. In the absence of hot or warm dark matter,
this scale drops precipitously after recombination, and
therefore the late-time power spectrum may be separated
into a function of scale and a scale-independent growth
function that incorporates the e†ects of time, cosmological
constant, and curvature. These growth functions are well
cataloged (see, e.g., Peebles 1980), while the form of the
spatial function can be found numerically (see, e.g., Bond &
Efstathiou 1984) or quoted from Ðtting forms (see, e.g.,
Bond & Efstathiou 1984 ; Bardeen et al. 1986 ; Holtzman
1989 ; Eisenstein & Hu 1998, hereafter EH98).

With the introduction of massive neutrinos (Fang, Li, &
Xiang 1984 ; Valdarnini & Bonometto 1985 ; Achilli,
Occhionero, & Scaramella 1985) or other forms of hot dark
matter, the spatial and temporal behavior of the pertur-
bations cannot be separated. The Jeans scale, also called the
free-streaming scale, of the neutrinos remains signiÐcant
after recombination (Bond & Szalay 1983). In this case, the
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CDM and baryon perturbations are not traced by neu-
trinos and grow more slowly because of the reduction of the
gravitational source (Bond, Efstathiou, & Silk 1980). Since
the free-streaming scale itself moves to ever smaller scales
with increasing time, the transfer function acquires a non-
trivial time dependence. Consequently, a cosmological con-
stant or nonzero curvature enters the problem in a more
complicated manner. Although accurate numerical treat-
ments exist (Ma & Bertschinger 1995 ; Dodelson, Gates, &
Stebbins 1996a), these complications have meant that Ðtting
formula (Holtzman 1989 ; Klypin et al. 1993 ; Pogosyan &
Starobinsky 1995 ; Ma 1996) for the power spectra of such
cosmologies have been restricted to certain regions of
parameter space ; e.g., Ðxed baryon content and critical
density overall.

In Hu & Eisenstein (1998, hereafter HE98), we showed
that the late-time evolution of perturbations in a mixed
dark matter (MDM) cosmology with CDM, baryons, and
massive neutrinos could be accurately treated using a scale-
dependent growth function. The transfer function then
becomes the product of this growth function and a time-
independent master function that represents the pertur-
bations around recombination. Moreover, the small-scale
limit of this master function can be calculated analytically
as a function of cosmological parameters (HE98).

In this paper, we give an accurate Ðtting formula for the
master function.2 This in turn produces a Ðtting formula for
the transfer functions of adiabatic cosmologies as functions
of matter density, baryon and neutrino fractions, cosmo-
logical constant, Hubble constant, redshift, and the number
of degenerate massive neutrino species. For the central
region of parameter space, i.e., only moderate deviations
from the pure CDM model, the formula is accurate to better
than 5% in the transfer function (10% in power). The
formula does not attempt to Ðt the acoustic oscillations
created by large baryon fractions, but it does provide a

2 The formulae in ° 3 of this paper are available in electronic form at
http ://www.sns.ias.edu/Dwhu/transfer/transfer.html. We also include a
driver that calculates COBE-normalized and other constraints from ° 5p8as a function of cosmological input parameters.
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good match to the underlying smooth function. Hence the
formula loses accuracy for baryon fractions exceeding 30%.
Similarly, the formula has larger errors for cosmologies
with massive neutrino fractions exceeding 30% or with
matter densities outside the range 0.06 [)0 h2[ 0.4 ;
however, if the baryon fraction is less than 10% in this
range, the accuracy improves to better than 3%.

The outline of the paper is as follows. In ° 2 we review the
basic results of linear perturbation theory. We then present
the Ðtting function in ° 3 and a userÏs guide in ° 4. As
illustrative examples of the utility of the formula in explor-
ing parameter space, we examine constraints on large-scale
structure and high-redshift objects in ° 5. We conclude
in ° 6.

2. DESCRIPTION OF PHYSICAL SITUATION

We consider linear adiabatic perturbations around a
Friedmann-Robertson-Walker metric for cosmologies with
several species of particles : photons, baryons (i.e., nuclei
and electrons), massive and massless neutrinos, and CDM.
The interaction between this diverse set of particles can lead
to complex phenomenology in the growth of perturbations,
even in linear theory (see, e.g., Peebles 1993).

Nevertheless, the underlying physical situation remains
simple. Perturbations under the so-called Jeans scale are
not subject to gravitational instability due to pressure
support or, in the case of collisionless particles, sufficient
rms velocity. Above this scale, perturbations grow at the
same rate regardless of scale. In general, the Jeans scale of
each gravitating species is imprinted into the power spec-
trum. It is conventional to deÐne the transfer function as the
ratio of time-integrated growth on a particular scale as
compared with that on scales far larger than the Jeans scale.

For a relativistic species, the Jeans scale grows with the
particle horizon. In a universe with CDM and radiation
only, the Jeans scale of the total system grows to the size of
the horizon at matter-radiation equality and then shrinks to
zero as the universe becomes matter dominated. The result
is that the transfer function turns over at the scale of the
horizon at equality. Moreover, well after equality the Jeans
scale has dropped sufficiently that all scales of interest are
above it and hence grow at the same rate. The familiar
result is that the spectrum of Ñuctuations can be written at
low redshifts as a scale-independent growth factor times a
function of scale that depends only on the size of the
horizon at equality.

With the inclusion of the baryons, another scale is
imprinted in the transfer function. The baryons are dynami-
cally coupled to the photons until the end of the Compton
drag epoch, close to recombination for the standard
thermal history. Prior to this time, the baryonic Jeans scale
tracks the horizon (or more properly the sound horizon,
which accounts for the fact that baryons contribute mass
but little pressure). After recombination, the Jeans scale of
the baryons drops precipitously to scales smaller than those
of interest for large-scale structure (for sub-Jeans pertur-
bations, see Yamamoto, Sugiyama, & Sato 1998). The
sound horizon at the end of the Compton drag epoch is
thereby imprinted in the transfer function in the form of
Jeans or acoustic oscillations (see EH98). Again, pertur-
bations at low redshifts grow at the same rate on all rele-
vant scales.

The same principles may be applied to massive neutrinos.
At sufficiently high temperatures, even massive neutrinos

behave as radiation ; therefore their Jeans scale grows with
the horizon. As their temperature drops with the expansion,
they become nonrelativistic and their Jeans scale shrinks.
Physically, their momenta decay with the expansion and
eventually become small enough to allow them to cluster
with the nonrelativistic matter. For this reason the Jeans
scale is often called the free-streaming scale. By the same
arguments as before, the maximal free-streaming scale is
imprinted in the transfer function. What makes the massive
neutrino case more complicated than the CDM and radi-
ation case is that for eV-mass neutrinos the free-streaming
scale today lies in the regime of large-scale structure mea-
surements. Thus the growth of Ñuctuations in the regime of
interest is not independent of scale, even at low redshifts.

Let us examine the growth in more detail. A given scale
begins outside the free-streaming length ; here the neutrino
density perturbation traces those of the other species. If the
scale is below the maximal free-streaming scale, it will at
some point cross the free-streaming scale. While in the free-
streaming regime, perturbations in the neutrinos damp out
collisionlessly while those in the CDM and baryons grow
more slowly because of the loss of a gravitating source. As
the neutrinos slow down and their Jeans scale shrinks, the
scale in question eventually crosses back out of the free-
streaming regime. At this time the neutrinos fall back into
the potential wells of the other species, and the growth rate
is boosted back to its original rate. Even at low redshifts,
some scales are still in the free-streaming regime ; hence, the
temporal and spatial dependence of the transfer function
cannot be separated as before.

If all of the massive neutrinos had the same momentum,
then one could hope to describe the free-streaming situation
more exactly, but of course the neutrinos have a thermal
distribution, which was frozen in when the universe had a
temperature of about 1 MeV. Hence the transition between
free-streaming and infall occurs smoothly and requires a
Boltzmann code to follow (Ma & Bertschinger 1995). HE98
showed that the result could be well Ðtted by a scale-
dependent growth rate ; we will use this here to separate the
time dependence from the complications of the spatial
dependences.

3. FITTING FORM

3.1. Scales and Notation
We begin by describing our notation. The density of

CDM, baryons, and massive neutrinos, in units of the criti-
cal density, are denoted and respectively. The)

c
, )

b
, )l,total matter density is then and)0\ )

c
] )

b
] )l. fc, fb, flare the ratio of the density of these species to the total )0.We use multiple subscripts to indicate summation so that,

e.g., The contribution of af
cb

\ f
c
] f

b
\ ()

c
] )

b
)/)0.cosmological constant " is written as and is)" 4 "/3H02not included in The Hubble constant is parameterized)0.as h km s~1 Mpc~1. The CMB temperature isH0\ 100

given by K; the best determination to dateTCMB\ 2.7#2.7is 2.728^ 0.004 K (Fixsen et al. 1996 ; 95% conÐdence
interval), at which it is Ðxed for most of our expressions.

We assume that there are three species of neutrinos with
a temperature equal to (4/11)1@3 of the photons while they
are relativistic. One or more of the species may be sufficient-
ly massive to inÑuence cosmology, but we only study the
case where the most massive species have essentially equal
masses. Then is the number of these species, and theNl
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mass of each is eV c~2 (Kolb & Turnerml \ 91.5)l h2Nl~1
1990).

We generally work with the redshift z as our time coordi-
nate. The redshift of matter-radiation equality is3

zeq\ 2.50] 104)0 h2#2.7~4 . (1)

The baryons are released from the Compton drag of the
photons near recombination at a redshift (see Hu & Sugi-
yama 1996 ; EH98)

z
d
\ 1291

()0 h2)0.251
1 ] 0.659()0 h2)0.828 [1 ] b1()b

h2)b2] ,

b1\ 0.313()0 h2)~0.419[1] 0.607()0 h2)0.674] ,

b2\ 0.238()0 h2)0.223 . (2)

However, it is more convenient to label this epoch by the
relative expansion since matter-radiation equality, so we
deÐne

y
d
\ 1 ] zeq

1 ] z
d

. (3)

The comoving distance that a sound wave can propagate
prior to is called the sound horizon and is (EH98)z

d

s \ 44.5 ln (9.83/)0 h2)
J1 ] 10()

b
h2)3@4

Mpc (4)

(note that the units are Mpc, not h~1 Mpc).
As we are using linear perturbation theory, it is appropri-

ate to work in Fourier space where the transfer function
depends on the comoving wavenumber k. We often param-
eterize k relative to the scale that crosses the horizon at
matter-radiation equality, so as to deÐne

q \ k
Mpc~1 #2.72 ()0 h2)~1

\ k
19.0

()0 H02)~1@2(1] zeq)~1@2 . (5)

3.2. Free-Streaming and Infall
As shown in HE98, one can decompose the transfer func-

tion into a scale-dependent growth function that incorpor-
ates all postrecombination e†ects and a time-independent
master function that reÑects conditions at the drag epoch.
Hence, we write the transfer function of the density-
weighted CDM and baryon perturbations as

T
cb
(q, z)\ Tmaster(q)D

cb
(q, z)/D1(z) , (6)

and that of the density-weighted CDM, baryon, and neu-
trino perturbations as

T
cbl(q, z)\ Tmaster(q)D

cbl(q, z)/D1(z) . (7)

Here, is the growth factor for the universe in the absenceD1of neutrino free-streaming (i.e., on very large scales), andD
cbare the scale-dependent MDM growth functions, andD

cbl is the time-independent master function. We describeTmasterthese now in turn.

3 Although this is not well deÐned in cases with we justify our)lD 0,
choice in HE98.

In the absence of free-streaming, the growth function
takes on the usual form (Heath 1977 ; Peebles 1980)

D1(z) \
5)0
2

(1] zeq)g(z)
P z 1 ] z@

g(z@)3 dz@ , (8)

g2(z) \ )0(1] z)3] (1[ )0 [ )")(1] z)2] )" . (9)

We have chosen the normalization to be D1 \ (1 ] zeq)/(1] z) at early times. For an universe, equation (8))0\ 1
yields at all times ; closed formD1\ (1] zeq)/(1 ] z)
expressions are also available for universes without "
(Weinberg 1972 ; Edwards & Heath 1976 ; Groth & Peebles
1975) and Ñat low-density universes with " (Bildhauer,
Buchert, & Kasai 1992). Alternatively one may use the
Ðtting form (Lahav et al. 1991 ; Carroll, Press, & Turner
1992)

D1(z) \
A1 ] zeq

1 ] z
B 5)(z)

2
G
)(z)4@7 [)"(z)

]
C
1 ] )(z)

2
DC

1 ] )"(z)
70
DH~1

,

)(z) \ )0(1] z)3g~2(z) ,

)"(z) \ )" g~2(z) , (10)

where g(z) is deÐned in equation (9).
The presence of neutrinos suppresses the growth of Ñuc-

tuations on scales sufficiently small that the neutrinosÏ
velocity allows them to escape the perturbation. This alters
the logarithmic growth rate (Bond et al. 1980) according to
the factor (i \ cb, c)

p
i
4

1
4

[5 [ J1 ] 24f
i
]º 0 . (11)

Then the growth rates in the presence of free streaming are
(HE98)

D
cb

(z, q) \
C 1 ] D1(z)
1 ] yfs(q ; fl)

Dpcb@0.7
D1(z)1~pcb , (12)

and

D
cbl(z, q) \

G
f
cb
0.7@pcb ]

C D1(z)
1 ] yfs(q ; fl)

DHpcb@0.7
D1(z)1~pcb ,

(13)

for the CDM ] baryon and CDM] baryon ] neutrino
cases, respectively. In both cases, the free-streaming epoch
as a function of scale is

yfs(q) \ 17.2fl(1] 0.488f l~7@6)(Nl q/fl)2 . (14)

Note that increasing at Ðxed prolongs free streamingNl )lby making the neutrinos less massive and hence faster
moving.

The functions and contain all the dependence ofD
cb

D
cblthe transfer functions on time, curvature, and cosmological

constant, and moreover relate the two transfer functions to
a single master function. Of course, in a cosmology with no
massive neutrinos, and the master functionD

cb
\D

cbl \D1is simply the usual postrecombination transfer function.

3.3. T he Master Function
The master function reÑects the spectrum of pertur-

bations at the drag epoch. As such, it can only depend on
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and In the case without massive neutrinos,)0 h2, f
b
, fl, Nl.this reduces to the CDM] baryon transfer function. EH98

described the phenomenology of this function. In particular,
the presence of baryons suppresses power on scales smaller
than the sound horizon at the drag epoch and introduces a
series of oscillations in the transfer function that damp as
one moves to smaller scales. For moderate baryon fractions

the oscillations are fairly small but the( f
b
[)0 h2] 0.2),

suppression can be important (roughly in power).5f
bBecause of the increased complexity of adding massive neu-

trinos to the form, we opt not to Ðt the oscillations and
instead tailor a formula that runs through the center of the
oscillations and properly incorporates the small-scale sup-
pression. Of course, this means that the formula will not be
appropriate for cases where the oscillations are large,
roughly )

b
/()

c
] )

b
)Z )0 h2] 0.2.

On scales much larger than the sound horizon at the drag
epoch and the horizon at the time when the neutrinos
Ðnally become nonrelativistic, the e†ects of pressure Ñuctua-
tions and collisionless damping are not important. There-
fore, the transfer function will match that of a pure CDM
model. On small scales, we have solved the evolution equa-
tions analytically and therefore can calculate the amount of
small-scale suppression due to the baryons and neutrinos
(HE98). We use these two limits to anchor our Ðtting form.

The suppression of power in the master function on small
scales is primarily due to baryons, although neutrinos do
contribute a residual coefficient not included in the free-
streaming growth function.4 The amount of small-scale sup-
pression is given as (HE98)

al( fl, f
b
, y

d
)\ f

c
f
cb

5 [ 2(p
c
] p

cb
)

5 [ 4p
cb

]
1 [ 0.553flb] 0.126f lb3

1 [ 0.193Jfl Nl ] 0.169fl Nl0.2
(1] y

d
)pcb~pc

]
G
1 ] p

c
[ p

cb
2

C
1 ] 1

(3[ 4p
c
)(7[ 4p

cb
)
D
(1] y

d
)~1
H

.

(15)

We choose to include this suppression by a scale-dependent
rescaling of the zero baryon shape parameter ! (see EH98).
The suppression occurs rapidly near the sound horizon
(deÐned in eq. [4]) :

!eff \ )0 h2
C
Jal]

1 [ Jal
1 ] (0.43ks)4

D
, (16)

qeff \
k#2.72

!eff Mpc~1 . (17)

Then we use this e†ective wavenumber in the zero baryon
form,

Tsup(k)\ L
L ] Cqeff2 , (18)

L \ ln (e] 1.84b
c
Jal qeff) , (19)

C\ 14.4] 325
1 ] 60.5qeff1.11 , (20)

4 The total suppression of on small scales isT
cb

alD1~pcb.

b
c
\ (1[ 0.949flb)~1 , (21)

to produce a form that breaks from the large-scale, pure
CDM formula to the small-scale solution.

We Ðnd, however, that this formula is inaccurate around
the scale of the horizon at the epoch when the neutrinos
slowed to nonrelativistic speeds, the so-called maximal free-
streaming scale (see ° 2). This is because the form of (eq.yfs[14]) assumes that the neutrino velocity scales simply as
vP (1] z). In fact, it is the momentum that carries this
scaling, while the velocity cannot exceed c. This error causes
us to overestimate the maximal free-streaming scale (note
that in eq. [14] the running of this scale with redshift is
cuto† at the equality epoch). In turn, the growth functions

and provide too much free-streaming suppressionD
cb

D
cblon these scales, although since the scales are well above the

free-streaming scale for no spurious time depen-z[ 30,
dence is introduced at late times.

For this error can be Ðxed by the followingfl¹ 0.3,
multiplicative correction :

B(k) \ 1 ] 1.2f l0.64Nl0.3`0.6fl

ql~1.6 ] ql0.8
; (22)

ql\
k

3.42Jfl/Nl keq
\ 3.92qJNl

fl
. (23)

The master function is then

Tmaster(k) \ Tsup(k)B(k) . (24)

3.4. Performance
In Figures 1 and 2, we compare the Ðtting formula to the

numerical evaluation (using the CMB fast code of Seljak &
Zaldarriaga 1996, version 2.3) of the transfer function.
Figure 1 shows the most common MDM modelÈ)0\ 1,
h \ 0.5, and two di†erent)

b
\ 0.05, )l\ 0.2, Nl \ 1Èat

redshifts. Figure 2 shows other casesÈhigh baryon fraction,
low and high redshift zero.)0 , Nl\ 2, )0 h2Èat

For z\ 0,0.06[)0 h2[ 0.40, )
b
/)0¹ 0.3, )l/)0¹ 0.3,

and the accuracy of the Ðtting formula is quite high.Nl \ 1,
For baryon fractions of 5%, the acoustic oscillations are
small and the Ðt is better than 2% on all scales. At higher
baryon fractions, the oscillations become more prominent,
and therefore the maximum level of the residuals grows,
although the residuals would at least partially cancel for
many applications. Performance for is nearlyf

b
¹ 0.3

always better than 5% (and often when comparing[3%)
with the nonoscillatory portion of the transfer function. The
small-scale Ðt for q [ 0.25 Mpc~1) is always better(k Z 1
than 2% accurate. Behavior for is similar, althoughNl \ 2
di†erent numerical codes seem to be inconsistent for q ? 1
at the several percent level. Performance at z\ 9 is at most
1% worse than that at z\ 0 ; at z\ 29, performance can
degrade by 4% at the lowest values of (where is)0 h2 z/zeqits largest). Hence 5% accuracy is achieved only for z\ 30.

For the Ðtting formula tends to overestimate)0 h2Z 0.4,
the transfer function on scales just below the sound horizon
(k B 0.3 Mpc~1) and underestimate it just above the sound
horizon (k B 0.1 Mpc~1) ; we display this problem in Figure
2d. These errors are only a few percent for but growf

b
\ 0.1,

to 10% by The culprit is our reliance on using anf
b
B 0.3.

e†ective ! within a pure-CDM transfer function ; for high
the sound horizon corresponds to q > 1, thereby)0 h2

altering the portion of the curve we use for our transition
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FIG. 1.ÈComparison of the Ðtting formula to the numerical results of CMB fast (Seljak & Zaldarriaga 1996). Results at (a) z\ 0, (b) z\ 9. Upper panels :
Transfer functions divided by a Ðducial pure CDM transfer function, formed by using eq. (18) with and Density-weightedal\ b

c
\ 1 qeff \ q.

CDM] baryon (short-dashed line) and CDM] baryon ] neutrino (long-dashed line) transfer functions are shown. L ower panels : Fractional residuals. The
cosmology is and h \ 0.5.)0\ 1, )l\ 0.2, )

b
\ 0.05,

(eq. [16]). For the opposite situation occurs ;)0 h2[ 0.06,
moreover, the power series in in equation (15)1 ] y

dbecomes less accurate. For the errors are 5%)0 h2\ 0.025,
for both low and moderate baryon fractions.

For models with the baryon)
b
/()

b
] )

c
)Z)0 h2] 0.2,

oscillations exceed 10% in amplitude, which may be a
problem for some applications. By the oscil-)0 h2] 0.4,
lations are of order 40% (see Fig. 5 of EH98). We note that
the location of the peaks in wavenumber seems essentially
constant with varying thus the formulae in EH98 could)l ;be used to give the location but not the amplitude.

For neutrino fractions exceeding 30%, our correction for
the behavior near the maximal free-streaming scale (eq.
[23]) is too small, which leads to signiÐcant errors (8% for

and increasing thereafter).fl B 0.5,
For we have only tested the Ðt on intermediate)0\ 1,

scales for Ñat universes (i.e., We have tested)" \ 1 [ )0).the small-scale limit in both open and Ñat cases and found
excellent accuracy.

Note that our formula works equally well for cases with
Of course, in this case, should one wish to Ðt the)l \ 0.

baryon oscillations, one should use the Ðtting formula in
EH98.

4. USERÏS GUIDE

We present here a userÏs guide to the Ðtting formulae of
the previous section. The Ðtting formula for the density-
weighted matter transfer function, with and without neu-
trinos, is given by equations (1)È(24). For cases with )l D 0,
these functions are time dependent and involve the growth
factors in equations (12) and (13). We now detail how to use
the transfer function to construct power spectra and mea-
sures of mass Ñuctuations.

4.1. Power Spectra
The power spectrum is constructed from the transfer

functions in the usual way :

k3
2n2 P(k, z) \ d

H
2
A ck
H0

B3`n T 2(k, z)D12(z)
D12(0)

, (25)

where is the amplitude of perturbations on the horizond
Hscale today, and n is the initial power spectrum index, which

is equal to 1 for a scale-invariant spectrum. Note that the
usual growth function from equation (8) is used, notD1 D

cbor D
cbl.In cases with there are three transfer functions,)lD 0,

and hence three power spectra, that may be constructed.
Using from equation (6) in equation (25) yields theT

cb
P
cb

,
power spectra for the CDM and baryons. Likewise using

from equation (7) yields the density-weightedT
cbl P

cbl,power spectrum of the CDM, baryons, and massive neu-
trinos. The power spectrum of the massive neutrinos them-
selves can be constructed from the functions above. One can
subtract the transfer functions given above to Ðnd the trans-
fer function for the neutrinos alone :

Tl \ f l~1(T
cbl [ f

cb
T
cb
) . (26)

On small scales this function goes to zero, but we have not
carefully modeled this. Thus, has density-weighted errorsTlsimilar to those in that is, the residuals in the Ðt forT

cb
; fl Tlwill be similar to those of This transfer function may beT

cb
.

employed in equation (25) to obtain the power spectrumPl,of the massive neutrinos.
Power spectra for velocity Ðelds can be similarly obtained

by considering the continuity equation, which relates them
to time derivatives of the density Ñuctuations. It is standard
to express this in terms of the quantity f 4 [d log (D)/d log
(1] z), where D is the growth function. In a model with
massive neutrinos, this becomes a scale-dependent quantity.
We can di†erentiate equation (12) directly to Ðnd

f
cb
(k, z) \ f0(z)

G
1 [ p

cb
1 ] [D1(z)/(1 ] yfs)]0.7

H
, (27)
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FIG. 2.ÈSame as Fig. 1, but for di†erent choices of cosmology. (a) High-baryon model, with and h \ 0.5. (b) Low-density, Ñat)
b
\ 0.3, )l\ 0.2, )0\ 1,

model with and h \ 0.5. (c) Model with two degenerate neutrino species and)0\ 0.3, )" \ 0.7, )l\ 0.06, )
b
\ 0.03, (Nl\ 2). )

b
\ 0.05, )l\ 0.2, )0\ 1,

h \ 0.5. (d) Model with high beyond our range of (0.06, 0.40). and h \ 0.8.)0 h2, )
b
\ 0.2, )l \ 0.2, )0\ 1,

with as the value of f in the absence of free streaming :f0(z)

f0(z)4 [ d log D1
d log (1] z)

B )(z)0.6] 1
70

)"(z)
C
1 ] )(z)

2
D

,

(28)

where the approximation (Lahav et al. 1991) uses )(z) and
from equation (10).)"(z)

The power spectrum for the velocity Ðeld for the CDM
and baryons is then

P
cb
(v)(k, z)\

C f
cb

(k, z)H0 g(z)
(1] z)k

D2
P
cb

(k, z) , (29)

where g(z) was deÐned in equation (9). A similar relation
follows for the velocity Ðeld of the density-weighted matter.

4.2. COBE Normalization
To normalize the power spectrum to the COBE Di†eren-

tial Microwave Radiometer measurement, one may use the
Ðtting formulae of Bunn & White (1997) to Ðx For casesd

H
.

with no CMB anisotropies from gravitational waves, one
has

d
H

\ 1.94] 10~5)0~0.785~0.05 ln )0e~0.95n8~0.169n8 2 ,

"\ 1 [ )0 , (30)

d
H

\ 1.95] 10~5)0~0.35~0.19 ln )0~0.17n8 e~n8 ~0.14n8 2 ,

"\ 0 , (31)

valid for 0.7¹ n ¹ 1.2. For Ñat cosmologies with the gravi-
tational wave contributions of power-law inÑation (which
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requires n \ 1), isd
H

d
H

\ 1.94] 10~5)0~0.785~0.05 ln )0en8 `1.97n8 2 ,

"\ 1 [ )0 . (32)

For open cosmologies with the minimal gravitational wave
contribution from power-law inÑation (again, n \ 1), one
has (Hu & White 1997)

d
H

\ 1.95] 10~5)0~0.35~0.19 ln )0~0.15n8 e1.02n8 `1.70n8 2 ,

"\ 0 . (33)

In all cases, and the Ðts extend fromn8 \ n [ 1 0.2¹)0¹
1. The 1 p statistical uncertainty in the COBE normal-
ization is 7%, primarily due to cosmic variance.

4.3. Mass Fluctuation Measures
The rms amplitude of mass Ñuctuations inside a particu-

lar spherically symmetric window is

p
R

\
CP

0

= dk
k

k3
2n2 P(k) oW3

R
(k) o 2

D1@2
, (34)

where P(k) is the power spectrum and is the FourierW3
R
(k)

transform of the real-space window function EitherW
R
(r).

or may be used depending on the application. TheP
cb

P
cbltwo most popular choices for window functions are the

real-space spherical top hat of radius R,

W
R
(r)Pq

r
s

1 if r ¹ R ,
0 otherwise ,

(35)

W3
R
(k)\ 3

(kR)3 (sin kR[ kR cos kR) , (36)

M
R

\ 4n
3

o
c
)0R3 , (37)

and the Gaussian window of scale length R,

W
R
(r)P exp

A
[ r2

2R2
B

, (38)

W3
R
(k)\ exp

C
[ (kR)2

2
D

, (39)

M
R

\ (2n)3@2o
c
)0R3 . (40)

Here, is the mass included in the window.M
R

5. OBSERVATIONAL CONSTRAINTS

The Ðtting formula presented in ° 3 allows one to manip-
ulate statistics of the power spectrum as functions of cosmo-
logical parameters much more easily than a suite of
Boltzmann integrations would allow. As examples of its use,
we consider predictions for the power spectrum of large-
scale structure, the abundance of clusters of galaxies,
damped Lya systems, and the Lya forest. The theoretical
power spectrum is related to these observations via the rms
amplitude of mass Ñuctuations (° 4.3) on various scales.

We consider two-dimensional cross sections in parameter
space by varying the baryon and massive neutrino fractions
in four Ðducial models : the standard case of )0\ 1,
h \ 0.5, n \ 1, and a tilted variant with n \ 0.95,Nl\ 1 ;
and a tensor contribution to the CMB anisotropy ; a variant
with a second neutrino species and a low-density(Nl \ 2) ;

Ñat universe with h \ 0.7, n \ 1, and We)0\ 0.35, Nl \ 1.
choose these models in order to explore the various ways of
addressing what has been identiÐed as the key problem of
standard CDM (i.e., h \ 0.5, n \ 1, and trace or)0\ 1,
zero baryon and neutrino content), namely, the over-
production of power on galaxy and cluster scales relative to
larger scales (see, e.g., Efstathiou, Bond, & White 1992 ;
Ostriker 1993 ; Dodelson, Gates, & Turner 1996b). As
explained in ° 3, adding massive neutrinos (Schaefer & ShaÐ
1992 ; Davis, Summers, & Schlegel 1992 ; Taylor & Rowan-
Robinson 1992 ; Holtzman & Primack 1992) or baryons
(White et al. 1996) reduces small-scale power. This alone
may be sufficient to satisfy constraints. However, other
simple extensions act to suppress power and may produce a
better Ðt to the data. Adding a red tilt (n \ 1) to the initial
power spectrum (see, e.g., Cen et al. 1992) or lowering the
density parameter (see, e.g., Efstathiou et al. 1992 ;)0Ostriker & Steinhardt 1995) are common approaches. We
also consider the addition of a second species of massive
neutrinos (Primack et al. 1995) ; this helps because it further
reduces power on cluster scales while leaving the small-scale
power essentially unchanged.

5.1. Power Spectrum Shape
We begin at large scales and consider the shape of the

linear power spectrum as reconstructed from galaxy
surveys. Peacock & Dodds (1994) considered a collection of
data sets zero baryon power spectrum models ;vis-à-vis
they found that scale-invariant models with !4 )0 h \
0.255^ 0.017 provided the best Ðt. However, adding
baryons and/or neutrinos alters the shape and hence the
best Ðt. We do not perform this detailed reanalysis here ;
rather, we use the ratio of large- to small-scale power as a
proxy for the shape (see, e.g., White et al. 1996). In particu-
lar, we construct the ratio of the amplitude of density-
weighted Ñuctuations within a 50 h~1 Mpc top hat to(P

cbl)those within a 8 h~1 Mpc top hat ; i.e., The rangep50/p8.!\ 0.25^ 0.05, which we conservatively adopt, converts
to Note that high values of !p50/p8\ 0.151^ 0.016.
produce lower values of p50/p8.We display this ratio in Figures 3aÈ3d (left panel) as a
function of baryon fraction and neutrino fraction. It is
important to note that baryons play as important a role as
neutrinos in suppressing power on cluster scales relative to
larger scales (White et al. 1996). For example, even the
cosmic concordance model (Ostriker & Steinhardt 1995) of

with h \ 0.7, which seems to have an appropriate)0\ 0.35
!, stretches the constraint when pushed to the 10%È15%
baryon fraction suggested by cluster mass determinations
(see, e.g., White et al. 1993b ; David, Jones, & Forman 1995 ;
White & Fabian 1995 ; Evrard 1997).

5.2. Cluster Abundance
The present-day abundance of rich clusters of galaxies is

a sensitive probe of mass Ñuctuations on the 8 h~1 Mpc
scale (Evrard 1989 ; White, Efstathiou, & Frenk 1993a ; Eke,
Cole, & Frenk 1996 ; Viana & Liddle 1996 ; Bond & Myers
1996 ; Pen 1998). We adopt the determination of Pen (1998),

p8B 0.5)0~0.65 , (41)

and take a conservative range of 30% errors (i.e.,
0.5^ 0.15).

The time evolution of the abundance of clusters provides
a way to isolate from its dependence (Carlberg et al.p8 )0
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FIG. 3.È(aÈd) Ratio of Ñuctuations within 50 h~1 Mpc spheres to that within 8 h~1 Mpc spheres as a function of neutrino and baryon fractions for
various cosmologies. The shaded region shows the preferred range of (a) h \ 0.5, n \ 1, and (b) As in (a), but withp50/p8\ 0.151 ^ 0.016. )0\ 1, Nl\ 1.
n \ 0.95 and tensors as per power-law inÑation. (c) As in (a), but with two degenerate neutrino species (d) h \ 0.7, n \ 1, and(Nl\ 2). )0\ 0.35, )" \ 0.65,

All are COBE normalized. (eÈh) Amplitude of Ñuctuations within 8 h~1 Mpc spheres for the cosmologies given in (aÈd), respectively. The shadedNl \ 1.
region is the preferred range of (Pen 1998) and (Fan et al. 1997).p8\ (0.5^ 0.15))0~0.65 p8[ 0.59

1997 ; Fan, Bahcall, & Cen 1997). By comparing the abun-
dance of high-redshift clusters relative to the present-day
abundance, Fan et al. (1997) found (1 p).p8\ 0.83^ 0.15
To be conservative, we employ a 2 p lower limit (from the
relevant quantity ofp8~2) p8[ 0.59.

Figures 3eÈ3h (right panel) shows the cluster abundance
constraints for the same four models as Figures 3aÈ3d. As is
well known, cosmologies with small tilt and tracehigh-)0baryon and neutrino content overproduce present-day clus-
ters. Adding a substantial fraction of baryons or neutrinos
makes the models marginally consistent with both the
present-day and high-redshift cluster abundances.

5.3. Damped L ya Systems
Cosmologies with moderate neutrino fractions have a

strong suppression of power on small scales. This implies
that they form protogalactic systems later than pure CDM
models. Indeed, these models may have trouble forming
high-redshift objects such as quasars (see, e.g., Ma & Berts-
chinger 1994 ; Liddle et al. 1996), UV-dropout galaxies (Mo
& Fukugita 1996), and damped Lya systems (Mo &

1994 ; Ma & Bertschinger 1994 ; Kauff-Miralda-Escude�
mann & Charlot 1994 ; Klypin et al. 1995). We focus on the
last of these.

Observations of damped Lya absorption systems in QSO
spectra may be interpreted as a measurement of the mean
density of neutral hydrogen, in units of the critical)gas,density. Recent measurements at z\ 4 (Storrie-Lombardi,
Irwin, & McMahon 1996) Ðnd this to be

)gas(zB 4)\ (9.3^ 3.8)] 10~4 h~1[(1] z)3@2g(z)]
K
z/4

.

(42)

Assuming Poisson statistics, we adopt a 95% lower limit of
43% of the central value.

One can estimate an upper limit to the value of in a)gasparticular cosmology by assuming that all gas in proto-
galactic halos is neutral and by using the Press-Schechter
formalism (Press & Schechter 1974) to estimate the number
of such halos (Mo & 1994 ; Kau†mann &Miralda-Escude�
Charlot 1994 ; Ma & Bertschinger 1994 ; Klypin et al. 1995 ;
Liddle et al. 1996). These works di†er in their Press-
Schechter implementation ; here we adopt the conservative
assumptions of Klypin et al. (1995). We deÐne to be thepDLAamplitude of Ñuctuations (using inside a GaussianP

cbl)window of a scale corresponding to a circular velocity ofv
c50 km s~1 Mpc~1. The relation between mass and velocity

is (Narayan & White 1987)

M \ v
c
3

J89GH0 g(z)
, (43)

where g(z) is deÐned in equation (9). Then the density of
neutral gas arising from all halos with velocities greater
than 50 km s~1 Mpc~1 is

)gas \ fH I
)

b
erfc

A d
c

J2pDLA

B
, fH I

¹ 1 (44)

where is the fraction of neutral gas, erfc (x) is the com-fH Iplimentary error function, and we take a density threshold
of d

c
\ 1.33.

In Figures 4aÈ4d (left panel), we plot as a function ofpDLAcosmological parameters. We superpose the constraint
implied by comparing equation (42) to equation (44) with

As found by previous studies, MDM models withfH I
\ 1.

underproduce high-redshift halos ; the constraintsfl Z 0.3
are tighter for higher red-tilted, and degenerate-neutrinof

b
,

models. The limits in Figure 4 are actually extremely con-
servative ; hydrodynamical studies (Ma et al. 1997 ; Gardner
et al. 1997a, 1997b) infer in tested cases. Corre-fH I

[ 0.1
spondingly, we plot the limits of in dashed lines tofH I

\ 0.1
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FIG. 4.È(aÈd) Amplitude of Ñuctuations at within a Gaussian window of mass corresponding to halos of 50 km s~1 Mpc~1 circular velocity.pDLA (z\ 4)
Cosmologies are as per Fig. 3. The shaded region indicates cosmologies where the neutral gas in halos of km s~1 Mpc~1 (using the prescription ofv

c
[ 50

Klypin et al. 1995 and exceeds that observed in damped Lya systems. The region to the left of the dashed line is the allowed region (eÈh)fH I
\ 1) for fH I

\ 0.1.
Amplitude of Ñuctuations at for a Gaussian window of radius Mpc, suggested by Gnedin (1997) as a indicator of the slope of thepLya (z\ 3) 0.0416()0 h2)~1@2
column-density distribution of the Lya forest. The region is shaded. Cosmologies are as in Fig. 3.pLya [ 1.5

show how this uncertainty a†ects the cosmological con-
straints. Since it is difficult to scale these numerical correc-
tions as functions of cosmological parameters, especially if
varying (Gardner et al. 1997b), the line should)

b
fH I

\ 0.1
not be taken as a Ðrm constraint.

5.4. L ya Forest
If the low column density absorption features in QSO

spectra arise from mild density and velocity perturbations
in the intergalactic medium (IGM; Cen et al. 1994 ; Petijean,

& Kates 1995 ; Zhang, Anninos, & Norman 1995 ;Mu� cket,
Zhang et al. 1998 ; et al. 1996 ; Hernquist etMiralda-Escude�
al. 1996), then the correlations and column-density distribu-
tion of the lines may yield robust information about the
power spectrum on sub-Mpc scales. Croft et al. (1998)
demonstrated that the power spectrum of simulations could
be reconstructed from absorption spectra drawn from them.
Gnedin (1998) showed that the power-law exponent of the
column density distribution in various cosmological simu-
lations is strongly correlated with the amplitude of linear
Ñuctuations on the smallest collapsing scales. Comparing to
the observed distribution suggests a lower bound on the
amplitude of Ñuctuations on mass scales near 109 atM

_z\ 3. In particular, the quantity deÐned as the Ñuc-pLya,tuations inside a Gaussian window of radius R\
Mpc using is constrained to be0.0416()0 h2)~1@2 P

cb
,

greater than 1.5 at z\ 3. The scale is chosen to approx-
imate the Jeans length at z\ 3 for common thermal his-
tories (Gnedin 1998). This constraint is plotted in Figures
4eÈ4h (right panel).

5.5. Summary
Even in the standard COBE-normalized, n \ 1, )0\ 1

model the inclusion of a moderate fraction of baryons or
neutrinos can decrease to an appropriate level. Modelsp8that accomplish this by the neutrino fraction alone produce

insufficient power to explain damped Lya absorption
systems. Models that accomplish this by the baryon frac-
tion alone require baryon densities far in excess of big bang
nucleosynthesis predictions. Although a compromise of

and would work, Figure 3 shows that)
b
\ 0.15 )l \ 0.25

no model in this scenario Ðts the and constraints.p50/p8 p8However, the modest change of altering the tilt to 0.95
(with tensors) or adding a second degenerate neutrino
species opens regions of parameter space that match both
large-scale structure and constraints from damped Lya
systems. For example, models with h \ 0.5, and)

b
\ 0.1,

either with n \ 0.95 or with)l \ 0.15 )l\ 0.2 Nl\ 2
produce and match the high-redshift constraintsp8B 0.64
with could be achieved by reducing thefH I

D 0.2. fH I
B 0.1

COBE normalization by 7% (a 1 [ p shift) and decreasing
so as to keep constant. The higher value of)l p8 )

b
Èas

compared with the canonical value of 0.05 from Walker et
al. (1991) but in agreement with Tytler, Fan, & Burles
(1996)Èis doubly useful in meeting the requirements : the
suppression due to baryons occurs at larger scales than that
from neutrinos and therefore alters more e†ectively,p8while the additional baryons are available to produce high-
redshift absorption. Moreover, this value of better agrees)

bwith the baryon fraction in clusters (see, e.g., White et al.
1993b ; David et al. 1995 ; White & Fabian 1995 ; Evrard
1997) and that inferred from the Lya forest (see, e.g.,

et al. 1996 ; Weinberg et al. 1997 ; Zhang etMiralda-Escude�
al. 1998).

The more common solution to the problems of )0\ 1
CDM is to reduce the value of to around 0.3. As shown)0in Figures 3 and 4, this satisÐes the quoted constraints when
used with small baryon and neutrino fractions. An impor-
tant lesson of the Ðgures, however, is that small admixtures
of baryons or neutrinos can make signiÐcant changes. For
example, the Ñat model presented here tends to)0\ 0.35
underproduce power even with only a 10% baryon fraction
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The lack of small-scale power in such()
b
h2\ 0.017).

models places more stringent limits on than in high-)l/)0density cosmologies ; this implies a stronger limit for the
neutrino mass Of course, a small blue tilt wouldmlP )l h2.
help the situation.

It is very interesting to note that early results from mod-
eling the Lya forest (° 5.4, Figs. 4eÈ4h) are more e†ective at
excluding models than constraints from damped systems.
The limits suggested by Gnedin (1998) would eliminate all
of the models studied in Figures 3 and 4. Perhaps)0\ 1
models with blue tilts (n [ 1) would succeed in producing
sufficient amounts of small-scale power, although of course
they would require more suppression of power at cluster
scales relative to COBE. Constraints from the Lya forest are
still only preliminary, but they appear to be quite
promising.

6. CONCLUSION

In this paper, we have considered adiabatic models com-
posed of baryons, CDM, and massive neutrinos. We have
presented a Ðtting formula for the linear transfer function of
such models, including the possibility of and multi-)0D 1
ple degenerate neutrino models. The parameter space
covered by the formula is much larger than that previously
available ; we provide functions of space, time, and six
cosmological parameters. The accuracy is in the[5%
central range of 0.06[)0 h2[ 0.40, )

b
/)0¹ 0.3, )l/)0¹

0.3, and z\ 30 and improves to for models with[3%
baryon fractions below 10%.

An accurate, general Ðtting formula allows one to calcu-
late statistics of the power spectrum as functions of cosmo-
logical parameters quite efficiently. As an example of this,
we presented several di†erent observational tests and dis-
played the constraints as functions of baryon fraction and
neutrino fraction for various choices of the other cosmo-
logical parameters. Baryons and neutrinos are both e†ective
at suppressing small-scale power relative to that on larger
scales. We Ðnd that models with large baryon fractions are
less ““ observationally challenged,ÏÏ in that a given reduction

on cluster scales (i.e., imposes less suppression on veryp8)small scales where power is needed to produce damped Lya
systems and other high-redshift objects. Hence if is as)

blarge as 0.1, as suggested by Tytler et al. (1996) for h \ 0.5,
then constraints on MDM models are weakened. For
example, with a tilt of n \ 0.95, an MDM model with )l \
0.15 and fares signiÐcantly better than one with)

b
\ 0.1

and Finally, we Ðnd that the constraint)l \ 0.2 )
b
\ 0.05.

on the small-scale power as derived from the slope of the
column-density distribution of the Lya forest (Gnedin 1998)
is an extremely powerful limit on MDM models. Further
work is needed to test the robustness of this inference.

The observations discussed above place constraints upon
the neutrino mass, although these limits vary with other
presently unknown parameters, e.g., h, and n. Future)0, )

b
,

CMB observations should precisely determine these quan-
tities (Jungman et al. 1996 ; Bond, Efstathiou, & Tegmark
1997 ; Zaldarriaga, Spergel, & Seljak 1997) but will have
little leverage on (Ma & Bertschinger 1995 ; Dodelson et)lal. 1996a). However, the combination of CMB data with
large-scale structure observations will allow a robust deter-
mination of Further observations and modeling of)l.damped Lya systems and the Lya forest will corroborate
this but may not be clean enough to yield a precise measure-
ment. If is found to be low, our sensitivity to the neutrino)0mass will be stronger because the suppression of small-scale
power depends on this di†ers from the trend in the)l/)0 ;
CMB, where lowering shifts the e†ects of neutrinos to)0smaller angular scales. This illustrates the power of combin-
ing cosmological data sets with regard to determining the
properties of the dark matter.

We thank J. Phillips, D. Spergel, M. White, and M. Zal-
darriaga for useful discussions. D. J. E. is a Frank and
Peggy Taplin Member at the IAS and is additionally sup-
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Keck Foundation and NSF-9513835. Numerical results
were taken from the CMB fast package of Seljak & Zaldar-
riaga (1996).
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