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Abstract—This paper presents a model for watermarking and
some attacks on watermarks. Given the watermarked signal,
the so-called Wiener attack performs minimum mean-squared
error (MMSE) estimation of the watermark and subtracts the
weighted MMSE estimate from the watermarked signal. Under
the assumption of a fixed correlation detector, the attack is shown
to minimize the expected correlation statistic for the same attack
distortion among linear, shift-invariant filtering attacks. It also
leads to the idea ofenergy-efficient watermarking—watermarking
that resists MMSE estimation as much as possible—and provides
a meaningful way to evaluate robustness. The paper shows that en-
ergy-efficient watermarks must satisfy apower-spectrum condition
(PSC), which states that the watermark’s power spectrum should
be directly proportional to the original signal’s. PSC-compliant
watermarks are proven to be most robust. Experiments with
signal models and natural images demonstrate that watermarks
that do not closely fulfill the PSC are vulnerable to the Wiener
attack, while PSC-compliant watermarks are highly resistant to it.
These theoretical and experimental results justify prior heuristic
arguments that, for maximum robustness, a watermark should
be closely matched to the spectral content of the original signal.
The results also discourage the use of watermarks that do not
approximately satisfy the PSC.

Index Terms—Digital watermarking, robustness, spread spec-
trum, watermark attacks.

I. INTRODUCTION

D IGITAL data, such as digital audio, images, and video,
can be stored, copied, and distributed quickly, easily, and

without any loss of fidelity. Although generally beneficial, these
properties create problems in controlling access to or distribu-
tion of valuable digital data. Owners and authorized users of
such data would like to protect them against unauthorized usage
such as duplication and re-distribution.

Digital watermarkinghas been proposed as part of a system
to protect digital data against unauthorized use [1], [2]. A digital
watermarking system embeds information directly into digital
data to produce watermarked data. As a result, even if copy-pro-
tection or encryption mechanisms fail, the information resides
in the watermarked data. This information may then be used to
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determine whether or not the data was acquired through legiti-
mate means.

In general, a digital watermark should have several different
properties. The most important are imperceptibility, security,
and robustness.Imperceptibilitymeans that the watermarked
data should be perceptually equivalent to the original, unwa-
termarked data. In some applications, the watermark may be
perceptible as long as it is not annoying or obtrusive; however,
many applications require that the watermark be imperceptible.
Securitymeans that unauthorized parties should not be able to
detect or manipulate the watermark. Cryptographic methods are
typically employed to make watermarks secure. Finally,robust-
nessmeans that, given the watermarked data, one should not
be able to make the watermark undetectable without also de-
stroying the value or usefulness of the data.

Another characteristic of a watermarking scheme is whether
or not the original data is available during detection. In some
schemes [3], the watermark detector has access to the orig-
inal data. Hence, interference from the original can presumably
be eliminated.Blind schemes do not have the luxury of using
the original during watermark detection [4], [5]. They typically
apply some pre-processing to the received data to suppress in-
terference from the original [4], [6].

A. Attacks on Watermarks

In this paper, we are primarily concerned with robustness. Be-
fore discussing robustness further, we need to introduce the idea
of anattackon a watermark. An attack is any processing of the
watermarked data that might damage the watermark. Attacks
can be coincidental, such as JPEG compression of a legally ob-
tained image, or hostile, such as an attempt by a multimedia pi-
rate to destroy a watermark before re-selling watermarked data.

Examples of attacks include compression, linear filtering,
geometric transformations, and D/A–A/D conversion. Some
extensive lists appear in [3] and [7], but it is impossible to
name all of the potential attacks. Instead, [8] provides a set of
conceptual attack categories. In the present paper, we take a
theoretical approach and only consider attacks that attempt to
remove a watermark or to confuse the watermark detector by
linear, shift-invariant (LSI) filtering.

B. Watermark Robustness

How should a watermark be structured to maximize its ro-
bustness?Coxet al.[3] suggest that an image watermark should
be restricted to the “perceptually significant” (e.g., large-ampli-
tude) spectral components. Large-amplitude components offer
better masking potential and cannot be removed without also de-
grading the image. Likewise, Swansonet al.[2] propose the use
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of frequency-domain perceptual masking models. They reason
that a watermark that is well-matched to the frequency content
of the original signal can be hidden effectively.

On the other hand, Hsu and Wu [9] and Pivaet al.[5] suggest
placing the watermark in the middle frequencies. Hsu and Wu
explain that, with regard to imperceptibility, the human visual
system is less sensitive to high spatial frequencies, but with re-
gard to robustness, processing like compression only preserves
low spatial frequencies. As a compromise, the watermark should
lie in the middle frequencies. Pivaet al.also choose middle-fre-
quency embedding as a trade-off between imperceptibility and
robustness.

Xia et al.[10] propose embedding an image watermark in the
middle and high frequencies. They reason that the human visual
system is less sensitive to noise at edges and textures, which
correspond to higher-frequency content. Hence, the watermark
will be less perceptible, and they claim that it remains robust
against attacks such as compression and additive noise.

Zhuet al. [11] employ a wavelet-based scheme and argue for
placing a watermark in the high frequencies to keep the water-
mark imperceptible. They report that this watermark remains
detectable after wavelet-based compression.

Clearly, uncertainty about the proper structure of a watermark
remains. Part of the difficulty in answering the question is that
robustness is easy to postulate but hard to measure. Currently, it
is still difficult to quantify the detectability of an attacked water-
mark and the quality of the attacked data. Some initial attempts
have been made in [7] and [12]. They are based on selecting a
distortion measure, performing a battery of attacks on different
watermarks, and measuring quantities such as the probability of
error after each attack. They propose a methodology for evalu-
ating robustness experimentally, but they are specific to a given
watermarking method and the set of attacks. Moreover, they lack
a strong theoretical foundation and development.

This paper also attempts to answer—at least in part—the
question posed at the beginning of this section. We take a theo-
retical approach to watermarking, which we initially presented
in [13] and [14] and investigate further here. Section II intro-
duces a general watermarking model. In Section III, we present
the Wiener attack, which includes two interesting special cases:
removal and anticorrelation attacks. This framework leads to
the idea of energy-efficient watermarking, and it enables us to
link watermark detectability to signal quality. The latter prop-
erty produces a meaningful robustness criterion. Section IV
explains how to resist the Wiener attack, which produces the
power-spectrum condition(PSC), the main result of the paper.
Experimental results with theoretic signal models, synthetic
random signals, and natural images appear in Section V and
further illustrate the importance of the PSC.

II. WATERMARKING MODEL

As a general watermarking model, we treat the watermark
and original data as signals, both deterministic and random.
Random signals are modeled as ergodic, zero-mean, wide-sense
stationary (WSS) discrete-time (or discrete-space) random
processes (DTRPs). Boldface indicates random quantities (e.g.,

), and normal typeface is used for deterministic values

(e.g., ) or realizations of random quantities (e.g., ). For
ease of notation, the analysis focuses on one-dimensional
signals, but the results extend directly to -dimensional
( -D) signals as well; the -D results are noted. To index
an -D signal , we often use the notation

, where . Similar notation is used
for the frequency variable .

The original signal (also called “host data” or “cover data”)
is represented by the process , which has variance , auto-
correlation function , and power spectrum . Sim-
ilarly, denotes the watermark, which has varianceand
power spectrum . We assume that and are in-
dependent. The support of a realization is denoted by, and
is the number of samples in .

The models for embedding, distortion, and detection are first
given in the context of deterministic signals , , etc.
However, the analysis treats the signals as realizations of the
corresponding random processes , , etc., and it charac-
terizes embedding, distortion, and detection by examining the
expected behavior over the ensembles of and . Finally,
we assume that watermark security is achieved by making
the output of a cryptographically secure pseudo-random number
generator with a secret key known only to authorized parties.

A. Watermark Embedding

The watermarked signal is simply ,
where and are realizations of the respective random
processes and . In the context of random processes:

(1)

Since and are independent

and
(2)

where is the cross-power spectrum of and .
We remark that many current watermarking methods are

based on spread-spectrum communications [15], [16]. The
seminal work on digital image fingerprinting by Coxet al. in
[3] popularized the use of direct-sequence spread-spectrum for
watermarking. The model (1) encompasses spread-spectrum
watermarking, discussed in more detail in [4] and [17], for
example.

B. Distortion Measure

To quantify signal quality, we measure the distortion between
a signal and the original signal via thesample mean-
squared error(sample MSE):

In the context of random processes and , the sample
MSE is replaced by an expectation, and thedistortion is the
(ensemble) MSE

(3)

Note that is a sample average, while the distortion
is an ensemble average. We also express signal quality
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as fidelity via theoriginal-to-noise ratio (ONR), given by
dB.

For the watermarked signal , theembedding distortionis
. The watermark signal should be imper-

ceptible, so we define thewatermark-to-original ratio(WOR)
by dB . As a rule
of thumb for image watermarking, WORs below20 dB are
required to keep the watermark imperceptible. For an attacked
signal , theattack distortionis .

C. Watermark Detection

Given a received signal , the watermark detector makes
a (possibly incorrect) decision about the presence or absence of

. We assume that the detector is synchronized with the em-
bedded watermark. A popular detection method iscorrelation
detection, in which the detector computes thesample correla-
tion statistic

(4)

and then comparesto a threshold to decide whether
is present in ( ) or not ( ). A larger value of
corresponds to increasing confidence that is indeed present
in , and typically lies between 0 and . An important
assumption in this paper is thatthe detector is fixed. The next
section motivates this assumption.

In the random-signal context, during detection, the water-
mark signal is a particular realization of and is com-
pletely known to the detector. Hence, when treating the correla-
tion statistic as a random variable, we must condition on .
Then , theexpected value of the correlation statistic, is

(5)

Since usually , we often normalize by to
describe the relative amount of watermark power that reaches
the receiver.

D. Overview of Attack and Defense

We briefly summarize the approach used to study the attack
and defense. We characterize the attack and defense by exam-
ining the distortion and , the expected value of the
correlation statistic. The attack is motivated as follows. Ide-
ally, the attacker wishes to recover the original signal from

. Failing that, the attacker would like to produce an attacked
signal such that has acceptable fidelity and that the
watermark detector will (incorrectly) decide that was not
embedded in . Rather than working with particular realiza-
tions, we consider random processes, so the attacker’s problem
is to minimize such that , where is the desired
expected value of the correlation statistic. Note that we donot
consider the variance because we are primarily interested
in the case when , where detection becomes unreliable.

The defense is similarly motivated. Given the attack chosen
by the attacker, the watermark signal is a realization of

, which is characterized by its power spectrum .
The watermarker chooses to maximize such

that and , where the upper bound
imposes the imperceptibility requirement. As shown

below, the solution for is equivalent to making estima-
tion of from as difficult as possible, in a well-defined
sense.

A key assumption used throughout this paper is thatthe de-
tector is fixed and does not compensate for the attack. Some
recent information-theoretic papers have adopted a game-theo-
retic approach and consider the ideal situation in which the re-
ceiver knows the attack and can compensate for it [18], [19].
There are several reasons, primarily pragmatic, for the assump-
tion of a fixed detector. First, we assume the use of a correlation
detector, which is popular in many watermarking schemes in the
current literature. Correlation detection is optimal for detecting
a known signal (i.e., the watermark signal) in additive white
Gaussian noise (AWGN). It is suboptimal if the signal is not de-
graded solely by AWGN. For example, the noise may be colored
(prewhitening is required prior to correlating) or non-Gaussian
(e.g., a sign detector is locally optimal for additive, white Lapla-
cian noise), or the signal may be filtered (inverse filtering is nec-
essary). The key point is that any detector that has been designed
for a specific set of assumed attacks will suffer when the actual
attack differs significantly from the design assumptions. It is
thus reasonable to examine the behavior of a fixed detector when
its assumptions are violated. For example, Voloshynovskiyet al.
[20] have proposed an effective attack in which outliers are in-
troduced to confuse the correlation detector.

Second, when watermarking is viewed as a game [18], [19],
the watermarker and attacker are opponents who alternately im-
prove their respective methods. In theory, the game continues
until one player wins or a stable equilibrium is reached. In prac-
tice, however, once the watermarking system has been specified
and deployed, the watermarker can no longer modify it. The at-
tacker, on the other hand, is free to develop additional, ever more
insidious attacks. The watermarker can only hope that the de-
ployed watermarking system can withstand them.

Third, for implementation reasons, it may not be feasible or
cost-effective to build thousands of sophisticated watermark de-
tectors that perform attack estimation and compensation; the
simple correlation detector may be an economic, rather than en-
gineering, choice.

III. W IENER ATTACK

From Section II-D, the attacker’s goal is to minimize
such that . To impose some structure on the problem,
we assume that the attack consists of LSI filtering and additive
noise. Let and denote the filter’s impulse response
and transfer function, respectively, and denote the noise,
which has power spectrum and is independent of
and . Then the attacked signal is

(6)

We formally state the attacker’s problem as: Given ,
, and , select , to minimize

such that . The solution is given by the following the-
orem, which is proved in the Appendix.



554 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 4, NO. 4, DECEMBER 2002

Theorem 1 (Wiener Attack):Let , , and
be given. Under the constraint , is minimized if
and only if

-D

(7)

where is a real, scalargain factor, and

-D (8)

With , , and so defined, for any ,

(9)

(10)

(11)

where

(12)

Hence, to achieve :

(13)

The corresponding attack distortion is

(14)

Let denote the impulse response corresponding to ,
so . Also let . Observe
that is the transfer function of the Wiener filter for esti-
mating from , so is the Wiener orlinear min-
imum mean-squared error(LMMSE) estimate of given

. in (11) is the MSE of the estimate. If and are
further assumed to be jointly Gaussian, then the Wiener filter
produces the MMSE estimate among all estimators, including
nonlinear estimators.

Equation (6) becomes

(15)

since (7) indicates that , . From (15), the attack can
be viewed as first computing the Wiener estimate of the
watermark signal from and then modifying by
subtracting a weighted version of and adding noise .
We call this attack theWiener attack; a block diagram appears
in Fig. 1.

A. Discussion of the Attack

The theorem indicates that the attack shouldnot introduce
any additive noise. Intuitively, the attacker can only affect

Fig. 1. Block diagram of Wiener attack.

through since is the MMSE estimate of . Any
other changes to are uncorrelated with and can thus
only increase without reducing . Technically, an ex-
amination of the expressions forand in Appendix B
reveals that setting increases but does not af-
fect . The noise does not improve the attack, so the attacker
should set , . This somewhat surprising result oc-
curs because the fixed correlation detector does not compensate
for the attack; if the receiver compensated for the attack, noise
would be necessary [18], [19].

For given power spectra and , we can easily
compute the relationship betweenand . We only need
to compute in (12) (e.g., by numerical integration), and then
we can use (14) to find for any . We can also compute

via (11).
From (9) and (10), both and can be parameterized

by the gain factor . It is now possible to relate watermark de-
tectability, in terms of , to the attack distortion . The
attacker varies to trade off and . Two values of
result in interesting special cases of the Wiener attack.

1) Removal Attack:With , the Wiener attack is are-
moval attack. For the attacker, this form has the appealing prop-
erty that it removes as much of the watermark energy as possible
while minimizing the attack distortion. This case is equivalent
to Wiener denoising. The result is intuitively clear from (15), or
it may be derived by taking (10) and setting .
Also, when .

2) Anticorrelation Attack: The attacker can instead select
so that , at the expense of increasing . We denote
this special value of by ,

(16)

This choice of drives to zero with the minimum corre-
sponding distortion . Since usually , the
probability that the detector mistakenly decides that is not
present in is at least 0.5. We call this attack ananticorre-
lation attack; the name emphasizes that the attack forcesto
zero, as opposed to disabling detection by some other mecha-
nism (e.g., desynchronization). We do not use the term “decor-
relation attack,” which could imply transforming or
into uncorrelated components like the Karhunen–Loève trans-
form.

This form of the Wiener attack is similar to an attack pro-
posed by Langelaaret al. [21], who used nonlinear filtering to
estimate a portion of a white-noise watermark and drive the ex-
pected correlation statistic to zero. However, the Wiener attack
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is easier to analyze because of its linearity, and it permits col-
ored watermarks.

B. Energy-Efficient Watermarking and a Robustness Criterion

We can interpret the normalized MSE as the fraction of
watermark energy that resists MMSE estimation. Since energy
that can be estimated can also be removed, it is wasted. A water-
mark that maximizes wastes the minimum fraction of its
energy and is said to beenergy-efficient. Since ,
we can also compare for different watermarks. A larger
ratio means greater resistance to MMSE estimation.

In addition, we now have a well-defined way of evaluating the
robustness of a watermark. Given different watermarks ,

, etc., which are characterized by their respective power
spectra , , etc., the watermark that
produces the largest value of for a given value of

is most robust. Similarly, if all watermarks yield the same
attack distortion , then the watermark with the greatest value
of is most robust. We thus have a meaningful way to compare
the robustness of watermarks.

IV. RESISTING THE WIENER ATTACK:
THE POWER-SPECTRUMCONDITION

Now let us consider the watermarker’s perspective. From
Section III, the watermarker wishes to maximize
under the constraints and . So
that the greatest amount of watermark energy might reach the
receiver, the watermarker should choose . The
watermarker cannot alter the original signal’s power spectrum

, but the watermarker has the freedom to specify the
watermark’s power spectrum .

From (14), is maximized when is minimized,
and from (11), is minimized when is maximized. Hence,
regardless of , the watermarker should choose to
maximize —and hence create an energy-efficient water-
mark—under the variance constraint.

The solution of this problem leads to the theorem below; the
proof appears in [13].

Theorem 2 (Power-Spectrum Condition):For the water-
marking model (1), is maximized if and only if

-D

(17)
and, for any dimensionality , the maximum MSE is

(18)

where .
We remarked in [13] that one could use a frequency-weighted

MSE instead of . Such a weighting might be desirable for
applications like audio watermarking, which use frequency-do-
main perceptual masking models [22]. Unfortunately, the solu-
tion for does not have a convenient form like (17) and
does not lend itself to tractable analysis.

TABLE I
EXAMPLE VALUES FORPSC-COMPLIANT INDEPENDENTWATERMARKS. THE

ATTACKS ASSUMENO ADDITIVE NOISE (� = 0)

A. Consequences of the Power-Spectrum Condition

We refer to (17) as thepower-spectrum condition1 (PSC). It
states that the watermark’s power spectrum should be directly
proportional the original signal’s power spectrum. In this sense,
the watermark should look like the original. We say that a wa-
termark that satisfies (17) isspectrally matchedto the original
or PSC-compliant. In this section, we study what happens when
(17) is satisfied.

The main result is thata spectrally-matched watermark signal
is most robust, in the sense that the attacker must introduce the
greatest amount of distortion to make . Important condi-
tions are the assumptions of a fixed correlation detector and the
form of the attack (LSI filtering and additive noise).

The Wiener filter transfer function (8) reduces to

(19)

and the corresponding maximum MSE is given in (18). Note that
the normalized MSE for a PSC-compliant watermark is
simply .

From (12), . Then (9)
and (10) give

(20)

(21)

These expressions hold regardless of the dimensionality.
Since should be imperceptible, we assume , so

. Table I lists example values of for WORs from
20 to 40 dB. We see that these watermarks have normalized

MSEs close to unity. Hence, a PSC-compliant watermark can
hardly be estimated by a Wiener filter.

B. Special Cases of the Wiener Attack

If the attacker sets for a removal attack, then the ex-
pected correlation statistic and attack distortion become

. As a result, the variance of the wa-
termark is hardly reduced by the attack, and the distortion of the
attacked signal is a negligible improvement over the water-
marked signal . Indeed,

. From the third column of Table I, it is
clear that is barely affected by this attack. The fourth column

1It seems likely that this result has been found previously, since it amounts
to the worst case for MMSE estimation of a signal (the watermark) subject to
signal-independent, additive, colored noise.
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Fig. 2. Theoretical performance of watermarks using AR signal models. Original signal has a lowpass I signal model and� = 1.WOR = �30 dB, which is
indicated by the dashed line (ONR(y; x) = �WOR). Circles indicate the results of the removal attack.

shows that improves by less than 0.05 dB over
, which demonstrates the effectiveness of a spec-

trally-matched watermark.
Suppose instead that the attacker performs the anticorrela-

tion attack. From (16), becomes
, and (10) gives . As a re-

sult, the attack distortion will be at least as large as the variance
of the original signal, and dB. Such an at-
tacked signal will certainly be useless. In the fifth column of
Table I, the required gain factor is given for the example
WORs. Note how much the estimate must be amplified,
which introduces large amounts of distortion; the sixth column
of the table shows the corresponding , which is al-
ways 0 dB.

V. EXPERIMENTAL RESULTS

A. Theoretical Performance for Signal Models

For the purpose of analysis, correlated signals—such as
audio or images—are often approximated byautoregressive
(AR) random processes [23]. We denote the one–dimensional
(1-D), th-order AR process by AR( ), which has the
model , where is 1-D
WSS white noise. “Lowpass I” and “Lowpass II” denote AR(1)
models with and 0.90, respectively. “Bandpass” is
an AR(2) model with , , while “Highpass”
refers to an AR(1) model with .

For two-dimensional (2-D) DTRPs, we employ a separable
AR( ) model, , where
and are 1-D AR( ) and AR( ) processes, respectively,
and . Hence, for 2-D signals, “Lowpass I” refers to
the product of two 1-D AR(1) “Lowpass I” models (horizontal
and vertical), and likewise for other designations such as “Band-
pass.” Of course, more flexible 2-D power spectra models could
be employed, but these are sufficient to illustrate the main ideas
in this paper.

In Sections V-A and V-B, no signals are actually generated,
no watermarks are actually embedded, and no watermark detec-
tion is actually performed. Instead, we examine the theoretical
relationship between and using (12) and (14). Like-
wise, is computed from (11).

Fig. 2 plots against for various watermarks
when the WOR is 30 dB, , and the original has a
1-D lowpass I model [Fig. 2(a)] or a 2-D separable lowpass I
model [Fig. 2(b)]. Because the 2-D signal models have greater
signal separation (e.g., between a highpass and lowpass signal)
than the 1-D models, the results are more dramatic for 2-D. For
reference, the dashed line indicates , the fidelity of
the unattacked, watermarked signal . Circles show the ex-
pected correlation statistic/distortion point for the removal at-
tack. The points where the curves intersect the vertical axis give

for the anticorrelation attack.
Fig. 2 shows that both bandpass and highpass watermarks

are not very robust. For the 1-D case, the removal attack is
fairly effective, and the anticorrelation attack can disable detec-
tion while maintaining reasonably good signal fidelity. For the
2-D case, removal is very effective, and the anticorrelation at-
tack yields an attacked signal with much better fidelity than the
unattacked, watermarked signal.

The removal attack is less successful against white water-
marks. The attacked signal may not have acceptable fidelity
after the anticorrelation attack for the 1-D case, but it is likely
to be usable in the 2-D case.

The curves for the lowpass II watermarks show that a water-
mark that approximately satisfies the PSC is highly robust. The
removal and anticorrelation attacks are ineffective.

PSC-compliant watermarks are clearly superior to the other
watermarks. For any value of, the fidelity is far
below that of the other, non-PSC-compliant watermarks. As ex-
plained in Section IV-A, (20) and (21) do not depend upon the
dimensionality , so the curves for the 1-D and 2-D PSC-com-
pliant watermarks are identical. As drops, slowly
decreases, so that a large loss in is required to affect

significantly. When dB, remains greater
than 0.9, and even when dB, . The
removal attack has almost no effect, and the anticorrelation at-
tack completely destroys the attacked signal.

B. Theoretical Performance for Natural Images

Additional experiments were conducted on 8-bit grayscale
natural images. The power spectrum of the
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Fig. 3. Theoretical performance of watermarks for natural images. The WOR is�30 dB. Circles indicate the results of the removal attack. For Cameraman,
PSNR = ONR + 12:24 dB; for Lenna,PSNR = ONR + 13:76 dB.

Fig. 4. Original Cameraman image.

original image was estimated using the
periodogram [23], ,
where is the 2-D FFT of .

We remark that taking the full-size transform of an image
may not be the best implementation for actual watermarking
schemes. Also, the periodogram produces an unbiased, but not a
consistent, estimate of a signal’s power spectrum [23]. Nonethe-
less, these methods are sufficient for illustrating the relationship
between theory and practice.

Fig. 4 shows theoretical performance curves for the 256
256 Cameraman and Lenna images. The WOR was set to

30 dB. The image-processing community often uses thepeak
signal-to-noise ratio(PSNR) as a fidelity metric for images and
video. PSNR and ONR are related by

. The qualitative behavior is similar
to the signal-model-based curves of Fig. 2. The anticorrelation
attack can defeat bandpass and highpass watermarks; it may
also defeat white watermarks, since dB, which
may be acceptable fidelity. The lowpass watermarks should
leave severely distorted attacked images, and the PSC-com-
pliant watermark should produce a worthless image; ideally it
should equal the mean of .

C. Experimental Performance for Natural Images

Unlike the theoretical investigations of the preceding sec-
tions, actual watermarks were generated, embedded, and de-
tected in the following experiments. Here we present example

TABLE II
COMPARISON OFPREDICTED (P ) AND EXPERIMENTALLY-OBTAINED

(E) QUANTITIES FOR THE CAMERAMAN EXAMPLES IN FIGS. 5 AND 6.
THE WOR IS�30 dB,AND THERE ISNO ADDITIVE NOISE (� = 0).

NOTE: PSNR = ONR(ŷ; x) + 12:24 dB

images for Cameraman. The original image was used during
detection.

To generate PSC-compliant watermarks, we set

where is the 2-D FFT of the output of a
unit-variance white Gaussian random number generator. With
this construction, ;
equality would hold if were equal to unity for all

. Another way to generate a PSC-compliant watermark
is to set

where the phase angle is chosen randomly (uniformly
distributed over ) for each but subject to appro-
priate symmetry constraints to ensure that remains
real. Other watermarks were generated using the 2-D separable
AR model.

Fig. 4 shows the original, unwatermarked image. In these ex-
periments on Cameraman, dB, and

dB.
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Bandpass White Lowpass I PSC-compliant

Fig. 5. Examples of attacked images after removal attack.

Bandpass White Lowpass I PSC-compliant

Fig. 6. Examples of attacked images after anticorrelation attack.

Fig. 7. Example of a PSC compliant watermark for Cameraman.

Table II summarizes the numerical results for Cameraman.
The experimental results closely match the values predicted
from theory (see Fig. 3). The highpass, bandpass, and white
watermarks are all vulnerable to the anticorrelation attack,
while the lowpass I and PSC-compliant watermarks cannot be
defeated without also destroying the attacked image.

Fig. 5 shows example images resulting from the removal at-
tack for different watermarks. (The watermarked images appear
identical to the original, unwatermarked image, so they are not
shown.) The removal attack is effective against the bandpas wa-
termark, but less so against the white one. For the lowpass I
watermark, the attack leaves virtually unchanged,
and the attack has almost no effect against the PSC-compliant
watermark.

More important, Fig. 6 shows images with the results of the
anticorrelation attack. For both the bandpass and white water-
marks, the attacked images still possess good visual quality and
would likely be useful to the attacker. The attacked lowpass I

watermarked image has been noticeably degraded and may no
longer be useful. Finally, for the PSC-compliant watermark, the
attacked image after the anticorrelation attack is almost per-
fectly flat, and it is wortless to the attacker.

An example of PSC-compliant watermark is
shown in Fig. 7. The watermark is obviously correlated, but in
the spatial domain it does not resemble the original image.

VI. SUMMARY AND CONCLUSIONS

The simple models for watermarking and the Wiener attack
yield insight into the structure of a watermark for improved ro-
bustness. An important assumption is the use of a fixed correla-
tion detector that does not compensate for the effects of attack.
Also, the variance of the detector statistic is not considered be-
cause we are mainly interested in the case where the expected
value of the correlation statistic becomes zero. These consid-
erations lead to the idea of energy-efficient watermarking and
provide a way to link the detectability of an attacked watermark
to the distortion of the attacked signal. It then becomes possible
to evaluate robustness in a meaningful way. The key result is
the power-spectrum condition (PSC), which states that a wa-
termark is energy-efficient if and only if its power spectrum is
directly proportional to that of the original signal. In terms of
power spectra,the watermark should look like the original.

The PSC is intuitively satisfying. To make a watermark hard
to attack, given the watermarked signal, it should be difficult
to separate the watermark and original signals. The PSC holds
for any signals that meet the assumptions of the model. It may
therefore be applicable to digital audio, images, and video, for
example.
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The experimental results show that watermarks that fail
to satisfy the PSC—i.e., bandpass, highpass, and white wa-
termarks—are vulnerable to the Wiener attack. However,
PSC-compliant watermarks cannot be defeated by the Wiener
attack. Watermarks that are close to being PSC-compliant also
resist attack well, so in practice, simple parametric models for
the watermark power spectrum may be sufficient.

These results support the heuristic arguments [2], [3], [24],
[25] in favor of matching a watermark to the spectral content
of the signal being watermarked. They also refute earlier argu-
ments that advocate bandpass, highpass, or white watermarks.

We remark that compression algorithms like JPEG and
MPEG tend to preserve only the large-magnitude frequency
components of the original signal. Similarly, perceptually-based
watermarking schemes often use frequency transforms or sub-
band decompositions and embed watermark energy roughly
in proportion to the magnitude of the transform or subband
coefficients of the original signal. As a consequence, com-
pressed-domain watermarking schemes and watermarking
methods that use perceptual models both have the appealing
side effect that they approximately satisfy the PSC.

APPENDIX

WIENER ATTACK

A. Attack Derivation

From the attack model (6)

(22)

and

(23)

Write in magnitude-phase form,

Then (22) and (23) give, respectively,

(24)

and

(25)

Then construct the Lagrangianfrom the integrands of (24) and
(25):

An extremum occurs when
. First, if and only if

, . Second,
. Hence, , so

and , so is real. Third,
yields Then

.
Finally, define as in (8), and let ; (7)

follows. The solution can be shown to be a global minimum
using proof-by-contradiction; the proof is omitted to conserve
space.

B. Expressions for, , and

Let denote the impulse response that corresponds to
, and let . Then

Substitution of (8) for gives (12). Also

Next

which gives (9). Similarly

which leads to (10) since . Then let
, so , and (11) follows.

Lastly, setting in (9) yields (13), and substituting (13)
into (10) gives (14).
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