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Power Spectral Density of Unevenly Sampled
Data by Least-Square Analysis: Performance
and Application to Heart Rate Signals

Pablo Laguna,™Member, IEEE George B. MoodyAssociate Member, IEEEaNnd Roger G. MarkSenior Member, IEEE

Abstract—This work studies the frequency behavior of a least- by a sequence of values at time instanptg¢cardiac beat occur-
square method to estimate the power spectral density of unevenly rence), and whose value at timgis a function of the previous
sampled signals. When the uneven sampling can be modeledg_p interval as measured from the electrocardiographic (ECG)

as uniform sampling plus a stationary random deviation, this . L This ti S t | led si the ti
spectrum results in a periodic repetition of the original continuous signal. IS ime series 1S not evenly sampled since the time

time spectrum at the mean Nyquist frequency, with a low- Occurrence of heartbeats do not follow a perfeCtly regular
pass effect affecting upper frequency bands that depends on the pattern.

sampling dispersion. If the dispersion is small compared with  Estimation and quantification of HRV can be performed
the mean sampling period, the estimation at the base band is \\qing several indexes [8]. However, the power spectral density
unbiased with practically no dispersion. When uneven sampling . .
is modeled by a deterministic sinusoidal variation respect to the (PSD) f)f the HR series Seelms to be the I.ndex that best recovers
uniform sampling the obtained results are in agreement with all the information present in the HR series [8]. The PSD must
those obtained for small random deviation. This approximation be estimated from a set of unevenly spaced samples. In [10] it
is usually well satisfied in signals like heart rate (HR) series. The a5 demonstrated that a bandwidth-limited signal is uniquely

theoretically predicted performance has been tested and corrobo- : : :
rated with simulated and real HR signals. The Lomb method has determined by its values at a set of recurrent nonuniformly

been compared with the classical power spectral density (PSD) distributed sample points = 7,,, = #,, +mN/2W, where
estimators that include resampling to get uniform sampling. We £, (p = 1,2,---,N) are the N uneven sample point in
have found that the Lomb method avoids the major problem N/2W s of the signal; andn = ---,—-1,0,1,---. W is the

of classical methods: the low-pass effect of the resampling. Also maximum frequency component of the signal expressed in Hz.

only frequencies up to the mean Nyquist frequency should be _— . .
considered (lower than 0.5 Hz if the HR is lower than 60 bpm). This sitation is the case of HRV analyzes where we have

We conclude that for PSD estimation of unevenly sampled signals Y Samples nonuniformly spaced. We can suppose the HRV
the Lomb method is more suitable than fast Fourier transform signal repeated itself (periodic) or extended with zeros to fit
or autoregressive estimate with linear or cubic interpolation. In  the previous theorem and then we get that the samples of HRV
extreme situations (low-HR or high-frequency components) the only give a unique representation of a signal if we assume

Lomb estimate still introduces high-frequency contamination that . i .
suggest further studies of superior performance interpolators. In this is band-limited to the frequency inverse of the mean heart

the case of HR signals we have also marked the convenience oferiod (RR interval). ThiS_ is an importar_1t observation that
selecting a stationary heart rate period to carry out a heart rate leads to only use PSD estimation up to this frequency and not

variability analysis. to 0.5 Hz which is so frequently used in literature. When the
Index Terms—Heart rate variability (HRV), power spectral H_R is lower thap _60 beats/mln (bpm), care should be taken
density (PSD) estimation of unevenly sampled signals, PSD es-with the upper limit of the high-frequency band.

timate by least squared analysis. Estimation of the PSD of HR series can be done with
the analytical expressions derived in [10], but in [11] it was
|. INTRODUCTION noted that even though this estimate is superior to others

it is impractical to realize. Estimation of the PSD of HR

EART rate variability (HR\./) has bgcome an mterestmgeries by classical methods cannot be done directly from the
and useful tool for analyzing cardiovascular autonomﬁz

. m ri ignal. In it requires resamplin hiev

control from the surface electrocardiogram (ECG) [1]-[9 \© Series sigha stead, it requ €s resampiing o achieve
) . . niform time intervals [12]-[14]. This resampling, required

HRV is analyzed from the heart rate (HR) series that is formed S

in order to use the well-known methods of PSD estimation
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HR is more adequate. In addition, when ectopic or noisy beaburier domain is well studied as the discrete time Fourier
detection occurs, a broadband noise contamination appesassform (DTFT), the discretely evaluated version (DFT)
in the spectrum. Elimination of these ectopic or noisy beadsd the associated fast algorithm (FFT) used to compute it
and subsequent resampling introduces further alteration of {8&]. When the signalz(¢) is accessible only at unevenly
HR spectrum [18], [19]. Another method to estimate the PSEpaced samples &t instants, the solution has generally been
of HR signals is the autoregressive estimate (AR) [20], [219 reduce it to an evenly sampled signal through sampling
which also needs resampling and a selection of the modisterpolation. However, as stated in Section I, this resampling
order, both of which affect the results. Recently, it has beémtroduces some distortion in the spectrum (or transform) we
pointed out that AR methods can introduce a large dispersiare estimating (detailed analysis of this effect will be presented
when applied to HR signals [22]. This problem has bedn Section II-C). To avoid this problem, Lomb [24] proposed
recently overcome [23] by using a PSD estimation method thatestimate the Fourier spectra of an unevenly sampled signal
deals with unevenly sampled data. This method was originally adjusting the model
proposed by Lomb [24] and has been used for astronomic time .
series analysis [25]. Using this method (from now on referred z(ty) + € = acos(2n fit,) + bsin(27 fity,) (3)
to as the Lomb method) it is not necessary to interpolajig such a way that the mean squared eggris minimized
noisy or ectopic beat detection, thus, avoiding the spectrugith the propera andb parameters. We can easily prove that
distortion previously mentioned. this expression is a particularization for real signals from the
The Lomb PSD estimation method is based on the genefigbre general
transform theory [26] which shows that the projection of a o jomfit
signal z(t) onto one element of an orthonormal bdsg) is (tn) + en = i) (4)
the value ¢” that minimizes the mean squared error energyhere nowz(t) andc can be complex valued. For any trans-

(e(c)) defined as the integral, over the definition intervatorm not necessarily the Fourier transform, the expression
of the squared differences betweeft) and c - b;(t). The il be

Lomb method implements this minimization over the unevenly ‘
distributed sampled values of(¢) considering that the basis z(tn) +en = c(D)bi(tn). (5)
H 1 —_ "27Tf7't .. . . N

functions are the Fourier kerné|(¢) = ¢/*"7*". Minimization of ¢,, variance (mean squared error) leads to
In this paper, we present a detailed analysis of the frequer}ﬁYnimization of

behavior of the Lomb PSD estimation method. We have ~

concentrated on HR series and have found the frequency- IR 2

limit estimation (half the mean HR) up to which the Lomb nz:l [2(tn) = e@)biltn)] ©)

PSD estimate is free of aliasing or leakage. Finally, we S ‘

present some examples with simulated and real HR series tgich results in a value foe(i)

corroborate our previous study and show the utility of the 1Y N

Lomb PSD estimate for HR series analysis. The advantages of  ¢(i) = z Z x(tn )7 (tn) k= Z |bi ()2 (7)

this estimate compared with the classical estimates are clearly n=1 n=1

pointed out in terms of the attenuation of the low-pass effeghis result can be referred to as a generalized Lomb method

introduced by resampling. to estimate transforms of unevenly sampled data.
The signal power at index of the transformatior{ P,.(¢))
II. THE LomB POWER SPECTRAL will be [24]
DENSITY ESTIMATION METHOD N
The Lomb method for power spectral density estimation is P.(i) = ¢(4) Z *(ta)bi(tn) = k- |c(d)?
based on the minimization of the squared differences between n=1
the projection of the signal onto the basis function and the =|e(@)? with &(i) = c(i)VE. (8)

signal under study [24]. This method can be generalized to any

transform estimation on unevenly sampled signals. k(@) If the transform is the Fourier transform thén= N and

be the continuous signal under study dnft) an orthogonal F:(i) = Px(f) = ¢*(f). In the original work [24], Lomb
basis set that defines the transform. It is well known that tiigiroduces a delay at the basisin( and cos rather than
coefficientse(i) that represent(t) in the transform domain are exponentials), which becomes in a more efficient estimation
algorithm, the Lomb normalized periodogram.

W= wirya & ,
o /—oo ‘ Pt 1 [Eﬁzl(x(tn) — T) cos(2m f (t, — 'r))} ?
and also that these coefficientg) are those which minimize *X\J//) =53 N _
the squared erroz(c;) defined in [26] as 2 Ln=1 COS (27 f(tn = 7))
oo , , 2
e@ﬂz/ (z(t) — c(i)bi(£))? dt. ) &Xﬂwﬁﬂ—ﬂﬁmhﬂ%—fﬂ

o . . _ SN sin?(2n f(t, — 7))
When dealing with evenly sampled signals this formalism -
becomes its discrete counterpart, which in the case of the (9)
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wherez ando? are the mean and variance of the data and tiSections llI-A and 11I-B), it can be extrapolated to real HR
value of 7 is defined as signals.
N .
_ . sin(4w ft, . . L.
tan(dr f7) = E"fl (m/tn) . (10) A. Sampling Modeled as Uniform Plus Random Variation

> Cos(4T ft) . . . . .
In this Section we consider the uneven sampling as uniform

Later, in [28] and [29], a fast algorithm was presented tglus a random deviation. Thet, can be expressed as
estimate the Lomb spectrum.

th=n-T —an, (13)

Ill. FREQUENCY ANALYSIS OF THE

whereq,, is a random variable with zero mean and probability
LomB PSD ESTIMATION METHOD

distribution function?,,, (e, ). Thet,, distribution is supposed
The remaining question of this PSD estimation method i satisfy E[t,, — t,_1] = T and E[t, — nT] = 0 Vn (for
how is the original spectrum of the sign&lt) (|.X (f)|?, where convenience, the origin of time has been selected at the origin
X (f) is the Fourier transform af(t)), related to the spectrum of sampling). The sampled signal(¢) becomes, in this case
estimated using the Lomb method? To analyze this, we recover ~
(7), and we see that it can be rewritten in a different way in o(t) = 1 Zx(t)é(t — T+ ) (14)
terms of the Dirac functioré(¢) VN &= e
&i) = izj\:x(t Yo (tn) Moreover, z(¢) is assumed to be a deterministic signal to
Vk = be estimated, the random variakle makesz,(¢) a random
o N process, therefore, its Fourier transfotkiy(f) is a random
_ L/ Z 2(£)6(t — £,)b3 (1) dt. (11) Process. In this case we will considgr the me;%{ﬂ(s(f)] and
VE J oo 52 the variancer|x, (s> to have some information on how the

estimated Lomb spectrg 2 is related to the real signal
We see that the coefficients obtained from the generalizgg-}ectrum|X(f)|2 pectra’,(f)| g

Lomb method are those which come from the projection o 1) Mean of the Lomb Spectrum Estimatapplying  the

the unevenly sampled signal(t) = - Yo 208t 1) convolution theorem, we have that from (14)
onto the base signa}(¢). In the particular case of the Fourier

transform, this means that the Lomb spectrum is the spectrum 1 o N jor ft
of the continuous time unevenly sampled signal ()= \/—NX(f) * /_Oo 215@ = nl'+ an)d! dt
1 & (15)
ws(t) = —= Y w(t)8(t —tn) (12)
VN n=1 and estimating the mean of this random process we have

so, in fact, the Lomb spectrum is the,(f)|*> spectrum.
Note that we have replaced by N since the sum of

() :E[Xs<f>1:¢iﬁx<f>

SN | |27t 2 = N. The relationship betweef{,(f) and o N
X(f) will give the relationship between the estimated Lomb */ Z/ §(t=nT+0,) Py, () do, /> It dt
spectrum and the real one from the original signal. T =l YO

Knowledge of the distribution ok ,( f) requires knowledge (16)

of thet,, distribution, and this will depend on each application.

In this work, we proposed and analyze two different modeB% (f)—LX(f)

for the ¢,, distribution. First, we consider that the distribution™ >/~ /57

of ¢,, series can be modeled (over stationary periods), as a o N

uniform sampling with a random deviation. Second, we will */ Zé(t_nT)/ eIt fonp (an)daneﬂ”ftdt

consider that,, can be modeled as uniform sampling with a —00 ) an

sinusoidal deviation. a7
For signals like HR, the deviation of the uneven sampling ) . ) )

from the uniform is not very large, at least over stationary peihere Fa, () is the probability density function of the

ods, and then it will be possible to assume this approximatio@ndom variablex,. If we express this result as a function

The uneven sampling of the HR will probably not fit, exactlyof the characteristic functio,,, (f)

either of these two models since from the integral pulse h

frequency modulation (IPFM) model [3@}, comes from the P (f) = / Po, (an)e 72 day, (18)

integral of a band-limited modulating signal(¢) that accounts o

for the cardiovascular autonomic control action on the HRve have

Even though these two models represent two opposite limit 1 oo N
behaviors, the real, could be fitted somewhere between them. X, (f) = —=X(f) « / Z §(t — nT) Py, (f)e??™It gt
The behavior of the Lomb estimate in both models, for the case VN S

of small deviation from uniform sampling, is comparable (see (29)
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Assuming that the random variablag have the same proba-which consists of a low-pass filter with a cutoff frequerigy)
bility distribution function (do not change with time) at eactat —3 dB of f. = 132.5/0, where f, is expressed in Hz and
time instantt,, P, (f) = P.(f), the mean of theX;(f) o in ms. Then the estimated mean base-band spectrum using
function is the Lomb method is unbiased and eatth mean upper band
will be affected by the factoe—(27"(-f)*7*) that depends on
/ Z §(t — nT)e2™It dt] the sampling distribution,, through thes value, and on band
order 1.
(20) From this result we see that, in this kind of uneven sampling,
an alias limit appears in the frequencies that can be recovered
from the original signal. However, this study has been done

<f Z 8(f—nf.) (f)ﬂ with the mean Fourier transforo¥,(f) = E[X,(f)] and the

= 1
X(f)=—=X . . : . .
) VN (F)= Lomb estimate gets a single trial of this random process. This
(21) leads us to study the variance of the Lomb estimate to see how
where f, = 1/T is the mean sampling frequency, aid(f) much a single trial estimate will differ from the mean value.

n=—oo

is the window Fourier transform of 2) Variance of the Lomb Spectrum Estimafo study the
1t <t<t Lomb estimate variance we will first study the expected value
)4 N of | X,(f) — X.()|? which can be calculated as
w(t) {0, otherwise. (22) () )l

This expression now allows us to interprB{X,(f)] in ) = X _
terms of the known uniform sampling Fourier transform [31]. E[(X.(f) - s(f))(Xs(f) - XNl
E[X,(f)] is the convolution of the original Fourier transform = E[X:(H)X: ()] = Xs(H)Xs (). (24)
signal X (f) with the Fourier transform of a uniform sampling
function windowed by the finite time observation intervaln Appendix | a closed expression for this expected value is
W(f) and now weighted by the characteristic function dpbtained, as shown in (25) at the bottom of the page.
the randomly distributed sampling, (f). Again the sampling  In the case of a normal distributioft. (f), and a band-
theorem appears in order to avoid aliasing, where now, th@ited signalz(t), we can approximate this expression. The
Nyquist frequency comes from the mean sampling intefal frequency content af(¢) is zero for those frequencies higher
So, to have a correct estimate, the mean sampling frequefiégn the Nyquist frequencX (f) = 0 for [f| > f,/2). Then
should be higher than twice the highest frequency of the sigiiie integral in expression (25), affected by@f — f') factor,
#(t). This agrees with the result from [10] that only if theneeds to be calculated only at those frequengiesvhich
maximum frequency component of the signal is lower thadtisfy f — fs/2 < f' < f + fs/2. On the other hand, if
half the inverse of the mean sampling interval (mean heaye have the probability density functia, () concentrated
period) the original signal can be recovered. The otiler in «, the characteristic functio,(f) will be highly spread
frequency bands will represent (in mean) the repetition of t# frequency. We can consider that the standard deviation of
base band spectrum weighted by the value of the characterifie distributions is small compared with the mean sampling
function P, (i- f,) evaluated in multiples of the mean samplingperiod?’, o < 1" (usual situation in real cases like HR signals).
function f. In the case thaP,(«) is a Gaussian distribution If this is the case, and fof in the first frequency bands,
with standard deviatiom, the characteristic function is [32] We can approximate the characteristic functin(f’) by its
value at thenth integration band. With this approximation,

P.(f)= (27" 1%0%) (23) and consideringP,(f) real and symmetric, since it comes

X (f

X - % N/ {X*(f 1)+ < [fs ST 8 = nfi)x (W (f)*W(f’))D}df’

n=—oo

v/ X010 a(—f’){X*(f—f’) <fs > 8 =)= (W (f)*W(f))>}df’

n=—0oo

|Xs(f)_Xs(f)| ( (nfs PQ(nfs))

/ {X( lfs Z 8(f = nf.)= (W (f)*W(f))]}df’

n=—oo

_f5/2<|f|<nfs+fs/2 (26)
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from a symmetric distribution function, (25) can be expressedNow we are in a position to evaluate

as (26), shown at the bottom of the previous page. The integral 9

multiplying factor can be approximated, neglecting the effe “Xs( )l ]

of the window function, by = E[X,(NHX.()] = E[X(DEX(NO + 2(monf,)?

oo ith s — Js 2 S+ fs ) 38
| RXG-pXG-p-a)=fosE @) nfo—f/2<Ifl <nf+ 1/ (39)

which at the base-bangh = 0) is an exact estimate of the
where SE is the signal energy. With this approximation, weSD of X(f), and

have an approximate expression for the expectation
TIX: (N2

| Xs(f) = X (N2 = (Palnfs) = PY(nfs)) %fs SE < 2VEX(HIEX(FF + 3(monfs)2/2(monf,)?
with nfs — fs/2 < |f| <nfs+ fs/2. (28) (39)

However, the algorithm proposed by [29] performs a powsavhich again becomes zero for the base-band and certificates
normalization of the signal to be of unitary powgrSE/N = the single trial Lomb estimate as a correct estimate of the
1. Then we have PSD ofz(¢) signal. Note that the deviation also increases with
X.(f) = Xo( )P = Palnfs) — P2(nf.) itzee\\//:me of theI spetirum at a given frequency. If the signal
) y sampleds = 0), we recover the spectrum of the
with nfs = fs/2 <|fl <nfs+ fs/2. (29) ¢lassic uniformly sampled signals. As the band order increases,

In the special case of a normal distribution (23) n > 0, the estimate is a biased estimate and its variance
_ pa?n? £ o g2 increases with the band order, the sampling frequency, and
(Xo(/) = X (PP =20 e (1—e7?m 7)) the dispersion of the sampling.

with nfs - fs/2 < |f| < nfs +fs/2 (30)

S B. Sampling Modeled as Uniform Plus Sinusoidal Variation
and considering thatr <« 7T

_ ) Now we consider the uneven sampling as uniform plus a
|X(f) = Xo()I? = 2(monfs) sinusoidal deviation. Thert, can be expressed as

with nfs, — fo/2 < |f| <nfs + fs/2. (31) th=n-T = Alt) (40)
Analyzing this expression, we can see that the expectati

0 . . : . .
|X.(f) — X.(f)|? increases with the deviation of the samplinql_vﬁere ?n(trll)dls ians;tnu:ogdal f:JnnCt'oi?t(gi) = bsin(27 fmt).
o, the band order and the sampling frequency. e sampled signat,(¢) becomes, S case

However, the magnitude of interest is not the 1 N
|Xs(f) — Xs(f)|]> value, but the variance of?(f) = zs(t) = \/—Nx(t) Y8t —nT + Alta))
| X.(f)*. To estimate this variancgx_ s> We can proceed ) n=l1
in the following way. From (24) we see that — \/—_a:(t)w(t)s(t) (41)

E[IX.(H)PP] = E[X.(HX:(£)]
= E[X.(DIEX(N] +1X:(f) = X (NP

(32) = 3 8t —nT+ At) (42)
and assumingX,(f)| to be a Gaussian process [33] e

5 e o 4 the unevenly spaced sampling function. The Fourier transform
Tixni = Do+ 20 Gy s

This expression is not known, but we can find an upper bound;

from (24) X.(f) = \%X(f) L S(N) W) (43)

21 _ *1 *
ENX(NIF] = E[X(HX:()*] = E[Xs(f)]EQ[XS(f)] and requires knowledge oft) to be evaluated and analyzed.
+|X,(f) = X ()2 =1 X:(NH)] + 0'|2Xs(f)| A detailed analysis of(t) sighal shows that it represent a
(34) problem equivalent to the problem pfilse position modula-

tion (PPM) that appears at modulation systems [31]. In [31]
that leads to the following inequalities it is shown that

X () <\/E[X5(f)]E[XS(f)]* +X(f) = X (f)I? (35) s(t) = f[l + A(t)]{l + i2COS[27rkfst+ 27rkf5A(t)]}
XD 2ELX(DIELX()]* implying =
. = when the condition|A(#)| < 1 is satisfied. Analyzing this

UIQXs(f)IZ SUBNIEXG (NN + 61X (f) = X () condition for sinusoidal modulation, we have thA(t) =
x | Xs(f) = X(H)2 (37) b2 f, cos(2m fnt). Taking f,, a frequency lower than 0.5

being w(¢) the window function defined in (22) and

(44)
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Hz (situation in HR signals) an@d| < 7"~ 1 s (equivalentto  This expression allows again to interpret thg(f) spec-
consider the deviation from uniform sampling small (40) angum as function of the original spectrud(f). It appears
a mean HR of around 60 bpm), we have that the conditiontisat the spectrum is the convolution of the original with
satisfied and the analysis is correct. Each one of the addititve window function and then convolved withi( /). S(f)
terms in (44) is a phase modulation component that, whegpresents a weighted Dirac delta repetition with the mean
the modulating signal\(¢) is a sinusoid, becomes in a cosinesampling frequencyf; plus harmonics of the frequencg,
expansion with the first kind Bessel functions,(z), [31] used at the uneven sampling. These harmonics, at bands above
the base band, are infinity with decreasing values; and at the
base band (the one of interest) appears a unique contaminating
harmonic atf,,,. This S(f) function is represented in Fig. 1
for values off, = 1 Hz (equivalent, in HR signals, to a mean
HR of 60 bpm),b = 0.1 (that corresponds in HR signals to HR
When (45) is substituted in (44) foA(t) = bsin(27f,t) variations from 66.6 to 54.5 bpm), arfg, =0.1, 0.15 and 0.2
(fm < 0.5 and|b| < 1) it appears an expansion feft) as Hz (that are typical frequencies at the HR modulating signals).
follows: The contamination at the base band could suppose a problem
except when the Dirac delta amplitudé« f,,b) at frequency

s(t) =fa[L + b2 fm cos(2m fint)] fm 1s negligeable with respect to '?he unit;ry amplitude of

y {1 P i ijn(27rkfsb) the fundamental delta. In Fig. 1 we see that for the values

cos(2m fst + asin(2x f,,t))

= i Jn(a)cos(2m fit + 2mn fint). (45)

n=—oo

referring the typical situations in HR signgls= 0.1, f; = 1,
and f,,, = 0.15), the delta amplitude is 0.04. If this value is
><COS(27r/€fst+27mfmt)}. (46) considered in power, as usually is the PSD of HR signals,
we have a ratio of2-10-2 that represents 27 dB lower
] ] ] ] influence of this contamination respect to the fundamental
Using the properties of the Bessel functions this expressigq then can be neglected. Simulation, in Section I1I-C, will

n=—oo k=1

can also be compacted to corroborate this reasoning. The upper bands of 3héf)
S(t) = fs + fo27 frnbcOS(2T fint) spectrum (k > 0) incorporate an attenuation respect to
o oo the base band (phenomenon also obtained when the uneven
+ Z Z 2fs Jn(27kf,b) <1 + ”fm> sampling was random) and higher-amplitude harmonics of the
- kfs fm frequency. Also, these harmonig| > 0) could extend to

X cos(2mk fot + 270 fnt). (47) collateral bands but weighted by higher-order Bessel functions
. . _ (J,) that would make them gradually vanish. However, if
Now we have an expansion of thet) signal in terms of the mean sampling frequency becomes low and the sinusoidal
sinusoidal functions that can be represented in the frequergynpling variation frequency,, high, those harmonics can
domain. The obtained expression is in agrement with thgé introduced at the base band, as already can be noted in
obtained in [34] for a spectrum of counts with the differencgig_ 1 for f,, = 0.15 and 0.2 Hz. For our purposes this
that in that work the modulating signal(t) = bsin(27 fmt) contamination at the base band is even more negligible than
is first passed through the IPFM model and then it appeafg previously commented (Fig. 1), and the Lomb estimate
the integration constants differences. In the frequency domaacomes a practically unbiased estimate of the original signal
S(f) becomes spectrum at the base band.
o _ All these results are in agreement with those obtained for
S = fsé(ofo) +;fj7rfmb(6(f Jm) +0(f + fm)) random sampling. We get same frequency repetition of the
+ Z Z fan(27r/€fsb)<1 + ”fm> spectrum anq the conclusion that only frequencies up to the
it kfs mean sampling frequency can be recovered. The spectrum
X (8(f = kfs = nfm) +6(f +kfs +nfm). (48) estimation at the base bar_1d can be _considered the true spectrum
except for factors whose influence is lower than around 27 dB

Then, from (43), theX,(f) spectrum becomes and then can be neglected. In addition, the phenomenon of
1 attenuation at the upper bands spectral repetition is also ob-

X (f) =—=FX(f) = W(f)=* served and the increase in variance observed at random model
VN can be assimilated to the increase in harmonic contamination

as the band order increases in the sinusoidal model. Note that

again when the sampling approaches to the unif@dm- 0)

o oo the spectrum becomes the uniform spectrum. Thus, the Bessel

+ Z Zfsjn(27rkfsb)<1 + ”fm> function argument vanishes and its value goes to one when
kfs n = 0 and to zero whem # 0 for any band ordek.

* 6(f) + anlb(é(f - fm)é(f + fm))

n=—o0 k=1
If in the model there were two tones instead of one, a new

X (6(f —kfs —nfm)+6(f +Efs +nfm)]. series of harmonics of the new frequency will be added to
each delta of the single tone model spectrum [31]. When

(49) the model is not based on tones, but on a band-limited
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Fig. 1. SpectrumS(f) for b = 0.1, f, = 1 Hz and three different values ¢f.. f» = (a) 0.1, (b) 0.15, and (c) 0.2 Hz.

signal bA(¢), |A(t)| < 1, the problem is similar to that subsampled signal is presented in Fig. 2. The right panels show
addressed at FM modulating systems [31] were the spectrtime spectra up to 4 Hz that include four bands of the original
is estimated to spread significantly around each of &lfe signal spectrum with a mean sampling rate fof = 1 Hz.
center frequency bands a value B-(k) = (26 4+ 1)W (8 The left panels show the counterparts of the right panels, but
the FM modulating index andV the maximum frequency up to 2 Hz to have a detail of the base and first band. In
component at the band-limited modulating signal). So, ti#g. 2(a) we have the original spectrum of the signal (without
lowest frequency that spreads the first bgifg) is around added noise) uniformly sampled at 1 Hz. This is the “ideal”
fi=fs — (B +1/2)W, that particularizing in our case with spectrum that we will try to obtain from the uneven sampled
the identification of3 = 2xkf,b in (44) [31] and the used signal. Fig. 2(d) shows its counterpart when noise is added
values ofb = 0.1, k =1, f; = 1 andW = 0.35 Hz to the signal. Fig. 2(b) shows the Lomb estimates when the
(order of the maximum expected modulation component @heven subsampling follows the sinusoidal model and there
HR signals) becomeg; = 0.6 > F;/2 = 0.5. This agrees is not added noise. These estimates agree with (49) where
with the spectrum obtained for the sinusoidal model, Whel’ﬁappears the spectrum repetition with the mean sampling
it was shown that the base band spectrum (up to 0.5 Hzfiequencyf, = 1 Hz. It appears the harmonic at the base band
this case) is not substantially contaminated by the first bagél frequencyf,, = 0.15 with a relative magnitude respect to
components. At the base band will remain the desired zafe main component of less that 27 dB as predicted. Analyzing
frequency Dirac delta with the contamination Af(t) (44) the first band (right panel) we see the predicted repetitions with
that (supposing variations of medium frequency rafige= respect to thef, with the f,,, value and amplitudes according
0.2 Hz) gets a relative value @ff Wb = 0.12, implying 18-dB  to the values estimated in (49). At upper bands we also
contamination that is negligeable when measuring the P&Brroborate the attenuation of the main lobe amplitude. Extra

indexes of HRV. low level peaks appeared around 0.5 Hz, not clearly predicted
. _ by the model; however looking at Fig. 2(e) (which includes
C. Simulation Results the added noise in the original signal), we see that this peak

To test the extent and validity of previous derivations wglls at the level of the noise given by rounding the sampling
have designed two different experiments: First a controllédstant to one sample of the original Gaussian signal. Fig. 2(c)
Gaussianz(t) = e~t*/190 sampled at 100 Hz and extendednd (f) shows the Lomb estimates when the subsampling
during 1000 s (16.67 min) has been generated. The spectrunisofandom; (c) for clean signal, and (f) for the noise one.
this signal is also a Gaussian with a cutoff frequency-atdB  Again the prediction obtained at the random model (unbiased
of f. = 0.0132 Hz. Then, this spectrum will be adequate t@stimate at base band and low-pass filtering at upper bands)
test if the predictions of previous section are satisfied. Onise corroborated. The characteristic functié®.(f) becomes
the signal is computer generated at a sampling rate of 1@0this caseP,(f) = ((1/0.1) (sin(27f0.05))/7f) which
Hz, it has been unevenly subsampled with a mean sampl@giges a cutoff frequency, > 4.5 Hz, implying around 6-dB
frequencyf, = 1 Hz and variations (random and sinusoidaljattenuation at the lobe of the fourth band, as can be observed
The random case takes sampling instants that differ from timepanels (c) and (f). In conclusion, both models considered
uniform in a o, value in [-b/2 = -0.05,b/2 = 0.05] s for uneven sampling obtain predictable results modeled by our
uniformly distributed, and the sinusoidal case takes 0.1 derivations. Other subsampling will fit somewhere between the
and f,,, = 0.15 Hz to model the sampling variations accordintywvo models and it is predictable that the results will not differ
to the expression given in (40). Also, it has been considersdbstantially with those presented in this simulation. Results
a random noise added to the signal to emulate the real WiRh HR data will corroborate this in Section IV.
signals where the RR interval estimation has the limit of the Previous simulation has corroborated the prediction about
original sampling frequency of the ECG [15](¢) is then the analytical deviations for the Lomb estimates. Also, we
z(t) = e=t'/19 4 rand with rand a uniform random variable have obtained that, even in a low degree, the Lomb estimate
n [-0.02,0.02] s, emulating the noise in a HR signal fronpresents some contamination in the base-band that could affect
ECG sampled at 250 Hz. The spectrum of the resulting unevitie spectrum estimation in real practice. To corroborate this
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Fig. 2. Simulated spectrum estimationg: = 1 Hz, b = 0.1, andfm = 0.15. Original and Lomb estimated spectrum of a Gaussian signal unevenly
subsampled. Right panels show the spectrum in four bands and left panels, a detail in the base-band and first repetition band. (a) The origin@d)spectrum
the Lomb estimate when the subsampling follows the sinusoidal model, and (c) the Lomb estimate when the subsampling follows the random model. (d)—(f)
Refit (a)—(c) when the original Gaussian signal is contaminated by noise. See text for detailed discussion.

result we have designed a simulation generating a Gaussiann Fig. 4 we present the results fgt = 1 Hz (mean HR
like signal with the aim to emulate standard spectrum in HRdf 60 bpm),b = 0.1 (variations from 55.5 to 66.5 bpm) and

studies. The simulated(¢) signal is fm = 0.13 (modulating signal of that frequency). The panels
on the left represent the base band spectrum estimated up to
2(t) = e~ (=25)7/40 4 0.9e=(1=125)°/40 (5270, 15¢) 0.5 Hz and the right panels show the same spectrum up to 1

+ 0.8¢—(t—225)%/40 cos(270.3t). (50) Hz.InFig. 4 (a) it is represented the original spectrum if the

signal were uniformly sampled at 1 Hz and then is the “ideal”

The signal is originally sampled at 100 Hz and then uneven$pectrum to be estimated. In panel (b) we have overprinted on
subsampled as described in previous simulations, and also e original spectrum (dotted line), the spectrum estimated with
noise to emulate the QRS detection error in HR signals hBET after interpolation resampling to 1 Hz (linear interpolation
been added. The subsampling is made with sevgrahlues, is solid line and cubic spline interpolation is dashed line). We
b parameter values, anfl,, frequencies. Also, the spectrumsee how this classical technique of estimating the PSD suffers
estimated using interpolation (linear and cubic splines) at tinoé a low-pass filtering of the spectrum. This phenomenon is
domain to get a uniform sampling before FFT is applied hdsgher for linear than for splines interpolation, as can be easily
been obtained. explained from the filtering theory.
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can be analytically done for linear interpolation obtaining a Y
transfer function off (w) = (1/L) [sin®(wL/2)/sin®*(w/2)] “
(w is normalized frequency anH is the order of the interpo-  “& & & g
lation). The cutoff frequency of this filter can be numericall)é_ o ) )

ig. 4. Spectrum estimations for a signal formed by three Gaussian. Panels

obtained and we get &3-dB cutoff frequencyf. = 0.32f; on the left show the spectrum up /2 = 0.5 with dotted overprinted of
Hz (it has a minor dependence withat low L values (from the original spectrum in (a). Panels on the right show the expanded spectrum
0.36f, t0 0.32f,) that is not relevant in our study). The cutoffup to fs = 1 Hz. (a) The original spectrum uniformly sampled at 1 Hz. (b)
frequency for cubic splines interpolation has been caIcuIatéEf spectra est|mated_ after interpolation (linear solid line, cqb|c spllng dashed
) to uniform sampling at 1 Hz. (c) The same as (b), but interpolating to 2
empirically, constructing the impulse response, and we hang (d) The Lomb estimates when the uneven subsampling is sinusoidal with
obtained af, = 0.42f, Hz that is Iarger than in case oft =0.1 Hz a_ndfm = 0.;3 Hz. (e) The Lomb estimates when the uneven
. . . . . subsampling is random with= 0.1 Hz. See text for comments on the results.
linear interpolation. Fig. 3 represents the transfer functions
for these filters in case of, = 1 and 0.7 Hz, where we
see that the cutoff frequencies are those given previously ance an aliasing at frequencies around 0.5 Hz that increases the
that the spline interpolation has a much better behavior theontamination at high frequencies. So, even the original signal
the linear for the same data. However, in unevenly sampléequency content does not exceed 0.4 Hz, it is advisable to
signals, the interpolation is not a linear time-invariant filter, budo the resampling at higher frequencies (at least 2 Hz). We
a linear time-varying filter, since the period between samplean continue with this interpretation looking now at panel (d)
where the interpolation is done varies, and fhefrequency where there is the Lomb estimate with sinusoidal variation. We
also varies. Then we have considered the cutoff frequensge that at the base band the estimate does not suffer from the
corresponding to the mean interval peridd f;) as the mean low pass effect (also, the original spectrum is overprinted in
cutoff frequency. This approximation will work if the variationdotted line on the left). It appears a peak at around 0.43 Hz that
from even sampling is not high, as is always being consideredrresponds to the convolution of the original spectrum with
in this study. the contaminating delta at,. in the base bandf{, = 0.13,
Going back to Fig. 4(b), we corroborate the expectatiqrius 0.3 Hz of the upper Gaussian contribution yield 0.43 Hz
from the filter transfer functions previously discussed. Thibat coincides with the peak occurrence). This peak is about
panels in (b) are obtained with resampling to 1 Hz that can B8 dB lower than the main signal components at the base band
seen as resampling to 2 Hz [Fig. 4(c)] plus a decimation toahd then negligible, but we realize that is in agreement with
Hz. This is important since the estimation in (b) has a highére peaks observed in panels (b) and (c) with the resampled
contamination lobe around 0.43 Hz than the estimation in (gs)gnal. This is because the resampling is done on the unevenly
has (resampled at 2 Hz). This is explained because when s@npled signal that intrinsically contains the Lomb spectrum
decimate from 2 Hz to 1 Hz [going from (c) to (b)], it appeargspectrum of the unevenly sampled signal) and the low-pass

T
0.0 0.2 0.4 9 0.% L0
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effect of the resampling attenuates these extra peaks if thmyroborate the superior performance of the Lomb estimate
are at frequencies higher than the corresponding interpolatath no low-pass effect. The oscillation that appears at the
cuttoff frequency. We see in Fig. 4(d) that the Lomb estimatstimates is remarkable. However, since the clinical indexes
is a very good estimate of the original spectrum, where tlage integral indexes on the spectrum, no substantial effect will
signal has components and at high frequencies introdudesinduced in opposition with the low-pass filtering that will
the predicted extra peaks, also included at the interpolatistmongly bias the indexes. This will be analyzed in Section IV.
estimates, but Lomb avoiding the low-pass effect. Even thoughln conclusion, we have obtained that the Lomb estimate, is
cubic splines interpolation [Fig. 4(c)] gets a very close estitot a unbiased estimate at the base band, but under the condi-
mate to the original spectrum, this will degrade as tfhealue tions that appears at HR related signals, the contamination is
decreases, as can be seen in next simulation. Finally, Fig. 4teyligible and of much less magnitude than that introduced by
shows the result of estimating the Lomb spectrum when thee resampling required by FFT or AR-based methods. For HR
subsampling is random, obtaining same conclusion as befapger 60 bpm, interpolation with cubic splines approaches the
except that now the peak at 0.43 Hz is not clearly markedomb estimate and, if the HR increases over these values, both
This is predictable, since at the random model we do not hasgectra can be considered adequate estimates for frequencies
an explicit reconstruction of the interfering term, howeveyp to 0.4 Hz. The interpolation techniques can not avoid
the results obtained from a general modulating signal and Rk high-frequency spectral contaminations introduced by the
band estimation, in which the first band contamination do&sieven sampling, but they attenuate the frequencies with the
not come to the base band with significative values, can stidw-pass filtering effect, that for this contribution becomes
can be applied. In panel (e) the high-frequency contaminatianpositive effect. Further studies on interpolators that keep
at 0.5 Hz is at least 25 dB lower than the useful component. tine low frequencies, and more drastically attenuate the high
both cases, the Lomb estimate obtains an unbiased estimatéreffuencies, will lead to better estimated of the underlying
the original spectrum in opposition to the resampled estimatd&kV signal spectrum.
(left panels).

To test the Lomb estimate in different situations than those
described in previous experiments, we have considé¢red
0.7 Hz (heart rate of 42 bpm) = 0.2 (heart rate variations In this Section we will analyze some spectra of HR series.
from 50 to 75 bpm assuming a mean of 60 bpm) gpd= In the first case we will perform a simulation to establish
0.22 Hz and several combinations of these values. In Figifg improvement of the Lomb method with controlled HR
we have the results in four different cases. In all of them wsignals. Afterwards we will consider real ECG records where
have overprinted in dotted line the original spectrum up the stationarity of the data is well satisfied (random deviation
the mean Nyquist frequency; in subpanels a) the spectrudver uniform sampling). For this purpose we consider HR data
interpolating to the mean sampling period with linear (soliffom paced patients, which strictly guarantees the stationarity
line) and cubic splines (dashed line) are drawn, in subpanefsdata, and from patients with nearly stationary HR. In the
b) are their counterpart resampling to two times the medéast part of this Section we analyze the spectrum of HR series,
sampling frequency, subpanels c) represent the Lomb estimadiesnecessarily stationary, and interpret the results of previous
with the sinusoidal model and in d) the Lomb estimates withections for these cases.
the random model. Low heart ratgs = 0.7 (42 bpm) are

in Fig. 5(a) where we see the large effect of the low-pags Application to Simulated Heart Rate Signals

filtering introduced by interpolation (both linear and splines), .
see Fig. 3, and the much better performance obtained by th Jo experimentally study the performance of the Lomb PSD

Lomb estimates. Large variations in HR= 0.2 s) are shown e§eflmate, we have found that real HR signals are not adequ.ate
B ... . since we do not know the real spectra that we want to obtain.
in Fig. 5(b) where we see that the low-pass effect is hlghw . o )
AN ° We obtain different estimations from classical and Lomb
than in Fig. 4 even when thég, and f,,, are the same. This . Co .
?sumates, but we cannot argue which is a better estimate from

is due to the time varying property of the interpolation %n experimental point of view. The theory already proves this.

uneven sampled signals, since now there are more interval . . . )
b 9 Yo avoid this problem, we propose the following experiment

spaced up to 1.2 s. The low-pass effect in those areas is mgr: .
important, and the total low-pass effect obtained in subpan sﬁ which uses the IPFM model [30] to generate the beat

a) and b) of Fig. 5(b) is higher than the obtained in Fig. Jcc/ITence times from a modulating signal?) that repre-

for b — 0.1, again cubic splines performs closely to Lom sgnts the sympathetic and parasympathetic influences on the

. . . sino-atrial node. The beat occurrence times are related to the
estimates. Large modulation frequengy, = 0.22 Hz, is modulating signalm() as
analyzed in Fig. 5(c) with the only remarkable effect that the e
0.43-Hz peak of Fig. 5(b) is delayed to the right, as is expected k= / 1 +m(t) dt (51)
from the theoretical derivations. Note that the resampling to 0 T
2fs gives lower aliasing at frequencies above 0.4 Hz (se¢herek is an integer representing the orderkih beat and
peak amplitude) as stated in previous simulation and Fig. 5(&).is the mean of the RR interval. The PSD estimates try to
Finally, all effects together have been considered in Fig. 5(dfer the spectral characteristics of(t) from the accessible
Mean HR of 42 bpm, maximum variation from 36—-49 bpmipformation at beat occurrence timés. We generate beat
and large frequency of uneven sampling variation. Again veeries from a controlledn(t) signal following a typical

IV. ANALYSIS OF HEART RATE SPECTRUM
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Fig. 5. Simulations of Fig. 4 in different conditions of mean HR, variation from the mean and modulating frequency. (a) Low HR, (b) large variation from
the mean HR, (c) large modulating frequency, and (d) all together. Subpanels a) and b) have overprinted the original spectrum (dotted line¢stnthtedse

with linear (solid line) and cubic spline (dashed line) interpolations. Subpanel a) is after resampling to the mean sampling ffecarhdy to two times

that frequency. Subpanels c) and d) have the Lomb estimates (solid line) overprinted with the original spectrum (dotted line).

spectrum from a real subject. We have used the nine-oraeodel order anci(n) is white zero-mean noise with standard
AR model proposed in [35] for generating sequences:0f) deviationo,, = 0.072 that results in a standard deviation of

signal, as m(n) signal, ¢, = 0.145. The value used for the sampling
r frequency is 1 Hz. In Fig. 6(a), (b) is the amplitude spectrum
m(n) =Y axm(n — k) +n(n) (52) corresponding to this model.
k=1 The m(n) signal, after being interpolated a factor of 16

whereq,, are the AR parameters shown in TablePlis the AR (resulting sampling rate of 16 Hz), is the input to the IPFM
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TABLE |
COEFFICIENTS OF THEAR MODEL USED TO GENERATE THE MODULATING SIGNAL (1) WHEN
Excitep By WHITE NoISE
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Fig. 6. (a) Model amplitude spectrum, the amplitude spectrum of a case (fo§ 0,008 — \ HF/AF
a given noise realization) of the(n) signal, and the spectra obtained from & 0,006 - §
FFT, AR, and Lomb estimates. (b) Mean amplitude spectra averaged in eigfﬁ 0,004 - \
realizations for eight different noise(n) realizations. (c) Heart rate signal 0,002 ° §
in a particular realization. o N
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model for obtaining the sequence of the beat occurrence times. (b)
We generate 1024 beats with mean heart pefiod= 1

s in the IPFM model. Fig. 6(c) shows a HR signal correrig. 7. (a) Mean and (b) standard deviation of the error in each band. Note
sponding to this model. Then, we apply three methods ftwat the values are referred to the unity since the bands energy is normalized.
PSD estimation: FFT of interpolated HR signal with cubic

splines at r_egula_rly spaced sample_s of 1 S, AR _estimatig@z estimates) have a strong low-pass response, since the error
of the previous interpolated HR signal with a nine-ordeg . sitive at the LF band and negative at the HF band. The
model; Lomb estimate of the l_JnevenIy spaced HR SI9NYomb method is the one with the best behavior, since the error
Fig. 6(a) shows the mode| amplitude spectrum, the ar'npl'tu%elower and more equally distributed throughout the entire

spectrum of a case (for a given noise realization) of g, ency band. This simulation corroborates our theoretical

m(n) signal, and the spectra obtained from FFT, AR, and o 1ations that the Lomb estimate attenuates the low-pass

Lomb esti_mat(_es. In Eig. _G(b) the _mean_amplitude_ SPeCtirect generated by the resampling required by the classical
averaged in eight realizations for eight different noise:) methods (FFT, AR).

realizations are shown. The PSD is frequently divided into
three bands of frequency: LF (0.01-0.08 Hz), MF (0.08-0.15 o ] )

Hz), and HF (0.15-0.5 Hz) to get the clinical indexes. We haf® Application to Stationary Real Heart Rate Signals
calculated the relative powd&F/AF, MF/AF andHF/AF, In Fig. 8(a) we have the HR series of a paced patient from
where AF = LF + MF + HF, to compare each method ofrecord 102 of the MIT-BIH ECG database [36]. The data
spectral estimation with the original spectrum w@f(n) in presents the 15-min HR series starting at minute 6 of the
each case. Then, we have calculated the error in each band@® record. In this record an artifactual peak was introduced
the difference between the relative power obtained with eaghthe frequency domain (0.167 Hz) due to a nonsymmetric
method and that obtained from the corresponding realizationa#pstan used in the playback system [36]. This artifact and
m(n). Finally, in Fig. 7 we present the mean of the error (ME}s harmonics will serve in this study as the test for the
and the standard deviatiqr) in eight different realizations. Lomb PSD method. In this case, the HR is very stable
In Fig. 7, we can see that the interpolated methods (FFT awith very small variations and the assumption of stationary
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Fig. 8(d) we have the Lomb spectrum for several cycles of the
HR serios mean sampling frequency 1.21 Hz. We can corroborate the

(@)
807 PRERO D 005 periodic behavior of this spectrum with the mean sampling
30j‘wwwwwmM{WW]WNWMMWWM MMWMWMW frequency and the low-pass effect given by the sampling
T 1

851

bpm
n

65 | dispersion at the upper bands. Note that the peaks and mean
0] 1 ' ! 1 shape of the signal at higher bands have lower amplitude, and
0 5 minutes 10 15 that the signal becomes more embedded by the noise and the
107 (b)  spectrum deviation.

089 Lomb PSD 0.68

o Considering now, the spectrum obtained from resampling

ZWWMW‘ W' " V“W M and classical spectrum estimation [Fig. 8(e)], we note that
] ’ Yﬂ i WWWW the spectrum has the expected 2-Hz (sampling frequency)
. ‘ periodicity, and also note [Fig. 8(c)] that the spectrum at

0.0 0.5 Hz 1.0 12 high frequencies is attenuated as a result of the resampling.
107 () This is particularly evident at the third peak of the spectrum,

130 Classical PSD

W which is somewhat less marked than in the Lomb spectrum.

Power
—
<
L

1074 i M Also, note that because of the constant power normalization,
WWWMWWWWWWWMM an attenuation of high-frequency components results in an
! ‘ | | amplification of low-frequency components. The effect of
0.0 05 Hz 10 12 high-frequency attenuation introduced by the resampling is
199 Lo PSD ) particularly important in the HRV analysis, where the ratio
between the energy at different bands is used as a clinical
marker of cardiac dysfunction [8]. Thus, we verify the theo-
: retical prediction that the Lomb spectral estimate is better than
5 the resampled spectral estimate.
0 I 2 Hz 3 4 5 The highest significant frequency that we should consider
in the spectrum of this uneven sampling of data is that
corresponding to half the mean sampling frequency. This is
an intuitive result in signals like HR series where the discrete
nature of the signal is presumed not to have frequencies higher
o ' than the intrinsic frequencies at which they are generated.
0 1 2 Hz 3 4 5 The previous spectral study was repeated using the HR

series of a nonpaced patient (normal situation for these stud-
Fig. 8. Spectral analysis of HRV from record 102 of MIT-BIH database. (e}bs) and the results are presented in Fig. 9. The patient

The HR series, (b) the Lomb spectrum in two “mean” Nyquist frequencies,
and (c) classical spectrum after uniform resampling of the data at 2 Hz; @@rresponds to record e0125 of the European ST-T ECG

and (e) are the same asandc for higher frequency values to evidence thedatabase [37], and we analyzed the first 15 min of the record.
spectra periodicity. The mean sampling frequency is in this case 1.18 Hz with a
deviation of 30 ms, which is comparable to that of the previous
uneven sampling is well satisfied. Fig. 8(b) displays the Lon#tixample. Analyzing the spectrum, we recognize a frequency
spectra of this data where we have rejected noise and ectaminponent around 0.33 Hz that is generally accepted to be
beats with the procedure presented in [23]. Fig. 8(c) displas&ated to respiratory modulations of the HR affected via the
the spectrum estimated through resampling the data atparasympathetic nervous system [18]. Again, we corroborate
sampling frequency of 2 Hz and estimating the spectrum withe results of the previous example with some new remarks. In
classical periodogram with FFT. In uniformly sampled signal§;ig. 9(c), a spectral contribution around 0.83 Hz appears in the
the Lomb method is equivalent to the classical periodogragfassical spectrum; however from Fig. 9(b) we note that only
estimated with FFT algorithms [24], [25]. The mean samplinfyequencies up to 0.59 (half of 1.18 Hz) are significant. The
frequency in the original HR series is 1.21 Hz and therigin of the 0.83-Hz contribution in the classical spectrum,
deviation is 31 ms. In Fig. 8(d) and (e), the same spectra atig. 9(c), is due to the resampling at 2 Hz that recovers
displayed, but over a wider frequency range in order to shawntents up to 1 Hz of the original signal. In this case, the
the periodicity at the different bands. original signal, because of the mean sampling frequency at
Analyzing the Lomb spectrum, we corroborate that therk18 Hz has a repetition spectrum from 0.59 Hz that gives an
appears a periodicity whose period is the mean samplihgrmonic at 0.83 Hz 1 Hz, and then it is recovered at the
frequency, 1.21 Hz, as predicted by the study in Section Ibase band of the resampled spectrum introducing an undesired
There appear in the spectrum three harmonically related peaktfact. Again, we corroborate that the resampling attenuates
at 0.16, 0.30, and 0.45 Hz which correspond to the artifaitte high frequencies since this artifact has lower energy than
introduced by the capstan. We can note [Fig. 8(b)] how theiedoes in the original signal, Fig. 9(b)—(e).
peaks have lower amplitude in the second band (0.6-1.8 HzAnalyzing the periodicities of the spectra, Fig. 9(d) and
than in the primary £0.6-0.6 Hz) as a result of the low-pasge), we note the same behavior in the Lomb spectrum as in
effect introduced by the deviation of the uneven sampling. the previous example, but now the frequency contents of the

Power

Power
3
i

107

Power
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by a different stationary, uneven sampling process with mean
80 (® frequency f,. We then have

fa(®), 0<t<t

z(t) = {0, otherwise

z(t) = z1(t) + 22(?) z(t), t<t<to
w2(t) = {()7 otherwise

bpm

(53)

60 I : 'minutes
10"0 5 50 15 )
Lomb PSD
wherez (t) andz2(t) come from a stationary, band-limited,
unevenly sampled signals multiplied by the window function
] w(t). The result is a time-limited signal of infinite bandwidth,
10° T | t T but this effect has been modeled by thé) and W (f) func-
1000_-0 o5 Hz Lo © tions, and so, the original signal can be considered bandlimited
] Classical PSD without loss of generality. We can, then apply the results of
the previous Section. From (53) we can express the PSD of

_37
107 z(t) as

Power
—
=
1.

Power

00 05 Hz 1.0 (X1 = X0 (f) + X2(H) (54)
10 SD ©)
We know that the Lomb PSD estimate oft), |X:(f)|* will
come from the square of the sum &f,(f) and X»,(f) and
will demonstrate the periodic behavior expected of the sum of
two periodic spectra of different periods. For this reason, the
highest frequency that will not be distorted by the periodicity
will be half the smaller “average” sampling frequengy, or
f2.
This result can be generalized to an arbitrary sign@)
with nonstationary sampling, dividing(¢) into segments short
enough to be considered stationary. Then the highest frequency
in the Lomb spectra that will be free of aliasing will be half
Fig. 9. Spectral analysis of HRV from record e0125 of European STihe smaller “average” sampling frequency in the stationary
database. Same notation as in previous figure. partitions. In terms of HR signals, this corresponds to the
lowest HR of the patient during the analyzing period.
respiratory activity become unremarkable after the third band;An excellent real-world example is shown in Fig. 10, which
even the sampling dispersion is comparable to the samplesents the results of the HR spectrum of a patient with
dispersion shown in previous example. This is due to thénormal atrioventricular (AV) conduction, with periods of
low power amplitude of this component compared with thg: 1 AV block. Note that if the objective of studying HRV were
peaks in Fig. 8; therefore, the low-pass effect makes thafexamine autonomic nervous system control, one would want
indistinguishable from the noise at a lower band order.  to analyze the spectrum of atrial rate variability. This ECG
This study corroborates the theoretically predicted behavigignal comes from record 231 of the MIT-BIH database. This
of the Lomb spectral estimation method. We have shovgathology results in periods where the ventricular beat appears
its advantages compared to classical spectral estimation Wiice for every two atrial beats. Then, when the HR series is
resampling: namely, avoiding the high-frequency attenuatie@nstructed from a ventricular QRS detector, its rate during
and extra periodic spectral repetitions (because resampling) plock will be approximately half the rate of that occurring
that appear in classical methods at base band. Thus, #Ring periods with no AV block. In Fig. 10(a), a 15-min HR
conclude that the Lomb method produces a better spectglies of this record is displayed, where two episodes of 2: 1
estimate for unevenly sampled signals than those methQs plock (low HR) and two of normal rhythm (high HR)

Power
_
o
£y
L

Power

based on resampling. appear.
o ) ) In Fig. 10(b), we show the Lomb spectrum of the 15-
C. Spectrum Interpretation in Nonstationary Signals min HR series, where we note a signal attenuation as the

In this Section, we analyze the spectra when the uneviaquency increases, but not a clear periodicity. Fig. 10(d)
sampling is not stationary, meaning that we can not modghows the Lomb spectrum of HR series betw&éty’ and
the sampling as uniform modified by a random or sinusoid&l30”, which corresponds to the low HR period (AV block)
deviation. Consider a signat(t) (0 < t < t;) sampled with a mean sampling frequency of 0.6 Hz. The periodicity
between0 < t < ¢;) by a stationary, uneven sampling processf this spectrum has been marked by “A.” In Fig. 10(e),
with mean sampling frequencff; and betweerft; < ¢ < ¢p) the same is shown for the high HR period betwe##0”
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@)
Mran RR = 0,95

70 Deviation = 0.042 s HR series

the Lomb spectrum [24]. In the case where the whole signal
is taken, the mean is some intermediate value between the
low and high mean HR. This results in a signal with an

60

E 50 important dc and low-frequency components, whereas this
40 does not happen when averaging the low or high HR periods
304 , | independently. This effect, even considering only the spectrum

R T
minutes 10

Lomb PS% B A A

up to the lower “mean” Nyquist frequency, will alter the ratio
between the low and the high-frequency contents; this ratio

5 10 is used in clinical diagnosis. Also, as shown in Fig. 10(c),
§ 10 we can note the artifactual contribution of low frequencies
and the respiratory-related peak at frequencies belonging to
1074 " . a , . | the second band of the high HR spectrum. This problem, in
0 1 z 2 3&C) patients with gradually changing stationarity (no this case) can
e Classical PSD be attenuated by detrending the HR series (set its mean first
5 derivative to zero). This is equivalent to subtracting a best-fit
§ (by least squares) line from the HR series.
] In a general signal with no clearly divided stationary peri-
10 . | q T . 1 ods, the study will be analogous. The highest frequency free
v ! ‘ 2 3 f aliasing will be half the | ling f
10 ‘ @ of aliasing will be half the lower mean sampling frequency
| Lomb PSD of Low HR periods in the stationary partitions of the HR signal. The effect of the
§ 102 relatively high low-frequency contents will, again, appear as a
£ result of the nonstationarity, which keeps the mean subtracted
4 HR series with the low-frequency contamination. This is
10 ' , & I ' 1 important in HRV analysis, as has been previously stated,
0 1 z 2 3 S . : :
10°, making it necessary to select a HR time period with as stable
0 Lomb PSD of high HR period © - - ,
B £l LR periods behavior as possible to have an artifact-free HR spectrum.
5}
5 107
[a )
10" [ | ‘ , ; , V. CONCLUSION
0 1 Hz 2

In this work we have presented a detailed analysis of the

Fig. 10. Spectral analysis of HRV from record 231 of MIT-BIH databasq. omp method for power spectrum estimation of unevenly
(a) Shows the HR series, (b) is the Lomb spectrum, and (c) classical spectrum led si Is. We h d | d Ivtical .
after uniform resampling of the data at 2 Hz. (d) Lomb spectrum of the HRAMPIed signails. Vve have develope analytical expressions to

series at the low HR period between 2'40” and 6'30” (values outside thifind the performance of the estimate and we have corroborated
interval _have not bgen considerecf) a},nd (e) L9m‘t,> spectrum of the HR sefjggg study applying the Lomb power spectrum estimation to
at the high HR period between 6’40” and 10'20". .

HR signals.

In particular, we have noted that when the uneven sam-
and 10'20”, with a mean sampling frequency of 1.05 Hz. Irpling can be modeled as uniform with random variations or
this case, a respiration-related peak marked by “*” and tlnusoidal, the Lomb spectrum repeats itself with the mean
periodicity with the mean sampling frequency marked “BNyquist frequency, being an unbiased estimate of the signal
appear. Going back to Fig. 10(b) we realize that it is compospdwer spectrum in the base band and with a low-pass effect
of the superposition of two signals, of periodicities “A” andat upper bands that depends on the sampling distribution or
“B.” Also, the respiration-related peaks “*” appear with theahe sinusoidal variation. In addition, when the dispersion of
repetitions associated with the “B” periodicity (high HR) tahe sampling with respect to the uniform one is small, the
which they are related. In this way, we corroborate that tlteviation of the Lomb estimate at the base band, with respect
Lomb spectrum in this case is the superposition of two signathe true spectrum, is negligible.
each one affected by its own periodicity. In this case, the Our theoretical predictions about the Lomb spectral esti-
highest frequency with no aliasing is 0.3 Hz. However, singeation were confirmed experimentally using simulated and
the spectrum of the low HR has no significant contribution atal HR series signals. Comparison to the classical PSD
the high frequencies, the respiratory contribution of the higéstimation method applied after resampling demonstrated the
HR at frequencies>0.3 Hz is preserved without importantlimitations of the resampling approach and the superior per-
distortion in the spectrum shown in Fig. 10(b). formance of the Lomb estimate which avoids the low pass

Two more observations can be made from the spectradffect of resampling and prevents about the introduction of
Fig. 10. First, the low-frequency contribution has a muchrtifactual components in the base-band due to the inadequate
higher contribution in the Lomb spectra of the whole HRonsideration of the highest frequency up to which the base-
signal, Fig. 10(b), than it does in the Lomb spectrum of eadfand extends. We have found a periodic behavior of the
separate period, Fig. 10(d), (e). This effect is a result of th®mb spectrum, which corresponds to the frequency of the
mean signal subtraction that is performed prior to estimatimgean sampling period. We conclude that the upper significant
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frequency without aliasing is half the mean Nyquist frequency APPENDIX |
(that corresponding to the mean HR), and that signals WIPERIVATION OF A CLOSED EXPRESSION FOR X, (f) — X, (f)|?
frequency components higher than this will be affected by RE

To analyze the expectation ofX,(f) — X,(f

aliasing. 2

The simulation with Gaussian-like signals has agreed tﬁe[| (£)I7, we will expressX.(f) as
theoretical results, showing the superior performance of the oo N 2w fon 2t
Lomb estimate with respect to the resampled estimates. Thi&s(f \/—— / Z 6(t —nT)e= =0 di
effect is more remarkable as the mean sampling frequency
becomes smaller (heart rhythms lower than 60 bpm) where the = iX(f) Y (f) (55)
resampling supposes superior low-pass effect that is avoided VN
by Lomb estimations. For higher heart rhythms (superior to &fhere
bpm) the Lomb estimate behaves better that linear resampling, o N
but the estimation with cubic spline interpolation approaches / Z §(t — nT)eI 2 lonei2nft gp (56)
that of the Lomb estimate as the mean HR frequency increases.

However, both the Lomb estimate and the resampled estimates

can introduce some high-frequency contamination when em%r L3 §(f = nf.) + W)

the variations from uniform sampling are dramatic or the 5 Lun==09 s '

frequency of the variation is very high. This circumstance 1° estlmate|X (f) = X (N2

is very unlike over stationary HR signals, where the PSD X.(F) - X.(f)]2

of HRV estimation should be done. This contamination is a .

inherent problem of the uneven sampled signals, that can be = BIX(F) = EX((NDE () = ELX(HD]

addressed with the help of superior performance interpolators = E[Xs(f)X;(f)] — E[X:(HIEX (O] (57)

that keeping the low frequencies, more drastically attenuate Wg need to estimat&[X, (/)X

high-frequency parts in a selective way. Also, to avoid aliasing,

it has been shown that the resampling should be done at lea _ y N

to double the mean sampling frequency that in HR signals cangt[ N E{ X =PIV df

be fixed around 2 Hz. et s e
We have analyzed the case of uneven sampling that does / X =Y df

not follow the uniform plus random sampling patterns. In

these cases we have found that the highest frequency without = / / X(f-HX*(f-£"

aliasing in the Lomb spectrum is that frequency corresponding

to the lowest mean sampling rate in any portion of the original FOdf" dff (58)

signal. This was corroborated in a HR signal from a patieﬂ]ien we need to estimate th@[Y(f’)Y*(f”)] which from

with intermittent 2:1 AV block where there were two clearlyg56) can be expressed as

differently sampled parts of the HR signal. This result i

in total agreement with the theoretical analysis of unevenly E[Y (f)Y*(f")] =

random process whose expected valug | (f)] =

*(f)] which becomes

sampled signals presented in [10]. o N
We have demonstrated that the Lomb method provides better / / Z Z §(t — )/ >/ (entt)
estimates of the HR spectrum than classical estimates. Since n=1m=1

the power ratio between low- and high-frequency components
is relevant in clinical diagnosis, the low pass effect introduced X 6(t —mT)e 2™ A D g gy’ | (59)

by the resampling in classical methods is not desirable. In

addition, we have noted that the classical spectral estimatidagsuming that they,, are statistically independent for different
can include high-frequency components not present in ttime instants: the cross terms in the previous expression will
original signal, but due to periodicities of the original uneveappear only whem = m and then

sampled signal spectrum. These artifactual contributions can .
again alter the high/low power ratio and distort the spectral BY(f g (fo)o]
estimation. We also pointed out that spectral analysis of non- _ / " '
stationary HR series by any method will produce distortions B Z Z Lol = F)P(SRS = 1 fo)
which result from the impossibility of subtracting the dc level
from the mean HR value. One possible way to attenuate this

NnN=—o00 Mm=—o

* W(f’)][ (f" = mfo) x W(")]

artifact is by detrending the series (set its mean first derivative + 7 NP
to zero), that is equivalent to subtracting a best-fit (by least n_E_:OO I = Fal=OP)
squares) line from the input data. The results of HRV analysis 00 o

in nonstationary periods is an artifactual increase in low- X / §(t —nDYW ()™t dt

frequency power which is unrelated to HRV. This problem -
can only be totally solved by analyzing the HR series during X / §(t = nT)W (t)e 727" gy’ (60)
periods of stable mean HR. —o0
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KD-F0P =5 [ [ XU=1XG=0) 3 (Bl 48 = Pul=1 )Pl
x WHnT)ed 2/ L e=i2l"nT gt " (61)
D= =y [ [ XU = 10X0 = U+ 1) = Pu=DPa(1")
> fs Z s f _f// —ﬂfs)*(W(f/—f”)*W(f/—fH)) df/ df// (62)
MK =5 [ [ X=X+ F= Pl = P=F IR+ 1)
fo D0 8(f = nf )« (W(H«W(hH)| df df (63)
) - K0P = / X( = PR X = Pyx (Pal= )| fo 30 807 —nfi) = W () =W | par
-5 | U= PR = PR ( X =) (VD s WD
(64)

Introducing this result in [58], we obtain a first term that[7]
is equal to E[X;(/)E[Xs(f)]*, and the expected value

| Xs(f) — Xs(f)|? becomes as shown in (61) and (62) atpg
the top of the page. Taking the variable charfge- f = f,

we have (63) and (64), shown at the top of the page.
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