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ABSTRACT

The power spectrum of the distribution of clusters of galaxies in the northern and
southern galactic hemispheres has been evaluated. Corrections have been applied for
the smoothing effect, and for the Poisson noise. The effects of incompleteness of data
and observational errors have been investigated. The cluster spectrum has been trans-
formed to galaxy and matter power spectra. Data suggest that the power spectrum has
an index —2<n< -1 on intermediate scales; on very large scales the spectrum is
consistent with the Harrison-Zeldovich index n=1. The transition from the
Harrison-Zeldovich index to a lower index occurs at the scale 4,~150£50 A~!
Mpc. Direct comparison of the samples used and power-spectrum analysis suggest

that our samples approach the size of fair samples of the Universe.

Key words: galaxies: clustering - large-scale structure of Universe.

1 INTRODUCTION

The statistical properties of the density field of the Universe
can be described by the correlation function, or by its
Fourier transform, the power spectrum of density fluctua-
tions. Both approaches have their advantages and disadvan-
tages, as discussed by Peebles (1973, 1980) and more
recently by Baumgart & Fry (1991, hereafter BF) and by
Peacock & Nicholson (1991, hereafter PN). In studying the
evolution of the structure, the input function is the power
spectrum. Usually it is given from theoretical considerations
based on hypotheses on the nature of dark matter. On large
scales, the density fluctuations continue to grow in the linear
regime and the spectrum retains its original shape.

BF, PN, Peacock (1991, hereafter P91) and Gramann &
Einasto (1992, hereafter GE) analysed the power spectrum
for various galaxy samples over the scale interval =1 to
~200 A~! Mpc (here and below, distances correspond to
the Hubble constant Hy =100 ~Akm s~! Mpc™!). In a rather
broad scale interval, the spectrum can be approximated as a
power law with an index — 1= n= — 2. On the largest scales,
PN and P91 find a departure from the power law which can
be considered as a transition to a different spectral index.
From theoretical considerations, it was assumed that on the
largest scales the spectrum has a form predicted by Harrison
and Zeldovich with index n=1. Recent observations of
fluctuations of the cosmic microwave background (CMB)

radiation are consistent with this hypothesis (Smoot et al.
1992).

The presence and location of the transition in the power
spectrum have important consequences for the theory of
structure formation. It is evident that the determination of
the power spectrum at scales larger than those previously
considered is an attractive challenge. On scales of interest,
clusters of galaxies are suitable objects with which to
investigate the power spectrum.

The goal of the present paper is to evaluate the power
spectrum from the distribution of clusters of galaxies. To
determine the power spectrum from observations, we have
to consider a number of technical problems: incompleteness
of observational data, Poisson noise, the deviation of the
cluster spectrum from the spectrum for the total matter, etc.
We shall discuss these problems in detail in the next sections.
In Section 2 we describe the data used and derive the power
spectrum for cluster samples. In Section 3 we analyse the
errors of the power spectrum. In Section 4 we derive the
correlation function of cluster samples and compare our
results with models. The paper ends with a discussion and
short summary of principal results.

A short note on terminology is useful. The global spec-
trum, i.e. the spectrum of matter for a large representative or
fair sample of the Universe, is of interest for theoretical
purposes. Presently, we do not know the size of the obser-
vational sample needed to find the global spectrum. What we
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obtain from observations are only estimates of the power
spectrum. The same is true for the correlation function -
from observations, we obtain its estimates. As is the practice
with the correlation function, we also use the term ‘power
spectrum’ for its observational estimates.

2 POWER SPECTRA FOR CLUSTER
SAMPLES

2.1 Definitions
A fluctuating density field,

-3
s(x=21"2C (1)
4
can be described in terms of its Fourier components
1
6k=_J 8(x) exp(ikx) d’x, (2)
Vv

where k denotes the comoving wavenumber (k= 2mw/1). Here
o(x) is the density and @ is the mean density in the given
volume. The power spectrum is defined as the square of the
Fourier transform of the density contrast,

P(k)s(i) (6., 3)

where L is the size of the cubic box of volume ¥ under study.

An alternative method for describing the density field is to
use the autocorrelation function of the density contrast (for
simplicity we shall use the conventional term ‘correlation
function’),

&(r)=(6(x)d(x+r)). (4)

The power spectrum P(k) and the correlation function &(r)
are directly related, forming a Fourier transform pair

g(r)=4nr P(k)%r—) K dk, (5)
P =5 J £ S 2 )

The spectrum P can be expressed as a function of either k
or A. Instead of P, one can also use a dimensionless variable
A? [the contribution to the relative density per unit range of
In k (see PN)], where

A*=4nk’P(k)=4nk’ (i) (6.7 (7)

The shapes of functions A2 and P are different - the dimen-
sionless power spectrum A2 has no maximum on large scales,
but there is a change in the slope. In most cases, we shall use
the function P and the wavelength A as the argument. In Fig.
3 (see later), we use the wavenumber k as the argument.

2.2 Data on cluster samples

Our basic cluster sample was compiled by Tago & Einasto
(1992) using all available redshift determinations for clusters

of the new Abell, Corwin & Olowin (1989, hereafter ACO)
catalogue. We have used the digitized version of the
catalogue supplied by Olowin, since the printed version has
errors in it. All available redshift sources were used, and the
compilation was updated in 1992 January.

The version of the catalogue we used has the same
columns as the original version of ACO with one addition:
Tago & Einasto (1992) have calculated from photometric
data an estimated redshift, z.,. When the magnitudes m1,
m3 and m10 were available, the redshift estimate was found,
as suggested by ACO, using all three magnitudes. When only
m10 was available, the Leir & van den Bergh (1977) and
Postman et al. (1985) prescripts were used. In the over-
lapping area of the northern and southern surveys, the new
southern data were preferred. Some clusters enter the
catalogue twice, in which case only one entry was used. The
final catalogue contains 4072 clusters. For all clusters, the
equatorial, galactic and supergalactic coordinates were
calculated and, by adding redshift information, also the
rectangular galactic coordinates. We prefer galactic coordi-
nates, since in this case it is easier to specify unobserved
regions near the galactic plane. Measured redshifts were used
if they were available, unless it seemed probable that a fore-
ground galaxy had been observed [these clusters are marked
in ACO and Postman et al. (1985)]; in this case, the photo-
metric distance was used. The total number of clusters with
measured and accepted redshifts in the catalogue is 1065,
and most measured redshifts belong to nearby clusters,
z=<0.1.

From this catalogue, several cubic subsamples in certain
galactic rectangular coordinate limits were chosen. In Table
1, we give the name of the subsample, the centre coordinates
X,, Yy, Z,, the sample size L, the number of clusters N, the
number of clusters with estimated redshifts Ny, and the
correlation length r, of the sample. Distances correspond to
the Hubble constant H,= 100 hikms~! Mpc™'.

To obtain unbiased estimates of the power spectra, we
must take into account the fraction of space where clusters
were actually observed. It is well known that at low galactic
latitudes the strong galactic obscuration makes the obser-
vation of clusters impossible. The lower limit of the galactic
latitude, by, and the fraction of space covered by obser-
vations, F,, is given in Table 1. In order to minimize the
influence of galactic absorption, we used subsamples
ACO2.5ND, ACO2ND, ACO2.5SD and ACO2SD, with
one diagonal of the cube directed towards a galactic pole. In
these samples, clusters located at low galactic latitudes are
automatically excluded. We shall call these samples
‘diagonal’, and samples with boundaries parallel to the
galactic plane, ‘standard’.

For standard samples, we have used two sample sizes,
200 A~' and 300 A~! Mpc, and for diagonal samples,
200 A~! and 250 A~! Mpc. Smaller samples lie completely
within the boundaries of larger samples and are used only to
check the reliability of the statistical properties of samples.

In most previous studies, only clusters of richness class
=1 have been included in samples for statistical studies,
since clusters of richness class 0 may be affected by projec-
tion effects. We have included clusters of all richness classes.
The motivation for this is the following. First, West & van
den Bergh (1991) have studied the distribution of clusters of
all richness classes containing cD galaxies or having
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Table 1. Data on cluster samples. Bautz-Morgan types I and I-1I. Both morphological types
define clusters with high central densities which are without
Name L XoYy Zy Na Nes bo Fops 7o any doubt real clusters. A large fraction of these clusters
belongs to richness class 0. Secondly, our own experience of
ACO2ND 200 0 0 173 95 4 45° 1.0000 24.5 the study of the Perseus-Pisces and Coma superclusters
ACO2SD 200 0 0 -173 142 37 45° 1.0000 25.7 (Einasto, Joeveer & Saar 1979; Tago, Einasto & Saar 1984)
has shown that poor clusters as well as dense groups are very
ACO25ND 250 0 0 217 183 46 45° 1.0000 22.6 gogrd trager§ of the‘larfle-scale structuref, v dist .
o obtain a visual impression of the distribution o
ACO2.5SD 250 0 0O -217 253 111 45° 1.0000 20.3 . .
025 5 clusters in our basic samples ACO3N and ACO3S, we plot
. in Figs 1 and 2 the distribution of clusters in four consecutive
ACO2N 2000 0 150 141 1 25° 0.9967 21.7 sheets, the respective Z-coordinate intervals being indicated
ACO2S 200 0 0 -150 153 31 25° 0.9967 142 i the figures.
A comparison of the figures shows that in the northern
ACO3N 300 0 0 200 351 104 25° 0.9657 23.5 sample ACO3N the distribution is more clumpy. We see a
ACO3S 300 0 0 -200 427 175 25° 0.9657 19.3 number of prominent superclusters, such as the Shapley and
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Figure 1. The distribution of clusters of the sample ACO3N in rectangular galactic coordinates in four sheets; respective Z-coordinate
intervals are indicated.
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Figure 2. The distribution of clusters of the sample ACO3S in four sheets.

Hercules superclusters in the lower left panel (the concentra-
tion at X= 80, Y= —100, and X =70, Y= 40, respectively).
The distribution of clusters in the southern hemisphere is
smoother. Here, there are no rich superclusters such as those
seen in the northern hemisphere, and voids are not as empty
as the voids in the northern sample. This is due in part to a
much larger fraction of clusters with larger errors attached to
their estimated redshifts.

For various checks, we have used two- and three-
dimensional numerical simulations. These simulations have
been described in detail by Gramann (1988, 1992); see also
Section 4.3.

2.3 Determination of power spectra

We used two methods to calculate the power spectrum for
cluster samples. First, the spectrum was determined from the

smoothed density field by its Fourier transform; secondly, the
Fourier transform was calculated using discrete positions of
particles. The mathematical details and corrections applied
are different in these cases, thus the application of indepen-
dent methods allows us to check the validity of results.

The smoothed distribution of particles was used by GE in
their study of the power spectrum of galaxies. In this case, the
first step is the calculation of a smooth density field using the
standard cloud-in-cell (CIC) procedure. The smoothing
length is taken equal to the grid size, /, and is related to
sample box size L as L/I=24. For cluster samples and three-
dimensional model samples, we used three different grid
sizes corresponding to g=4, 5 and 6; for two-dimensional
samples, grid parameters g=4, 5,...,9 were used. To find
Fourier components of the density field, the fast-Fourier
algorithm was applied (Hockney 1970). Periodic boundary
conditions were adopted.
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In the second method, we calculated the Fourier coeffi-
cients directly from the positions of individual galaxies. This
is a straightforward procedure but has its price - for non-
regularly spaced points we cannot use the fast-Fourier
algorithm, and the conventional Fourier transform takes
much more computation time than the fast algorithm. The
discrete case is therefore applicable only for small samples,
i.e. observed samples. For model samples, where the number
of particles reaches hundreds of thousands, only the smooth
density method can be used.

In both cases, for each value of k the value of the
spectrum, P, was calculated by integrating the field 67 in a
spherical (circular) layer of radii [k— 0.5, k+0.5]. We were
able to determine in a given volume up to 32 spectral modes
on scales from L to L/32.

Uncorrected power spectra for cluster samples are shown
in Fig. 3. Spectra were calculated for the resolution
parameter g =>5.

Now we have to consider the corrections to be applied to
observed spectra. There are six possible sources of
systematic errors in observed spectra: a smoothing effect (for
spectra calculated from a smooth density field), the Poisson
noise, the periodic boundary assumption made in calculating

-1.0 T T T T T T T T T T T T T ]
[ (a) Cluster spectra: continuous density
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Figure 3. Uncorrected power spectra for samples ACO2N,
ACO2S, ACO3N and ACO3S, calculated (a) with the continuous
density method, and (b) from discrete distribution of particles.
Circles denote 300-Mpc samples, triangles 200-Mpc ones; filled
symbols correspond to northern, open symbols to southern samples.
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the Fourier transform, the incompleteness of observational
data, and differences in the amplitudes and shapes of the
power spectra of clusters and galaxies. We shall apply correc-
tions for only part of these errors; in other cases, we estimate
the range of possible errors.

2.4 Correction for grid smoothing

In calculating the power spectrum from a smooth density
field, high-frequency spectral modes are suppressed due to
smoothing. This introduces an error, which is easily seen in
the left panel of Fig. 3 - the high-frequency end of the
spectrum deviates downwards.

This smoothing effect is due to the convolution of the real
density field in the CIC procedure, and the way to correct for
it is well known ~ the spectra obtained have to be divided by
the spectrum of the convolution function. This correction
factor is evaluated in the Appendix.

2.5 Correction for the Poisson noise

After correction for the grid smoothing effect, all spectra of
cluster samples are horizontal at large wavenumbers, k> 10.
This is due to the Poisson noise, which masks the actual
spectrum at high frequencies. At lower frequencies, the
chister spectrum dominates but is influenced by the Poisson
noise.

To correct for this effect, a constant term is subtracted
from the observed spectrum. For spectra expressed in
dimensionless units (| 6,|%), this correction is equal to 1/N,,
where N, is the number of objects in the catalogue (see
Peebles 1980; PN).

Spectra obtained from the continuous density field and
from discrete data using the corrections discussed above
almost coincide. This demonstrates that our procedures to
correct for data smoothing and for Poisson noise work satis-
factorily.

2.6 Correction for sample boundaries

To calculate the correction for the sample boundaries, we
shall use the method outlined by PN. The Fourier transform
of the selection function was subtracted from the spectrum,
and the whole spectrum was divided by the filling’ factor
F,.=V,./V. Boundary selection removes only some of the
edges of the computational volume, and the observed space
forms a contiguous volume which fills a large fraction of the
cube under study. Our calculations have shown that, if the
fraction of the observed space is small (F, <0.5), the
spectrum at low wavenumbers (large scales) is dominated by
the boundary effect and the determination of the actual
spectrum of clusters is subject to large uncertainties. For this
reason, we have chosen sample boundaries which minimize
the correction. In our basic samples, the correction does not
exceed 10 per cent of the observed value of the spectrum at
the largest wavelengths; on smaller scales, the effect is
negligible. In diagonal samples this effect is eliminated
completely.

2.7 Mean cluster spectrum

The comparison of corrected cluster spectra of samples
ACO3N and ACO3S (Fig. 4a) shows that the southern
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Figure 4. (a) Corrected spectra of standard cluster samples.
Samples are designed as in Fig. 3. Here we use the function P as the
power spectrum, found from equation (3). (b) Corrected spectra of
diagonal samples. 250 ~~! Mpc samples are denoted by circles,
200 h~' Mpc samples by triangles; for northern samples we use
filled, for southern samples open symbols.

hemisphere samples, after all corrections, have spectra of
lower amplitudes than the northern samples. On the other
hand, the northern and southern diagonal samples ACO2.5N
and ACO2.5S agree rather well (see Fig. 4b). In diagonal
samples, no correction for incompleteness has been applied.
The spectrum for the sample ACO3N is rather similar to the
mean spectrum of samples ACO2.5N and ACO?2.5S. Due to
the large deviation of the spectrum ACO3S we shall not use
it in the following analysis, and the overall mean is based on
samples ACO3N, ACO2.5N and ACO2.5S. Smaller samples
of 200-Mpc cube size serve only for comparison since their
boundaries lie completely within the boundaries of large
samples.

2.8 Reduction of cluster spectra to galaxy and matter
spectra

Our goal is to reduce the cluster spectra to the spectrum of
the matter. This can be accomplished in two steps, the first

reducing the cluster spectrum to the galaxy spectrum, and
the second calculating from the galaxy spectrum the
spectrum for the whole matter.

On the basis of model calculations, Gramann & Einasto
(1991) concluded that the power spectrum of the total
matter, P,, practically coincides with the spectrum for
galaxies, F,; the only correction to be applied is that which
takes into account the fraction of matter associated with
galaxies, F,. We shall discuss this problem in more detail in
Section 4.3. To calculate the power spectrum, we average
over the square of the Fourier components of the density
contrast, so, to normalize the galaxy spectrum for total
matter, we must multiply it by the square of the fraction of
matter associated with galaxies,

P, =FiF, (8)

We applied this formula to find the matter density
spectrum. The fraction of matter in galaxies was taken as
F,=0.65, following Einasto & Gramann (1991). The matter
spectrum can be expressed analytically by the formula (12)
(see below) with parameters A=98, 1,=150 hA~! Mpc,
n=-—18.

The mean cluster spectrum reduced to galaxies is
presented in Fig. 5. The error analysis presented in detail in
the next section shows that the overall rms error of the mean
power spectrum at the large-scale end is of the order +0.35
in logarithmic scale. On smaller scales the rms error is about
+0.15. In Fig. 5, we have added a 1.5 g error corridor.

3 ERROR ANALYSIS
3.1 Sampling errors

In determining the power spectrum, sampling errors occur
due to decisions to include or exclude a particular object in a

3.5||||‘|||||||||||1|||||1||

25

log P

1.5 -

0.5||1|I||||I|Q||I||||I||||
0.0 0.5 1.0 1.5 2.0 2.5

log A

Figure 5. Comparison of the galaxy and cluster spectra reduced to
the amplitude of the spectrum for galaxies. Results obtained by BF
for galaxies are marked with open circles, radio-galaxy data
obtained by PN with triangles, IRAS data as reduced by Peacock
with squares, cluster spectrum reduced to galaxy spectrum
amplitude according to the present paper with filled circles; arrows
show the error corridor of the cluster spectrum after reduction to
galaxy spectrum amplitude. Solid and dashed lines represent the
power law model curves with the transition scales 150 A" (solid
line), 100 A~ ! (lower dashed line) and 200 4! Mpc (upper dashed
line), respectively.
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given volume. A common method for estimating the un-
certainty of results due to this effect is the bootstrap
procedure. We have calculated the power spectra for 10 sub-
samples of 200 clusters, each selected at random from the
parent samples ACO3N and ACO3S which contain 351 and
427 clusters, respectively. The power spectra were deter-
mined from the smoothed density field and corrections for
smoothing and Poisson noise were applied. As expected, the
sampling error is largest for large-wavelength modes; here
the rms sampling error is +0.25 in the logarithmic scale, and
for smaller wavelengths the rms error is £0.10.

3.2 Incompleteness of data

In order to estimate errors due to the incompleteness of data,
we shall use weighting of data. The incompleteness is caused
by the galactic extinction and by difficulties in finding distant,
weak clusters. The galactic extinction decreases the number
of Abell clusters, D, selected at low galactic latitudes. This
effect can be expressed as

D(b)=1080-1/sinlb), (9)

where b is the galactic latitude and S is a constant (Batuski et
al. 1989; West & van den Bergh 1991; Olivier et al. 1990).
We have used the value 8= 0.32, and given the clusters in the
catalogue a weight inversely proportional to D(b).

A second weight function comes from the spatial density
of Abell clusters, which is a function of distance. We have
found that up to the distance ,=200 A~! Mpc the spatial
density is practically constant (fluctuations can be explained
as variations of the real spatial density), but at larger
distances the density decreases. The mean density can be
expressed in terms of the observed distance interval as
follows:

1, ifr<r;

D(R)=
(R) 0.5(1+r/r), ifr=r,.

(10)

Batuski et al. (1989) find a less marked decrease of the
density with distance, but they included only clusters of
richness class =1 in the analysis. We use clusters of all rich-
ness classes and therefore the density dependence on dis-
tance is stronger. The inverse value of expression (10) has
been used as the second weight for clusters.

Weighted spectra for some cluster samples are given in
Fig. 6. The correction for distance incompleteness is very
small; in other words, the inclusion of clusters of richness
class 0 (which are less complete at large distances) introduces
only a small systematic error. The better signal-to-noise ratio
we obtain is more important. The galactic latitude effect is
larger, but again the difference is not too great - at the largest
wavelengths, the amplitude can be in error by a factor of
=~1.5. Weighting also improves the agreement between
samples ACO2N and ACO3N at large wavenumbers.

3.3 Influence of observational errors

The power spectrum is influenced by observational errors of
distances estimated from photometric data. To determine the
influence of these errors quantitatively, we have artificially
distorted distances of clusters in the samples ACO2N and
ACO3N, where the number of clusters with estimated red-

Power spectrum of matter distribution 711

shifts is small. For 20 and 40 per cent of clusters, distance
moduli were randomly shifted from their actual values, intro-
ducing an error which simulates the influence of errors in
photometric distances. The rms shifts in distance modulus
were chosen as 0.25 and 0.50 mag. The results of simulations
are presented in Fig. 7 for the sample ACO3N. This test
shows that observational errors reduce the amplitude of
spectra over the whole scale interval, while the reduction rate
increases at large wavelengths. The error has a large scatter,
i.e. in some runs it was rather small, in other runs larger. In
southern samples the fraction of clusters with estimated
redshifts is larger than in northern samples, which may partly
explain the difference in the spectra. This large error is the
main argument in favour of using northern samples.

We can calculate the rms error of the relative amplitude
(i.e. the difference in amplitude between the largest scale and

3.5 1T 1 1+ 1 1.1 v+ 111 1.1 1 1 t 1T 1T
| Weighted ACO3N )
2.5 |-
Q_. -
& |
o]
= i
1.5 - =
oo b e o b e by
0'%.0 0.5 1.0 1.5 2.0 2.5

Figure 6. The effect of weighting clusters for sample ACO3N. The
solid line shows the unweighted cluster spectrum, and spectra
marked with triangles and circles show the effects of using weights
for incompleteness near the galactic plane, and distance, respec-
tively.
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:Influence of distance errors: ACO3N
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log A

Figure 7. The influence of distance errors for the sample ACO3N:
the solid curve gives the observed spectrum, and curves marked
with triangles and circles show spectra of subsamples where, for 20
per cent of clusters, distances were randomly distorted supposing
distance modulus errors of 0.25 and 0.50 mag, respectively.
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some intermediate scale) from the scatter of weighted ampli-
tudes at large wavelengths. The results show that both the
scatter due to incompleteness and that due to observational
errors are t0.15 in logarithmic scale, thus the overall
relative error of the amplitude due to these factors is
approximately +0.25.

There are two ways to reduce this error - to observe
more redshifts to avoid clusters with estimated distances, and
to increase the sample by including clusters of lower rich-
ness, for instance those from the recently completed ROSAT
X-ray cluster survey.

3.4 The effect of periodic boundary conditions

The algorithm used to calculate the Fourier transform of the
density field assumes periodic boundary conditions. This
assumption is not valid and may cause systematic errors in
the spectrum. To check the possible influence of periodic
boundary conditions, Gramann (1992) used high-resolution
two-dimensional simulations. She was able to extract, from
the total sample, subsamples of various box size in different
locations of the sample, and to ask two questions: how large
are variations in the power spectra expected to be in different
locations, and are there systematic deviations between the
spectra of small samples and the spectrum of the total
sample? In calculating the spectrum of a subsample,
Gramann assumed that the whole Universe consists of
replicas of that particular subsample.

The analysis demonstrated that variations in the shape of
spectra depend on the linear size of subsamples. If sub-
samples are smaller than the scale of the maximum of the
spectrum, then large variations in the spectrum are observed.
On the other hand, if the sample size exceeds the scale of the
maximum by a factor of ~ 2, variations between spectra of
subsamples are very small, and the mean spectrum of sub-
samples practically coincides with the spectrum of the parent
sample. Visual inspection of respective subsamples shows
that there are variations in the structure of small subsamples,
but large subsamples have a similar structure. We conclude
that periodic boundary conditions exert a minor influence if
samples are larger than the transition scale of the spectrum.

3.5 Influence of voids and superclusters

An additional source of errors is the deviation of statistical
properties of our samples from mean properties of the
Universe, in other words our samples may not be fair
samples of the Universe. Analysis by Einasto, Klypin & Saar
(1986) and Einasto (1991) has shown that the correlation
function of samples of linear size =60 h~! Mpc depends on
their location: in cluster-dominated regions the function lies
considerably higher than in void-dominated regions. This
suggests that the size of a fair sample must be larger than the
size of samples used in this paper. On the other hand,
Gramann (1992) has demonstrated that in samples having a
linear size which exceeds the transition scale of the power
spectrum the power spectrum is fairly constant for different
samples; in other words, such samples can be considered as
fair samples of the Universe.

Presently, we do not know exactly the size of a fair sample.
If our conclusion (see later) that the transition scale of the

power spectrum 4, =~ 150 ~~! Mpc is correct, then we must
conclude that our 300 ~2~! Mpc samples can be considered
as fair samples. This conclusion is strengthened by the fact
that northern and southern diagonal samples have almost
identical power spectra. A random error is, however,
present; its value, estimated on the basis of the scatter of
spectra of diagonal samples, is about +0.10.

4 COMPARISON OF CLUSTER POWER
SPECTRUM AND CORRELATION FUNCTION
WITH MODELS

4.1 Analytical models

Let us compare the observed spectrum of clusters of galaxies
with a simple analytical model suggested by GE. For inter-
mediate and large scales, the model can be written as follows:

P<k>=A(;")"{1—exp[—(k/km-"]}. (11)

t

P91 used a similar power law for the spectrum which
corresponds to the correlation function calculated for the
APM survey of galaxies. In our notation, the P91 law has the
form

(k/k.)"

P(k) =AW—1.

(12)

Both models are determined by three parameters: (1) the
amplitude of the spectrum, A ; (2) the scale of the transition,
A,=2mn/k; (3) the power law index, n. On large scales, both
formulae reduce to the Harrison-Zeldovich spectrum
P(k)o< k. We have used both formulae, and they give rather
similar results. To represent the cluster power spectrum, we
have varied the transition scale from 4,=100 A~! Mpc to
A, =200 h~! Mpc. The results are shown in Fig. 5, possible
limits of the spectrum being shown by arrows.

4.2 Correlation functions for cluster samples

We have also calculated the correlation functions using the
conventional procedure

§<r>=%(‘3—1, (13)

where N, (r) dris the number of cluster pairs in a distance
interval from r to r+dr, and N,(r) dr is the corresponding
number in a Poisson sample having identical boundaries with
the observed sample.

The correlation lengths of all cluster samples are given in
Table 1. A plot of the correlation functions of our basic
samples is given in Fig. 8. The error corridor was calculated
by the bootstrap method as in Section 3.1, and is given in Fig.
9 for the sample ACO3N.

We have also calculated the power spectra from the
observed correlation functions by integrating the correlation
function numerically according to formula (6). The resulting
spectrum is rather noisy. To improve the numerical accuracy,
we have performed another series of calculations by deriving
first the power spectrum from the analytic formula (12), and
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then the correlation function by integrating formula (5). The
resulting correlation functions are plotted in Fig. 9.

4.3 Numerical models

Direct observational data are insufficient to answer the
question: how are spectra of clusters of galaxies related to
spectra of galaxies and matter? In Section 2, we reduced
cluster spectra to those of galaxies and matter. Now we
consider this question in more detail using numerical simula-
tions of the evolution of the density field in the Universe.

The methods of performing N-body simulations were
described by Gramann (1988, 1992). We used both two- and
three-dimensional simulations. The 3D model was calculated
in a 643 grid with 643 particles; in 2D models, a 5122 grid
with 5122 particles was used, the density parameter being
taken as Q=1. In 2D models, an index n= —1 was used,

2.0II|||IIII|I|II|IIII|IIII

_1. USSR S SN SN NN TN SN NN SN WO SN TN N OO v

8.0 0.5 1.0 1.5 2.0 2.5
log r

Figure 8. The correlation function of samples ACO2.5N (filled

squares), ACO3N (filled circles), ACO2.5S (open squares) and
ACO3S (open circles).
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Figure 9. The correlation function of cluster sample ACO3N (filled
circles) and its error corridor (arrows). Solid and dashed lines show
the correlation functions for the Peacock analytical model, para-
meters as in Fig. 5, but amplitude is not reduced to the galaxy
spectrum.
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corresponding in the 3D case to n= — 2. The spectral index
of the 3D model was n= —1.5. All models have either a
transition to the Harrison-Zeldovich index according to
equation (12) at A, =L/4, where L is the size of the compu-
tational box, or a sharp cut-off at the same wavelength
(model 2D4T ).

Our analysis has shown that the resolution of the 3D
model was only marginally sufficient for the present analysis,
and so we give in Table 2 data for 2D models only. As in our
previous papers (Gramann 1988; Einasto et al. 1991), we
divide the matter into the clustered and non-clustered com-
ponents by a certain threshold density, g,, the respective
fraction of matter in the clustered component, F,, being given
in Table 2. A fraction of matter 0.50< F,<0.75 corresponds
to galaxies, F,=0.15 to ordinary clusters, F,<0.05 to rich
clusters of galaxies.

Spectra of subsamples were calculated using the pro-
cedure described above. All spectra were reduced to that of
the matter by formula (8). For one series of models, results
are shown in Fig. 10. We see that, reduced to the matter, the

Table 2. Data on model samples.

Name A n o N F,

2D4T.00 L/4 -1 0.0 262144 1.0000
2D4T.56 L/4 -1 2.0 147725 0.5635
2D4T.14 L/4 -1 10.0 37334 0.1424
2D4T.03 L/4 -1 20.0 8978 0.0342

2D4.00 L/4 -1 0.0 262144 1.0000
2D4.75 L/4 -1 1.0 196517 0.7496

2D4.13 L/4 -1 10.0 35089 0.1338
2D4.03 L/4 -1 20.0 8090 0.0309
2.0 Fr—  SSLANLIRL AL N AN S N S (N St R A A N SN D B N B B B |

1.0 |

log P

0.0

_1.8||||Ixl||I||||l||4|I||||||||1
.0 0.5 1.0 1.5 2.0 2.5 3.0

log A

Figure 10. Power spectra for model 2D4 samples. The solid line
shows the density spectrum for the total mass, short-dashed lines
show the spectra for galaxies, F,=0.75, and long-dashed lines
correspond to the spectra of matter associated with clusters of
galaxies, F,=0.13. Curves above the solid line marked with F,
values correspond to a normalization with respect to the mean
density of the sample studied, unmarked curves around and below
the solid line to a normalization with respect to the mean density of
all matter according to formula (8). Spectra are corrected for
smoothing effect and Poisson noise. Note the stability of the maxima
of spectra.
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galaxy spectrum (F,=0.75) almost coincides with the
spectrum calculated for the whole matter (solid line). In the
case of clusters, formula (8) overcorrects the spectrum, and
the corrected spectrum lies considerably below the matter
spectrum. Thus the reduction rate to the matter spectrum
can be derived empirically. The shape of the cluster
spectrum is different from the shape of the matter spectrum.
Thus, in order to reduce the cluster spectrum to the matter
spectrum, two corrections are needed, one for the difference
in amplitude, and another for the difference in shape.

In the present paper, we have studied only a relatively
short interval of the cluster spectrum (about 10 modes). The
differential correction is small (less than 1.5) in this interval,
and we ignore it. In this approximation, the cluster spectrum
can be reduced to the galaxy spectrum by dividing it by a
constant factor. Model calculations are not accurate enough
to determine this factor theoretically, and we have used an
empirical factor (6.3).

Fig. 10 demonstrates one feature of spectra calculated for
populations of different threshold density - the maximum of
the spectra is a stable characteristic, and it does not depend
on the threshold density level. The same property is
observed in all models studied so far. Since the determina-
tion of the maximum of the spectrum (transition to the
Harrison-Zeldovich spectrum) is one of the main goals of
the present study, we can say that the use of clusters as
indicators of the spectrum is justified.

5 DISCUSSION
5.1 Transition scale of the cluster power spectrum

The mean observed spectrum agrees well with the model
spectrum with A,~150 h~! Mpc. Error corridors of the
spectrum and the correlation function allow the transition
scale to be as low as 100 A~! Mpc and as high as 200 A~!
Mpc. Thus we can accept A,=150%50 A~! Mpc.

The correlation length of the model A4,=150 A~! Mpc is
ry=22.6 h~! Mpc. We notice for comparison that West &
van den Bergh (1991) obtained for cD galaxy dominated
clusters the value r,=22.1 h~! Mpc, in good agreement with
our result. Models with extreme (large or small) transition
scales have correlation lengths r,=18.8 #~! Mpc and
r,=28.3 h~! Mpc, also in good agreement with the error
range derived by West & van den Bergh.

Independent evidence for the transition scale comes from
the mean distance between deep potential wells and density
maxima, which is about 100-150 A~! Mpc (Broadhurst et al.
1990; Bahcall 1991). As demonstrated by Gramann (1992),
the mean distance of potential wells is determined by the
scale of the maximum of the power spectrum.

5.2 Comparison with power spectra found by previous
investigations

The comparison of our results with the results of other
recent determinations of the power spectrum is illustrated in
Fig. 5, where we plot the galaxy power spectrum found by
GE and BF, the power spectrum for radio galaxies found by
PN, and the spectrum calculated by P91 for the IRAS QDOT
redshift survey (Efstathiou et al. 1990); see caption to Fig. 5
for details. We note that PN and P91 used the power
spectrum in the form AZ; their spectrum was transformed to

our notation P and vertically slightly adjusted to bring the
spectrum into agreement with the normal galaxy spectrum in
the scale interval from =~ 20 to =100 2~ ! Mpc.

Fig. 5 demonstrates excellent agreement between the
spectra found for five independent data sets. Practically all
estimates of the power spectrum lie within the error corridor
calculated for the cluster data.

5.3 The fair-sample problem

According to the definition, a fair sample of the Universe is a
sample which has statistically the same properties as the
Universe as a whole in our vicinity. Previous studies of the
correlation function and the void probability function have
shown that these functions differ for samples taken at
different locations if the sample size is of the order =60 h~!
Mpc or less (Einasto et al. 1991; Einasto 1991). The power-
spectrum analysis of cluster samples presented in this paper
demonstrates that northern and southern diagonal samples
which are less strongly influenced by incompleteness effects
have practically identical power spectra. Thus the empirical
evidence indicates that our samples may approach a fair
sample of the Universe.

Independent evidence for the size of this sample is given
by the power-spectrum analysis itself. If our result concern-
ing the transition scale of the spectrum is correct then we
come to the conclusion that the fair sample size is of the
order of =300 h~! Mpc; see Gramann (1992) for numerical
analysis of the problem.

6 CONCLUSIONS

The basic results of our analysis can be formulated as
follows.

(i) We have applied the power-spectrum analysis to the
distribution of Abell clusters. We have developed and/or
applied procedures to correct for the smoothing effect, for
the Poisson noise, and to estimate the errors due to in-
completeness of data and observational errors of distances.

(ii) We have calculated the power spectra and correlation
functions for clusters of galaxies in the northern and
southern galactic hemispheres. Our results suggest that the
spectrum has a transition from the Harrison-Zeldovich
spectrum to that of a low index between 100 2~ ! Mpc and
200 A~! Mpc. .

(iii) Direct comparison of the properties of northern and
southern cluster samples and power-spectrum analysis
suggest that the sizes of our samples may approach the size
of fair samples of the Universe.
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APPENDIX: SMOOTHING OF SPECTRA BY
THE DENSITY ESTIMATION PROCEDURE

Our initial data consists of the positions of clusters in space.
In order to get a smooth density field, we introduced a regu-
lar grid with a cell size / and used a well-known CIC pro-
cedure to assign masses to grid points. This procedure is,
essentially, a convolution of the initial density with the
function

w(x, y7 Z) =wl(x)w1(y)w1(z)a (Al)

where the one-dimensional weighting function w,(x) is given
by

C=xl/n, X<

oix)=1 MEY:

(A2)

In the Fourier representation, this convolution leads to multi-
plication of the true Fourier transform of the density field by
the Fourier transform W(k) of the function w(x, y, z). Once
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more, this is a product of three one-dimensional Fourier
transforms:

W(k)= W(k,) Wi(k,) W(k,), (A3)
where

2
Wi(k) TR [1—cos(kI)]. (A4)

As the power spectrum is the integral of the squares of the
Fourier amplitudes, the correction for the spectrum will be
W?2(k). For practical application, we must note that we have
assumed that the spectrum we study is isotropic. This is
ensured by averaging the real spectrum over all directions. It
is easy to see that if we assume that the true density distribu-
tion is isotropic (our weighting function is not), then the
averaged spectrum

Pest(k) =<P(k)>s(k)’ (AS)

where S(k) is the surface of a sphere of radius k, can be
written as

Pest(k) = Plrue(k)< W2(k)>su<)- (A6)

The latter average ( W2(k))= K (k) is the correction we are
looking for:

/2 n/2
K(y) ZJ d¢ J a6 (A7)

=1 T .4 7, . 4
my )], cos ¢gsin ¢ J, cos’ Osin 6

x[1 = cos(ysin 8)][1 —cos(ycos O cos ¢)]*
X [1—cos(y cos 0 sin ¢)J,

where we have used the abbreviation y = kl.

We show this correction in Fig. Al together with a simple
approximation K (k)= W2(k). This simple expression works
well until y=k/=2xn. After this point, the true correction
stays much closer to zero than the one-dimensional approxi-
mation would predict.
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Figure A.1. The correction function for density spectra from the
CIC density estimation procedure. The solid line gives the correc-
tion for the three-dimensional case, the dashed line a one-
dimensional approximation.
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The correction factor for grid smoothing can be rather
accurately expressed by the following empirical formula:
A IOg P= 10”»_bu(]08 Koo —log k), , (AS)

where k,,, =2/l is the maximal wavenumber of the sample
for given resolution parameter gq. Constant a,= —0.23

determines the maximal correction at the high-frequency end
k =k, and constants b, =1.95 and ¢, = 1.15 fix the rate of
the decrease of the correction for increasing difference in
frequency log k. This formula was found by comparison of
spectra calculated for different values of the resolution
parameter q.
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