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Power Spectral Density of Unevenly Sampled
Data by Least-Square Analysis: Performance

and Application to Heart Rate Signals
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Abstract—This work studies the frequency behavior of a least-
square method to estimate the power spectral density of unevenly
sampled signals. When the uneven sampling can be modeled
as uniform sampling plus a stationary random deviation, this
spectrum results in a periodic repetition of the original continuous
time spectrum at the mean Nyquist frequency, with a low-
pass effect affecting upper frequency bands that depends on the
sampling dispersion. If the dispersion is small compared with
the mean sampling period, the estimation at the base band is
unbiased with practically no dispersion. When uneven sampling
is modeled by a deterministic sinusoidal variation respect to the
uniform sampling the obtained results are in agreement with
those obtained for small random deviation. This approximation
is usually well satisfied in signals like heart rate (HR) series. The
theoretically predicted performance has been tested and corrobo-
rated with simulated and real HR signals. The Lomb method has
been compared with the classical power spectral density (PSD)
estimators that include resampling to get uniform sampling. We
have found that the Lomb method avoids the major problem
of classical methods: the low-pass effect of the resampling. Also
only frequencies up to the mean Nyquist frequency should be
considered (lower than 0.5 Hz if the HR is lower than 60 bpm).
We conclude that for PSD estimation of unevenly sampled signals
the Lomb method is more suitable than fast Fourier transform
or autoregressive estimate with linear or cubic interpolation. In
extreme situations (low-HR or high-frequency components) the
Lomb estimate still introduces high-frequency contamination that
suggest further studies of superior performance interpolators. In
the case of HR signals we have also marked the convenience of
selecting a stationary heart rate period to carry out a heart rate
variability analysis.

Index Terms—Heart rate variability (HRV), power spectral
density (PSD) estimation of unevenly sampled signals, PSD es-
timate by least squared analysis.

I. INTRODUCTION

H EART rate variability (HRV) has become an interesting
and useful tool for analyzing cardiovascular autonomic

control from the surface electrocardiogram (ECG) [1]–[9].
HRV is analyzed from the heart rate (HR) series that is formed
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by a sequence of values at time instants(cardiac beat occur-
rence), and whose value at timeis a function of the previous
R-R interval as measured from the electrocardiographic (ECG)
signal. This time series is not evenly sampled since the time
occurrence of heartbeats do not follow a perfectly regular
pattern.

Estimation and quantification of HRV can be performed
using several indexes [8]. However, the power spectral density
(PSD) of the HR series seems to be the index that best recovers
all the information present in the HR series [8]. The PSD must
be estimated from a set of unevenly spaced samples. In [10] it
was demonstrated that a bandwidth-limited signal is uniquely
determined by its values at a set of recurrent nonuniformly
distributed sample points , where

are the uneven sample point in
s of the signal; and . is the

maximum frequency component of the signal expressed in Hz.
This situation is the case of HRV analyzes where we have

samples nonuniformly spaced. We can suppose the HRV
signal repeated itself (periodic) or extended with zeros to fit
the previous theorem and then we get that the samples of HRV
only give a unique representation of a signal if we assume
this is band-limited to the frequency inverse of the mean heart
period (RR interval). This is an important observation that
leads to only use PSD estimation up to this frequency and not
to 0.5 Hz which is so frequently used in literature. When the
HR is lower than 60 beats/min (bpm), care should be taken
with the upper limit of the high-frequency band.

Estimation of the PSD of HR series can be done with
the analytical expressions derived in [10], but in [11] it was
noted that even though this estimate is superior to others
it is impractical to realize. Estimation of the PSD of HR
series by classical methods cannot be done directly from the
time series signal. Instead, it requires resampling to achieve
uniform time intervals [12]–[14]. This resampling, required
in order to use the well-known methods of PSD estimation
of evenly sampled signals, introduces low-pass filtering and
possible artifacts in the estimated spectrum. Other sources
of errors are the sampling rate of the ECG [15], which can
be solved by increasing the sampling rate. Errors in QRS
detectors and nonstability in PR intervals will also affect the
accurate location of fiducial points for HRV. Nevertheless, in
practice, QRS detector marks are the most stable locations.
The use of HR or heart period (HP) as the analyzed signal
also influences the estimated spectrum; in [16] and [17] it is
shown that although both signals give similar estimates, the
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HR is more adequate. In addition, when ectopic or noisy beat
detection occurs, a broadband noise contamination appears
in the spectrum. Elimination of these ectopic or noisy beats
and subsequent resampling introduces further alteration of the
HR spectrum [18], [19]. Another method to estimate the PSD
of HR signals is the autoregressive estimate (AR) [20], [21]
which also needs resampling and a selection of the model
order, both of which affect the results. Recently, it has been
pointed out that AR methods can introduce a large dispersion
when applied to HR signals [22]. This problem has been
recently overcome [23] by using a PSD estimation method that
deals with unevenly sampled data. This method was originally
proposed by Lomb [24] and has been used for astronomic time
series analysis [25]. Using this method (from now on referred
to as the Lomb method) it is not necessary to interpolate
noisy or ectopic beat detection, thus, avoiding the spectrum
distortion previously mentioned.

The Lomb PSD estimation method is based on the general
transform theory [26] which shows that the projection of a
signal onto one element of an orthonormal base is
the value “ ” that minimizes the mean squared error energy

defined as the integral, over the definition interval,
of the squared differences between and . The
Lomb method implements this minimization over the unevenly
distributed sampled values of considering that the basis
functions are the Fourier kernel .

In this paper, we present a detailed analysis of the frequency
behavior of the Lomb PSD estimation method. We have
concentrated on HR series and have found the frequency-
limit estimation (half the mean HR) up to which the Lomb
PSD estimate is free of aliasing or leakage. Finally, we
present some examples with simulated and real HR series that
corroborate our previous study and show the utility of the
Lomb PSD estimate for HR series analysis. The advantages of
this estimate compared with the classical estimates are clearly
pointed out in terms of the attenuation of the low-pass effect
introduced by resampling.

II. THE LOMB POWER SPECTRAL

DENSITY ESTIMATION METHOD

The Lomb method for power spectral density estimation is
based on the minimization of the squared differences between
the projection of the signal onto the basis function and the
signal under study [24]. This method can be generalized to any
transform estimation on unevenly sampled signals. Let
be the continuous signal under study and an orthogonal
basis set that defines the transform. It is well known that the
coefficients that represent in the transform domain are

(1)

and also that these coefficients are those which minimize
the squared error defined in [26] as

(2)

When dealing with evenly sampled signals this formalism
becomes its discrete counterpart, which in the case of the

Fourier domain is well studied as the discrete time Fourier
transform (DTFT), the discretely evaluated version (DFT)
and the associated fast algorithm (FFT) used to compute it
[27]. When the signal is accessible only at unevenly
spaced samples at instants, the solution has generally been
to reduce it to an evenly sampled signal through sampling
interpolation. However, as stated in Section I, this resampling
introduces some distortion in the spectrum (or transform) we
are estimating (detailed analysis of this effect will be presented
in Section II-C). To avoid this problem, Lomb [24] proposed
to estimate the Fourier spectra of an unevenly sampled signal
by adjusting the model

(3)

in such a way that the mean squared erroris minimized
with the proper and parameters. We can easily prove that
this expression is a particularization for real signals from the
more general

(4)

where now and can be complex valued. For any trans-
form, not necessarily the Fourier transform, the expression
will be

(5)

Minimization of variance (mean squared error) leads to
minimization of

(6)

which results in a value for

(7)

This result can be referred to as a generalized Lomb method
to estimate transforms of unevenly sampled data.

The signal power at index of the transformation
will be [24]

with (8)

If the transform is the Fourier transform then and
. In the original work [24], Lomb

introduces a delay at the basis ( and rather than
exponentials), which becomes in a more efficient estimation
algorithm, the Lomb normalized periodogram.

(9)
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where and are the mean and variance of the data and the
value of is defined as

(10)

Later, in [28] and [29], a fast algorithm was presented to
estimate the Lomb spectrum.

III. FREQUENCY ANALYSIS OF THE

LOMB PSD ESTIMATION METHOD

The remaining question of this PSD estimation method is,
how is the original spectrum of the signal , where

is the Fourier transform of , related to the spectrum
estimated using the Lomb method? To analyze this, we recover
(7), and we see that it can be rewritten in a different way in
terms of the Dirac function

(11)

We see that the coefficients obtained from the generalized
Lomb method are those which come from the projection of
the unevenly sampled signal
onto the base signal . In the particular case of the Fourier
transform, this means that the Lomb spectrum is the spectrum
of the continuous time unevenly sampled signal

(12)

so, in fact, the Lomb spectrum is the spectrum.
Note that we have replaced by since the sum of

. The relationship between and
will give the relationship between the estimated Lomb

spectrum and the real one from the original signal.
Knowledge of the distribution of requires knowledge

of the distribution, and this will depend on each application.
In this work, we proposed and analyze two different models
for the distribution. First, we consider that the distribution
of series can be modeled (over stationary periods), as a
uniform sampling with a random deviation. Second, we will
consider that can be modeled as uniform sampling with a
sinusoidal deviation.

For signals like HR, the deviation of the uneven sampling
from the uniform is not very large, at least over stationary peri-
ods, and then it will be possible to assume this approximations.
The uneven sampling of the HR will probably not fit, exactly,
either of these two models since from the integral pulse
frequency modulation (IPFM) model [30] comes from the
integral of a band-limited modulating signal that accounts
for the cardiovascular autonomic control action on the HR.
Even though these two models represent two opposite limit
behaviors, the real could be fitted somewhere between them.
The behavior of the Lomb estimate in both models, for the case
of small deviation from uniform sampling, is comparable (see

Sections III-A and III-B), it can be extrapolated to real HR
signals.

A. Sampling Modeled as Uniform Plus Random Variation

In this Section we consider the uneven sampling as uniform
plus a random deviation. Then, can be expressed as

(13)

where is a random variable with zero mean and probability
distribution function . The distribution is supposed
to satisfy and (for
convenience, the origin of time has been selected at the origin
of sampling). The sampled signal becomes, in this case

(14)

Moreover, is assumed to be a deterministic signal to
be estimated, the random variable makes a random
process, therefore, its Fourier transform is a random
process. In this case we will consider the mean and
the variance to have some information on how the
estimated Lomb spectra is related to the real signal
spectrum .

1) Mean of the Lomb Spectrum Estimate:Applying the
convolution theorem, we have that from (14)

(15)

and estimating the mean of this random process we have

(16)

(17)

where is the probability density function of the
random variable . If we express this result as a function
of the characteristic function

(18)

we have

(19)
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Assuming that the random variables have the same proba-
bility distribution function (do not change with time) at each
time instant , the mean of the
function is

(20)

(21)
where is the mean sampling frequency, and
is the window Fourier transform of

otherwise.
(22)

This expression now allows us to interpret in
terms of the known uniform sampling Fourier transform [31].

is the convolution of the original Fourier transform
signal with the Fourier transform of a uniform sampling
function windowed by the finite time observation interval

and now weighted by the characteristic function of
the randomly distributed sampling . Again the sampling
theorem appears in order to avoid aliasing, where now, the
Nyquist frequency comes from the mean sampling interval.
So, to have a correct estimate, the mean sampling frequency
should be higher than twice the highest frequency of the signal

. This agrees with the result from [10] that only if the
maximum frequency component of the signal is lower than
half the inverse of the mean sampling interval (mean heart
period) the original signal can be recovered. The otherth
frequency bands will represent (in mean) the repetition of the
base band spectrum weighted by the value of the characteristic
function evaluated in multiples of the mean sampling
function . In the case that is a Gaussian distribution
with standard deviation , the characteristic function is [32]

(23)

which consists of a low-pass filter with a cutoff frequency
at 3 dB of , where is expressed in Hz and

in ms. Then the estimated mean base-band spectrum using
the Lomb method is unbiased and eachth mean upper band
will be affected by the factor that depends on
the sampling distribution through the value, and on band
order .

From this result we see that, in this kind of uneven sampling,
an alias limit appears in the frequencies that can be recovered
from the original signal. However, this study has been done
with the mean Fourier transform and the
Lomb estimate gets a single trial of this random process. This
leads us to study the variance of the Lomb estimate to see how
much a single trial estimate will differ from the mean value.

2) Variance of the Lomb Spectrum Estimate:To study the
Lomb estimate variance we will first study the expected value
of which can be calculated as

(24)

In Appendix I a closed expression for this expected value is
obtained, as shown in (25) at the bottom of the page.

In the case of a normal distribution , and a band-
limited signal , we can approximate this expression. The
frequency content of is zero for those frequencies higher
than the Nyquist frequency for . Then
the integral in expression (25), affected by a factor,
needs to be calculated only at those frequencieswhich
satisfy . On the other hand, if
we have the probability density function concentrated
in , the characteristic function will be highly spread
in frequency. We can consider that the standard deviation of
the distribution is small compared with the mean sampling
period (usual situation in real cases like HR signals).
If this is the case, and for in the first frequency bands,
we can approximate the characteristic function by its
value at the th integration band. With this approximation,
and considering real and symmetric, since it comes

(25)

(26)
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from a symmetric distribution function, (25) can be expressed
as (26), shown at the bottom of the previous page. The integral
multiplying factor can be approximated, neglecting the effect
of the window function, by

(27)

where SE is the signal energy. With this approximation, we
have an approximate expression for the expectation

with (28)

However, the algorithm proposed by [29] performs a power
normalization of the signal to be of unitary power
. Then we have

with (29)

In the special case of a normal distribution (23)

with (30)

and considering that

with (31)

Analyzing this expression, we can see that the expectation
increases with the deviation of the sampling

, the band order and the sampling frequency.
However, the magnitude of interest is not the

value, but the variance of
. To estimate this variance we can proceed

in the following way. From (24) we see that

(32)

and assuming to be a Gaussian process [33]

(33)

This expression is not known, but we can find an upper bound;
from (24)

(34)

that leads to the following inequalities

(35)

implying

(36)

(37)

Now we are in a position to evaluate

with (38)

which at the base-band is an exact estimate of the
PSD of , and

(39)

which again becomes zero for the base-band and certificates
the single trial Lomb estimate as a correct estimate of the
PSD of signal. Note that the deviation also increases with
the value of the spectrum at a given frequency. If the signal
is evenly sampled , we recover the spectrum of the
classic uniformly sampled signals. As the band order increases,

, the estimate is a biased estimate and its variance
increases with the band order, the sampling frequency, and
the dispersion of the sampling.

B. Sampling Modeled as Uniform Plus Sinusoidal Variation

Now we consider the uneven sampling as uniform plus a
sinusoidal deviation. Then, can be expressed as

(40)

where is a sinusoidal function .
The sampled signal becomes, in this case

(41)

being the window function defined in (22) and

(42)

the unevenly spaced sampling function. The Fourier transform
is

(43)

and requires knowledge of to be evaluated and analyzed.
A detailed analysis of signal shows that it represent a

problem equivalent to the problem ofpulse position modula-
tion (PPM) that appears at modulation systems [31]. In [31]
it is shown that

(44)

when the condition is satisfied. Analyzing this
condition for sinusoidal modulation, we have that

. Taking a frequency lower than 0.5
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Hz (situation in HR signals) and 1 s (equivalent to
consider the deviation from uniform sampling small (40) and
a mean HR of around 60 bpm), we have that the condition is
satisfied and the analysis is correct. Each one of the addition
terms in (44) is a phase modulation component that, when
the modulating signal is a sinusoid, becomes in a cosine
expansion with the first kind Bessel functions, , [31]

(45)

When (45) is substituted in (44) for
and it appears an expansion for as

follows:

(46)

Using the properties of the Bessel functions this expression
can also be compacted to

(47)

Now we have an expansion of the signal in terms of
sinusoidal functions that can be represented in the frequency
domain. The obtained expression is in agrement with that
obtained in [34] for a spectrum of counts with the difference
that in that work the modulating signal
is first passed through the IPFM model and then it appears
the integration constants differences. In the frequency domain

becomes

(48)

Then, from (43), the spectrum becomes

(49)

This expression allows again to interpret the spec-
trum as function of the original spectrum . It appears
that the spectrum is the convolution of the original with
the window function and then convolved with .
represents a weighted Dirac delta repetition with the mean
sampling frequency plus harmonics of the frequency
used at the uneven sampling. These harmonics, at bands above
the base band, are infinity with decreasing values; and at the
base band (the one of interest) appears a unique contaminating
harmonic at . This function is represented in Fig. 1
for values of 1 Hz (equivalent, in HR signals, to a mean
HR of 60 bpm), (that corresponds in HR signals to HR
variations from 66.6 to 54.5 bpm), and 0.1, 0.15 and 0.2
Hz (that are typical frequencies at the HR modulating signals).
The contamination at the base band could suppose a problem
except when the Dirac delta amplitude at frequency

is negligeable with respect to the unitary amplitude of
the fundamental delta. In Fig. 1 we see that for the values
referring the typical situations in HR signals
and , the delta amplitude is 0.04. If this value is
considered in power, as usually is the PSD of HR signals,
we have a ratio of 10 that represents 27 dB lower
influence of this contamination respect to the fundamental
and then can be neglected. Simulation, in Section III-C, will
corroborate this reasoning. The upper bands of the
spectrum incorporate an attenuation respect to
the base band (phenomenon also obtained when the uneven
sampling was random) and higher-amplitude harmonics of the

frequency. Also, these harmonics could extend to
collateral bands but weighted by higher-order Bessel functions

that would make them gradually vanish. However, if
the mean sampling frequency becomes low and the sinusoidal
sampling variation frequency high, those harmonics can
be introduced at the base band, as already can be noted in
Fig. 1 for 0.15 and 0.2 Hz. For our purposes this
contamination at the base band is even more negligible than
the previously commented (Fig. 1), and the Lomb estimate
becomes a practically unbiased estimate of the original signal
spectrum at the base band.

All these results are in agreement with those obtained for
random sampling. We get same frequency repetition of the
spectrum and the conclusion that only frequencies up to the
mean sampling frequency can be recovered. The spectrum
estimation at the base band can be considered the true spectrum
except for factors whose influence is lower than around 27 dB
and then can be neglected. In addition, the phenomenon of
attenuation at the upper bands spectral repetition is also ob-
served and the increase in variance observed at random model
can be assimilated to the increase in harmonic contamination
as the band order increases in the sinusoidal model. Note that
again when the sampling approaches to the uniform
the spectrum becomes the uniform spectrum. Thus, the Bessel
function argument vanishes and its value goes to one when

and to zero when for any band order .
If in the model there were two tones instead of one, a new

series of harmonics of the new frequency will be added to
each delta of the single tone model spectrum [31]. When
the model is not based on tones, but on a band-limited
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(a) (b) (c)

Fig. 1. SpectrumS(f) for b = 0.1, fs = 1 Hz and three different values offm. fm = (a) 0.1, (b) 0.15, and (c) 0.2 Hz.

signal , the problem is similar to that
addressed at FM modulating systems [31] were the spectrum
is estimated to spread significantly around each of the
center frequency bands a value of (
the FM modulating index and the maximum frequency
component at the band-limited modulating signal). So, the
lowest frequency that spreads the first band is around

, that particularizing in our case with
the identification of in (44) [31] and the used
values of 0.1, 1, 1 and 0.35 Hz
(order of the maximum expected modulation component at
HR signals) becomes . This agrees
with the spectrum obtained for the sinusoidal model, where
it was shown that the base band spectrum (up to 0.5 Hz in
this case) is not substantially contaminated by the first band
components. At the base band will remain the desired zero
frequency Dirac delta with the contamination of (44)
that (supposing variations of medium frequency range
0.2 Hz) gets a relative value of , implying 18-dB
contamination that is negligeable when measuring the PSD
indexes of HRV.

C. Simulation Results

To test the extent and validity of previous derivations we
have designed two different experiments: First a controlled
Gaussian sampled at 100 Hz and extended
during 1000 s (16.67 min) has been generated. The spectrum of
this signal is also a Gaussian with a cutoff frequency at3 dB
of 0.0132 Hz. Then, this spectrum will be adequate to
test if the predictions of previous section are satisfied. Once
the signal is computer generated at a sampling rate of 100
Hz, it has been unevenly subsampled with a mean sampling
frequency 1 Hz and variations (random and sinusoidal).
The random case takes sampling instants that differ from the
uniform in a value in s
uniformly distributed, and the sinusoidal case takes
and 0.15 Hz to model the sampling variations according
to the expression given in (40). Also, it has been considered
a random noise added to the signal to emulate the real HR
signals where the RR interval estimation has the limit of the
original sampling frequency of the ECG [15], is then

rand with rand a uniform random variable
in s, emulating the noise in a HR signal from
ECG sampled at 250 Hz. The spectrum of the resulting uneven

subsampled signal is presented in Fig. 2. The right panels show
the spectra up to 4 Hz that include four bands of the original
signal spectrum with a mean sampling rate of 1 Hz.
The left panels show the counterparts of the right panels, but
up to 2 Hz to have a detail of the base and first band. In
Fig. 2(a) we have the original spectrum of the signal (without
added noise) uniformly sampled at 1 Hz. This is the “ideal”
spectrum that we will try to obtain from the uneven sampled
signal. Fig. 2(d) shows its counterpart when noise is added
to the signal. Fig. 2(b) shows the Lomb estimates when the
uneven subsampling follows the sinusoidal model and there
is not added noise. These estimates agree with (49) where
it appears the spectrum repetition with the mean sampling
frequency 1 Hz. It appears the harmonic at the base band
at frequency with a relative magnitude respect to
the main component of less that 27 dB as predicted. Analyzing
the first band (right panel) we see the predicted repetitions with
respect to the with the value and amplitudes according
to the values estimated in (49). At upper bands we also
corroborate the attenuation of the main lobe amplitude. Extra
low level peaks appeared around 0.5 Hz, not clearly predicted
by the model; however looking at Fig. 2(e) (which includes
the added noise in the original signal), we see that this peak
falls at the level of the noise given by rounding the sampling
instant to one sample of the original Gaussian signal. Fig. 2(c)
and (f) shows the Lomb estimates when the subsampling
is random; (c) for clean signal, and (f) for the noise one.
Again the prediction obtained at the random model (unbiased
estimate at base band and low-pass filtering at upper bands)
is corroborated. The characteristic function becomes
in this case which
gives a cutoff frequency 4.5 Hz, implying around 6-dB
attenuation at the lobe of the fourth band, as can be observed
in panels (c) and (f). In conclusion, both models considered
for uneven sampling obtain predictable results modeled by our
derivations. Other subsampling will fit somewhere between the
two models and it is predictable that the results will not differ
substantially with those presented in this simulation. Results
with HR data will corroborate this in Section IV.

Previous simulation has corroborated the prediction about
the analytical deviations for the Lomb estimates. Also, we
have obtained that, even in a low degree, the Lomb estimate
presents some contamination in the base-band that could affect
the spectrum estimation in real practice. To corroborate this
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. Simulated spectrum estimations:fs = 1 Hz, b = 0.1, andfm = 0.15. Original and Lomb estimated spectrum of a Gaussian signal unevenly
subsampled. Right panels show the spectrum in four bands and left panels, a detail in the base-band and first repetition band. (a) The original spectrum, (b)
the Lomb estimate when the subsampling follows the sinusoidal model, and (c) the Lomb estimate when the subsampling follows the random model. (d)–(f)
Refit (a)–(c) when the original Gaussian signal is contaminated by noise. See text for detailed discussion.

result we have designed a simulation generating a Gaussian-
like signal with the aim to emulate standard spectrum in HRV
studies. The simulated signal is

(50)

The signal is originally sampled at 100 Hz and then unevenly
subsampled as described in previous simulations, and also the
noise to emulate the QRS detection error in HR signals has
been added. The subsampling is made with severalvalues,

parameter values, and frequencies. Also, the spectrum
estimated using interpolation (linear and cubic splines) at time
domain to get a uniform sampling before FFT is applied has
been obtained.

In Fig. 4 we present the results for 1 Hz (mean HR
of 60 bpm), (variations from 55.5 to 66.5 bpm) and

(modulating signal of that frequency). The panels
on the left represent the base band spectrum estimated up to
0.5 Hz and the right panels show the same spectrum up to 1
Hz. In Fig. 4 (a) it is represented the original spectrum if the
signal were uniformly sampled at 1 Hz and then is the “ideal”
spectrum to be estimated. In panel (b) we have overprinted on
the original spectrum (dotted line), the spectrum estimated with
FFT after interpolation resampling to 1 Hz (linear interpolation
is solid line and cubic spline interpolation is dashed line). We
see how this classical technique of estimating the PSD suffers
of a low-pass filtering of the spectrum. This phenomenon is
higher for linear than for splines interpolation, as can be easily
explained from the filtering theory.
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Fig. 3. Transfer function of the interpolating filters for linear and cubic spline
interpolation. The functions are for interpolation factor of two, in cases of
fs = 1 and 0.7 Hz. Note how the low-pass filtering is higher when the period
between samples increases (fs decreases). Also, it is evident that the cubic
spline achieves better behavior than the linear interpolation.

The interpolation is a low pass-pass linear filter whose
frequency response can be calculated by doing the FFT of the
impulse response when interpolating a signal valued one at one
sample and zero at the rest (impulse response). This calculation
can be analytically done for linear interpolation obtaining a
transfer function of
( is normalized frequency and is the order of the interpo-
lation). The cutoff frequency of this filter can be numerically
obtained and we get a 3-dB cutoff frequency
Hz (it has a minor dependence withat low values (from

to ) that is not relevant in our study). The cutoff
frequency for cubic splines interpolation has been calculated
empirically, constructing the impulse response, and we have
obtained a Hz that is larger than in case of
linear interpolation. Fig. 3 represents the transfer functions
for these filters in case of 1 and 0.7 Hz, where we
see that the cutoff frequencies are those given previously and
that the spline interpolation has a much better behavior than
the linear for the same data. However, in unevenly sampled
signals, the interpolation is not a linear time-invariant filter, but
a linear time-varying filter, since the period between samples
where the interpolation is done varies, and thefrequency
also varies. Then we have considered the cutoff frequency
corresponding to the mean interval period as the mean
cutoff frequency. This approximation will work if the variation
from even sampling is not high, as is always being considered
in this study.

Going back to Fig. 4(b), we corroborate the expectation
from the filter transfer functions previously discussed. The
panels in (b) are obtained with resampling to 1 Hz that can be
seen as resampling to 2 Hz [Fig. 4(c)] plus a decimation to 1
Hz. This is important since the estimation in (b) has a higher
contamination lobe around 0.43 Hz than the estimation in (c)
has (resampled at 2 Hz). This is explained because when we
decimate from 2 Hz to 1 Hz [going from (c) to (b)], it appears

(a)

(b)

(c)

(d)

(e)

Fig. 4. Spectrum estimations for a signal formed by three Gaussian. Panels
on the left show the spectrum up tofs=2 = 0:5 with dotted overprinted of
the original spectrum in (a). Panels on the right show the expanded spectrum
up to fs = 1 Hz. (a) The original spectrum uniformly sampled at 1 Hz. (b)
The spectra estimated after interpolation (linear solid line, cubic spline dashed
line) to uniform sampling at 1 Hz. (c) The same as (b), but interpolating to 2
Hz. (d) The Lomb estimates when the uneven subsampling is sinusoidal with
b = 0.1 Hz andfm = 0.13 Hz. (e) The Lomb estimates when the uneven
subsampling is random withb = 0.1 Hz. See text for comments on the results.

to be an aliasing at frequencies around 0.5 Hz that increases the
contamination at high frequencies. So, even the original signal
frequency content does not exceed 0.4 Hz, it is advisable to
do the resampling at higher frequencies (at least 2 Hz). We
can continue with this interpretation looking now at panel (d)
where there is the Lomb estimate with sinusoidal variation. We
see that at the base band the estimate does not suffer from the
low pass effect (also, the original spectrum is overprinted in
dotted line on the left). It appears a peak at around 0.43 Hz that
corresponds to the convolution of the original spectrum with
the contaminating delta at in the base band ( ,
plus 0.3 Hz of the upper Gaussian contribution yield 0.43 Hz
that coincides with the peak occurrence). This peak is about
30 dB lower than the main signal components at the base band
and then negligible, but we realize that is in agreement with
the peaks observed in panels (b) and (c) with the resampled
signal. This is because the resampling is done on the unevenly
sampled signal that intrinsically contains the Lomb spectrum
(spectrum of the unevenly sampled signal) and the low-pass
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effect of the resampling attenuates these extra peaks if they
are at frequencies higher than the corresponding interpolator
cuttoff frequency. We see in Fig. 4(d) that the Lomb estimate
is a very good estimate of the original spectrum, where the
signal has components and at high frequencies introduces
the predicted extra peaks, also included at the interpolation
estimates, but Lomb avoiding the low-pass effect. Even though
cubic splines interpolation [Fig. 4(c)] gets a very close esti-
mate to the original spectrum, this will degrade as thevalue
decreases, as can be seen in next simulation. Finally, Fig. 4(e)
shows the result of estimating the Lomb spectrum when the
subsampling is random, obtaining same conclusion as before,
except that now the peak at 0.43 Hz is not clearly marked.
This is predictable, since at the random model we do not have
an explicit reconstruction of the interfering term, however,
the results obtained from a general modulating signal and FM
band estimation, in which the first band contamination does
not come to the base band with significative values, can still
can be applied. In panel (e) the high-frequency contamination
at 0.5 Hz is at least 25 dB lower than the useful component. In
both cases, the Lomb estimate obtains an unbiased estimate of
the original spectrum in opposition to the resampled estimate
(left panels).

To test the Lomb estimate in different situations than those
described in previous experiments, we have considered
0.7 Hz (heart rate of 42 bpm) (heart rate variations
from 50 to 75 bpm assuming a mean of 60 bpm) and
0.22 Hz and several combinations of these values. In Fig. 5
we have the results in four different cases. In all of them we
have overprinted in dotted line the original spectrum up to
the mean Nyquist frequency; in subpanels a) the spectrum,
interpolating to the mean sampling period with linear (solid
line) and cubic splines (dashed line) are drawn, in subpanels
b) are their counterpart resampling to two times the mean
sampling frequency, subpanels c) represent the Lomb estimates
with the sinusoidal model and in d) the Lomb estimates with
the random model. Low heart rates (42 bpm) are
in Fig. 5(a) where we see the large effect of the low-pass
filtering introduced by interpolation (both linear and splines),
see Fig. 3, and the much better performance obtained by the
Lomb estimates. Large variations in HR ( 0.2 s) are shown
in Fig. 5(b) where we see that the low-pass effect is higher
than in Fig. 4 even when the and are the same. This
is due to the time varying property of the interpolation of
uneven sampled signals, since now there are more intervals
spaced up to 1.2 s. The low-pass effect in those areas is more
important, and the total low-pass effect obtained in subpanels
a) and b) of Fig. 5(b) is higher than the obtained in Fig. 4
for , again cubic splines performs closely to Lomb
estimates. Large modulation frequency 0.22 Hz, is
analyzed in Fig. 5(c) with the only remarkable effect that the
0.43-Hz peak of Fig. 5(b) is delayed to the right, as is expected
from the theoretical derivations. Note that the resampling to

gives lower aliasing at frequencies above 0.4 Hz (see
peak amplitude) as stated in previous simulation and Fig. 5(c).
Finally, all effects together have been considered in Fig. 5(d):
Mean HR of 42 bpm, maximum variation from 36–49 bpm,
and large frequency of uneven sampling variation. Again we

corroborate the superior performance of the Lomb estimate
with no low-pass effect. The oscillation that appears at the
estimates is remarkable. However, since the clinical indexes
are integral indexes on the spectrum, no substantial effect will
be induced in opposition with the low-pass filtering that will
strongly bias the indexes. This will be analyzed in Section IV.

In conclusion, we have obtained that the Lomb estimate, is
not a unbiased estimate at the base band, but under the condi-
tions that appears at HR related signals, the contamination is
negligible and of much less magnitude than that introduced by
the resampling required by FFT or AR-based methods. For HR
over 60 bpm, interpolation with cubic splines approaches the
Lomb estimate and, if the HR increases over these values, both
spectra can be considered adequate estimates for frequencies
up to 0.4 Hz. The interpolation techniques can not avoid
the high-frequency spectral contaminations introduced by the
uneven sampling, but they attenuate the frequencies with the
low-pass filtering effect, that for this contribution becomes
a positive effect. Further studies on interpolators that keep
the low frequencies, and more drastically attenuate the high
frequencies, will lead to better estimated of the underlying
HRV signal spectrum.

IV. A NALYSIS OF HEART RATE SPECTRUM

In this Section we will analyze some spectra of HR series.
In the first case we will perform a simulation to establish
the improvement of the Lomb method with controlled HR
signals. Afterwards we will consider real ECG records where
the stationarity of the data is well satisfied (random deviation
over uniform sampling). For this purpose we consider HR data
from paced patients, which strictly guarantees the stationarity
of data, and from patients with nearly stationary HR. In the
last part of this Section we analyze the spectrum of HR series,
not necessarily stationary, and interpret the results of previous
Sections for these cases.

A. Application to Simulated Heart Rate Signals

To experimentally study the performance of the Lomb PSD
estimate, we have found that real HR signals are not adequate
since we do not know the real spectra that we want to obtain.
We obtain different estimations from classical and Lomb
estimates, but we cannot argue which is a better estimate from
an experimental point of view. The theory already proves this.

To avoid this problem, we propose the following experiment
[17], which uses the IPFM model [30] to generate the beat
occurrence times from a modulating signal that repre-
sents the sympathetic and parasympathetic influences on the
sino-atrial node. The beat occurrence times are related to the
modulating signal as

(51)

where is an integer representing the order ofth beat and
is the mean of the RR interval. The PSD estimates try to

infer the spectral characteristics of from the accessible
information at beat occurrence times. We generate beat
series from a controlled signal following a typical
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(a) (b)

(c) (d)

Fig. 5. Simulations of Fig. 4 in different conditions of mean HR, variation from the mean and modulating frequency. (a) Low HR, (b) large variation from
the mean HR, (c) large modulating frequency, and (d) all together. Subpanels a) and b) have overprinted the original spectrum (dotted line), and thoseestimated
with linear (solid line) and cubic spline (dashed line) interpolations. Subpanel a) is after resampling to the mean sampling frequencyfs and b) to two times
that frequency. Subpanels c) and d) have the Lomb estimates (solid line) overprinted with the original spectrum (dotted line).

spectrum from a real subject. We have used the nine-order
AR model proposed in [35] for generating sequences of
signal, as

(52)

where are the AR parameters shown in Table I,is the AR

model order and is white zero-mean noise with standard
deviation that results in a standard deviation of

signal, . The value used for the sampling
frequency is 1 Hz. In Fig. 6(a), (b) is the amplitude spectrum
corresponding to this model.

The signal, after being interpolated a factor of 16
(resulting sampling rate of 16 Hz), is the input to the IPFM
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TABLE I
COEFFICIENTS OF THEAR MODEL USED TO GENERATE THE MODULATING SIGNAL m(n) WHEN

EXCITED BY WHITE NOISE

(a) (b)

(c)

Fig. 6. (a) Model amplitude spectrum, the amplitude spectrum of a case (for
a given noise realization) of them(n) signal, and the spectra obtained from
FFT, AR, and Lomb estimates. (b) Mean amplitude spectra averaged in eight
realizations for eight different noisen(n) realizations. (c) Heart rate signal
in a particular realization.

model for obtaining the sequence of the beat occurrence times.
We generate 1024 beats with mean heart period 1
s in the IPFM model. Fig. 6(c) shows a HR signal corre-
sponding to this model. Then, we apply three methods for
PSD estimation: FFT of interpolated HR signal with cubic
splines at regularly spaced samples of 1 s; AR estimation
of the previous interpolated HR signal with a nine-order
model; Lomb estimate of the unevenly spaced HR signal.
Fig. 6(a) shows the model amplitude spectrum, the amplitude
spectrum of a case (for a given noise realization) of the

signal, and the spectra obtained from FFT, AR, and
Lomb estimates. In Fig. 6(b) the mean amplitude spectra
averaged in eight realizations for eight different noise
realizations are shown. The PSD is frequently divided into
three bands of frequency: LF (0.01–0.08 Hz), MF (0.08–0.15
Hz), and HF (0.15–0.5 Hz) to get the clinical indexes. We have
calculated the relative power and ,
where , to compare each method of
spectral estimation with the original spectrum of in
each case. Then, we have calculated the error in each band as
the difference between the relative power obtained with each
method and that obtained from the corresponding realization of

. Finally, in Fig. 7 we present the mean of the error (ME)
and the standard deviation in eight different realizations.
In Fig. 7, we can see that the interpolated methods (FFT and

(a)

(b)

Fig. 7. (a) Mean and (b) standard deviation of the error in each band. Note
that the values are referred to the unity since the bands energy is normalized.

AR estimates) have a strong low-pass response, since the error
is positive at the LF band and negative at the HF band. The
Lomb method is the one with the best behavior, since the error
is lower and more equally distributed throughout the entire
frequency band. This simulation corroborates our theoretical
expectations that the Lomb estimate attenuates the low-pass
effect generated by the resampling required by the classical
methods (FFT, AR).

B. Application to Stationary Real Heart Rate Signals

In Fig. 8(a) we have the HR series of a paced patient from
record 102 of the MIT-BIH ECG database [36]. The data
presents the 15-min HR series starting at minute 6 of the
102 record. In this record an artifactual peak was introduced
in the frequency domain (0.167 Hz) due to a nonsymmetric
capstan used in the playback system [36]. This artifact and
its harmonics will serve in this study as the test for the
Lomb PSD method. In this case, the HR is very stable
with very small variations and the assumption of stationary
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(a)

(b)

(c)

(d)

(e)

Fig. 8. Spectral analysis of HRV from record 102 of MIT-BIH database. (a)
The HR series, (b) the Lomb spectrum in two “mean” Nyquist frequencies,
and (c) classical spectrum after uniform resampling of the data at 2 Hz; (d)
and (e) are the same asb andc for higher frequency values to evidence the
spectra periodicity.

uneven sampling is well satisfied. Fig. 8(b) displays the Lomb
spectra of this data where we have rejected noise and ectopic
beats with the procedure presented in [23]. Fig. 8(c) displays
the spectrum estimated through resampling the data at a
sampling frequency of 2 Hz and estimating the spectrum with
classical periodogram with FFT. In uniformly sampled signals,
the Lomb method is equivalent to the classical periodogram
estimated with FFT algorithms [24], [25]. The mean sampling
frequency in the original HR series is 1.21 Hz and the
deviation is 31 ms. In Fig. 8(d) and (e), the same spectra are
displayed, but over a wider frequency range in order to show
the periodicity at the different bands.

Analyzing the Lomb spectrum, we corroborate that there
appears a periodicity whose period is the mean sampling
frequency, 1.21 Hz, as predicted by the study in Section III.
There appear in the spectrum three harmonically related peaks
at 0.16, 0.30, and 0.45 Hz which correspond to the artifact
introduced by the capstan. We can note [Fig. 8(b)] how these
peaks have lower amplitude in the second band (0.6–1.8 Hz)
than in the primary ( 0.6–0.6 Hz) as a result of the low-pass
effect introduced by the deviation of the uneven sampling. In

Fig. 8(d) we have the Lomb spectrum for several cycles of the
mean sampling frequency 1.21 Hz. We can corroborate the
periodic behavior of this spectrum with the mean sampling
frequency and the low-pass effect given by the sampling
dispersion at the upper bands. Note that the peaks and mean
shape of the signal at higher bands have lower amplitude, and
that the signal becomes more embedded by the noise and the
spectrum deviation.

Considering now, the spectrum obtained from resampling
and classical spectrum estimation [Fig. 8(e)], we note that
the spectrum has the expected 2-Hz (sampling frequency)
periodicity, and also note [Fig. 8(c)] that the spectrum at
high frequencies is attenuated as a result of the resampling.
This is particularly evident at the third peak of the spectrum,
which is somewhat less marked than in the Lomb spectrum.
Also, note that because of the constant power normalization,
an attenuation of high-frequency components results in an
amplification of low-frequency components. The effect of
high-frequency attenuation introduced by the resampling is
particularly important in the HRV analysis, where the ratio
between the energy at different bands is used as a clinical
marker of cardiac dysfunction [8]. Thus, we verify the theo-
retical prediction that the Lomb spectral estimate is better than
the resampled spectral estimate.

The highest significant frequency that we should consider
in the spectrum of this uneven sampling of data is that
corresponding to half the mean sampling frequency. This is
an intuitive result in signals like HR series where the discrete
nature of the signal is presumed not to have frequencies higher
than the intrinsic frequencies at which they are generated.

The previous spectral study was repeated using the HR
series of a nonpaced patient (normal situation for these stud-
ies), and the results are presented in Fig. 9. The patient
corresponds to record e0125 of the European ST-T ECG
database [37], and we analyzed the first 15 min of the record.
The mean sampling frequency is in this case 1.18 Hz with a
deviation of 30 ms, which is comparable to that of the previous
example. Analyzing the spectrum, we recognize a frequency
component around 0.33 Hz that is generally accepted to be
related to respiratory modulations of the HR affected via the
parasympathetic nervous system [18]. Again, we corroborate
the results of the previous example with some new remarks. In
Fig. 9(c), a spectral contribution around 0.83 Hz appears in the
classical spectrum; however from Fig. 9(b) we note that only
frequencies up to 0.59 (half of 1.18 Hz) are significant. The
origin of the 0.83-Hz contribution in the classical spectrum,
Fig. 9(c), is due to the resampling at 2 Hz that recovers
contents up to 1 Hz of the original signal. In this case, the
original signal, because of the mean sampling frequency at
1.18 Hz has a repetition spectrum from 0.59 Hz that gives an
harmonic at 0.83 Hz 1 Hz, and then it is recovered at the
base band of the resampled spectrum introducing an undesired
artifact. Again, we corroborate that the resampling attenuates
the high frequencies since this artifact has lower energy than
it does in the original signal, Fig. 9(b)–(e).

Analyzing the periodicities of the spectra, Fig. 9(d) and
(e), we note the same behavior in the Lomb spectrum as in
the previous example, but now the frequency contents of the
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(a)

(b)

(c)

(d)

(e)

Fig. 9. Spectral analysis of HRV from record e0125 of European ST-T
database. Same notation as in previous figure.

respiratory activity become unremarkable after the third band;
even the sampling dispersion is comparable to the sample
dispersion shown in previous example. This is due to the
low power amplitude of this component compared with the
peaks in Fig. 8; therefore, the low-pass effect makes them
indistinguishable from the noise at a lower band order.

This study corroborates the theoretically predicted behavior
of the Lomb spectral estimation method. We have shown
its advantages compared to classical spectral estimation with
resampling: namely, avoiding the high-frequency attenuation
and extra periodic spectral repetitions (because resampling)
that appear in classical methods at base band. Thus, we
conclude that the Lomb method produces a better spectral
estimate for unevenly sampled signals than those methods
based on resampling.

C. Spectrum Interpretation in Nonstationary Signals

In this Section, we analyze the spectra when the uneven
sampling is not stationary, meaning that we can not model
the sampling as uniform modified by a random or sinusoidal
deviation. Consider a signal sampled
between by a stationary, uneven sampling process
with mean sampling frequency ; and between

by a different stationary, uneven sampling process with mean
frequency . We then have

otherwise

otherwise

(53)

where and come from a stationary, band-limited,
unevenly sampled signals multiplied by the window function

. The result is a time-limited signal of infinite bandwidth,
but this effect has been modeled by the and func-
tions, and so, the original signal can be considered bandlimited
without loss of generality. We can, then apply the results of
the previous Section. From (53) we can express the PSD of

as

(54)

We know that the Lomb PSD estimate of will
come from the square of the sum of and and
will demonstrate the periodic behavior expected of the sum of
two periodic spectra of different periods. For this reason, the
highest frequency that will not be distorted by the periodicity
will be half the smaller “average” sampling frequency,or

.
This result can be generalized to an arbitrary signal

with nonstationary sampling, dividing into segments short
enough to be considered stationary. Then the highest frequency
in the Lomb spectra that will be free of aliasing will be half
the smaller “average” sampling frequency in the stationary
partitions. In terms of HR signals, this corresponds to the
lowest HR of the patient during the analyzing period.

An excellent real-world example is shown in Fig. 10, which
presents the results of the HR spectrum of a patient with
abnormal atrioventricular (AV) conduction, with periods of
2 : 1 AV block. Note that if the objective of studying HRV were
to examine autonomic nervous system control, one would want
to analyze the spectrum of atrial rate variability. This ECG
signal comes from record 231 of the MIT-BIH database. This
pathology results in periods where the ventricular beat appears
once for every two atrial beats. Then, when the HR series is
constructed from a ventricular QRS detector, its rate during
2 : 1 block will be approximately half the rate of that occurring
during periods with no AV block. In Fig. 10(a), a 15-min HR
series of this record is displayed, where two episodes of 2 : 1
AV block (low HR) and two of normal rhythm (high HR)
appear.

In Fig. 10(b), we show the Lomb spectrum of the 15-
min HR series, where we note a signal attenuation as the
frequency increases, but not a clear periodicity. Fig. 10(d)
shows the Lomb spectrum of HR series between and

, which corresponds to the low HR period (AV block)
with a mean sampling frequency of 0.6 Hz. The periodicity
of this spectrum has been marked by “A.” In Fig. 10(e),
the same is shown for the high HR period between
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(a)

(b)

(c)

(d)

(e)

Fig. 10. Spectral analysis of HRV from record 231 of MIT-BIH database.
(a) Shows the HR series, (b) is the Lomb spectrum, and (c) classical spectrum
after uniform resampling of the data at 2 Hz. (d) Lomb spectrum of the HR
series at the low HR period between 2’40’’ and 6’30’’ (values outside this
interval have not been considered) and (e) Lomb spectrum of the HR series
at the high HR period between 6’40’’ and 10’20’’.

and , with a mean sampling frequency of 1.05 Hz. In
this case, a respiration-related peak marked by “*” and the
periodicity with the mean sampling frequency marked “B”
appear. Going back to Fig. 10(b) we realize that it is composed
of the superposition of two signals, of periodicities “A” and
“B.” Also, the respiration-related peaks “*” appear with the
repetitions associated with the “B” periodicity (high HR) to
which they are related. In this way, we corroborate that the
Lomb spectrum in this case is the superposition of two signals,
each one affected by its own periodicity. In this case, the
highest frequency with no aliasing is 0.3 Hz. However, since
the spectrum of the low HR has no significant contribution at
the high frequencies, the respiratory contribution of the high
HR at frequencies 0.3 Hz is preserved without important
distortion in the spectrum shown in Fig. 10(b).

Two more observations can be made from the spectra in
Fig. 10. First, the low-frequency contribution has a much
higher contribution in the Lomb spectra of the whole HR
signal, Fig. 10(b), than it does in the Lomb spectrum of each
separate period, Fig. 10(d), (e). This effect is a result of the
mean signal subtraction that is performed prior to estimating

the Lomb spectrum [24]. In the case where the whole signal
is taken, the mean is some intermediate value between the
low and high mean HR. This results in a signal with an
important dc and low-frequency components, whereas this
does not happen when averaging the low or high HR periods
independently. This effect, even considering only the spectrum
up to the lower “mean” Nyquist frequency, will alter the ratio
between the low and the high-frequency contents; this ratio
is used in clinical diagnosis. Also, as shown in Fig. 10(c),
we can note the artifactual contribution of low frequencies
and the respiratory-related peak at frequencies belonging to
the second band of the high HR spectrum. This problem, in
patients with gradually changing stationarity (no this case) can
be attenuated by detrending the HR series (set its mean first
derivative to zero). This is equivalent to subtracting a best-fit
(by least squares) line from the HR series.

In a general signal with no clearly divided stationary peri-
ods, the study will be analogous. The highest frequency free
of aliasing will be half the lower mean sampling frequency
in the stationary partitions of the HR signal. The effect of the
relatively high low-frequency contents will, again, appear as a
result of the nonstationarity, which keeps the mean subtracted
HR series with the low-frequency contamination. This is
important in HRV analysis, as has been previously stated,
making it necessary to select a HR time period with as stable
behavior as possible to have an artifact-free HR spectrum.

V. CONCLUSION

In this work we have presented a detailed analysis of the
Lomb method for power spectrum estimation of unevenly
sampled signals. We have developed analytical expressions to
find the performance of the estimate and we have corroborated
this study applying the Lomb power spectrum estimation to
HR signals.

In particular, we have noted that when the uneven sam-
pling can be modeled as uniform with random variations or
sinusoidal, the Lomb spectrum repeats itself with the mean
Nyquist frequency, being an unbiased estimate of the signal
power spectrum in the base band and with a low-pass effect
at upper bands that depends on the sampling distribution or
the sinusoidal variation. In addition, when the dispersion of
the sampling with respect to the uniform one is small, the
deviation of the Lomb estimate at the base band, with respect
the true spectrum, is negligible.

Our theoretical predictions about the Lomb spectral esti-
mation were confirmed experimentally using simulated and
real HR series signals. Comparison to the classical PSD
estimation method applied after resampling demonstrated the
limitations of the resampling approach and the superior per-
formance of the Lomb estimate which avoids the low pass
effect of resampling and prevents about the introduction of
artifactual components in the base-band due to the inadequate
consideration of the highest frequency up to which the base-
band extends. We have found a periodic behavior of the
Lomb spectrum, which corresponds to the frequency of the
mean sampling period. We conclude that the upper significant
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frequency without aliasing is half the mean Nyquist frequency
(that corresponding to the mean HR), and that signals with
frequency components higher than this will be affected by
aliasing.

The simulation with Gaussian-like signals has agreed the
theoretical results, showing the superior performance of the
Lomb estimate with respect to the resampled estimates. This
effect is more remarkable as the mean sampling frequency
becomes smaller (heart rhythms lower than 60 bpm) where the
resampling supposes superior low-pass effect that is avoided
by Lomb estimations. For higher heart rhythms (superior to 60
bpm) the Lomb estimate behaves better that linear resampling,
but the estimation with cubic spline interpolation approaches
that of the Lomb estimate as the mean HR frequency increases.
However, both the Lomb estimate and the resampled estimates
can introduce some high-frequency contamination when either
the variations from uniform sampling are dramatic or the
frequency of the variation is very high. This circumstance
is very unlike over stationary HR signals, where the PSD
of HRV estimation should be done. This contamination is a
inherent problem of the uneven sampled signals, that can be
addressed with the help of superior performance interpolators
that keeping the low frequencies, more drastically attenuate the
high-frequency parts in a selective way. Also, to avoid aliasing,
it has been shown that the resampling should be done at least
to double the mean sampling frequency that in HR signals can
be fixed around 2 Hz.

We have analyzed the case of uneven sampling that does
not follow the uniform plus random sampling patterns. In
these cases we have found that the highest frequency without
aliasing in the Lomb spectrum is that frequency corresponding
to the lowest mean sampling rate in any portion of the original
signal. This was corroborated in a HR signal from a patient
with intermittent 2 : 1 AV block where there were two clearly
differently sampled parts of the HR signal. This result is
in total agreement with the theoretical analysis of unevenly
sampled signals presented in [10].

We have demonstrated that the Lomb method provides better
estimates of the HR spectrum than classical estimates. Since
the power ratio between low- and high-frequency components
is relevant in clinical diagnosis, the low pass effect introduced
by the resampling in classical methods is not desirable. In
addition, we have noted that the classical spectral estimation
can include high-frequency components not present in the
original signal, but due to periodicities of the original uneven
sampled signal spectrum. These artifactual contributions can
again alter the high/low power ratio and distort the spectral
estimation. We also pointed out that spectral analysis of non-
stationary HR series by any method will produce distortions
which result from the impossibility of subtracting the dc level
from the mean HR value. One possible way to attenuate this
artifact is by detrending the series (set its mean first derivative
to zero), that is equivalent to subtracting a best-fit (by least
squares) line from the input data. The results of HRV analysis
in nonstationary periods is an artifactual increase in low-
frequency power which is unrelated to HRV. This problem
can only be totally solved by analyzing the HR series during
periods of stable mean HR.

APPENDIX I
DERIVATION OF A CLOSED EXPRESSION FOR

To analyze the expectation of
, we will express as

(55)

where

(56)

is a random process whose expected value is
.

To estimate

(57)

we need to estimate which becomes

(58)

then we need to estimate the which from
(56) can be expressed as

(59)

Assuming that the are statistically independent for different
time instants the cross terms in the previous expression will
appear only when and then

(60)
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(61)

(62)

(63)

(64)

Introducing this result in [58], we obtain a first term that
is equal to , and the expected value

becomes as shown in (61) and (62) at
the top of the page. Taking the variable change ,
we have (63) and (64), shown at the top of the page.
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