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ABSTRACT

An approach, based on a global averaging procedure, is presented
for estimating the power spectrum of a second order stationary
zero-mean ergodic stochastic process from a finite length record.
This estimate is derived by smoothing, with a cubic smoothing
spline, the naive estimate of the spectrum obtained by applying FFT
techniques to the raw data. By means of digital computer simulated
results, a comparison is made between the features of the present
approach and those of more classical techniques of spectral estima-
tion.
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INTRODUCTION

Let [X :- °> < t <eo} denote a second order .sfiationary zero-

average ergodic real-valued stochastic process. If the process is Gaussian,

then 4t 4s-completely 'Characterized by the autocovariance1 function

C(T) = E[X(t) X(t + T)]
!_ T/2

= lim ~Z I x(t) x(t + f)dt, (L. 1)
T - » 1 -T/2

or, equivalently, by the Fourier transform of C(T) , referred to as the

power spectrum,
00

P(f) = C(T) e"12nfTdT .

= lim •*=• I
T/2

~i2TTft dt 2

-T/2

Above and henceforth, we denote by x(t) or x a realization of X(t)

(1. 2)

or Xt.

If it is desired to estimate P(f) on the basis of a. record of

finite length T , we may compute the apparent autocovariance function

1
C00(T) = T - |T | J x(c-T/2) * (t+72) dt (1. 3)

b

-n ' •' -b

where b = (TR- | T | /2)



/**_/

and take the Fourier transform of Cm(r) = Cftn(T> for I T j<T < T

otherwise, giving

4)

Unfortunately, in general P00(f) does not converge to P(f) , in

the L, -norm, as the length of the time series becomes infinite, i. e. ,
rw

pQQ(f) is not a consistent estimator for P(f).

The Tukey family of filters^ ' remedies this difficulty by an

averaging process
TTT

PA(T) = (a -Kl - a) cos .—) CQO(T)

for I T I <; T < T ,
I I m n

• = 0 i f

where 0 < a < 1 , giving

T >T

• A ^ = J"CA<T>

m

-i2rfr
dr .

(1. 5)

(1. 6)

For the case where the record (x(t): t e (0, T )} is sliced at n intervals of

length At, we first compute the mean lagged products

1
C •=-

q=n- r

n- r ^=0
 xq xq+rh (1. 7)

for r = 0,l,2, . . . ,m where m< n. We then apply a. discrete finite cosine

series transform to Cn, . . . , C obtaining
0'

Vr = A t

m-1

Cn + 2 T C^cos ^IL + c cos rnQ -.rn m
q=l

. (1. 8)



The Tukey filter then gives as estimates of the spectral density for the case

where
1.

a = (hanning)

u
r = • 25Vr_1 + . 5Vr + . 25Vr4j, 1 sr a m-1

m m- m- <U 9>

Basically, then, the popular Tukey filter is a local averaging procedure.

In this paper we present, as an alternative approach, an estimation proce-

dure based on a global averaging approach. The results given here are of a

preliminary nature and are now in the process of being studied in greater

detail.

2. DISCUSSION AND RESULTS

Consider the discrete white noise time series

X t = e t ; t = l,2, , . . , n, . (2. 1)

where the e are independent Gaussian random variables with mean zero

and variance unity. A naive estimate of the power spectrum is given by

1

n

n
-i2nftx.e

.4 t

t=l

(2. 2)

and may be quickly computed by Fast Fourier Transform techniques'

A plot of this estimate is given for a time series of length n = 512 in

Figure 1. The inconsistency of this estimate is apparent. We shall attempt



to remedy this inconsistency by smoothing PN(f) .

Let us divide the frequency interval [ 0, . 5cps] into k-1 equal

subintervals. We seek the solution P (f) which minimizes , V P e C1 [0, .5]
S • S

and piecewise continuous PQ " (See (3) ),

k-1

s
.: i X O -5

I a. Jb^U/,. I . N ) - F^r,/,. - . x ) +gj (Pg (f)) d f »
J

3 = 0

_ _
Ps(2(k-l)) " PN(2(k-l)

0 (2. 3)V
where g is a nonnegative constant which can be selected so as to give

appropriate weight to the roughness penalty term, and the a. are positive

constants summing to unity used for weighting the "miss distances" in the

first term. In the ensuing discussion we shall take
1

a.. = k -, for j = 0,1,2, . . . , k-1 .

Schoenberg has shown >°' that the solution P is, in fact, a cubic
o

spline with knots st the subinterval endpoints. The smoothing algorithm

employed here is that of Greville' '.

In Figure 2, we show P ^f) plots for k = 8 and n = 128 and
S

512 together with the true power spectrum. We note a dramatic change

from the naive estimate and a good approximation to the actual spectral

density.

Next, let us consider a spectral estimation problem from Jenkins

and Watts' Spectral Analysis and its Applications^4' pp' 263"265)f The
2

spectral density P(f)/a of the first order autoregressive process

x
t = - . 4Xt_! + et ; t = 1, 2, . . . , n , (2' 4)



5

where the e are independent Gaussian variates with zero mean and unit

variance, is given by

2 1. 68 1

In Figure 3, we demonstrate estimates of the spectral density for series of

lengths 128, 256 and 512 using banning with m = 32'. In Figure 4, we show

'P (f) for -the same time-series, 16 knots and g - 1 . The spline smoothings
approach appears to compare favorably with banning.

The effect of the number of knots is demonstrated in Figure 5 in

the estimation of the spectral density of the auto regressive process in (2. 4)

for a series of length 1024 using g = 1. and k = 8, 16, 32. In Figure 6, we

demonstrate estimates using the same series with 16 knots and g = 1, . 1,

and .01. Clearly, the selection of g and k is an important consideration

and should be based both on the length of the time series and prior feelings

as to the shape of the spectral density. We have not yet had opportunity to

investigate optimal (g, k) selection procedures but shall approach this

problem in the future.

As a final example from Jenkins and Watts (4» PP- 268-272)^ we

consider the second order autoregressive process

Xt = X t_1 - . 5X t_2 + et; t = 1, 2, . . . , n , (2. 6)

where the e are independent Gaussian deviates with mean zero and unit

variance. The spectral density here is given by
2 .834 __ 1
x = 2 . 25 - 3 cos 2rrf -f cos 4rrf ' ° * f * 2 < 2 ' 7 >



In Figure 7, we show for a series of length 512, the hanning estimate with

m = 32 and compare the result with the spline smoothing approach using

g = .01 and 32 knots.

3. CONCLUSIONS

We have explored in a preliminary fashion the possibility of

using spline smoothing techniques, in the frequency domain, for the esti-

mation of power spectra. Although for the examples considered, this

technique appears to compare favorably with one of the most popular

smoothing techniques-hanning - we still need to study in detail the consis-

tency properties of the proposed estimation procedure. We hope, in addi-

tion, to study optimal methods for applying spline smoothing to cross-

spectra.
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Fig. 1: Naive spectral density estimates
for white noise.

» n =
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Fig. 2: Spline smoothed spectral density
estimates for white noise.



n = 128 k = 16n = 128 m = 32

n = 256 m = 32

n = 512 m = 32
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Fig. 3: Hanning smoothed spectral density
estimates for a first-order ar
process X = a X + e .

Fig. 4: Spline smoothed spectral density
estimates for a first order ar
process X = a X + e .
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5: Spline smoothed spectral density
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Fig. 6: Spline smoothed spectral density
estimates of a first order ar process
under different conditions on the
smoothing parameter g .
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