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ABSTRACT

In this paper we determine the constraints on cosmological parameters using the CMB data from the W experiment together
with the recent power spectrum measurement of the SDSS Luminous Red Galaxies (LRGs). Specifically, we focus on spatially flat,
low matter density models with adiabatic Gaussian initial conditions. The spatial flatness is achieved with an additional quintessence
component whose equation of state parameter weff is taken to be independent of redshift. Throughout most of the paper we do not
allow any massive neutrino contribution and also the influence of the gravitational waves on the CMB is taken to be negligible. The
analysis is carried out separately for two cases: (i) using the acoustic scale measurements as presented in Hütsi (2006, A&A, 449,
891), (ii) using the full SDSS LRG power spectrum and its covariance matrix. We are able to obtain a very tight constraint on the
Hubble constant: H0 = 70.8+2.1

−2.0
km s−1 Mpc−1, which helps in breaking several degeneracies between the parameters and allows us to

determine the low redshift expansion law with much higher accuracy than available from the W + HST data alone. The positive
deceleration parameter q0 is found to be ruled out at 5.5σ confidence level. Finally, we extend our analysis by investigating the effects
of relaxing the assumption of spatial flatness and also allow for a contribution from massive neutrinos.
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1. Introduction

Since the flight of the C1 satellite in the beginning of 90’s
the field of observational cosmology has witnessed an extremely
rapid development. The data from various Cosmic Microwave
Background (CMB) experiments (W2 (Bennett et al. 2003);
C (Smoot et al. 1992); A3 (Benoît et al. 2003);
B4 (Netterfield et al. 2002); M5 (Hanany et al.
2000); C6 (Pearson et al. 2003); V7 (Scott et al. 2003);
D8 (Halverson et al. 2002) etc.); supernova surveys (S9

(Perlmutter et al. 1999), High-Z SN Search10 (Riess et al. 1998))
and large galaxy redshift surveys (SDSS11 (York et al. 2000),
2dFGRS12 (Colless et al. 2001)) has lead us to the cosmolog-
ical model that is able to accommodate almost all the avail-
able high quality data – the so-called “concordance” model
(Bahcall et al. 1999; Spergel et al. 2003). Useful cosmological

⋆ Appendices are only available in electronic form at
http://www.aanda.org

1 http://lambda.gsfc.nasa.gov/product/cobe/
2 http://map.gsfc.nasa.gov/
3 http://www.archeops.org/
4 http://cmb.phys.cwru.edu/boomerang/
5 http://cfpa.berkeley.edu/group/cmb/
6 http://www.astro.caltech.edu/∼tjp/CBI/
7 http://www.mrao.cam.ac.uk/telescopes/vsa/
8 http://astro.uchicago.edu/dasi/
9 http://supernova.lbl.gov/

10 http://cfa-www.harvard.edu/oir/Research/supernova/

HighZ.html
11 http://www.sdss.org/
12 http://www.mso.anu.edu.au/2dFGRS/

information has also been obtained from the Ly-α forest, weak
lensing, galaxy cluster, and large-scale peculiar velocity stud-
ies. It is remarkable that this diversity of observational data
can be fully explained by a cosmological model that in its sim-
plest form has only 5−6 free parameters (Liddle 2004; Tegmark
et al. 2004). As the future data sets will be orders of magnitude
larger, leading to the extremely small statistical errors, any fur-
ther progress is possible only in case we fully understand various
systematic uncertainties that could potentially bias our conclu-
sions about the underlying cosmology. As such, one should try
to use observables that are least sensitive to the theoretical uncer-
tainties, contaminating foregrounds etc. Currently the “cleanest”
constraints on cosmological models are provided by the mea-
surements of the angular power spectrum of the CMB. Since the
underlying linear physics is well understood (see e.g. Hu 1995;
Dodelson 2003) we have a good knowledge of how the angular
position and amplitude ratios of the acoustic peaks depend on
various cosmological parameters. However, the CMB data alone
is able to provide accurate measurements of only a few com-
binations of the cosmological parameters. In order to break the
degeneracies between the parameters one has to complement the
CMB data with additional information from other independent
sources e.g. the data from the type Ia supernovae, large-scale
structure, or the Hubble parameter measurements. In fact, the
well understood physical processes responsible for the promi-
nent peak structure in the CMB angular power spectrum are also
predicted to leave imprints on the large-scale matter distribu-
tion. Recently the analysis of the spatial two-point correlation
function of the Sloan Digital Sky Survey (SDSS) Luminous Red
Galaxy (LRG) sample (Eisenstein et al. 2005), and power spec-
tra of the 2dF (Cole et al. 2005) and SDSS LRG (Hütsi 2006)
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redshift samples, have lead to the detection of these acoustic fea-
tures, providing the clearest support for the gravitational insta-
bility picture, where the large-scale structure of the Universe is
believed to arise through the gravitational amplification of the
density fluctuations laid down in the very early Universe.

In the current paper we work out the constraints on cosmo-
logical parameters using the SDSS LRG power spectrum as de-
termined by Hütsi (2006). In order to break the degeneracies
between the parameters we complement our analysis with the
data from other cosmological sources: the CMB data from
the W, and the measurement of the Hubble parameter by
the HST Key Project13. We focus our attention on simple mod-
els with Gaussian adiabatic initial conditions. In the initial phase
of the analysis we further assume spatial flatness, and also neg-
ligible massive neutrino and gravitational wave contributions.
This leads us to the models with 6 free parameters: total matter
and baryonic matter density parameters: Ωm and Ωb, the Hubble
parameter h, the optical depth to the last-scattering surface τ,
the amplitude As and spectral index ns of the scalar perturbation
spectrum14. This minimal set is extended with the constant dark
energy effective equation of state parameter weff . We carry out
our analysis in two parts. In the first part we use only the mea-
surement of the acoustic scale from the SDSS LRG power spec-
trum as given in Hütsi (2006). The analysis in the second part
uses the full power spectrum measurement along with the covari-
ance matrix as provided by Hütsi (2006). Here we add two ex-
tra parameters: bias parameter b and parameter Q that describes
the deformation of the linear power spectrum to the nonlinear
redshift-space spectrum. These extra parameters are treated as
nuissance parameters and are marginalized over. Thus the largest
parameter space we should cope with is 9-dimensional15. Since
the parameter space is relatively high dimensional it is natural to
use Markov Chain Monte Carlo (MCMC) techniques. For this
purpose we use publicly available cosmological MCMC engine
C16 (Lewis & Bridle 2002). All the CMB spectra and
matter transfer functions are calculated using the fast Boltzmann
code C17 (Lewis et al. 2000).

The paper is organized as follows. In Sect. 2 we describe the
observational data used for the parameter estimation. Section 3
discusses and tests the accuracy of the transformations needed to
convert the linear input spectrum to the observed redshift-space
galaxy power spectrum. In Sect. 4 we present the main results of
the cosmological parameter study and we conclude in Sect. 5.

2. Data

The SDSS LRG power spectrum as determined by Hütsi (2006)
is shown with filled circles and heavy solid errorbars in Fig. 1.
There the upper data points correspond to the deconvolved ver-
sion of the spectrum18. The thin solid lines represent the best-
fitting model spectra, with the lower curve corresponding to
the convolved case. As the survey window is relatively narrow

13 http://www.ipac.caltech.edu/H0kp/
14 In fact, one might even consider a simpler case with only 5 free

parameters by fixing ns = 1 (Liddle 2004).
15 Since marginalization over the bias parameter can be done analyt-

ically (Bridle et al. 2002) the actual number of parameters can be re-
duced to 8.

16 http://cosmologist.info/cosmomc/
17 http://camb.info/
18 The deconvolution was performed using an iterative algorithm due

to Lucy (1974) with a specific implementation as given in Lin et al.
(1996).
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Fig. 1. Upper panel: power spectra in somewhat unconventional form.
Here the spectra have been multiplied by an extra factor of k to increase
the visibility of details. Filled circles with solid errorbars represent the
SDSS LRG power spectrum as determined by Hütsi (2006). The upper
data points provide the deconvolved version of the spectrum. The thin
solid lines show the best-fitting model spectra. Lower panel: the same
spectra as above now plotted in the usual form.

the deconvolution can be done rather “cleanly”. This decon-
volved spectrum might be useful for the extra-fast parameter
estimation employing analytic approximations for the matter
transfer functions (Eisenstein & Hu 1998; Novosyadlyj et al.
1999) and fast CMB angular power spectrum generators such as
CMBfit19 (Sandvik et al. 2004), DASh20 (Kaplinghat et al. 2002)
and CMBwarp21 (Jimenez et al. 2004). However, in this pa-
per, as we use an accurate Boltzmann solver C to calculate
CMB power spectra and matter transfer functions, the relative
time taken by an extra convolution step is completely negligible.
Thus in the following we use only the convolved spectrum22.
Accurate analytic fitting formulae for the survey window func-
tions can be found in Hütsi (2006)23. The power spectrum co-
variance matrix in Hütsi (2006) was measured from 1000 mock
catalogs generated with the second-order optimized Lagrangian

19 http://www.hep.upenn.edu/ sandvik/CMBfit.html
20 http://bubba.ucdavis.edu/DASh/
21 http://www.physics.upenn.edu/ raulj/CMBwarp/
22 Often also called a pseudospectrum.
23 There the combination “mode coupling kernels” is used in place of

the more common “window functions”.
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perturbation calculation. The same paper also provides the mea-
surement of the acoustic scale: (105.4±2.3) h−1 Mpc. This corre-
sponds to the case when only sinusoidal modulation, as expected
in the case of adiabatic initial conditions, in the power spectrum
is allowed. Relaxing this assumption by allowing an arbitrary
phase shifts gave the result, (103.0 ± 7.6) h−1 Mpc, instead. In
the following parameter estimation process we use both of these
values. In Hütsi (2006) the measurement of the acoustic scale
was achieved by first removing the “smooth” component of the
spectrum and then fitting the parametrized family of functions
to the oscillatory part via the modified version of the Levenberg-
Marquardt method. The separation of the “smooth” and “oscilla-
tory” components of the spectrum can be done rather accurately
since the characteristic scales over which they change differ
strongly. The Levenberg-Marquardt method which was used to
determine the oscillation frequency approximates the likelihood
surface near its maximum with a multidimensional Gaussian,
and this way provides an approximate parameter covariance ma-
trix. To avoid this “Gaussianity assumption” we have also per-
formed a MCMC parameter estimation exercise, finding the best
fitting acoustic scale along with its uncertainty in full agreement
with the values quoted above. The question that might arise of
course is how adequate is the parametric family that was used for
fitting the oscillatory component? Even in the simplest case of
the adiabatic initial fluctuations the damped sinusoidal modula-
tion is only an approximation. We investigate the possible biases
introduced by assuming a fixed parametric form for the oscilla-
tory part of the spectrum in more detail in Sect. 4.2.

As mentioned in the Introduction, in order to break several
degeneracies between the cosmological parameters, we com-
plement the SDSS LRG power spectrum data with the data
from the W CMB measurements. Specifically, we use the
CMB temperature power spectrum as found in Hinshaw et al.
(2003) and the temperature-polarization cross-power as deter-
mined by Kogut et al. (2003). The description of the likelihood
calculation using this data is given in Verde et al. (2003). We use
the Fortran90 version of this likelihood code as provided by the
C package.

While investigating the constraints arising from the mea-
surement of the acoustic scale we do not run each time the
full new MCMC calculation. Instead we importance sample the
chains built for the W data along with the constraint on
the Hubble parameter as provided by the HST Key Project,
H0 = 72 ± 8 km s−1 Mpc−1 (Freedman et al. 2001). Using the
W data alone would result in too loose constraints on sev-
eral parameters, and thus after importance sampling a large frac-
tion of the chain elements would get negligible statistical weight,
leaving us with too small effective number of samples.

3. Power spectrum / acoustic scale transformation

In this section we discuss the relation of the observed galaxy
power spectrum to the underlying spectrum of the matter dis-
tribution. We stress the need to take into account the so-called
cosmological distortion24, which almost always is being com-
pletely neglected25. This is fine for the very shallow surveys, but

24 In order to convert the observed redshifts to the comoving distances
needed for the estimation of the power spectrum, one has to assume
some background cosmological model – the fiducial cosmology. If the
true underlying cosmology differs from the fiducial model we are left
with a distortion of the power spectrum, which is often called the cos-
mological distortion.

25 According to our knowledge the only counter-example being the
work by Eisenstein et al. (2005).

as we show later, for the samples like the SDSS LRGs, with an
effective depth of zeff ∼ 0.35, the cosmological distortion should
certainly be taken into account. This is especially important if
power spectrum, instead of being well approximated by a sim-
ple power law, contains some characteristic features.

There are other difficulties one has to face while trying to
make cosmological inferences using the observed galaxy sam-
ples. It is well known that galaxies need not faithfully follow the
underlying matter distribution. This phenomenon is known as
biasing (Kaiser 1984). Whereas on the largest scales one might
expect linear and scale-independent biasing (e.g. Coles 1993;
Narayanan et al. 2000), on smaller scales this is definitely not
the case. In general the biasing can be scale-dependent, nonlin-
ear, and stochastic (Dekel & Lahav 1999). The other complica-
tions involved are the redshift-space distortions and the effects
due to nonlinear evolution of the density field. The redshift-
space distortions, biasing, and nonlinearities can be approxi-
mately treated in the framework of the Halo Model approach
as described in Appendix A. The implementation of the Halo
Model as presented there introduces four new parameters: Mlow,
the lower cutoff of the halo mass i.e. below that mass halos are
assumed to be “dark”; α and M0, the parameters describing the
mean of the halo occupation distribution i.e. the average num-
ber of galaxies per halo with mass M, which was assumed to

have the form 〈N|M〉 =
(

M
M0

)α
; γ, the parameter describing the

amplitude of the virial motions inside the haloes with respect
to the isothermal sphere model. This formulation of the Halo
Model, along with the assumption of the best-fit W cosmol-
ogy (Spergel et al. 2003), is able to produce a very good fit to the
observed SDSS LRG power spectrum as demonstrated in Fig. 1.
Moreover, all the parameters: Mlow, α, M0, γ, are reasonably well
determined. It turns out that to a good approximation these four
extra parameters can be compressed down just to a single pa-
rameter Q, describing the deformation of the linearly evolved
spectrum:

Pgal(k) = b2(1 + Qkη)Plin(k). (1)

Here b is the bias parameter and a good value for η turns out
to be 3

2
. A similar type of parametric description for the galaxy

power spectrum was also used in Cole et al. (2005), with a slight
difference for the treatment of the largest scales. In that paper
the authors suggest to take η = 2. However, we have found that
η = 3

2
provides a better approximation for these 4-parameter

Halo Model spectra26. This is demonstrated in the upper pan-
els of Figs. 2 and 3. There we have calculated a full range of
Halo Model spectra (assuming the W “concordance” cos-
mology) for different values of Mlow, α, M0, and γ, drawn from
the multidimensional Gaussian centered around the best-fitting
values and with the parameter covariance matrix as found in
Hütsi (2006). Each of the calculated models is fitted with a sim-
ple parametric form as given in Eq. (1). The upper panels of
Figs. 2 and 3 represent the density plots for the fractional accu-
racy of these simple fits i.e. for each wavenumber k they show
the probability distribution functions for the achieved relative ac-
curacy. With the heavy dashed lines we have also marked the 5%
and 95% quantiles of the accuracy distributions. It is evident that
η = 3

2
provides significantly better approximation to the spectral

deformation than η = 2. The largest errors are seen to be located
at the positions of the acoustic features, with a simple approxi-
mation in Eq. (1) giving larger oscillation amplitudes. The Halo

26 At least if the spectra have shapes close to the observed SDSS LRG
spectrum.
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Fig. 2. Upper panel: a density plot showing the probability distribution
functions for the relative accuracy of the approximation given in Eq. (1)
with η = 3

2
. The set of Halo Model parameters Mlow, α, M0, and γ,

needed to calculate the “exact” spectra, were drawn from the multidi-
mensional Gaussian distribution centered at the best-fit values and with
a covariance matrix as found in Hütsi (2006). The heavy dashed lines
mark the 5% and 95% quantiles of the relative accuracy distributions.
Lower panel: filled circles with solid errorbars provide the SDSS LRG
power spectrum. The data points are connected with a smooth cubic
spline fit. The other set of lines represents some examples of the pairs of
spectra that correspond, starting from below, to the best matching case,
to the 68%, and to the 90% quantiles of the distribution of the χ2 values.
The solid lines show the Halo Model spectra while the dashed ones are
the approximations from Eq. (1).

Model gives lower oscillation amplitudes since relatively flat
contribution from the 1-halo term added to the 2-halo part starts
to decrease the contrast of the acoustic features, whereas the
multiplicative transform in Eq. (1) preserves the contrast level
of these wiggles. In the lower panels of Figs. 2 and 3 we have
provided some examples of the pairs of spectra that correspond
(staring from below) to the best matching case, and also the ones
representing the 68% and 90% quantiles of the distribution of the
χ2 values. The solid lines here correspond to the Halo Model cal-
culations. For comparison also the SDSS LRG power spectrum
along with the cubic spline fitted to the data points are shown.
For clarity slight vertical shifts have been applied to the model
spectra. As can be seen, the approximation in Eq. (1) is rather
acceptable in the light of the accuracy of the SDSS LRG power
spectrum measurement. This approximation is used in Sect. 4.3
where we fit the model spectra to the SDSS LRG data.

The cosmological distortion, mentioned in the beginning
of this section, arises due to the simple fact that conversion
of the observed redshifts to comoving distances requires the
specification of the cosmological model. If this cosmology dif-
fers from the true one, we are left with additional distortion of
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Fig. 3. The version of Fig. 2 with η = 2.

distances along and perpendicular to the line of sight. In general,
the spatial power spectrum measurements, in contrast to the an-
gular spectra, are model dependent i.e. along with the measure-
ments of the 3D power spectrum one always has to specify the
so-called fiducial model used to analyze the data. The fiducial
model corresponding to the data shown in Fig. 1 is the best-fit
W “concordance” model (Spergel et al. 2003). In principle,
for each of the fitted cosmological model one should redo the
full power spectrum analysis to accommodate different distance-
redshift relation. However, there is an easier way around: one can
find an approximate analytical transformation that describes how
the model spectrum should look like under the distance-redshift
relation given by the fiducial model i.e. instead of transforming
the data points we transform the fitted model spectra. Since the
distance intervals along and perpendicular to the line of sight
transform differently, the initial isotropic theoretical spectrum P
transforms to the 2D spectrum:

P̃2D(k‖, k⊥; z) =
1

c‖(z) · c2
⊥(z)

P

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√(
k‖

c‖(z)

)2

+

(
k⊥

c⊥(z)

)2

; z

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (2)

where the distortion parameters along and perpendicular to the
line of sight are defined as:

c‖(z) =
Hfid(z)

H(z)
, (3)

c⊥(z) =
d⊥(z)

dfid
⊥ (z)
· (4)

Here H(z) is the Hubble parameter and d⊥(z) is the comoving
angular diameter distance corresponding to the fitted theoreti-
cal model. Superscript fid refers to the fiducial model. Here and
in the following we use a tilde on top of P to denote theoreti-
cal spectrum “transformed to the reference frame of the fiducial
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cosmology”. As we use the spectra that have the dimensions of
volume an extra division by c‖(z) · c2

⊥(z) occurs due to the trans-
formation of the volume elements:

dV(z) = c‖(z) · c2
⊥(z) · dVfid(z) . (5)

By introducing the variables

k =

√
k2
‖ + k2

⊥ , µ =
k‖

k
, κ(z) =

c‖(z)

c⊥(z)
, (6)

we can express P̃2D as follows:

P̃2D(k, µ; z) =

1

c‖(z) · c2
⊥(z)

P

⎡⎢⎢⎢⎢⎢⎢⎢⎣
k

c⊥(z)

√

1 +

(
1

κ
2(z) − 1

)
µ2; z

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (7)

Now the corresponding isotropized spectrum can be given as:

P̃(k; z) =

1

2 c‖(z) · c2
⊥(z)

1∫

−1

P

⎡⎢⎢⎢⎢⎢⎢⎢⎣
k

c⊥(z)

√

1 +

(
1

κ
2(z) − 1

)
µ2; z

⎤⎥⎥⎥⎥⎥⎥⎥⎦ dµ. (8)

As the observations are done along the light-cone we have to per-
form relevant integrals along the redshift. The full treatment for
the light-cone effect can be found in Yamamoto & Suto (1999);
Yamamoto et al. (1999). As we are investigating a two-point
function, an accurate light-cone calculation would introduce two
integrals over the redshifts (Matarrese et al. 1997a; Yamamoto
et al. 1999). However, it turns out that to a good approximation,
excluding the very largest scales, the contributions from differ-
ent redshifts decouple and the double integral reduces to a sim-
ple one-dimensional integral over redshift. The final result for

the P̃(k; z), averaged over the light-cone can be given as:

P̃(k) =

zmax∫

zmin

dVfid

dz
dz · W2(k; z) n̄2(z) P̃(k; z) c‖(z) c2

⊥(z)

zmax∫

zmin

dVfid

dz
dz · W2(k; z) n̄2(z) c‖(z) c2

⊥(z)

· (9)

Here the result of Yamamoto et al. (1999) has been generalized
to include other weight factors in addition to the simple number
density weighting. The most common weight functions W(z)
are the following:

W(k; z) ∝

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
n̄(z)

for volume weighting

const. for number weighting
1

1+n̄(z)P̃(k;z)
for the FKP weighting .

(10)

Here FKP stands for the weighting scheme due to Feldman et al.
(1994). The power spectrum measurement of the SDSS LRGs
in Hütsi (2006) used the FKP weighting function. In Eqs. (9)
and (10) n̄(z) represents the mean number density of galaxies
as a function of redshift. For the SDSS LRG sample analyzed
in Hütsi (2006) the limiting redshifts zmin = 0.16 and zmax =

0.47. If instead of the integral over z in Eq. (9) we just take the
integrand at the effective redshift (e.g. the median redshift) of
the survey, and replace the distortion parameters c‖ and c⊥ with
a single “isotropized” dilation of scales (see e.g. Eisenstein et al.
2005):

cisotr =
3

√
c‖(zeff) c2

⊥(zeff), (11)
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Fig. 4. An analog of Fig. 2, here provided in the context of the accuracy
test for the cosmological distortion approximation given in Eq. (12).
The set of cosmological models was drawn from the combined posterior
corresponding to the W plus HST Key Project data.

we can write instead of Eq. (9) simply

P̃(k) =
1

cisotr

P

(
k

cisotr

)
· (12)

Here the prefactor 1/cisotr can also be dropped, as it can be ab-
sorbed into the bias parameter that is assumed to be a completely
free parameter throughout this paper. Although the true transfor-
mation for the power spectrum is different along and perpendic-
ular to the line of sight, and also is dependent on redshift, it turns
out that a single dilation approximation taken at the median red-
shift of the survey can provide a very good approximation, es-
pecially for relatively shallow surveys. For the median redshift
of the SDSS LRG sample as analyzed in Hütsi (2006), z ∼ 0.35,
this approximation is very accurate as can be seen in Fig. 4. The
upper panel of Fig. 4 shows a similar density plot as in Figs. 2
and 3. Here, in comparison to Figs. 2 and 3 where the back-
ground cosmology was fixed to the best-fit W model and
the Halo Model parameters were varied, we use the simple linear
spectra while changing the cosmology. The set of cosmological
models is drawn from the combined posterior corresponding to
the W plus HST Key Project data. As can be seen from this
figure, for relatively shallow surveys the single “isotropized” di-
lation approximation is very precise: for ∼90% of the models
the approximation in Eq. (12) is more accurate than 0.5%. This
is even more clear when looking at the lower panel of Fig. 4
where we have plotted the pairs of spectra corresponding to the
best matching case, and also some examples representing 68%
and 90% quantiles of the distribution of the χ2 values. As can be
seen, even the pair of curves corresponding to the 90% quantile,
are basically indistinguishable. In Fig. 5 we have illustrated the
case when the cosmological distortion is ignored. One can see
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Fig. 5. As Fig. 4, here instead showing the error one makes if cos-
mological distortion is completely neglected. In the lower panel we
have shown only the examples corresponding to the 68% and 90%
quantiles. The inset shows the probability distribution function for the
“isotropized” dilation scale, as given in Eq. (11), compatible with the
W plus HST Key project constraints.

that for ∼90% of cases we make relative errors of ∼6%, which
is comparable to the amplitude of the acoustic oscillatory fea-
tures. The lower panel of Fig. 5 presents pairs of spectra for 68%
and 90% quantiles of the χ2 values. The inset shows the proba-
bility distribution function for the “isotropized” dilation scale,
as given in Eq. (11), compatible with the W plus HST Key
project constraints. Since the values of cisotr are quite often seen
to differ from cisotr = 1 by 5−10%, it is clear that the cosmologi-
cal distortion has to be taken into account if the power spectrum
is measured as accurately as given by the SDSS LRG data points
in the lower panel of Fig. 5.

4. Results

4.1. Wmap + HST data

As a starting point for several subsequent calculations we
build a Markov chain using the W temperature-temperature
(Hinshaw et al. 2003) and temperature-polarization (Kogut et al.
2003) angular spectra in combination with the constraint on the
Hubble parameter from the HST Key Project (Freedman et al.
2001). The results for the 2D marginalized distributions for all of
the involved parameter pairs are shown in Fig. 6. Here the 68%
and 95% credible regions are shown by solid lines. The origi-
nal MCMC calculation as performed by the C software
uses the variable θ – the angle subtended by the sound hori-
zon at last scattering – in place of the more common Hubble
parameter H0. This leads to the better mixing of the resulting
chain since θ is only weakly correlated with other variables

Fig. 6. The 2D marginalized distributions for the W + HST data.

(Kosowsky et al. 2002). The proposal distribution for all of the
MCMC calculations carried out in this paper is taken to be a
multivariate Gaussian. For the current W + HST case we
have used the CMB parameter covariance matrix as provided by
the C package. All of the seven default parameters here
get implicit flat priors. The marginalized distributions in Fig. 6
are derived from a 100 000-element Markov chain. As there is
a very good proposal distribution available the chains typically
equilibrate very fast and only a few hundred first elements need
to be removed to eliminate the effects of the initial transients.
We determine the length of this so-called burn-in period using
the Gibbsit27 software (Raftery & Lewis 1995). The same pro-
gram can also be used to estimate the length of the Markov
chain required to achieve a desired accuracy for the parameter
measurements. As a test one can run initially a short chain of
a few thousand elements and analyze it with Gibbsit. It turned
out that in the current case if we would like to achieve a 1.25%
accuracy at 95% confidence level for the measurement of the
2.5% and 97.5%-quantiles of the most poorly sampled parame-
ter, we would need a chain of ∼25 000 elements. Thus accord-
ing to this result our 100 000 element chain is certainly more
than sufficient. Of course, all the various tools for diagnosing
the convergence and for estimating the required chain length28

are just some more or less justified “recipes” that can lead to
strongly incorrect results, especially in cases of poorly designed
proposal distributions. Luckily, in cosmology as we have a very
good knowledge about the possible parameter degeneracies, and
also as the parameter spaces are relatively low dimensional, the
construction of very good samplers is not too difficult.

In the following subsections we use this W + HST
chain for the very fast determination of the parameter constraints
resulting from the additional measurement of the SDSS LRG
acoustic scale. The same chain was also used to produce Figs. 4
and 5.

27 http://www.stat.washington.edu/raftery/software.html
28 For a lot of online material related to these issues see
http://www.statslab.cam.ac.uk/∼mcmc/.
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4.2. Constraints from the measurement of the acoustic scale

The low redshift acoustic scale as measured via the analysis
of the SDSS LRG power spectrum was found to be (105.4 ±
2.3) h−1 Mpc if adiabatic initial conditions were assumed (i.e.
allowing only for the sinusoidal modulation in the spectrum),
and (103.0 ± 7.6) h−1 Mpc if this assumption was relaxed by al-
lowing additional oscillation phase shifts (Hütsi 2006). These
measurements refer to the W best-fit cosmology (Spergel
et al. 2003) which was used to analyze the SDSS LRG data. In
Sect. 3 we have described accurate transformations needed to
accommodate other background cosmologies. In the following
we use SH1 and SH2 to denote the sound horizon measurements
of (105.4±2.3) h−1 Mpc and (103.0±7.6) h−1 Mpc, respectively.

In this section we investigate the constraints on cosmolog-
ical parameters using the above given values for the sound
horizon in combination with the W data. We obtain initial
bounds on parameters in a numerically efficient way by apply-
ing the method of importance sampling on the earlier calculated
W + HST chain. However, to be confident in the results
obtained we always carry out a full MCMC calculation from
scratch for each of the considered cases. As a final results we
only quote the constraints on cosmological parameters obtained
from the direct MCMC calculations. Importance sampling is
only used as an independent check of the validity of the results.
In general both methods reach to the parameter bounds that are
in a good agreement.

It is fine to use importance sampling if new constraints are
not too constraining and are consistent with the earlier generated
chain. Having a measurement of the acoustic scale s̃29 with an
error ∆s̃, importance sampling simply amounts to multiplying
each original sample weight by

fi = exp

[
−

(s̃modeli − s̃)2

2∆s̃2

]
, (13)

where s̃modeli
denotes the theoretical sound horizon correspond-

ing to the ith Markov chain element. The physical size of the
sound horizon s at the end of the drag-epoch is is determined by
the parameter combinations Ωmh2 and Ωbh2 i.e. physical densi-
ties of the CDM and baryonic components. Accurate fitting for-
mulae for s can be found in Hu & Sugiyama (1996); Eisenstein
& Hu (1998). We have provided these in Appendix B where
also the transformation into different cosmological frame is de-
scribed. This transformation induces an extra dependence of the
sound horizon s̃, as measured from the matter power spectrum,
on h and weff . For more details see Appendix B. The dependence
of s̃ at redshift z ∼ 0.35 on various parameters for spatially flat
models around the best fitting W model point can be conve-
niently expressed as the following principal component:

(
Ωmh2

0.14

)−0.28 (
Ωbh2

0.022

)−0.10 (
h

0.71

)0.94 (
weff

−1.

)0.14

= 1 ± ∆s̃

s̃
· (14)

As probably expected, for those relatively small redshifts by
far the strongest dependence is on the Hubble parameter h.
To avoid any biases due to the approximate nature of the
Eqs. (B.9)−(B.11), and also due to the specific method used
to measure the oscillation frequency in the SDSS LRG power
spectrum, we carry out the following Monte Carlo study. We
draw ∼1000 samples from the W + HST chain by thin-
ning it by a factor of ∼10. For each of the parameter combi-
nations we calculate theoretical matter spectra using C. The

29 We use tilde to denote the quantities that are “tied to the” fiducial
cosmological model used to analyze the data.
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Fig. 7. Upper panel: comparison of the sound horizon as determined
from ∼1000 model spectra, via the same fitting techniques that were
used in Hütsi (2006) to measure the SDSS LRG sound horizon, with
the analytical approximation given in Eqs. (B.4), (B.5), (B.9), (B.10),
(B.11). The model spectra were drawn from the posterior distribution
corresponding to the W + HST data. Lower panel: the density plot
of the residuals after removing the average bias of 0.77 h−1 Mpc. The
solid dashed lines mark the 68% credible region.

oscillatory components of the spectra are extracted by dividing
them with a “smoothed” approximate model spectra as given
in Eisenstein & Hu (1998)30. The resulting “flattened” spec-
tra are fitted with damped sinusoidal waves 31 and the sound
horizon s̃fitted is determined via the Levenberg-Marquardt fit-
ting technique. All the spectra are calculated at exactly the same
wavenumbers as the data points given in Fig. 1. The power spec-
trum covariance matrix is taken from the Appendix G of Hütsi
(2006). For each model the sound horizon s̃model is calculated
using Eqs. (B.4), (B.5), (B.9), (B.10), (B.11). The comparison
of s̃fitted versus s̃model is provided in Fig. 7. In the upper panel
we have plotted s̃fitted − s̃model. As can be seen there is a slight
tendency for the fitted values s̃fitted to be larger than s̃model. After
removing the constant bias of 0.77 h−1 Mpc the remaining fluc-
tuations are <∼0.5%, which is demonstrated in the lower panel
of Fig. 7. This plot is an analog to the earlier density plots
shown in Figs. 2−5. Here the dashed lines show the region cov-
ering 68% of all the cases. These were the results that apply
to the case when the phase of the sinusoidal waves was not al-
lowed to vary. If the phase is additionally allowed to change the

30 The separation of the oscillatory component and the underlying
smooth CDM continuum can be done very cleanly due to significantly
different characteristic scales over which they change. The small resid-
ual deformations of the oscillatory part have negligible impact on the
inferred oscillation period.

31 For a precise parametric form see Hütsi (2006).
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Fig. 8. The 2D marginalized distributions for the W data along
with the constraint on the low redshift sound horizon, s̃ = (104.6 ±
2.3) h−1 Mpc (SH1), obtained via the importance sampling of the W
+ HST results shown in Fig. 6.

corresponding effective bias turns out to be in the opposite direc-
tion with a value 1.8 h−1 Mpc, instead. Thus the bias corrected
values for the sound horizon used in our analysis are the fol-
lowing: (104.6 ± 2.3) h−1 Mpc (SH1) and (104.8 ± 7.6) h−1 Mpc
(SH2). One might even go a step further and instead of remov-
ing only a constant offset, remove also the next order i.e. the
linear component. This more accurate treatment has probably
rather negligible effect on the final results, since around the mea-
sured sound horizon values of ∼105 h−1 Mpc the accuracy af-
ter removing the constant offset is already ∼0.2−0.3%, which is
an order of magnitude smaller than the measurement errors of
2.3−7.6 h−1 Mpc.

Using this correction for the bias and the method to calcu-
late the theoretical size of the sound horizon at the end of the
drag-epoch, as presented in Appendix B, we can immediately
perform the relevant reweighting of the W + HST chain
(see Eq. (13)). It turns out that relatively large fraction of the
W + HST chain elements “survive” this reweighting proce-
dure, justifying the use of the importance sampling method. In
particular, for the SH2 case we are left with ∼36 000, and for
the SH1 ∼12 000 samples. The results of this calculation in the
form of the 2D marginalized distributions is presented in Figs. 8
and 9. Here Fig. 8/9 corresponds to the SH1/SH2 case. In com-
parison to the analogous Fig. 6 the most dramatic changes are
for H0 and weff, whereas the rest of the parameters stay essen-
tially the same. The HST constraint for the initial W chain
was just implemented in order not to loose too many samples in
current importance sampling calculations. As can be seen, the
new constraints on H0 are significantly stronger than the one
provided by the HST. In Fig. 8 due to somewhat lower num-
ber of samples (∼12 000) the contours start to become more
noisy. Earlier we estimated that the measurement of the 2.5%
and 97.5% quantiles with an accuracy of 1.25% at 95% CL re-
quires ∼25 000 samples. So is this 12 000 enough for the param-
eter estimation purposes? To test that we have also performed a
full MCMC calculation from scratch (with 100 000 samples) us-
ing W data along with a sound horizon measurement SH1.
The results of this calculation are shown in Fig. 10. The contours

Fig. 9. The same as Fig. 8, only for the sound horizon measurement
(104.8 ± 7.6) h−1 Mpc (SH2).

Fig. 10. The exact analog of Fig. 8, now for the full MCMC calculation.

in Fig. 8 although being noisier are very similar to the ones in
Fig. 10. In fact the corresponding 1D distributions are practically
indistinguishable. This shows that the initial use of importance
sampling was indeed justified.

4.3. Constraints from the full power spectrum

Using the W data and the SDSS LRG power spectrum as
shown in Fig. 1 along with the power spectrum transformation
and an additional new parameter Q, as described in Sect. 3, we
build a 100 000 element Markov chain in the 8-dimensional pa-
rameter space. The resulting 2D parameter distribution functions
are shown in Fig. 11. Here we see that in several cases distribu-
tions start to become doubly-peaked. Also the constraints on H0

and weff are weaker than the ones obtained in the previous sub-
section. On the other hand, now a rather strong constraint has
been obtained for Ωcdmh2. Even stronger constraint (not shown
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Fig. 11. The 2D marginalized distributions from the W +
SDSS LRG full power spectrum MCMC calculation.

in the figure) is obtained for Ωmh – the shape parameter Γ. This
just illustrates the the well-known fact that the shape of the mat-
ter power spectrum is most sensitive to Γ. The new parameter Q,
describing the deformation of the linear spectrum to the evolved
redshift-space galaxy power spectrum, is seen to be significantly
degenerate with several parameters e.g. Ωbh2, ns, τ, As. On the
other hand it does not interfere too strongly with H0.

It might seem strange that using the full data we obtain
weaker constraints on H0 and weff . But after all, we should not
be too surprised, since our understanding of how the linear spec-
trum is deformed to the evolved redshift-space power spectrum
is rather limited. Here we were introducing an additional param-
eter Q, which starts to interfere with the rest of the parameter
estimation. Also one should remind that maximum likelihood is
the global fitting technique i.e. it is not very sensitive to specific
features in the data. On the other hand, modeling of the oscil-
latory component of the spectrum does not call for any extra
parameters. Also the underlying physics is much better under-
stood. In fact, the observable low redshift acoustic scale is de-
termined by four parameters only: Ωmh2, Ωbh2, weff and h. The
optimal data analysis of course should incorporate both compo-
nents: (i) general shape of the spectrum i.e. low frequency com-
ponents, and (ii) oscillatory part, with appropriate weightings. It
is clear that in the current “full spectrum” maximum likelihood
analysis the acoustic features are weighted too weakly.

4.4. One dimensional distributions

To compare the measurements of the parameters in a more clear
fashion we provide in Fig. 12 several 1D marginalized distribu-
tions. The 68% and 95% credible regions along with the medians
of these distributions are provided in Table 1. Here the param-
eters Ωbh2, Ωcdmh2, θ, τ, weff, ns, As and Q (the last in case of
the full spectrum analysis only) are primary parameters as used
in the MCMC calculations. All the rest: ΩΛ, t0, Ωm, zreion, H0,
q0, j0 are derived from these. Here t0 is the age of the Universe,
q0 the deceleration parameter and j0 the so-called jerk (see e.g.
Blandford et al. 2005) at z = 0. The deceleration parameter q0
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Fig. 12. The 1D posterior distributions for several cosmological param-
eters. Solid, dash-dotted, dashed, and dotted lines correspond to the
W + HST, W + SDSS LRG SH1, W + SDSS LRG SH2,
and W + SDSS LRG full power spectrum cases, respectively. The
compact summary of these results can be found in Table 1.

and jerk j0 are introduced as usual via the Taylor expansion of
the scale factor:

a(t) = a0

[
1 + H0(t − t0) − 1

2
q0H2

0(t − t0)2

+
1

6
j0H3

0(t − t0)3 + . . .

]
. (15)

From Fig. 12 we can see that many parameters stay essentially
the same as determined by W + HST data. On the other
hand, a new precise measurement of H0, thanks to the mea-
surement of the low redshift sound horizon along with strong
constraints on Ωbh2 and Ωcdmh2 from the CMB data, helps to
determine Ωm (as well as Ωb and Ωcdm separately) rather pre-
cisely. The same applies to the case of the full spectrum anal-
ysis, which provides us with a good estimate for the shape pa-
rameter Γ = Ωmh. In both cases also the constraint on weff is
significantly improved. New improved limits on Ωm and weff

immediately transform to better constraints on q0 and j0 (see
Appendix C). For the “vanilla” ΛCDM model with w = −1
the jerk parameter j0 = 1. We can see that at the moment
jerk is still rather poorly constrained. Using only the observa-
tional data whose nature is very well understood, namely the
CMB power spectra along with the low redshift sound horizon
measurement, we get very strong support for the accelerating
Universe (i.e. q0 < 0). The values q0 > 0 are ruled out by 1.4σ,
2.9σ and 5.5σ in case of the W +HST, W + SDSS LRG
SH2 and W + SDSS LRG SH1, respectively32. Of course,

32 We can perform this analysis of the far away tails of the distribu-
tions since the W + HST chain we start with contains enough sam-
ples with q0 > 0 (see Fig. 12).
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Table 1. Various quantiles of the 1D distributions shown in Fig. 12. The first group of parameters are the primary ones used in the MCMC calcu-
lations, the second group represents various derived quantities, and the last shows the parameters held fixed due to our prior assumptions. The last
row of the table also gives the total number of free parameters, excluding the bias parameter that was marginalized out analytically, for all of the
investigated cases. Also shown are the χ2-values for the best-fitting model and the effective number of degrees of freedom involved.

WMAP + HST WMAP + SDSS LRG WMAP + SDSS LRG WMAP + SDSS LRG

Parameter sound horizon; adiab. (SH1) sound horizon (SH2) full spectrum

Median 68% 95% Median 68% 95% Median 68% 95% Median 68% 95%

Ωbh2 0.0238 +0.0026
−0.0014

+0.0057
−0.0025

0.0239 +0.0028
−0.0014

+0.0062
−0.0027

0.0238 +0.0024
−0.0014

+0.061
−0.025

0.0237 +0.0025
−0.0013

+0.0043
−0.0023

Ωcdmh2 0.120 +0.017
−0.018

+0.031
−0.033

0.119 +0.018
−0.018

+0.033
−0.035

0.118 +0.018
−0.017

+0.036
−0.033

0.118 +0.011
−0.010

+0.020
−0.018

θ 1.0489 +0.0085
−0.0073

+0.0179
−0.0138

1.0496 +0.0088
−0.0081

+0.0182
−0.0149

1.0488 +0.0083
−0.0070

+0.0178
−0.0131

1.0486 +0.0075
−0.0065

+0.0146
−0.0119

τ 0.153 +0.044
−0.153

+0.231
−0.153

0.160 +0.047
−0.160

+0.238
−0.160

0.161 +0.043
−0.161

+0.239
−0.161

0.152 +0.046
−0.152

+0.195
−0.152

weff −0.97 +0.30
−0.36

+0.54
−0.73

−0.96 +0.18
−0.22

+0.32
−0.45

−0.95 +0.20
−0.23

+0.34
−0.53

−0.86 +0.21
−0.40

+0.34
−0.92

ns 0.991 +0.084
−0.037

+0.183
−0.061

0.993 +0.093
−0.037

+0.195
−0.063

0.992 +0.083
−0.036

+0.190
−0.061

0.993 +0.092
−0.036

+0.141
−0.060

log(1010As) 3.24 +0.28
−0.16

+0.53
−0.28

3.26 +0.31
−0.18

+0.53
−0.32

3.24 +0.28
−0.17

+0.54
−0.29

3.22 +0.30
−0.16

+0.45
−0.24

q – – – – – – – – – 1.71 +0.63
−0.60

+1.25
−1.11

H0[km s−1 Mpc−1] 71.4 +8.0
−8.2

+14.9
−15.5

70.8 +2.1
−2.0

+4.4
−4.0

70.5 +3.8
−3.7

+7.8
−7.3

67.6 +7.7
−4.3

+17.9
−7.2

q0 −0.54 +0.38
−0.45

+0.68
−0.89

−0.53 +0.16
−0.18

+0.29
−0.37

−0.51 +0.20
−0.24

+0.35
−0.51

−0.38 +0.24
−0.50

+0.38
−1.22

j0 0.91 +1.55
−0.54

+4.11
−0.69

0.87 +0.76
−0.45

+1.82
−0.67

0.85 +0.83
−0.47

+2.31
−0.65

0.63 +1.43
−0.33

+5.31
−0.39

ΩΛ 0.717 +0.063
−0.083

+0.108
−0.189

0.715 +0.031
−0.032

+0.062
−0.059

0.712 +0.040
−0.042

+0.076
−0.090

0.693 +0.045
−0.034

+0.096
−0.064

Ωm 0.283 +0.083
−0.063

+0.189
−0.108

0.285 +0.032
−0.030

+0.059
−0.062

0.288 +0.042
−0.040

+0.089
−0.077

0.307 +0.034
−0.045

+0.064
−0.096

t0 13.42 +0.31
−0.36

+0.64
−0.76

13.38 +0.34
−0.40

+0.65
−0.84

13.43 +0.32
−0.39

+0.60
−0.87

13.48 +0.27
−0.26

+0.53
−0.52

zreion 16.5 +7.3
−5.5

+10.9
−10.3

16.9 +7.8
−5.7

+10.6
−10.7

16.8 +7.2
−5.9

+11.0
−10.5

16.4 +7.7
−5.9

+10.0
−10.6

Γ ≡ Ωmh 0.202 +0.034
−0.031

+0.073
−0.058

0.202 +0.024
−0.023

+0.044
−0.044

0.202 +0.026
−0.024

+0.050
−0.046

0.207 +0.011
−0.012

+0.023
−0.027

Ωk 0 0 0 0 0 0 0 0 0 0 0 0

Σmν[eV] 0 0 0 0 0 0 0 0 0 0 0 0

AT 0 0 0 0 0 0 0 0 0 0 0 0
d ln ns

d ln k
0 0 0 0 0 0 0 0 0 0 0 0

χ2/d.o.f. 1429/1404 1429/1404 1429/1404 1439/1417

7 free parameters 7 free parameters 7 free parameters 8 free parameters

one has to remind that until now the analysis assumed flat spatial
sections.

4.5. Most interesting constraints

We have shown that by adding the SDSS LRG clustering data
to the W results we can get significantly tighter constraints
on H0, Ωm and weff (or q0 and j0) than from the W + HST
analysis alone. The comparison of the obtained limits on param-
eters H0, Ωm and weff is provided in Fig. 13. The largest error
contours in both upper and lower group of panels correspond to
W + HST, while the tightest to the W + SDSS LRG
SH1 case. In the upper group of panels we have additionally
given the constraints for the W + SDSS LRG SH2 case,
whereas the lower group provides extra limits from the full spec-
trum + W analysis. In addition, in each of the panels we
have given the degeneracy lines corresponding to the principal
component given in Eq. (14)33. In Ωm − H0 plane we have ad-
ditionally plotted the lines corresponding to Ωmh2 = const. and
Γ ≡ Ωmh = const. These are the combinations well determined
by the CMB data and by the general shape of the matter power
spectrum, respectively. As is evident from Fig. 13, the princi-
pal direction of the low redshift sound horizon constraint is al-
ways almost perpendicular to the corresponding W + HST
error contours, demonstrating the high level of complementar-
ity of this new measurement. For the spatially flat models with
constant dark energy equation of state parameter there exists a

33 The analog of Eq. (14) valid for the non-flat cases is given in
Appendix B.

unique relation between parameter pairs (Ωm, weff) and (q0, j0)
(see Appendix C). Figure 14 presents similar plots to Fig. 13,
now only for the parameter triad (H0, q0, j0) instead. The pa-
rameters shown in Figs. 13 and 14 are the ones that determine
the low redshift expansion law. Introducing the look-back time
tlb = t0 − t, where t0 is the age of the Universe at z = 0, one can
find for the redshift:

z ≃ H0tlb +

(
1 +

q0

2

)
H2

0 t2
lb +

(
1 + q0 +

j0

6

)
H3

0 t3
lb + . . . (16)

The precise calculation for the look-back time as a function of
redshift is shown in Fig. 15. Here the upper panel shows the
2σ regions corresponding to the W + HST and W +
SDSS LRG SH1, respectively. The inset in the upper panel dis-
plays these regions after dividing by the look-back time corre-
sponding to the best-fit W cosmology. Here in addition to
the 2σ contours also 1σ regions are given. It is evident that the
low redshift sound horizon measurement has helped to deter-
mine the recent expansion history of the Universe with much
greater accuracy than available from the W + HST data
alone. Of course, this is largely due to the much tighter con-
straint obtained for the Hubble parameter. The lower panel in
Fig. 15 shows a similar plot than the inset in the upper panel.
Here we have given only the 1σ regions as a function of red-
shift for (starting from the bottommost) the W + HST,
W + SDSS LRG full spectrum, W + SDSS LRG SH2
and W + SDSS LRG SH1 cases.
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Fig. 13. The comparison of constraints on H0, Ωm and weff . In all pan-
els the largest error contours correspond to the W + HST, while
the tightest to the W + SDSS LRG SH1 case. The upper group of
panels shows additionally the constraints for the W + SDSS LRG
SH2 case, whereas the lower group provides extra limits from the full
spectrum +W analysis. The dashed lines in all the panels show the
principal component from Eq. (14). The additional lines in Ωm − H0

plane provide the directions Ωmh2 = const and Γ ≡ Ωmh = const.

5. Extended analysis

In this section we investigate the effect of several previously
made assumptions and carry out an extended analysis by relax-
ing some of these.

We start out with a small comment about tensor modes.
There exist several inflationary models which predict a non-
negligible tensor mode contribution to the CMB angular power
spectrum (for a classification of several models see e.g.
Dodelson et al. 1997). However, the inclusion of the tensor
modes into our analysis would not help to constrain them better
than the results obtainable from the CMB data alone34. In order
to make a clean separation of the tensor and scalar contributions
to the CMB angular fluctuations one would greatly benefit from
the independent knowledge of the scalar fluctuation level as ob-
tainable from the large-scale structure studies. Nevertheless, as

34 For the results using the CMB data alone see e.g. Spergel et al.
(2003).
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Fig. 14. The version of Fig. 13 with the parameter trio (H0, Ωm, weff)
replaced by (H0, q0, j0).

in our analysis the biasing parameter is treated as a completely
free quantity that is marginalized out, we do not have any sen-
sitivity to the absolute level of the scalar fluctuation component.
It is worth pointing out that in principle a good handle on bias
parameter can be obtained by the study of the higher order clus-
tering measures e.g. bispectrum (Matarrese et al. 1997b; Verde
et al. 1998).

Since several neutrino oscillation experiments unambigu-
ously indicate that neutrinos have a non-zero mass (for a recent
review see e.g. Lesgourgues & Pastor 2006) it would be inter-
esting to investigate models with massive neutrino component.
For simplicity we concentrate on models with three generations
of neutrinos with degenerate masses. Also, as the generic pre-
diction of almost all the inflationary models is the nonmeasur-
ably small spatial curvature i.e. Ωk ≃ 0 it is of great interest
to test whether this is compatible with the observational data.
For these reasons we have extended our initial analysis to al-
low for the massive neutrino component and also have inves-
tigated the effect of relaxing the assumption about spatial flat-
ness. The results of this study for some of the model classes
are briefly presented in Table 2. Here we have not carried out
an analysis using the full measured LRG power spectrum, in-
stead only the measurement of the acoustic scale was added as
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Fig. 15. Constraints on the low redshift expansion law. Upper panel:
2σ credible regions of the look-back time as a function of redshift for
the W + HST and W + SDSS LRG SH1 cases. The inset dis-
plays these regions after dividing by the look-back time corresponding
to the best-fit W cosmology. Here in addition to the 2σ contours
also 1σ regions are given. Lower panel: analog of the inset in the up-
per panel. Here we have given the 1σ regions as a function of red-
shift for (starting from the bottommost) the W + HST, W +
SDSS LRG full spectrum, W + SDSS LRG SH2 and W +
SDSS LRG SH1 cases.

an additional information to the CMB data. This can be justified
for two reasons: (i) to model the observed power spectrum cor-
rectly one needs to incorporate the corrections due to nonlinear-
ities and redshift-space distortions, which in our case was done
simply by introducing one additional parameter Q (see Eq. (1)).
However, it is clear that the effect of this parameter can resemble
very closely the power-damping effect of massive neutrinos i.e.
there will be very strong degeneracies that result in poor con-
straints on neutrino mass. Instead of the dynamic damping effect
of massive neutrinos we can probe their effect on the kinematics
of the background expansion by exploiting the measurement of
the low redshift acoustic scale. (ii) The non-zero spatial curva-
ture has twofold effect on the matter power spectrum. First, it
influences the growth rate of the fluctuations and thus changes
the amplitude of the spectrum. Since in our case the amplitude
is treated as a free parameter we are unable to use this effect.
Second, the spatial scales get transformed, resulting in the hor-
izontal stretch/compression of the power spectrum. It is clear
that the smooth “continuum” of the power spectrum with an un-
known amplitude does not contain much information about the

possible horizontal stretch/compression35 as this transformation
can be easily mimicked by the corresponding change of the nor-
malization. The degeneracy between these two transformations
can be broken if the spectrum contains some sharper features e.g.
acoustic oscillations.

According to the results presented in Fig. B.2 one proba-
bly would not expect any significant improvement on the mea-
surement of the neutrino mass over the one obtained using the
W data alone. This is indeed the case as can be seen from
Table 2. Our results on Σmν are in good agreement with the con-
straints obtained in Ichikawa et al. (2005); Fukugita et al. (2006).
Contrary to the results presented in Eisenstein et al. (2005) we
do not find any improvement in the measurement ofΩk once the
measurement of the low redshift acoustic scale is incorporated
into the analysis. Although by measuring more accurately the
value of the Hubble constant one would expect to better break
the geometric degeneracy (Bond et al. 1997) and thus should
in principle get better constraint on Ωk, this is currently not the
case. As seen from Fig. 16, by including acoustic scale informa-
tion, model points lie inside the significantly reduced ellipse that
is tilted with respect to the bigger one that uses the W+HST
data alone, in such a way, that the projection perpendicular to
the flatness line still has practically the same width i.e. the con-
straints on Ωk are also practically identical. We can see how the
original distribution of the models turns towards the and also gets
significantly compressed perpendicular to the almost vertical de-
generacy line corresponding to the measurement of the low red-
shift sound horizon (see Eq. (B.19)). In Table 2 along with Σmν
and Ωk we have also given a subset of parameters that benefit
mostly from the inclusion of the measurement of the acoustic
scale. As expected, the parameter constraints are generally get-
ting weaker as we allow for more freedom in the models.

6. Discussion and conclusions

In this paper we have performed a MCMC cosmological pa-
rameter study using the results from the recent SDSS LRG
power spectrum analysis by Hütsi (2006) along with the
CMB temperature-temperature and temperature-polarization an-
gular power spectra as determined by the W team (Hinshaw
et al. 2003; Kogut et al. 2003). We have carried out the analy-
sis in two parts: (i) using the W data + the measurement of
the low redshift sound horizon as found from the SDSS LRG
redshift-space power spectrum, (ii) using the W data + full
SDSS LRG power spectrum as shown in Fig. 1. As the forma-
tion of the acoustic features in the large-scale matter distribution
is theoretically very well understood the separate treatment for
the oscillatory part of the LRG power spectrum is well justi-
fied. Moreover, in comparison to the full power spectrum, which
along with the dependence on several cosmological parameters
requires additional modeling of the redshift-space distortions,
nonlinear evolution, and biasing36, the acoustic scale depends on
only a few cosmological parameters. The CMB measurements
calibrate the physical scale of the sound horizon to a very good
accuracy. By comparing it with the scale inferred from the low
redshift LRG power spectrum measurements, we are able to get
a very tight constraint on the Hubble parameter: h = 0.708+0.021

−0.020

if assuming adiabatic initial conditions, or h = 0.705+0.038
−0.037

if
additional shift in oscillation phase is allowed. Having a tight

35 That is especially true in the case we do not have information about
the scale of the turnover in the spectrum (see Fig. 1 lower panel).

36 Assuming we do not want to exclude the quasilinear scales from
our analysis.
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Table 2. Constraints on selected parameters from an extended analysis. Also shown are the χ2-values for the best-fitting model and the effective
number of degrees of freedom involved.

7 free parameters: Ωbh2, Ωcdmh2, θ, τ, ns, As, Ωk

fixed parameters: weff = −1, Σmν = 0, AT = 0,
d ln ns

d ln k
= 0

WMAP + HST WMAP + SDSS LRG WMAP + SDSS LRG

Parameter sound horizon; adiab. (SH1) sound horizon (SH2)

Median 68% 95% Median 68% 95% Median 68% 95%

H0[km s−1 Mpc−1] 67.8 +7.5
−7.9

+14.7
−15.1

66.8 +3.6
−3.8

+6.8
−6.9

65.9 +5.3
−4.8

+10.4
−9.9

Ωm 0.261 +0.107
−0.068

+0.246
−0.114

0.261 +0.027
−0.028

+0.048
−0.053

0.266 +0.049
−0.041

+0.101
−0.074

ΩΛ 0.767 +0.074
−0.110

+0.119
−0.226

0.777 +0.049
−0.056

+0.090
−0.092

0.768 +0.061
−0.065

+0.102
−0.120

Ωk −0.029 +0.023
−0.025

+0.041
−0.060

−0.037 +0.025
−0.024

+0.047
−0.042

−0.036 +0.026
−0.024

+0.047
−0.053

q0 −0.64 +0.16
−0.10

+0.36
−0.17

−0.647 +0.069
−0.063

+0.114
−0.116

−0.635 +0.088
−0.082

+0.170
−0.137

Γ ≡ Ωmh 0.179 +0.051
−0.038

+0.098
−0.065

0.174 +0.025
−0.026

+0.047
−0.048

0.177 +0.030
−0.031

+0.057
−0.052

χ2/d.o.f. 1429/1404 1429/1404 1429/1404

8 free parameters: Ωbh2, Ωcdmh2, θ, τ, ns, As, weff , Ωk

fixed parameters: Σmν = 0, AT = 0, d ln ns

d ln k
= 0

WMAP + HST WMAP + SDSS LRG WMAP + SDSS LRG

Parameter sound horizon; adiab. (SH1) sound horizon (SH2)

Median 68% 95% Median 68% 95% Median 68% 95%

H0[km s−1 Mpc−1] 63.3 +9.7
−13.6

+18.4
−15.7

65.6 +4.0
−4.4

+8.1
−9.5

64.8 +5.4
−5.9

+11.4
−11.4

Ωm 0.32 +0.39
−0.10

+0.47
−0.16

0.292 +0.043
−0.055

+0.073
−0.092

0.291 +0.060
−0.053

+0.118
−0.095

ΩΛ 0.71 +0.11
−0.46

+0.18
−0.49

0.744 +0.072
−0.051

+0.117
−0.079

0.746 +0.063
−0.061

+0.117
−0.115

weff −0.94 +0.87
−0.61

+0.91
−0.99

−1.20 +0.35
−0.50

+0.51
−0.76

−1.13 +0.31
−0.54

+0.47
−0.81

Ωk −0.023 +0.025
−0.032

+0.088
−0.071

−0.037 +0.024
−0.028

+0.048
−0.065

−0.037 +0.024
−0.035

+0.052
−0.070

q0 −0.51 +0.96
−0.70

+1.01
−1.25

−0.83 +0.34
−0.47

+0.52
−0.80

−0.75 +0.32
−0.54

+0.52
−0.83

Γ ≡ Ωmh 0.206 +0.160
−0.050

+0.182
−0.087

0.190 +0.030
−0.036

+0.049
−0.065

0.190 +0.032
−0.034

+0.062
−0.062

χ2/d.o.f. 1428/1403 1427/1403 1427/1403

7 free parameters: Ωbh2, Ωcdmh2, θ, τ, ns, As, Σmν

fixed parameters: weff = −1, Ωk = 0, AT = 0,
d ln ns

d ln k
= 0

WMAP + HST WMAP + SDSS LRG WMAP + SDSS LRG

Parameter sound horizon; adiab. (SH1) sound horizon (SH2)

Median 68% 95% Median 68% 95% Median 68% 95%

H0[km s−1 Mpc−1] 69.2 +6.4
−6.1

+13.7
−11.2

69.2 +2.4
−2.5

+5.0
−5.4

68.5 +4.4
−3.9

+9.0
−7.5

Ωm 0.300 +0.086
−0.066

+0.174
−0.118

0.294 +0.014
−0.013

+0.028
−0.025

0.302 +0.044
−0.039

+0.094
−0.072

Σmν[eV] – <0.80 <1.71 – <0.72 <1.63 – < 0.77 < 1.67

q0 −0.54 +0.13
−0.10

+0.27
−0.18

−0.552 +0.024
−0.021

+0.050
−0.041

−0.539 +0.069
−0.061

+0.150
−0.112

Γ ≡ Ωmh 0.208 +0.037
−0.034

+0.077
−0.060

0.204 +0.009
−0.009

+0.018
−0.017

0.207 +0.021
−0.019

+0.042
−0.035

χ2/d.o.f. 1429/1404 1429/1404 1429/1404

8 free parameters: Ωbh2, Ωcdmh2, θ, τ, ns, As, weff , Σmν

fixed parameters: Ωk = 0, AT = 0, d ln ns

d ln k
= 0

WMAP + HST WMAP + SDSS LRG WMAP + SDSS LRG

Parameter sound horizon; adiab. (SH1) sound horizon (SH2)

Median 68% 95% Median 68% 95% Median 68% 95%

H0[km s−1 Mpc−1] 70.0 +8.3
−7.3

+15.6
−14.8

69.2 +2.6
−2.8

+5.1
−5.3

68.6 +4.5
−3.6

+9.3
−7.2

Ωm 0.298 +0.093
−0.073

+0.226
−0.122

0.306 +0.044
−0.051

+0.076
−0.085

0.313 +0.049
−0.052

+0.100
−0.095

weff −1.14 +0.38
−0.42

+0.66
−0.74

−1.08 +0.31
−0.37

+0.45
−0.74

−1.12 +0.31
−0.38

+0.48
−0.72

Σmν[eV] – <0.95 <1.80 – <0.95 <1.80 – <0.95 <1.80

q0 −0.68 +0.42
−0.47

+0.80
−0.92

−0.62 +0.26
−0.28

+0.39
−0.56

−0.64 +0.28
−0.32

+0.46
−0.60

Γ ≡ Ωmh 0.209 +0.040
−0.035

+0.090
−0.063

0.211 +0.027
−0.031

+0.046
−0.052

0.214 +0.028
−0.032

+0.052
−0.053

χ2/d.o.f. 1429/1403 1429/1403 1429/1403

constraint on h allows us to break several parameter degenera-
cies, and thus helps us to determine various parameters like
Ωm, Ωcdm, Ωb with a good precision. Also, in comparison to

the W + HST data, a significantly tighter constraint on weff

is obtained. The full results for all the parameters are summa-
rized in Table 1. The obtained values are in general in a good
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Fig. 16. The distribution of models in Ωm −ΩΛ plane. Gray points cor-
respond to the W+HST case, black ones also include the low red-
shift sound horizon measurement. The dashed line represents spatially
flat models. Dotted lines provide approximate degeneracy directions as
given by Eqs. (B.13) and (B.19). Dark energy is assumed to be given by
the cosmological constant.

agreement with several other parameter studies e.g. Percival
et al. (2002); Spergel et al. (2003); Tegmark et al. (2004).
Relatively tight bounds on (H0,Ωm, weff) or equivalently on (H0,
q0, j0) help us to determine the low redshift expansion law with
significantly higher precision than available from the W +
HST data alone. If the initial fluctuations are constrained to be
adiabatic, the measurement of the acoustic scale rules out a de-
celerating Universe, i.e. q0 > 0, at 5.5σ confidence level.

In contrast to the acoustic scale measurement, that gave a
precise value for the Hubble parameter, the full spectrum pro-
vides us with a good estimate for the shape parameter Γ ≡
Ωmh = 0.207+0.011

−0.012
, which is in a very good agreement with

the one found in Tegmark et al. (2004). Since in the Ωm − h
plane the Γ ≡ Ωmh = const line (see Fig. 13) is only relatively
weakly tilted with respect to the relevant CMB degeneracy di-
rectionΩmh2 = const, the obtained limits onΩm and h are not as
strong as the ones obtained from the measurement of the acous-
tic scale. In contrast, the degeneracy lines corresponding to the
low redshift acoustic scale measurement are in many cases al-
most orthogonal to the W + HST “ellipses”, which explains
the stronger constraints for several parameters.

Throughout most of this work we have focused on spatially
flat models and also have assumed negligible contribution from
massive neutrinos. As expected, by relaxing these assumptions
the bounds on several cosmological parameters loosen signifi-
cantly. The results of this extended analysis for some of the pa-
rameters are represented in a compact form in Table 2.

We have also stressed the need to apply cosmological trans-
formations to the theoretical model spectra before being com-
pared with the relevant observational spectrum, which is valid
only in the reference frame of the fiducial cosmological model
that was used to analyze the data. So far almost all the parame-
ter studies have completely ignored this point, which is probably
fine for the shallow redshift surveys. On the other hand, in case
of more deeper surveys like the SDSS LRG, reaching z ∼ 0.5,
these transformations have to be certainly applied. In general
the line intervals along and perpendicular to the line of sight

transform differently. Also the transformations depend on red-
shift. We have shown that for the samples like SDSS LRGs, with
a typical redshift of z ∼ 0.35, the single “isotropized” transfor-
mation taken at the median redshift of the survey provides a very
accurate approximation to the more complete treatment.

For the parameter estimation we have used the SDSS LRG
power spectrum down to the quasilinear scales, which calls for
the extra treatment of nonlinear effects, small scale redshift-
space distortions and biasing. These additional complications
can be relatively well dealt with the aid of the Halo Model (see
Appendix A). We have shown in Hütsi (2006) that a simple ana-
lytical model with additional four free parameters is able to ap-
proximate the observed spectrum to a very good precision. Also,
the Halo Model has been shown to provide a good match to the
results of the semianalytical galaxy formation studies (see e.g.
Cooray & Sheth 2002). In this paper we have shown that to a
rather tolerable accuracy the above four extra parameter Halo
Model spectra (for reasonable values of the parameters) can be
represented as a simple transformation of the linear power spec-
trum with only one extra parameter (see Fig. 2). The similar type
of transformation was also used in Cole et al. (2005).

In order to investigate the possible biases introduced by the
specific method used to extract the sound horizon from the
power spectrum measurements, we have performed a Monte
Carlo study, the results of what are shown in Fig. 7.
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Appendix A: Power spectrum from the halo model

The halo model description of the spatial clustering of galaxies
is a development of the original idea by Neyman & Scott (1952),
where one describes the correlations of the total point set as aris-
ing from two separate terms: (i) the 1-halo term, that describes
the correlations of galaxies populating the same halo, (ii) the
2-halo term, which takes into account correlations of the galax-
ies occupying different halos. For a thorough review see Cooray
& Sheth (2002). Here we briefly give the results relevant to the
current paper (see Seljak 2001; Cooray 2004).

The power spectrum of galaxies in redshift space can be
given as:

P(k) = P1h(k) + P2h(k), (A.1)

where the 1-halo term:

P1h(k) =

∫
dM n(M)

〈N(N − 1)|M〉
n̄2

Rp(kσ)|ug(k|M)|p, (A.2)

p =

{
1 if 〈N(N − 1)|M〉 < 1
2 if 〈N(N − 1)|M〉 > 1

(A.3)

and the 2-halo term:

P2h(k) =

(
F 2
g +

2

3
FvFg +

1

5
F 2
v

)
Plin(k). (A.4)

Here:

Rp

(
α = kσ

√
p

2

)
=

√
π

2

erf(α)

α
, (A.5)

Fg =
∫

dM n(M)b(M)
〈N|M〉

n̄
R1(kσ)ug(k|M) , (A.6)

Fv = f ·
∫

dM n(M)b(M)R1(kσ)u(k|M). (A.7)

In the above expressions n(M) is the mass function and b(M)
halo bias parameter. We calculate them using the prescription by
Sheth & Tormen (1999) and Sheth et al. (2001). n̄ represents the
mean number density of galaxies:

n̄ =

∫
dM n(M)〈N|M〉. (A.8)

We take the mean of the halo occupation distribution in the fol-
lowing form:

〈N|M〉 =
(

M

M0

)α
, (A.9)

where M0 and α are free parameters. The second moment is cho-
sen as (see Cooray 2004):

〈N(N − 1)|M〉 = β2(M)〈N|M〉2, (A.10)

β(M) =

{
1
2

log
(

M
1011 h−1 M⊙

)
if M < 1013 h−1M⊙

1 otherwise.
(A.11)

f in Eq. (A.7) denotes the logarithmic derivative of the linear

growth factor: f ≡ d ln D1

d ln a
. u(k|M) and ug(k|M) are the normalized

Fourier transforms of the dark matter and galaxy density distri-
butions within a halo of mass M. In our calculations we take
both of these distributions given by the NFW profile (Navarro
et al. 1997) and the concentration parameter c(M) is taken from
Bullock et al. (2001). The one dimensional velocity dispersion

of the galaxies inside a halo with mass M is taken to follow the
scaling of the isothermal sphere model:

σ = γ

√
GM

2Rvir

, (A.12)

where Rvir is the virial radius of the halo and γ is a free
parameter.

After specifying the background cosmology the above de-
scribed model has four free parameters: M0, α (Eq. (A.9)),
σ (Eq. (A.12)) and Mlow. The last parameter Mlow represents the
lower boundary of the mass integration i.e. halos with masses
below Mlow are assumed to be “dark”.

Appendix B: Fitting formulae for the acoustic

scales

The comoving distance traveled by the sound wave since the Big
Bang up to redshift z can be expressed as:

s(z) =

z∫

∞

cs(z
′)(1 + z′)

dt

dz′
dz′ , (B.1)

where the sound speed:

cs(z) =
c

√
3 [1 + R(z)]

, (B.2)

R(z) ≡ 3ρb

4ργ
≃ 3.04 × 104 · Ωbh2

z
· (B.3)

Using the Friedmann equation, Eq. (B.1) can be integrated to
yield (see e.g. Hu 1995)37:

s(z) =
3.46 × 103 Mpc

√
Ωmh2 · zeqR(zeq)

·

ln

⎡⎢⎢⎢⎢⎢⎣
√

1 + R(z) +
√
R(z) + R(zeq)

1 +
√
R(zeq)

⎤⎥⎥⎥⎥⎥⎦ , (B.4)

where the redshift for the matter-radiation equality can be
given as:

zeq ≃ 2.41 × 104 · Ωmh2. (B.5)

The acoustic scale relevant for the CMB studies is s∗ = s(z∗),
where z∗ denotes the recombination redshift. For the “concor-
dance” cosmological model the acoustic scale imprinted in the
matter power spectrum sd = s(zd) is slightly larger than s∗.
Here zd denotes the redshift at which the baryons are released
from the Compton drag of the photon field. To find accurate
values for z∗ and zd one has to carry out a full calculation for
the recombination history of the Universe. The results of these
calculations can be conveniently expressed as the following fit-
ting formulas (accurate at ∼1% level) (Hu & Sugiyama 1996;
Eisenstein & Hu 1998):

z∗ = 1048
[
1 + 0.00124(Ωbh

2)−0.738
] [

1 + g1(Ωmh2)g2

]
, (B.6)

where

g1 = 0.0783(Ωbh2)−0.238
[
1 + 39.5(Ωbh2)0.763

]−1
, (B.7)

g2 = 0.560
[
1 + 21.1(Ωbh2)1.81

]−1
, (B.8)

37 The result is valid for high enough redshifts as relevant for the prop-
agation of the sound waves.
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Fig. B.1. The dependence of the angular scale corresponding to the
sound horizon at decoupling (upper panel), and the sound horizon as
measured from the low redshift matter power spectrum (lower panel),
on various cosmological parameters. In the lower panel an effective ob-
servational redshift zeff = 0.35 has been assumed. The variation of the
parameters has been performed around the “concordance” cosmolog-
ical model. For this model the central values for θ and sobs

d
are ∼0.6◦

and ∼107 h−1 Mpc, respectively.

and

zd = 1291(Ωmh2)0.251
[
1 + 0.659(Ωmh2)0.828

]−1
·

[
1 + b1(Ωbh2)b2

]
, (B.9)

where

b1 = 0.313(Ωmh2)−0.419
[
1 + 0.607(Ωmh2)0.674

]
, (B.10)

b2 = 0.238(Ωmh2)0.223. (B.11)

For Ωbh2 <∼ 0.03 the drag epoch follows the last scattering of the
photons.

From the CMB measurements one can determine the angular
scale θ that corresponds to the sound horizon at decoupling with
a good accuracy. This angle can be expressed as:

θ =
s∗h

d⊥(z∗)
, (B.12)

where s∗ = s(z∗), as given in Eq. (B.4), is measured in Mpc, and
we have added an extra factor of h to the numerator to convert to

the usual units of h−1 Mpc. Here d⊥(z∗) is the comoving angular
diameter distance to the last scattering surface, which is strongly
dependent on the curvature radius R0. As s∗ is only weakly de-
pendent onΩmh2 andΩbh2, it turns out that measurement of θ is
very sensitive toΩk. The dependence of θ on various cosmologi-
cal parameters (around the “concordance” model point) is given
in the upper panel of Fig. B.1. Using the following set of model
parameters: (Ωmh2, Ωbh2, h, ΩDE, weff), the measurement of θ
constrains directly the linear combination

0.40

(
Ωmh2

0.14

)
+ 0.80

(
ΩDE

0.73

)
− 0.45

(
h

0.71

)
,

or in case of logarithmic variables the combination

(Ωmh2)0.40(ΩDE)0.80(h)−0.45. (B.13)

To measure the sound horizon sd in the large-scale matter distri-
bution one has to assume some background cosmological model
in order to convert the observed redshifts to comoving distances.
If the assumed fiducial model differs from the true cosmology,
the measured scale will also be distorted. As shown in Sect. 4,
for relatively low redshift measurements this distortion can be
approximated as a single transformation for the “isotropized”
comoving interval. (In general the comoving intervals along and
perpendicular to the line of sight transform differently, and these
transformations also depend on redshift.) The observed sound
horizon sobs

d
can be approximated as:

sobs
d = cisotr · hsd =

3

√
c‖c

2
⊥ · hsd, (B.14)

where the extra factor of h is again included to convert to
h−1 Mpc, and the functions c‖(z), c⊥(z), which should be evalu-
ated at the effective redshift zeff of the observations (e.g. median
redshift), are defined as:

c‖(z) =
Efid(z)

E(z)
, c⊥(z) =

d⊥(z)

dfid
⊥ (z)
, (B.15)

where

E(z) ≡
⎡⎢⎢⎢⎢⎢⎣Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2

+ ΩDE exp

ln(1+z)∫

0

3
[
1 + wDE(z′)

]
dz′

⎤⎥⎥⎥⎥⎥⎦

1
2

, (B.16)

d⊥(z) = R0S k

(
d‖(z)

R0

)
, S k(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

sin x if Ωk < 0
x if Ωk = 0
sinh x if Ωk > 0,

(B.17)

R0 =
dH√
|Ωk|
, dH =

c

H0

, d‖(z) = dH

z∫

0

dz′

E(z′)
· (B.18)

The superscript fid refers to the fiducial model. The dependence
of sobs

d
on various cosmological parameters is shown in the lower

panel of Fig. B.1. The fiducial model here was taken to be the
best-fit W cosmology and the “true models” were assumed
to populate its intermediate neighborhood. We also assume zeff =

0.35 as in the case of the SDSS LRG sample analyzed in this
thesis. Then the linear combination of parameters constrained
by the measurement of sobs

d
turns out to be

−0.26

(
Ωmh2

0.14

)
− 0.11

(
Ωbh2

0.022

)
+ 0.94

(
h

0.71

)
+ 0.12

(
ΩDE

0.73

)

+0.15

(
weff

−1

)
,
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Fig. B.2. The relative change of the sound horizon, as measured from
the low redshift matter power spectrum, as a function of the sum of
neutrino masses. Here an effective observational redshift zeff = 0.35 has
been assumed. The other parameters are kept fixed to the best-fit W
ΛCDM model values.

or in case of logarithmic variables

(Ωmh2)−0.26(Ωbh2)−0.11(h)0.94(ΩDE)0.12(weff)0.15. (B.19)

Thus, as probably expected, the strongest dependence is on the
Hubble parameter h i.e. the precise measurement of the acoustic
scale at low redshifts should give us a good estimate for h.

B.1. The effect of massive neutrinos

In addition to the dynamical effect that massive neutrinos have
on the evolution of density perturbations they also lead to the
modification of the expansion law of the Universe. Assuming
three families of massive neutrinos with degenerate masses mν
one has to replace the term Ωr(1 + z)4 in Eq. (B.16) with:

Ωγ(1 + z)4 [1 + 0.1199 · I(z)] , where : (B.20)

I(z) =

∞∫

0

√
x2 + f 2(z) · x2

ex + 1
dx, (B.21)

f (z) =
5967 · mν[eV]

1 + z
· (B.22)

Here the density parameters corresponding to the photons Ωγ
and total radiation Ωr are related by Ωr = 1.68 ·Ωγ.

Since the lower limit for the sum of neutrino masses com-
ing from the oscillation experiments Σmν � 0.056 eV (e.g.
Lesgourgues & Pastor 2006) is large enough, Eq. (B.21) at low
redshifts (as relevant for the acoustic scale measurements using
the galaxy clustering data) can be very well approximated as:

I(z) =
1.076 × 104 · mν [eV]

1 + z
, (B.23)

i.e. neutrinos act as nonrelativistic matter. In case of the experi-
mentally lowest allowable mν this approximation is good to 0.1%
for redshifts z <∼ 3.3.

The relative change of the size of the measurable sound hori-
zon at z = 0.35 as a function of the sum of neutrino masses Σmν,
for the mass range compatible with the constraints arising from
the W data (Ichikawa et al. 2005; Fukugita et al. 2006), is
shown in Fig. B.2. The other parameters here are kept fixed to

the best-fit W ΛCDM model values (Spergel et al. 2003). As
we can see the measurable sound horizon is only a weak function
of Σmν and thus one would not expect any strong constraints on
neutrino mass from the measurement of the low redshift acoustic
scale. We remind that the relative accuracy of the sound horizon
measurement as found in Hütsi (2006) is in the range 2−7%.

Appendix C: Relation between (Ωm, weff) and (q0, j0)

In case of the constant dark energy equation of state parame-
ter weff , deceleration parameter q0 and jerk j0 at redshift z = 0
can be expressed as:

q0 =
1

2
Ωm +

1 + 3weff

2
ΩDE, (C.1)

j0 = Ωm +

[
1 +

9

2
weff(weff + 1)

]
ΩDE. (C.2)

For the spatially flat models i.e. Ωm + ΩDE = 1 these relations
can be uniquely inverted to provide:

Ωm =
2

[
j0 − q0(1 + 2q0)

]

1 + 2( j0 − 3q0)
, (C.3)

weff =
2(3q0 − j0) − 1

3(1 − 2q0)
· (C.4)


