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Abstract—This paper presents a model for watermarking and determine whether or not the data was acquired through legiti-
some attacks on watermarks. Given the watermarked signal, mate means.
the so-called Wiener attack performs minimum mean-squared 1, general, a digital watermark should have several different

error (MMSE) estimation of the watermark and subtracts the . . . i s .
weighted MMSE estimate from the watermarked signal. Under properties. The most important are imperceptibility, security,

the assumption of a fixed correlation detector, the attack is shown and robustnesdmperceptibility means that the watermarked

to minimize the expected correlation statistic for the same attack data should be perceptually equivalent to the original, unwa-
distortion among linear, shift-invariant filtering attacks. It also  termarked data. In some applications, the watermark may be
leads to the idea ofenergy-efficient watermarking-watermarking e rcentible as long as it is not annoying or obtrusive; however,
that resists MMSE estimation as much as possible—and provides . . . .

a meaningful way to evaluate robustness. The paper shows that en- many gpphcatlons require tha_t the Watgrmark be imperceptible.
ergy-efficient watermarks must satisfy apower-spectrum condition S€curitymeans that unauthorized parties should not be able to
(PSC), which states that the watermark’s power spectrum should detect or manipulate the watermark. Cryptographic methods are
be directly proportional to the original signal’s. PSQ-compIiant typically employed to make watermarks secure. Finadlgust-
watermarks are proven to be most robust. Experiments with nasgmeans that, given the watermarked data, one should not

sighal models and natural images demonstrate that watermarks .
that do not closely fulfill the PSC are vulnerable to the Wiener be able to make the watermark undetectable without also de-

attack, while PSC-compliant watermarks are highly resistant toit. ~Stroying the value or usefulness of the data.
These theoretical and experimental results justify prior heuristic Another characteristic of a watermarking scheme is whether
arguments that, for maximum robustness, a watermark should or not the original data is available during detection. In some
be closely matched to the spectral content of the original signal. schemes [3], the watermark detector has access to the orig-
The results also discourage the use of watermarks that do not . | data. H ’ interf f th qinal bl
approximately satisfy the PSC. inal data. Hence, interference from the original can presumably
o _ be eliminatedBlind schemes do not have the luxury of using
Index Terms—Dbigital watermarking, robustness, spread spec- the original during watermark detection [4], [5]. They typically
trum, watermark attacks. . . .
apply some pre-processing to the received data to suppress in-
terference from the original [4], [6].

I. INTRODUCTION
- o . A. Attacks on Watermarks
IGITAL data, such as digital audio, images, and video,

can be stored, copied, and distributed quickly, easily, andn this paper, we are primarily concerned with robustness. I_3e—
without any loss of fidelity. Although generally beneficial, thes&Pre discussing robustness further, we need to introduce the idea
properties create problems in controlling access to or distrigRf-anattackon a watermark. An attack is any processing of the
tion of valuable digital data. Owners and authorized users Wptermarked data that might damage the watermark. Attacks
such data would like to protect them against unauthorized us&g® Pe coincidental, such as JPEG compression of a legally ob-
such as duplication and re-distribution. tained image, or hostile, such as an attempt by a multimedia pi-
Digital watermarkinghas been proposed as part of a systeFﬁte to destroy a watermark before re-selling watermarked data.

to protect digital data against unauthorized use [1], [2]. A digital EX@mples of attacks include compression, linear filtering,

watermarking system embeds information directly into digit@€0metric transformations, and D/A-A/D conversion. Some

data to produce watermarked data. As a result, even if copy-pftensive lists appear in [3] and [7], but it is impossible to

tection or encryption mechanisms fail, the information resid@@me all of the potential attacks. Instead, [8] provides a set of

in the watermarked data. This information may then be usedggnceptual attack categories. In the present paper, we take a
theoretical approach and only consider attacks that attempt to
remove a watermark or to confuse the watermark detector by

. ) ) linear, shift-invariant (LSI) filtering.
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of frequency-domain perceptual masking models. They reag@ng.,y) or realizations of random quantities (e.g[n]). For
that a watermark that is well-matched to the frequency conterdse of notation, the analysis focuses on one-dimensional
of the original signal can be hidden effectively. signals, but the results extend directly ff-dimensional

On the other hand, Hsu and Wu [9] and Paétal.[5] suggest (M -D) signals as well; thel/-D results are noted. To index
placing the watermark in the middle frequencies. Hsu and Ve A-D signalz[ny, no, ..., ny], we often use the notation
explain that, with regard to imperceptibility, the human visuat[7i], wheresi = (n1, na, ..., nar). Similar notation is used
system is less sensitive to high spatial frequencies, but with fer the frequency variablé = (w1, ..., war).
gard to robustness, processing like compression only preserveghe original signal (also called “host data” or “cover data”)
low spatial frequencies. As a compromise, the watermark shoigdepresented by the procegs|, which has variance?, auto-
lie in the middle frequencies. Piw al. also choose middle-fre- correlation functionk,...[k], and power spectrud,,,.(w). Sim-
quency embedding as a trade-off between imperceptibility aiarly, w[n] denotes the watermark, which has variangeand
robustness. power spectrun®,,,,(w). We assume that[n] andw|n] are in-

Xia et al.[10] propose embedding an image watermark in thdependent. The support of a realization is denoted/bgnd N
middle and high frequencies. They reason that the human visisathe number of samples iK'
system is less sensitive to noise at edges and textures, whicfihe models for embedding, distortion, and detection are first
correspond to higher-frequency content. Hence, the watermgiken in the context of deterministic signai$n], w[n], etc.
will be less perceptible, and they claim that it remains robubtowever, the analysis treats the signals as realizations of the
against attacks such as compression and additive noise.  corresponding random processgs], w(n], etc., and it charac-

Zhuet al.[11] employ a wavelet-based scheme and argue ftarizes embedding, distortion, and detection by examining the
placing a watermark in the high frequencies to keep the watexpected behavior over the ensemblesfef andw|r]. Finally,
mark imperceptible. They report that this watermark remainge assume that watermark security is achieved by making
detectable after wavelet-based compression. the output of a cryptographically secure pseudo-random number

Clearly, uncertainty about the proper structure of a watermagknerator with a secret key known only to authorized parties.
remains. Part of the difficulty in answering the question is that .
robustness is easy to postulate but hard to measure. Currenth); it/Vatermark Embedding
is still difficult to quantify the detectability of an attacked water- The watermarked signgln] is simplyy[n] = z[n] + w[n],
mark and the quality of the attacked data. Some initial attemptderez[n] andw[n] are realizations of the respective random
have been made in [7] and [12]. They are based on selectingracesses|n| andw|n]. In the context of random processes:
distortion measure, performing a battery of attacks on different
watermarks, and measuring quantities such as the probability of yln] = x[n] + win]. @)
error after each attack. They propose a methodology for evag—ncex[
ating robustness experimentally, but they are specific to a given
watermarking method and the set of attacks. Moreover, they lack,, (w) = @,z (w) + Puw(w), and @,y (w) = Py (w)

a strong theoretical foundation and development. (2)

This paper also attempts to answer—at least in part—tiered®,,,(w) is the cross-power spectrumwfn] andy|n].
guestion posed at the beginning of this section. We take a theowWe remark that many current watermarking methods are
retical approach to watermarking, which we initially presentdshsed on spread-spectrum communications [15], [16]. The
in [13] and [14] and investigate further here. Section Il intraseminal work on digital image fingerprinting by Ce al. in
duces a general watermarking model. In Section Ill, we presd8} popularized the use of direct-sequence spread-spectrum for
the Wiener attack, which includes two interesting special casestermarking. The model (1) encompasses spread-spectrum
removal and anticorrelation attacks. This framework leads watermarking, discussed in more detail in [4] and [17], for
the idea of energy-efficient watermarking, and it enables us égample.
link watermark detectability to signal quality. The latter prop- .
erty produces a meaningful robustness criterion. Section R/ Distortion Measure
explains how to resist the Wiener attack, which produces theTo quantify signal quality, we measure the distortion between
power-spectrum conditio(PSC), the main result of the papera signali[n] and the original signat[n] via thesample mean-
Experimental results with theoretic signal models, synthetiguared error(sample MSE):
random signals, and natural images appear in Section V and

n] andw|n] are independent

further illustrate the importance of the PSC. D(z, x) = % Z (2[n] — z[n])*.
neN
Il. WATERMARKING MODEL In the context of random processkg:| andx|n|, the sample

i MSE is replaced by an expectation, and thistortion is the
As a general watermarking model, we treat the Waterma{ﬁnsemble) MSE
om.

and original data as signals, both deterministic and rand

Random signals are modeled as ergodic, zero-mean, wide-sense D(x,x)=E [(g[n] — x[n]ﬂ ] ©)
stationary (WSS) discrete-time (or discrete-space) random

processes (DTRPs). Boldface indicates random quantities (elpte thatD(z, z) is a sample average, while the distortion
x[n]), and normal typeface is used for deterministic valueB(x, x) is an ensemble average. We also express signal quality
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as fidelity via theoriginal-to-noise ratio (ONR), given by thatr = ro andD(y, x) < Dembed, Where the upper bound

ONR(%, x) = 10log,, 02/D(%, x) dB. Dembea imposes the imperceptibility requirement. As shown
For the watermarked signg([n], theembedding distortiors  below, the solution fo®,,.,,(w) is equivalent to making estima-

D(y, x) = o2. The watermark signak[n] should be imper- tion of w[n] from y[n] as difficult as possible, in a well-defined

ceptible, so we define theatermark-to-original ratio)(WOR) sense.

by WOR = 10log;4(c2/02) dB = —ONR(y, x). Asarule A key assumption used throughout this paper is thatde-

of thumb for image watermarking, WORs below20 dB are tector is fixed and does not compensate for the att&cdme

required to keep the watermark imperceptible. For an attackextent information-theoretic papers have adopted a game-theo-

signaly[n], theattack distortionis D(y, x). retic approach and consider the ideal situation in which the re-
ceiver knows the attack and can compensate for it [18], [19].
C. Watermark Detection There are several reasons, primarily pragmatic, for the assump-

Given a received signai[n], the watermark detector makedion of a fixed detector. First, we assume the use of a correlation
a (possibly incorrect) decision about the presence or absencg%tIeCtorg whichis popular In many Water_rnark|_ng schemes in the
wn]. We assume that the detector is synchronized with the efyirrent literature. Correlation detection is optimal for detecting

bedded watermark. A popular detection methoddgelation & known signal (i.e., the watermark signal) in additive white
detection in which the detector computes tkample correla- Gaussian noise (AWGN). It is suboptimal if the signal is not de-
tion statistic graded solely by AWGN. For example, the noise may be colored

(prewhitening is required prior to correlating) or non-Gaussian
5= % Z gln]wln] (4) (g.g., a_sign detectqr is locally opt_imal for_additive: wh_ite I__apla-

cian noise), or the signal may be filtered (inverse filtering is nec-
essary). The key pointis that any detector that has been designed
and then comparesto a thresholdl’ to decide whethew[n] for a specific set of assumed attacks will suffer when the actual
is present inj[n] (s > T) ornot (s < T). A larger value ofs  attack differs significantly from the design assumptions. It is
corresponds to increasing confidence thpt] is indeed present thus reasonable to examine the behavior of a fixed detector when
in 9[n], and typicallyT lies between 0 and?. An important its assumptions are violated. For example, Voloshynoveta.
assumption in this paper is théite detector is fixedThe next [20] have proposed an effective attack in which outliers are in-
section motivates this assumption. troduced to confuse the correlation detector.

In the random-signal context, during detection, the water- Second, when watermarking is viewed as a game [18], [19],
mark signal is a particular realizatian{n] of w[n] and is com- the watermarker and attacker are opponents who alternately im-
pletely known to the detector. Hence, when treating the correfarove their respective methods. In theory, the game continues
tion statistic as a random variable, we must conditionugm].  until one player wins or a stable equilibrium is reached. In prac-

neN

Thenr, theexpected value of the correlation statisic tice, however, once the watermarking system has been specified
and deployed, the watermarker can no longer modify it. The at-
r=E[E[s|w[n]]] =E[s]. (5) tacker, onthe other hand, is free to develop additional, ever more

insidious attacks. The watermarker can only hope that the de-

Since usually) < T < o;,, we often normalize- by o7, t0  ployed watermarking system can withstand them.
describe the relative amount of watermark power that reachesrhird, for implementation reasons, it may not be feasible or

the receiver. cost-effective to build thousands of sophisticated watermark de-
. tectors that perform attack estimation and compensation; the
D. Overview of Attack and Defense simple correlation detector may be an economic, rather than en-

We briefly summarize the approach used to study the atta@keering, choice.
and defense. We characterize the attack and defense by exam-
ining the distortionD(y, x) andr, the expected value of the . WIENER ATTACK
correlation statistic. The attack is motivated as follows. Ide- ] ) o
ally, the attacker wishes to recover the original sigrfa] from  From Section I1-D, the attacker’s goalis to minimizgy, x)
y[n]. Failing that, the attacker would like to produce an attackéch that = 7o. To impose some structure on the problem,
signal[n] such thatj[n] has acceptable fidelity and that thgVe assume that the attack consists o_f LS,I f_||ter|ng and additive
watermark detector will (incorrectly) decide thafn] was not NOiSe. Letg[n] andG(w) denote the filter's impulse response
embedded irj[n]. Rather than working with particular realiza-2nd transfer function, respectively, amfh] denote the noise,
tions, we consider random processes, so the attacker's probléich has power spectrus,, (w) and is independent of[]
is to minimizeD(§, x) such thai = r, wherer, is the desired andw[n]. Then the attacked signgln] is
expected value of the correlation statistic. Note that weako
consider the variancewr(s) because we are primarily interested y[n] = g[n] *y[n] + v[n] = g[n] * (x[n] + w[n]) + v[n]. (6)
in the case when = 0, where detection becomes unreliable.

The defense is similarly motivated. Given the attack chosenWe formally state the attacker’s problem as: Given. (w),
by the attacker, the watermark signaln] is a realization of ®,,,(w), andrg, selectG(w), ®,,(w) to minimize D(y, x)
w|n], which is characterized by its power spectrdm,,(w). such that- = ro. The solution is given by the following the-
The watermarker choosds,,,,(w) to maximizeD(y, x) such orem, which is proved in the Appendix.
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Theorem 1 (Wiener Attack)Let ®,.,(w), ®uw(w), andrg
be given. Under the constraint= ro, D(y, x) is minimized if
and only if

Gw)=1-vH(w), M-D: G(&) =1 —-vyH(J),
D,,(w) =0, D,,(d)=0 @
where~ is a real, scalagain factor, and
B Dy (W)
H@) = 50 + Puale)’
M-D: H(@) = Py (D) 8)

Dy (D) + Puvw (@)

With G(w), H(w), and®,,,(w) so defined, for any,

r=05, =0, ©)
D(y,x) =05, — (2 =)0}, (10)
E=E[(wl] - wl])’| =02 -3 (1)
where
1 [ 2 (W)
2 .~ ww
Hence, to achieve = r:

v = (02 —r0) /0%, (13)

The corresponding attack distortion is

2 _ 2
D x) = o~ (- o) + P2 g
a

W

Let h[n] denote the impulse response correspondirg o),

sog[n] = é[n] — yh[n]. Also letw([n] = h[n] * y[n]. Observe
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Fig. 1. Block diagram of Wiener attack.

throughw(n] sincew[n] is the MMSE estimate ofv[n]. Any

other changes tg[n| are uncorrelated witkw[n] and can thus

only increaseD(y, x) without reducingr. Technically, an ex-
amination of the expressions ferand D(y, x) in Appendix B
reveals that setting? > 0 increased(y, x) but does not af-
fectr. The noise does not improve the attack, so the attacker
should setv[n] = 0, Vn. This somewhat surprising result oc-
curs because the fixed correlation detector does not compensate
for the attack; if the receiver compensated for the attack, noise
would be necessary [18], [19].

For given power spectrd,... (w) and®,,.,(w), we can easily
compute the relationship betweeandD(y, x). We only need
to computer2 in (12) (e.g., by numerical integration), and then
we can use (14) to find(y, x) for anyr,. We can also compute
E via (11).

From (9) and (10), both andD(y, x) can be parameterized
by the gain factor. It is now possible to relate watermark de-
tectability, in terms of-, to the attack distortiod(y, x). The
attacker varieg to trade offr and D(y, x). Two values ofy
result in interesting special cases of the Wiener attack.

1) Removal Attack:With v = 1, the Wiener attack is ee-
moval attackFor the attacker, this form has the appealing prop-
erty that it removes as much of the watermark energy as possible
while minimizing the attack distortion. This case is equivalent
to Wiener denoising. The result is intuitively clear from (15), or
it may be derived by taking (10) and settid®(y, x)/dy = 0.

that H (w) is the transfer function of the Wiener filter for esti-AlS0, r = E wheny = 1.

matingw[n] from y[n], sow][n] is the Wiener ofinear min-
imum mean-squared errqt MMSE) estimate ofw[n| given
y[n]. £ in (11) is the MSE of the estimate.xfn] andw|[n] are

2) Anticorrelation Attack: The attacker can instead select
so thatry = 0, atthe expense of increasiiy(y, x). We denote
this special value of by ~q,

further assumed to be jointly Gaussian, then the Wiener filter

produces the MMSE estimate among all estimators, including

nonlinear estimators.
Equation (6) becomes

yln] = (6[n] = yh[n]) x y[n] + v[n] = y[n] — ywln] (15)

Yo =03/ (16)

This choice ofy drivesr to zero with the minimum corre-
sponding distortionD(y, x). Since usually) < T < o2, the
probability that the detector mistakenly decides thft] is not
present inj[n] is at least 0.5. We call this attack anticorre-

since (7) indicates that[n] = 0, ¥ n. From (15), the attack can |ation attack the name emphasizes that the attack forcés

be viewed as first computing the Wiener estimétg:] of the
watermark signaiv[n] from y[n] and then modifyingy[n] by
subtracting a weighted version éf[n| and adding noise|[n].

zero, as opposed to disabling detection by some other mecha-
nism (e.g., desynchronization). We do not use the term “decor-
relation attack,” which could imply transforming[n] or y[n]

We call this attack th&Viener attacka block diagram appearsinto uncorrelated components like the Karhunen—Loéve trans-

in Fig. 1.

A. Discussion of the Attack

form.
This form of the Wiener attack is similar to an attack pro-
posed by Langelaat al.[21], who used nonlinear filtering to

The theorem indicates that the attack showmdd introduce estimate a portion of a white-noise watermark and drive the ex-
any additive noise. Intuitively, the attacker can only affect pected correlation statistic to zero. However, the Wiener attack
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is easier to analyze because of its linearity, and it permits col- TABLE |
ored watermarks. EXAMPLE VALUES FORPSC-MMPLIANT |NDEPENDENT2\/VATERMARKS. THE
ATTACKS AssuMENO ADDITIVE NOISE (62 = 0)

B. Energy-Efficient Watermarking and a Robustness Criteria Removal Anticorrelation
WOR || apsc r ONR(y,x) | 7opsc  ONR(y,x)
—20dB ][ 0.9901 | 0.9901 20.0432 dB 101.00 0dB

We can interpret the normalized M3/ o2, as the fraction of

watermark energy that resists MMSE estimation. Since enel

. o —25dB || 0.9968 | 0.9968 25.0137 dB 317.23 0dB
that can be estimated can also be removed, itis wasted. Awa 50 1ol 19900 | 09990 30,0043 dB | 1001.02 0dB
mark that maximize& /o, wastes the minimum fraction ofits _5- 1 Il 09997 | 09997 35.0014 dB | 316328 0 dB
energy and is said to lenergy-efficientSinced < E/o2 <1,  _404B || 0.9999 | 0.9999 40.0004 dB | 10001.00 0dB
we can also comparB /o2, for different watermarks. A larger
ratio means greater resistance to MMSE estimation.

In addition, we now have a well-defined way of evaluating th&. Consequences of the Power-Spectrum Condition
robustness of a watermark. Given different watermawl], We refer to (17) as thpower-spectrum condition(PSC). It
wa[n], etc., which are characterized by their respective powsiates that the watermark’s power spectrum should be directly
spectra®., v, (w), Puw,w,(w), €tc., the watermarky;[n] that proportional the original signal’s power spectrum. In this sense,
produces the largest value DYy ;, x) for a given value of =  the watermark should look like the originalVe say that a wa-
ro is most robust. Similarly, if all watermarks yield the sameermark that satisfies (17) &pectrally matchedbo the original

attack distortionDy, then the watermark with the greatest valugr PSC-compliantin this section, we study what happens when
of ; is most robust. We thus have a meaningful way to compaigy) is satisfied.

the robustness of watermarks. The main resultis that spectrally-matched watermark signal
is most robustin the sense that the attacker must introduce the
IV. RESISTING THE WIENER ATTACK: greatest amount of distortion to make= ro. Important condi-
THE POWER-SPECTRUM CONDITION tions are the assumptions of a fixed correlation detector and the

. ] form of the attack (LSl filtering and additive noise).
Now let us consider the watermarker's perspective. Fromyhe \wiener filter transfer function (8) reduces to

Section lll, the watermarker wishes to maximiZ&(y, x)
under the constraints= r, andD(y, x) = 02, < Dembed. SO . a2
that the greatest amount of watermark energy might reach the Hpsc(w) = Hpsc(@) = o2 + o2
receiver, the watermarker should choeg§e = Depypeq- The N ’
watermarker cannot alter the original signal’s power spectruamd the corresponding maximum MSE is given in (18). Note that
®,.(w), but the watermarker has the freedom to specify tithe normalized MSE /o2, for a PSC-compliant watermark is
watermark’s power spectrum,,,, (w). simply apsc.

From (14),D(y, x) is maximized whenr2 is minimized,  From (12),02 = 0., /(02 + 02) = (1 — apsc)o?,. Then (9)
and from (11)42 is minimized whenE is maximized. Hence, and (10) give
regardless ofy, the watermarker should choodg,.,(w) to
maximize E—and hence create an energy-efficient water-
mark—under the variance constraint. .

The solution of this problem leads to the theorem below; the D(y, x) = (1 —v(2—7)(1—apsc)) on.
proof appears in [13].

Theorem 2 (Power-Spectrum Conditiorfjor the water-
marking model (1) £ is maximized if and only if

=1-apsc (19)

= (L—-7y(1 - apsc)) on, (20)
(21)

<

These expressions hold regardless of the dimensiondlity
Sincew|[n] should be imperceptible, we assunate> o2, so
apsc =~ 1. Table | lists example values abgc for WORs from
) ) —20to—40 dB. We see that these watermarks have normalized
B (w) = ‘7_15 B, (w), M-D: ® (&) = 0_1; ®,,() MSEs close to unity. Hence, a PSC—compllant watermark can
Oz Oz hardly be estimated by a Wiener filter.

7
and, for any dimensionalit§/, the maximum MSE is B. Special Cases of the Wiener Attack
5 o If the attacker sety = 1 for a removal attack, then the ex-
Epsc = % = apsco?, (18) Pected correlation statistic and attack distortion become
Owt+ 0% D(y, x) = apsco? ~ o2 As a result, the variance of the wa-
termark is hardly reduced by the attack, and the distortion of the
whereapsc = 02 /(a2 + 02). attacked signaj[n] is a negligible improvement over the water-

We remarked in [13] that one could use a frequency-weightetarked signa[n]. Indeed, ONR(y, x) = (02 + 02) /02, ~
MSE E,, instead ofF. Such a weighting might be desirable fow? /02 = ONR(y, x). From the third column of Table |, it is

w

applications like audio watermarking, which use frequency-dolear that- is barely affected by this attack. The fourth column

main perceptual masking models [22]. Unfortunately, the solu-
P P 9 [ ] y 1it seems likely that this result has been found previously, since it amounts

tion for @, (“’) does not have a Conveln'ent form like (17) ang) the worst case for MMSE estimation of a signal (the watermark) subject to
does not lend itself to tractable analysis. signal-independent, additive, colored noise.
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1-D signal models 2-D separable signal models
35 T 45 T T T
highpass
high
'ghpass QO TN e
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[}
= & 15f
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< <
: Bl 1 T e
lowpass | (PSC—com{JIiant) lowpass | (PSC-compliant)
0o 0.2 0.4 0.6 0.8 1 0 02 0.4 o6 08
Expected correlation statistic Expected correlation statistic r
(2) )
Fig. 2. Theoretical performance of watermarks using AR signal models. Original signal has a lowpass | signal meglekahdWOR = —30 dB, which is
indicated by the dashed lin®NR(y, x) = —WOR). Circles indicate the results of the removal attack.

shows thatONR(y, x) improves by less than 0.05 dB over Fig. 2 plotsr againstONR(y, x) for various watermarks
ONR(y, x), which demonstrates the effectiveness of a speshen the WOR is-30 dB, 02, 1, and the original has a
trally-matched watermark. 1-D lowpass | model [Fig. 2(a)] or a 2-D separable lowpass |

Suppose instead that the attacker performs the anticorretaadel [Fig. 2(b)]. Because the 2-D signal models have greater
tion attack. From (16)yo becomesyy psc = (02, + 02)02 signal separation (e.g., between a highpass and lowpass signal)
1/(1 — apsc), and (10) givesD(y, x) = o2 + o2. As are- than the 1-D models, the results are more dramatic for 2-D. For
sult, the attack distortion will be at least as large as the varianegerence, the dashed line indicat@SR(y, x), the fidelity of
of the original signal, an®NR(y, x) < 0 dB. Such an at- the unattacked, watermarked siggéh]. Circles show the ex-
tacked signal will certainly be useless. In the fifth column gbected correlation statistic/distortion point for the removal at-
Table I, the required gain factap psc is given for the example tack. The points where the curves intersect the vertical axis give
WORSs. Note how much the estimatgn] must be amplified, ONR(y, x) for the anticorrelation attack.
which introduces large amounts of distortion; the sixth column Fig. 2 shows that both bandpass and highpass watermarks
of the table shows the correspondi®dR(y, x), which is al- are not very robust. For the 1-D case, the removal attack is
ways 0 dB. fairly effective, and the anticorrelation attack can disable detec-
tion while maintaining reasonably good signal fidelity. For the
2-D case, removal is very effective, and the anticorrelation at-
tack yields an attacked signal with much better fidelity than the
) _ unattacked, watermarked signal.

For the purpose of analysis, correlated signals—such asrpe removal attack is less successful against white water-
audio or images—are often approximated dytoregressive marks. The attacked signal may not have acceptable fidelity
(AR) random processes [23]. We denote the one-dimensiogg the anticorrelation attack for the 1-D case, but it is likely
(1-D), pth-order AR process[n] by AR(p), which has the {4 pe usable in the 2-D case.
modelx[n] = _Zifl arX[n _”k] + ‘}1[”]' where;u[n] IS1-D  The curves for the lowpass Il watermarks show that a water-
WSS white noise. "Lowpass I and "Lowpass II" denote AR(Ljnary that approximately satisfies the PSC is highly robust. The
models witha; = 0.95 and 0.90, respectively. “Bandpass” iSemoval and anticorrelation attacks are ineffective.
an AR(2) model witha; = 0, a; = —0.81, while "Highpass”  pgc.compliant watermarks are clearly superior to the other
refers to an AR(1) model with; = —0.95. watermarks. For any value of the fidelity ONR(y, x) is far

For two-dimensional (2-D) DTRPs, we employ a separabigy|q\y that of the other, non-PSC-compliant watermarks. As ex-
AR(p1, p2) model, x[n1, 2] = xi[ni]xs[ns], wherexi[m]  pjained in Section IV-A, (20) and (21) do not depend upon the
andx;|n,] are 1-D ARp1) and ARp») processes, respectively,qimensionalityM, so the curves for the 1-D and 2-D PSC-com-
andp; = p> = p. Hence, for 2-D signals, “Lowpass I” refers to

. . ; Eliant watermarks are identical. &ZNR(y, x) drops,r slowly
the product of two 1-D AR(1) "Lowpass I" models (horizontalye creases, so that a large l0sONR(§, x) is required to affect

and vertical), and likewise for other designations such as “Banrdéignificantly. WhenONR(¥, x) = 20 dB, r remains greater
pass.” Of course, more flexible 2-D power spectra models coylth, 0 9 and even whe(hNR(y x) = 10’dB r 2 0.7. The

be employed, but these are sufficient to illustrate the main id&asnoval attack has almost no effect, and the anticorrelation at-

in this paper. _ tack completely destroys the attacked signal.
In Sections V-A and V-B, no signals are actually generated,

no watermarks are actually embedded, and no watermark de
tion is actually performed. Instead, we examine the theoreti
relationship betweer, andD(y, x) using (12) and (14). Like-

wise, F is computed from (11).

V. EXPERIMENTAL RESULTS
A. Theoretical Performance for Signal Models

C- .
1 Theoretical Performance for Natural Images

Additional experiments were conducted on 8-bit grayscale
natural images. The power spectruf.,(w;, ws) of the
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Fig. 3. Theoretical performance of watermarks for natural images. The WGRGsdB. Circles indicate the results of the removal attack. For Cameraman,
PSNR = ONR + 12.24 dB; for Lenna,PSNR = ONR + 13.76 dB.

Fig. 4. Original Cameraman image.

TABLE I
COMPARISON OF PREDICTED () AND EXPERIMENTALLY -OBTAINED
(E) QUANTITIES FOR THE CAMERAMAN EXAMPLES IN FIGS. 5 AND 6.
THE WOR 1s —30 dB,AND THERE I1SNO ADDITIVE NOISE (62 = 0).

NoTte: PSNR = ONR(y, x) + 12.24 dB

N1 x N original imagex[n, no] was estimated using the "pSC-comp. (P)

periodogram [23],Per,...[k1, k2]

= |XT[k1, k2][?/(N1N2),

whereX [k1, k] is the 2-D FFT ofz[ny, ns].
We remark that taking the full-size transform of an image o ]
may not be the best implementation for actual Watermarkirgages for Cameraman. The original image was used during

schemes. Also, the periodogram produces an unbiased, but

Removal Anticorrelation
Watermark || E/o% | r/oZ  ONR(y,x)| r/o2, ONR(y,x)

Highpass (P)|| 0.1514 | 0.1514 3820dB |0 37.49 dB
(BE)|| 0.1423 | 0.1517 38.47dB | 0.0004 37.81dB

Bandpass (P)|| 0.5067 | 0.5067 3295dB |0 29.88 dB
(B)|| 0.5457 | 0.5371 32.63dB | 0.0616 29.74 dB

White (P)|| 0.8935 | 0.8935 30.49dB |0 20.76 dB
(E)|| 0.8479 | 0.8474 30.72dB | 0.0004 22.54 dB

Lowpass I (P)|| 0.9642 | 0.9642 30.16dB | 0 15.69 dB
(E)|| 0.9670 | 0.9655 30.15dB | 0.0355 15.65dB

0.9990 | 0.9990 30.00dB | O 0.00 dB

(E)|| 0.9993 | 0.9990 30.00dB | 0.0000  0.00 dB

tection.

consistent, estimate of a signal’s power spectrum [23]. NonetheTO generate PSC-compliant watermarks, we set
less, these methods are sufficient for illustrating the relationship

wlni, n2] = /o2 Jo2 IFFT {«/Perm[kl, o] Uk, kg]}

Fig. 4 shows theoretical performance curves for the 256
x 256 Cameraman and Lenna images. The WOR was SelwRereU[ky, k| is the 2-D FFT of the output[ny, ny] of a

between theory and practice.

—30 dB. The image-processing community often useptrak

unit-variance white Gaussian random number generator. With

signal-to-noise ratigPSNR) as a fidelity metric forimages anchis construction Per,, [k1, k2] ~ (02 /02)Pergy[ky, kal;

video. PSNR and ONR are related B§NR — ONR(y, x) =

equality would hold ifPer,,, [k1, k2] were equal to unity for all

10log; 255° — 10log, o7 The qualitative behavior is similar 1., £,]. Another way to generate a PSC-compliant watermark
to the signal-model-based curves of Fig. 2. The anticorrelatigtg set

attack can defeat bandpass and highpass watermarks; it may

also defeat white watermarks, sSinB6NR ~ 33 dB, which
may be acceptable fidelity. The lowpass watermarks should
leave severely distorted attacked images, and the PSC-C%
pliant watermark should produce a worthless image; ideaIIde

should equal the mean gfn1, ns].

C. Experimental Performance for Natural Images

wlny, na] = /02 /o2 1IFFT {| X k1, ko]| exp j0[k1, k2]}

ere the phase angigk1, k-] is chosen randomly (uniformly
stributed ovef0, 27)) for each[k,, k2] but subject to appro-

priate symmetry constraints to ensure thdb,, no] remains
real. Other watermarks were generated using the 2-D separable

AR model.

Unlike the theoretical investigations of the preceding sec- Fig. 4 shows the original, unwatermarked image. In these ex-
tions, actual watermarks were generated, embedded, and priments on CameramaWOR = —30 dB, andPSNR =
tected in the following experiments. Here we present examplONR(y, x) + 12.24 dB.
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Bandpass White Lowpass | PSC-compliant

Fig. 5. Examples of attacked images after removal attack.

White Lowpass | PSC-compliant

Fig. 6. Examples of attacked images after anticorrelation attack.

watermarked image has been noticeably degraded and may no
longer be useful. Finally, for the PSC-compliant watermark, the
attacked image after the anticorrelation attack is almost per-
fectly flat, and it is wortless to the attacker.

An example of PSC-compliant watermark(ni, ns] is
shown in Fig. 7. The watermark is obviously correlated, but in
the spatial domain it does not resemble the original image.

VI. SUMMARY AND CONCLUSIONS

The simple models for watermarking and the Wiener attack
Fig. 7. Example of a PSC compliant watermark for Cameraman.  Yyield insight into the structure of a watermark for improved ro-
bustness. An important assumption is the use of a fixed correla-
Table Il summarizes the numerical results for Cameraméinon detector that does not compensate for the effects of attack.
The experimental results closely match the values predictAtso, the variance of the detector statistic is not considered be-
from theory (see Fig. 3). The highpass, bandpass, and whiteise we are mainly interested in the case where the expected
watermarks are all vulnerable to the anticorrelation attackalue of the correlation statistic becomes zero. These consid-
while the lowpass | and PSC-compliant watermarks cannot beations lead to the idea of energy-efficient watermarking and
defeated without also destroying the attacked image. provide a way to link the detectability of an attacked watermark
Fig. 5 shows example images resulting from the removal &b the distortion of the attacked signal. It then becomes possible
tack for different watermarks. (The watermarked images appédarevaluate robustness in a meaningful way. The key result is
identical to the original, unwatermarked image, so they are rtbie power-spectrum condition (PSC), which states that a wa-
shown.) The removal attack is effective against the bandpas wermark is energy-efficient if and only if its power spectrum is
termark, but less so against the white one. For the lowpasditectly proportional to that of the original signal. In terms of
watermark, the attack leav€XNR(y, x) virtually unchanged, power spectrathe watermark should look like the original
and the attack has almost no effect against the PSC-complianthe PSC is intuitively satisfying. To make a watermark hard
watermark. to attack, given the watermarked signal, it should be difficult
More important, Fig. 6 shows images with the results of the separate the watermark and original signals. The PSC holds
anticorrelation attack. For both the bandpass and white watér any signals that meet the assumptions of the model. It may
marks, the attacked images still possess good visual quality ahdrefore be applicable to digital audio, images, and video, for
would likely be useful to the attacker. The attacked lowpasskample.
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The experimental results show that watermarks that fail (24)
to satisfy the PSC—i.e., bandpass, highpass, and white wag
termarks—are vulnerable to the Wiener attack. However, 1 ™
PSC-compliant watermarks cannot be defeated by the Wiener =95 |G (w)] cos P(w) Doy (w) dw. (25)

—T

attack. Watermarks that are close to being PSC-compliant also
resist attack well, so in practice, simple parametric models ffen construct the Lagrangidrfrom the integrands of (24) and
the watermark power spectrum may be sufficient. 25):

These results support the heuristic arguments [2], [3], [24(],
[25] in favor of matching a watermark to the spectral content J— [(|G(w)|2 — 2|G(w)] cos $(w) + 1) B, (w)
of the signal being watermarked. They also refute earlier argu- o
ments that advocate bandpass, highpass, or white watermarks. HG(W) o (W) + P (w)]

We remark that compression algorithms like JPEG and
MPEG tend to preserve only the large-magnitude frequency = MG (W)l cos p(w) Puw (w)-
components of the original signal. Similarly, perceptually-based
watermarking schemes often use frequency transforms or subAn extremum occurs whetl.J/d¢(w) = 0.J/9|G(w)| =
band decompositions and embed watermark energy rougAN/9®uv.(w) = 0. First, 8.J/0®,,(w) = 0 if and only if
in proportion to the magnitude of the transform or subbarfBvv(w) = 0,Vw. Secondd.J/0¢(w) = [2Pza(w) + ALy (w)]
coefficients of the original signal. As a consequence, corZ(w)[sin ¢(w) = 0. Hencep(w) = Lkm, sosinp(w) = 0
pressed-domain watermarking schemes and watermarkfificos ¢(w) = £1, s0G(w) is real. Third,0.//0|G(w)| = 0
methods that use perceptual models both have the appeadifids |G(w)| = ¢I$£t)(:§i/§ii?$)(w) cos p(w). ThenG(w) =

side effect that they approximately satisfy the PSC. |G(w)] cos p(w) = @rgw)(ﬁi/qf)?‘éb(@ (£1)%
Finally, define H(w) as in (8), and lety = 1 — A\/2; (7)
APPENDIX follows. The solution can be shown to be a global minimum
WIENER ATTACK using proof-by-contradiction; the proof is omitted to conserve
A. Attack Derivation space.
From the attack model (6) B. Expressions for, D(y, x), and E

X X ) Let h[n] denote the impulse response that corresponds to

D(y.x)=E [(y[n] —x[n]) ] H(w), and letw([n] = h[n] * (x[n] + w[n]). Then
=E -6 =+ + 2 T
[((g[n] [n]) * X[?’L] g[n] * W[n] V[n]) ] 0'31 — % |H(w)|2 (‘I)m:(w) + (I)ww(w)) dw.

—T

:%/ (16 (@) =1 ... ()

Substitution of (8) forH (w) gives (12). Also
HG@) By (w) + P ()] o

22) BRuiw[0] =E[W[n]wn]

and =B Y hlk](x[n — k] + w[n - k])W[n]]
r =E[y[n]wn]] = E {{g[n] * (x[n] + w[n]) + v[n]] w[n]} - zk: A[K] R [K] = % _ﬂl H(w) P (w) dw=02.
=E { Zg[k]x[n—k]—l—z glk]w[n—k]+v[n] w[n]}
k k Next
=Y glk] Ruu k] = % _ /_ 7; G(W)Puw(w) dw. (23) = B[(x[n] + wln] — yw[n] + v[n]) w[n]] = 02 —vRaw[0]

Write G(w) in magnitude-phase form, which gives (9). Similarly

% = — yWin] + vin] — x[n])?
G(w) = G(w)]cos p(w) + 1G(w)] sin p(w). D(3. %) =E [(xln] + wln] = yilo] + v{r] = xlo])’]

=05 — 27Reu[0] + 707, + 0}
Then (22) and (23) give, respectively,
L which leads to (10) since? = 0. Then letE = E[(w[n] —
D(y, x) = —/ [(IG(w)]? = 2|G(w)| cos p(w) + 1) W([n])?], sOE = o7, — 2R4.,[0] + 07, and (11) follows.
2m ) Lastly, setting: = r in (9) yields (13), and substituting (13)
X Py (w) + |G(w)[* P (w) + Puu(w)] dw,  into (10) gives (14).
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