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Power System Dynamic Simulations using a Parallel
Two-level Schur-complement Decomposition
Petros Aristidou, Member, IEEE, Simon Lebeau, and Thierry Van Cutsem, Fellow Member, IEEE

Abstract—As the need for faster power system dynamic sim-
ulations increases, it is essential to develop new algorithms that
exploit parallel computing to accelerate those simulations. This
paper proposes a parallel algorithm based on a two-level, Schur-
complement-based, domain decomposition method. The two-
level partitioning provides high parallelization potential (coarse-
and fine-grained). In addition, due to the Schur-complement
approach used to update the sub-domain interface variables,
the algorithm exhibits high global convergence rate. Finally, it
provides significant numerical and computational acceleration.
The algorithm is implemented using the shared-memory parallel
programming model, targeting inexpensive multi-core machines.
Its performance is reported on a real system as well as on a large
test system combining transmission and distribution networks.

Index Terms—domain decomposition methods, Schur-
complement, power system dynamic simulation, OpenMP,
shared-memory

I. INTRODUCTION

O
VER the last decades, power system phasor simulations
have become indispensable in the planning, design,

operation, and security assessment of power systems.
Often, simulation speed requirements dictate the type of

simulation used. Power flow simulations are the fastest, but
rely on simplifying assumptions. They focus on a long-
term equilibrium point, they don’t give useful indications in
infeasible cases and cannot take into consideration controls
depending on the system time evolution. As system time
evolution becomes critical to ensure system security, these
simulations are not sufficient. Quasi Steady State (QSS) sim-
ulations, which consist of replacing the short-term dynamics
with adequate equilibrium relations [1], have been also used
to analyze the long-term voltage and frequency dynamics of
power systems. QSS simulations are very fast but also have
obvious limitations: i) they assume that the neglected short-
term dynamics are stable, and ii) the sequence of discrete
controls may not always be correctly identified from the
simplified QSS models.

Detailed dynamic simulations do not suffer from these
limitations but have been restricted to off-line calculations
because of their computational burden. However, today the
technology is mature and proper algorithms exist permitting
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the use of detailed dynamic simulations in real-time or close
to real-time applications [2]. Thus, the target of this work is
to deal with a unique, detailed, dynamic model, relevant to
angle, frequency, and voltage stability studies, both in short-
and long-term, while keeping the performance to the maximum
so as to increase productivity.

Under the phasor approximation, complex electric compo-
nents (like generators, motors, loads, wind turbines, etc.) used
in dynamic simulations are represented by systems of stiff,
non-linear Differential and Algebraic Equations (DAEs) [3].
At the same time, the network is represented by a system of
linear algebraic equations. Together, they form an initial value
DAE model describing the physical dynamic characteristics,
interactions, and controls of the system. A large power system
may involve tens of thousands of such equations whose dy-
namics span over very different time scales and undergo many
discrete transitions imposed by limiters, switching devices, etc.
Consequently, dynamic simulations are challenging to perform
and computationally intensive [2].

A. Domain Decomposition Methods

The most prominent parallel algorithms used in power
system dynamic simulations are inspired from the field of
Domain Decomposition Methods (DDMs). DDM refers to a
collection of techniques which revolve around the principle
of “divide-and-conquer”. They were primarily developed for
solving large boundary value problems of Partial Differential
Equations by splitting them into smaller problems over sub-
domains and iterating between them to coordinate the solution
[4]. Because of their high efficiency and performance, DDMs
became popular in DAE problems, such as those appearing in
power system dynamic simulations.

The first to envisage an application to power systems was
probably Kron with the diakoptics method [5]. This technique
belongs to the family of parallel-in-space methods: the formu-
lation of the problem at a single time instant is decomposed
and solved. Another family of methods is the parallel-in-time

[6]–[8]. Despite the sequential character of the initial value
problem, which stems from the discretization of differential
equations, these techniques propose the solution of multiple
consecutive time instants in parallel. Another well-known
family is the Waveform Relaxation (WR) [9], [10]. These
techniques decompose the system in space and solve each
sub-domain for several time instances (time window interval)
before exchanging the interface values. Hence, these values
consist of waveforms from neighboring sub-systems (i.e. a
sequence of interface values over a number of consecutive
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time instants). After each solution, waveforms are exchanged
between neighboring sub-systems, and this process is repeated
until global convergence. If the time interval of the WR is
restricted to only one time step, then the Instantaneous Re-
laxation method [11] is formulated. These techniques provide
significant acceleration, however, their convergence strongly
depends on the partitioning and on the time window interval
[12], [13]. Some techniques to accelerate them have been
proposed in [12], [14].

Several parallel DDMs have been proposed in the past
for phasor simulation, but have not been widely used. Only
recently have commercial software appeared that can achieve
high performance, real-time simulations combining state-of-
the-art hardware and algorithms, such as ePHASORsim [15]
for instance. While these commercial, real-time simulators of-
fer increased performance, advanced input/output/management
features, hardware-in-the-loop facilities, and support, they are
bound to specific computing platforms on which the soft-
ware is optimized for highest performance. The objective of
this work is to propose a general-purpose high-performance
parallel algorithm that can be executed on cheap, multicore
computers.

B. Contributions of paper

The work presented in this paper is a continuation of [16].
In the latter, a parallel, DDM-based algorithm was proposed
to accelerate power system dynamic simulations. However, the
aforementioned algorithm involves a sequentially treated part
whose processing increases linearly with the network size.
Thus, when the latter increases compared to the overall, so
does the sequential portion, hence impeding the parallel per-
formance of the algorithm. This becomes very important when
dealing with large, combined transmission, sub-transmission,
and distribution systems.

This paper proposes a two-level Schur-complement-based
DDM to overcome this sequentiality problem and to accelerate
dynamic simulations. First, a non-overlapping, topologically-
based, decomposition scheme is applied to the electric network
revealing a star-shaped sub-domain layout. This first decom-
position is reflected to a separation of the DAEs, which are
projected onto the sub-domains. Next, a second decomposition
scheme is applied within each sub-domain, splitting the sub-
domain network from the components connected to it. This
second decomposition further partitions the system DAEs.
Finally, all sub-systems are solved hierarchically, using a
Very DisHonest Newton (VDHN) method, and their interface
variables are updated with a Schur-complement approach [17],
at each decomposition level.

The two-level partitioning provides high parallelization po-
tential. In addition, due to the Schur-complement approach
used to update the interface variables, the algorithm exhibits
high global convergence rate that is not affected by the
partition selection. Moreover, the simulation performance is
augmented in two ways. First, the locality of the decom-
posed sub-systems is exploited to avoid many unnecessary
computations and provide numerical acceleration. Second, the
independent calculations of the sub-systems are parallelized.

The proposed method belongs to the family of parallel-in-
space methods with a Schur-complement approach to treat the
interface variables. A more complete classification of DDMs
for power system dynamic simulations can be found in [18].

In general, two-level, or multilevel, DDMs can be exploited
when the parallelization potential is high enough and the
structure of the underlying model is suitable. Such examples
can be found in other power system applications [19], [20]
and in other engineering fields [21]–[23].

The paper is organized as follows. In Section II the power
system model formulation and the two-level decomposition
are presented. The proposed algorithm is detailed in Section
III. In Section IV, numerical acceleration techniques are
presented, followed in Section V by parallel programming
and implementation aspects. Next, simulation results obtained
on a detailed model of the Hydro-Québec (HQ) system are
reported in Section VI and on a combined Transmission and
Distribution system in Section VII. A summary of the main
features is offered in the closing section.

II. POWER SYSTEM DECOMPOSITION

An electric power system, under the quasi-sinusoidal (or
phasor) approximation, can be described in compact form by
the following DAE initial value problem [24], [25]:

0 = Ψ(x,V ) (1a)

Γẋ = Φ(x,V ) (1b)

x(t0) = x0,V (t0) = V0 (1c)

where V is the vector of rectangular components of network
voltages (i.e. V = [vx1, vy1, vx2, vy2, . . .]

T ), x is the expanded
state vector containing the differential and algebraic variables
(except the voltages) of the system and Γ is a diagonal matrix
with:

(Γ)ℓℓ =

{
0 if the ℓ-th equation is algebraic

1 if the ℓ-th equation is differential
(2)

Equation (1a) corresponds to the purely algebraic network
equations:

0 = DV − I , g(x,V ) (3)

where D includes the real and imaginary parts of the bus
admittance matrix and I the rectangular components of the bus
currents. The latter are included in the differential-algebraic
states, i.e. x = [iy, ix, . . .]

T .
Equation (1b) describes the remaining DAEs of the power

system components connected to the network and their con-
trols. For reasons of simplicity, all the components connected
to the network that either produce or consume power (such as
power plants, distributed generators, induction motors, loads,
etc.) are referred to as injectors [16].

Equations (1) change during the simulation due to the
discrete dynamics, such as response to discrete controls or
changes in continuous-time equations. For reasons of simplic-
ity, the handling of these discrete events is not presented in this
paper. More details concerning their handling can be found in
[26] and its quoted references.
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Figure 1. Proposed two-level power system partition

A. First level of decomposition: Network

An important step in developing a DDM is the identification
of the partition scheme to be used. In this work, a star-
shaped, topologically-based scheme has been chosen. The
power system network is decomposed into a Central (C)
and several Satellite sub-domains (Si) each connected to the
Central at one bus as shown in Fig. 1.

Good candidate systems with this topology are Transmission
Networks (TN) with detailed representation of their sub-
transmission or distribution systems. The only requirement
is that each sub-system needs to be attached to the TN at
a single bus. One such example is the HQ system used in this
work. Its structure with radially connected sub-transmission
systems (referred to as distribution in some countries) is a
good candidate for this decomposition.

Combined transmission and distribution systems is another
example of systems with this structure. The most noticeable
developments in power systems involve Distribution Networks
(DNs), which are called upon to actively support the TN with
an increasing number of Distributed Generators (DGs) and
flexible loads participating in ancillary services. Modeling the
latter in detail, along with the bulk transmission grid, poses a
great computational challenge. Thus, the proposed two-level
DDM algorithm can be applied to accelerate their dynamic
simulation procedure.

The decomposition can rely on the voltage levels (e.g. based
on the sub-transmission/distribution transformers), or it can be
obtained from an analysis of the network graph. One such
graph-based method has been developed in [18]: the Python
NetworkX [27] package is used to recursively merge the nodes
with only one connection (leaves of the graph) with their
neighbors, until no more leaf is left. Then, the satellite sub-
graphs, connected to the remaining graph through a single
branch, are identified using an exhaustive examination of the
connecting lines and isolation of the satellite sub-domains.

The described automatic partition algorithm has a high
complexity and can prove very costly for large networks
(although it is executed only once for each network topology),
thus the voltage level based method is preferred when possible.
The latter approach also allows to retain a physical meaning
of the sub-domains (sub-transmission, distribution, etc.).

Let the system be decomposed as described above into the
Central and L Satellite sub-domains along with their injectors,
as sketched in Fig. 1. This decomposition is reflected on
Eq. (1) as follows.

The DAE system describing the Central sub-domain with
its injectors becomes:

0 = gC(xC ,VC ,VS1, . . . ,VSL)
ΓC ẋC = ΦC(xC ,VC)

(4)

and, for the i-th Satellite sub-domain (i = 1, . . . , L):

0 = gSi(xSi,VSi,VC)
ΓSiẋSi = ΦSi(xSi,VSi)

(5)

where xC , xSi, VC , VSi, ΓC , and ΓSi are the projections
of x, V , and Γ, defined in (1), on the Central and Satellite
sub-domains respectively.

The DAE systems (4) and (5) are coupled only through the
voltage variables involved in the equations of the network el-
ements (lines, transformers, etc.) connecting the sub-domains,
and are completely equivalent to the original system (1).

B. Second level of decomposition: Injectors

A second level of decomposition is applied that separates
the injectors from the sub-domain network as described in
[16]. For example, the j-th injector connected to the Central
sub-domain (see Fig. 1) is described by:

ΓCj ẋCj = ΦCj(xCj ,VC) (6)

where xCj and ΓCj are the projections of xC and ΓC ,
defined in Eq. (4), on the j-th injector. That is, xC =
[xC1 . . . xCNC

]T and ΓC = diag[ΓC1, . . . ,ΓCNC
], where

NC is the number of injectors attached to the Central sub-
domain network.

Therefore, system (4) becomes:

0 = gC(xC ,VC ,VS)
ΓCjẋCj = ΦCj(xCj,VC), j = 1, ..., NC

(7)

where VS = [VS1, . . . ,VSL]
T are the Satellite sub-domain

voltage states. Of course, from this vector, only L elements
are involved in the equations, i.e. the one bus voltage from
each Satellite sub-domain involved in the network component
connecting the Central to the Satellite sub-domain (see Fig. 1).

Similarly, system (5) becomes (i = 1, . . . , L):

0 = gSi(xSi,VSi,VCi)
ΓSij ẋSij = ΦSij(xSij ,VSi), j = 1, ..., NSi

(8)

where NSi is the number of injectors attached to the i-th
Satellite network.

The rectangular components of the injected current are
included in the differential-algebraic state vector x and can
be rewritten for the Central and i-th Satellite sub-domain:

IC =

NC∑

j=1

CCjxCj and ISi =

NSi∑

j=1

CSijxSij (9)

where CCj (resp. CSij) is a trivial matrix with zeros and ones
whose purpose is to extract the injector current components
from xCj (resp. xSij ).
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Figure 2. Hierarchical solution of the proposed two-level DDM

The sub-domain network and injector systems are coupled
through the currents injected into the network and the voltages
of the buses which the injectors are attached to. Systems (7)
and (8) are completely equivalent to (4) and (5), and therefore
to the original system (1).

III. SCHUR-COMPLEMENT-BASED ALGORITHM

For the purpose of numerical simulation, the injector DAE
systems are algebraized using a differentiation formula to
get the corresponding nonlinear, algebraized, systems. In this
work, second-order Backward Differentiation Formulae (BDF-
2) is used. After algebraization, Eq. (6) becomes:

0 = fCj(xCj ,VC), j = 1, . . . , NC (10)

where the dependency on the integration time-step size has
been omitted for clarity. Then, at each discrete time instant tn
the nonlinear algebraized injector equations are solved together
with the network equations to compute the vectors x(tn) and
V (tn), as outlined in Fig. 2 and summarized below.

First, the injector states (xCj or xSij) are eliminated
from the sub-domain network equations to formulate the sub-
domain reduced systems. This leads to reduced systems that
involve only the sub-domain voltage states (VC and VSi).
The elimination is performed in parallel, as the injectors are
independent.

Second, the global reduced system is obtained by eliminat-
ing the Satellite sub-domain voltage states (VSi) from the Cen-
tral reduced system equations. This leads to a global reduced
system that involves only the voltage states of the Central sub-
domain (VC ). This elimination procedure is also performed in
parallel, as the Satellite sub-domains are independent.

Third, the global reduced system is solved to compute
the Central sub-domain voltages (VC), which are then back-
substituted to the Satellite sub-domain reduced systems. This
decouples their solution, which now involves only their sub-
domain voltage states (VSi). Thus, they are solved indepen-
dently and in parallel.

Finally, the sub-domain voltage states (VC and VSi) are
back-substituted in the injector equations, thus decoupling
their solution as they now involve only their local states (xCj

or xSij). Hence, their solution is also performed independently
and in parallel. The mathematical formulation of this proce-
dure is detailed hereafter.

A. Sub-domain reduced systems formulation

All sub-systems are solved using a separate VDHN method.
Thus, at the k-th iteration, the systems (11-14) are formulated.
Equations (11) and (12) stem from the linearization of Eq. (4)
relative to the Central sub-domain network and injectors
connected to it, where Ak

Cj is the Jacobian matrix of the
j-th injector towards its own states and Bk

Cj towards the
components of the voltage at its connection bus. Ek

Si is the
Jacobian of the Central sub-domain towards the voltages of
the i-th Satellite sub-domain (Si).

Equations (13) and (14) stem from the linearization of
Eq. (8) relative to the i-th Satellite sub-domain and the
injectors connected to it. Ak

Sij is similar to Ak
Cj and Bk

Sij to
Bk

Cj . Finally, F k
Si is the Jacobian of Si towards the voltages

of the Central sub-domain. The decomposed system results in
L+ 1 +NC +

∑L

i=1
NSi linear systems.

The sub-domain reduced systems are formulated by elimi-
nating the injector states (xCj or xSij) from the sub-domain
network systems (11) and (13). This leads to the L+1 reduced
systems (15-16) that involve only the sub-domain voltage
states (VC and VSi). It is worth mentioning that the reduced
system matrices D̃k

Si (resp. D̃k
C ) maintain the sparsity pattern

of Dk
Si (resp. Dk

C ) as the injector elimination procedure only
modifies 2 × 2 block-diagonal sub-matrices, which are non-
zero by construction.

B. Global reduced system formulation

The global reduced system is obtained by eliminating the
Satellite sub-domain voltage states (VSi) from the Central
reduced system (15). This leads to the global reduced system
(17) that involves only the voltage states of the Central sub-
domain (VC). Similarly to before, the global reduced system
matrix D̄k

C maintains the sparsity pattern of Dk
C as the

elimination procedure only modifies 2×2 block-diagonal sub-
matrices, which are non-zero by construction. Moreover, the

computations of Ek
Si

(
D̃k

Si

)
−1

F k
Si and Ek

Si

(
D̃k

Si

)
−1

g̃k
Si are

efficient as the matrices Ek
Si and F k

Si are extremely sparse,
given that each Satellite sub-domain is attached only to one
bus of the Central sub-domain.

C. Back-substitution and solution

In this step, the global reduced system (17) is solved and the
computed Central sub-domain voltage corrections (∆V k

C ) are
back-substituted into the sub-domain reduced systems (16).
This decouples the solution of these systems which now
involve only their sub-domain voltage states. Thus, they can
be solved independently and in parallel to obtain ∆V k

Si.
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Dk
C∆V k

C −

NC∑

j=1

CCj∆xk
Cj −

L∑

i=1

Ek
Si∆V k

Si = − gC(x
k−1

C ,V k−1

C ,V k−1

S )︸ ︷︷ ︸
gk
C

(11)

Ak
Cj∆xk

Cj +Bk
Cj∆V k

C = − fCj(x
k−1

Cj ,V k−1

C )
︸ ︷︷ ︸

fk
Cj

, j = 1, ..., NC (12)

Dk
Si∆V k

Si −

NSi∑

j=1

CSij∆xk
Sij + F k

Si∆V k
C = − gSi(x

k−1

Si ,V k−1

Si ,V k−1

C )︸ ︷︷ ︸
gk
Si

, i = 1, . . . , L (13)

Ak
Sij∆xk

Sij +Bk
Sij∆V k

Si = − fSij(x
k−1

Sij ,V
k−1

Si )
︸ ︷︷ ︸

fk
Sij

, j = 1, ..., NSi, i = 1, . . . , L (14)


Dk

C +

NC∑

j=1

CCj

(
Ak

Cj

)−1

Bk
Cj




︸ ︷︷ ︸
D̃k

C

∆V k
C −

L∑

i=1

Ek
Si∆V k

Si = −gk
C −

NC∑

j=1

CCj

(
Ak

Cj

)−1

fk
Cj

︸ ︷︷ ︸
−g̃k

C

(15)



Dk
Si +

NSi∑

j=1

CSij

(
Ak

Sij

)−1

Bk
Sij





︸ ︷︷ ︸
D̃k

Si

∆V k
Si + F k

Si∆V k
C = −gk

Si −

NSi∑

j=1

CSij

(
Ak

Sij

)−1

fk
Sij

︸ ︷︷ ︸
−g̃k

Si

, i = 1, . . . , L (16)

(
D̃k

C +

L∑

i=1

Ek
Si

(
D̃k

Si

)
−1

F k
Si

)

︸ ︷︷ ︸
D̄k

C

∆V k
C = −g̃k

C −

L∑

i=1

Ek
Si

(
D̃k

Si

)
−1

g̃k
Si

︸ ︷︷ ︸
−ḡk

C

(17)

In turn, the just computed sub-domain voltage corrections
(∆V k

Si and ∆V k
C ) are back-substituted in the injector equa-

tions (12) and (14), thus decoupling their solution as they now
involve only their local state corrections (∆xk

Cj or ∆xk
Sij ).

Finally, the injectors are solved independently and in parallel.
After updating the state vectors, i.e. V k

C = V k−1

C +∆V k
C ,

xk
C = xk−1

C + ∆xk
C , V k

Si = V k−1

Si + ∆V k
Si, and xk

Sij =

xk−1

Sij +∆xk
Sij , the convergence of all sub-systems is checked

independently and in parallel. If global convergence has been
achieved, then the simulation proceeds to the next time instant,
otherwise a new iteration (k+1) is performed with the updated
variables.

IV. NUMERICAL ACCELERATION TECHNIQUES

The proposed system decomposition allows accelerating the
simulation by avoiding a significant number operations.

First, taking advantage of the fact that each sub-domain is
solved by a separate VDHN method, the sub-system Jacobian
updates are decoupled and the local matrices (such as DC ,
DSi, ACj , ASij , BCj , BSij , etc.), as well as their Schur-
complement terms, are updated asynchronously. In this way,
sub-domains which converge fast keep the same local matrices
for many iterations and even time-steps, while sub-domains
which converge slower update their matrices more frequently.

Second, after a decomposed solution, the convergence of
each sub-system is checked individually. Thus, if the con-
vergence criterion is satisfied for a sub-system, the latter is
flagged as converged and for the remaining iterations of the
current time instant, it is not solved. However, its mismatch, is
monitored to guarantee that it remains converged until global
convergence is achieved. This technique decreases the com-
putational effort within one discretized time instant without
affecting the accuracy of the solution.

V. PARALLEL PROCESSING ACCELERATION

DDM-based algorithms offer parallelization opportunities
as independent computations can be performed by different
threads (a sequence of programmed instructions that can
be managed independently by a scheduler). Most common
computers today have a single CPU with multiple cores (inde-
pendent actual processing units) or hyper-threading technology
(ability to execute multiple threads per core). In this paper,
hyper-threading was deactivated to keep the analogy of one

thread per core. This helps to better analyze the performance
of the proposed algorithm, as well as to bind each thread to
one core for better usage of cache [28].

The proposed algorithm is outlined in Fig. 3, where the
parallelized computations are shown in the shaded blocks.
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First, the parallel update of the L + 1 + NC +
∑L

i=1
NSi

systems (11-14) is shown in the upper shaded block. Next, the
L + 1 sub-domain reduced systems are computed in parallel
in the second shaded block, where each parallel task updates
one of the systems (15-16).

Then, the global reduced system is solved to compute the
∆VC corrections. Schur-complement-based algorithms suffer
from the sequentiality introduced by the global reduced system
solution [29]. However, due to the high sparsity (retained
even after the elimination procedure), the linear nature of the
network equations, and the infrequent Jacobian update, this
bottleneck is bounded to 1-2% of the overall computational
effort. Thus, even though system (17) could be solved with
a parallel sparse linear solver, the overhead due to the new
synchronization points would counteract the benefits.

Afterwards, the L Satellite sub-domain reduced systems are
solved in parallel to compute the ∆VSi variables. This is
shown in the third shaded block.

Finally, after the computed corrections ∆VC and ∆VSi are
back substituted in Eqs. (12) and (14), the solution of the
NC +

∑L

i=1
NSi injector systems are computed in parallel,

as shown in the lower shaded block, where each parallel task
deals with one injector system.

A. Implementation specifics

Parallel computers can be roughly classified into shared-
and distributed-memory. In the first category belong most
of the common parallel computers today, such as laptops,
desktops, mobile phones, etc. While these parallel computers
are inexpensive and widely available, they are limited to their
scalability [28] and can only reach up to a few hundred
computing nodes. On the other hand, distributed memory
computers can easily reach thousands of computing nodes, but
are much more expensive usually available in bigger research
centers or enterprises. The parallel algorithm presented in
Sections II and III does not make any assumption on the type
of parallel computer. However, for the implementation of the
algorithm, the shared-memory parallel computing model has
been used to allow the execution on cheap, multicore, parallel
machines (e.g. laptop and desktop computers).

In this work, the OpenMP API was selected as it is sup-
ported by most hardware and software vendors and it allows
for portable, user-friendly programming [30]. OpenMP allows
the execution of a parallel application, without changes, on
many different computers. It consists of a set of compiler
directives, library routines, and environment variables that
influence run-time behavior. A set of predefined directives
are inserted in Fortran, C, or C++ programs to describe how
the work is to be shared among threads that will execute on
different processors or cores and to order accesses to shared
data [28], [30].

It is very important to make sure that parallel threads receive
equal amounts of work. Imbalanced load sharing leads to
delays, as some threads are still working while others have
finished and remain idle. OpenMP includes three easy to
employ mechanisms (namely static, dynamic and guided) for
achieving good load balance [30]. With the static strategy, the

Parallel threads

Parallel threads

Parallel threads

Parallel threads

Figure 3. Proposed parallel two-level DDM

scheduling is defined at the beginning of the simulation and the
parallel tasks are evenly assigned to the threads. This strategy
has the lowest scheduling overhead but can introduce load
imbalance if the work inside each task is not equal.

In the proposed algorithm, imbalance between parallel tasks
can arise from different sizes of the sub-systems. For example,
if the Satellite networks have different numbers of buses,
hence different system sizes, the threads computing them will
have different work loads. This is also true for the injector
sub-systems as different types of components have different
model size. Furthermore, the computational burden of the
same parallel task over several iterations is also modified due
to the techniques in Section IV. Due to these challenging load-
balancing conditions, the dynamic strategy has been selected.
That is, the scheduling is updated during the execution making
sure that the threads are optimally balanced. This strategy
comes with some extra OverHead Cost (OHC) for managing
the threads. However, the benefit from proper load-balancing
was found to more than compensate for this OHC.

In the proposed algorithm, a minimum number of successive
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sub-systems assigned to each thread (chunks) is defined. Thus,
by positioning the sub-system data consecutively in memory,
spatial locality can be exploited. That is, the likelihood of
accessing consecutive blocks of memory is increased and the
amount of cache misses decreased [28]. Although the user can
select and experiment with the chunk number to get the best
performance, a default value of (number of parallel tasks)/(4×
number of threads) has been selected in this work.

Finally, the guided strategy is a compromise between the
other two. The scheduling in this strategy is dynamic but
the number of tasks assigned to each thread is progressively
reduced in size. This way, scheduling overheads are reduced at
the beginning of the loop and good load balancing is achieved
at the end [16], [28], [30]. Tests using this strategy in this
work didn’t give any better results than the dynamic.

B. Performance indices

Many different indices exist for assessing the performance
of a parallel algorithm. The two indices used in this study,
speedup and scalability, are defined as:

SpeedupM =
T ∗

1

TM

ScalabilityM =
T1

TM

(18)

where T ∗

1
is the runtime of the program with one worker using

the fastest sequential algorithm, T1 is the runtime using the
proposed algorithm with one worker, and TM is the runtime of
the same program, using the same algorithm, with M parallel
workers.

The first index shows how the algorithm compares to a fast
sequential algorithm. For power system dynamic simulations,
the popular VDHN scheme has been suggested as benchmark
[31]. This consists of solving at each Newton iteration the
integrated linear system stemming from the model (1), with
an infrequently updated Jacobian. Although there is no proof
that this is the fastest sequential algorithm, it is employed
in many industrial and academic software and its capabilities
and performance are well known. Here on, this method will
be referred to as Integrated.

For the proposed algorithm, the speedup index shows the
performance gained from using both the numerical acceler-
ation technique of Section IV, as well as the benefit from
parallelizing its execution. Thus, it shows the benefit from
using a decomposed algorithm.

The second index shows how the parallel implementation of
the proposed algorithm scales when the number of available
processors increases. That is, the tested parallel algorithm
is benchmarked against a sequential execution of the same

algorithm. The scalability index is directly related to Amdahl’s
law [30] and can be rewritten as:

ScalabilityM =
T1

T1S + T1P

M
+OHC(M)

(19)

where T1S is the time spent in the sequentially computed
portion and T1P in the parallel portions. These values can be
estimated with a profiler monitoring the sequential execution
(M = 1) of the algorithm. Of course, T1S + T1P gives
the total execution time T1. Finally, OHC refers to the cost

of making the code run in parallel (creating and managing
threads, communication, memory latency, etc.).

For the proposed algorithm, the scalability index focuses
on the performance gained from parallelizing its execution.
The gain from the methods of Section IV is constant and
does not change when more computational threads are used.
Thus, by using the sequential execution of the algorithm as
benchmark, the numerical acceleration gain is factored out of
the calculation.

Both the proposed and the benchmark algorithms were
implemented in the academic simulation software RAMSES,
developed at the University of Liège. This software is currently
being integrated into the operation planning tools of HQ
(security limit calculations). The same models, algebraization
method (namely BDF-2), and way of handling the discrete
events [26] were used. For the solution of the sparse systems
(the integrated Jacobian or the reduced systems of Eqs. (16)
and (17)), the sparse linear solver HSL MA41 [32] was
used. For the solution of the much smaller, dense injector
linear systems (12) and (14), Intel MKL LAPACK library
was used. In the sequential benchmark, the Jacobian matrix
is updated every five iterations until convergence, while for
the proposed algorithm, the matrices of each sub-domain
are updated (independently of the other sub-domains) every
five iterations unless convergence has already taken place.
The same convergence criteria and tolerances are used for
both. Keeping all the aforementioned parameters and solvers
identical for both algorithms permits a rigorous evaluation of
the proposed algorithm performance.

The results of the two-level Schur-complement-based algo-
rithm are presented in the following sections. The simulations
were performed on a 48-core desktop computer1 (Machine
1), a dual-core2 (Machine 2), and a quad-core3 (Machine 3)
laptop. The environment variable OMP_NUM_THREADS was
used to vary the number of computational threads available to
the simulation software at each execution.

VI. RESULTS ON HQ MODEL

Due to geographic constraints, the HQ transmission system
is characterized by long distances (more than 1,000 km)
between the hydro-electric power generation and the main con-
sumption centers. A large amount of its power is transferred
over 735-kV, series-compensated, transmission lines. Owing
to this structure (more than 11,000 km of 735-kV lines), the
system is constrained by both transient (angle) and long-term
voltage stability. Moreover, as it is connected to its neighbors
through DC lines or radial generators, its frequency dynamics
after a severe power imbalance are carefully checked. Exten-
sive dynamic simulations are performed to update the secure
power transfer limits taking into account the N-1 security

1AMD Opteron Interlagos CPU 6238 @ 2.60GHz, 16KB private L1,
2048KB shared per two cores L2 and 6144KB shared per six cores L3 cache,
64GB RAM, Debian Linux 8

2Intel Core i7 CPU 4510U @ 3.10GHz, 64KB private L1, 512KB private
L2 and 4096KB shared L3 cache, 7.7GB RAM, Microsoft Windows 8.1

3Intel Core i7 CPU 2630QM @ 2.90GHz, 64KB private L1, 256KB private
L2 and 6144KB shared L3 cache, 7.7GB RAM, Microsoft Windows 7
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Figure 4. HQ: Evolution at high voltage bus in the Central sub-domain
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Figure 5. HQ: Evolution of voltage at a medium-voltage bus in a Satellite
sub-domain

criteria, as well as to check the response of various stabilizing
controls after severe disturbances.

The HQ network model includes 2565 buses, 3225 branches,
and 290 power plants with a detailed representation of the
synchronous machine, its excitation system, automatic voltage
regulator, power system stabilizer, turbine, and speed governor.
Moreover, 4311 dynamically modeled loads (different types of
induction motors, voltages sensitive loads, etc.), are included
to better capture the dynamic response of the real system. In
the long-term the system evolves under the effect of 1111 Load
Tap Changers (LTCs), 51 Automatic Shunt Reactor Tripping
(ASRT) devices [33], as well as OvereXcitation Limiters
(OXL). The resulting, integrated, model has 35559 differential-
algebraic states.

The first level of partitioning, yields L = 80 Satellite sub-
domains with a total of 1602 buses in them (thus leaving 963
buses in the Central). For the second level of decomposition,
290 + 4311 = 4601 injectors are considered in the 81
sub-domains (Central and 80 Satellite). The decomposition
was performed using the graph representation of the system
and automatically identifying network sub-domains that are
connected to the bulk transmission system at only one bus.

A. Test-case dynamics

The disturbance consists of a short circuit at an important
transmission bus, lasting six cycles (at 60 Hz), and cleared
by opening a 735-kV line. The system is simulated over an
interval of 240 s with a time-step of one cycle.

Figure 4 shows the voltage evolution after the disturbance,
at the faulted transmission bus, located in the Central sub-

 0  40  80  120  160  200  240

time (s)

Figure 6. HQ: Discrete events during the simulation

Table I
HQ: PROFILING OF SEQUENTIAL EXECUTION (M = 1)

Tasks % time Parallel

Injector discretization, sub-domain network and
9.69 YES

injector Jacobian computation and factorization
Sub-domain reduced system formulation 3.08 YES

Global reduced system solution 1.10 NO
Sub-domain reduced system solution 3.36 YES

Injector solution 62.39 YES
Convergence check 4.63 YES

Discrete events and controllers computation 5.64 YES
Time step initialization 10.11 NO

In parallel (T1P ) 88.79 -

domain. The action of the ASRT device at t ≈ 95 s has a
significant effect on the dynamics of the system and secures
its long-term stability. Figure 5 shows the voltage evolution of
an LTC-controlled medium-voltage bus, located in a Satellite
sub-domain. Finally, Fig. 6 shows the discrete events taking
place during the simulation. These refer to discrete controller
actions (e.g. LTCs, ASRTs, etc.) or internal to the injectors
discrete transitions (i.e. OXLs, integration limits, etc.). It can
be seen that until almost the end of the simulation there are
still discrete events taking place.

As seen in Figs. 4 and 5, both the benchmark Integrated and
the proposed parallel algorithms give exactly the same results
as they solve the same DAE system with the same accuracy.

B. Test-case profiling

The sequential execution (M = 1) of the proposed algo-
rithm has been profiled to identify how the computing time is
shared among the various tasks. As seen in Table I, 88.79%
of the time is spent in the parallel sections of the code. Thus,
referring to Eq. (19), T1P = 0.8879 and T1S = 0.1121.

If an ideal parallel machine was considered, the theoretical
scalability would be given by Eq. (19) with OHC(M) = 0.
For example, with M = 30, the value is 7.1.

C. Sequential and parallel performance

The speedup and scalability performance indices are pre-
sented in Table II for Machine 1. First, it can be observed that

Table II
HQ: PERFORMANCE INDICES ON MACHINE 1

Integr. Proposed parallel algorithm
Cores Used 1 1 2 6 12 24 30 36

Elapsed Time 417 282 157 89 60 47 44 46
Speedup - 1.5 2.7 4.7 7.0 8.9 9.5 9.1

Scalability - 1.0 1.8 3.2 4.7 6.0 6.4 6.1
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Figure 7. HQ: Real-time performance of algorithm on Machine 1

Table III
HQ: PERFORMANCE INDICES ON MACHINES 2 AND 3

Integrated Proposed parallel algorithm
Cores Used 1 1 2 4

Machine 2
Elapsed Time 245 139 106 -

Speedup - 1.8 2.3 -
Scalability - 1.0 1.3 -

Machine 3
Elapsed Time 200 121 83 67

Speedup - 1.7 2.4 3.0
Scalability - 1.0 1.4 1.8

the proposed algorithm is 1.5 times faster than the bench-
mark integrated scheme even in sequential execution. This
speedup is a result of the numerical accelerations mentioned
in Section IV, as explained in Section V-B. Therefore, the
proposed algorithm can provide significant acceleration even
when executed on single-core machines.

When proceeding to the parallel execution, the simulation
is performed in 44 seconds, that is 9.5 times faster than the
sequential Integrated scheme, with the use of 30 cores. At the
same time, the scalability of the algorithm reaches 6.4 to be
compared with the theoretical maximum of 7.1. The decreased
performance is due to the parallelization OHC.

A decrease of performance is observed when the number of
threads exceeds 30 (see Table II). That is, when using more
than 30 threads, the performance degrades compared to the
maximum achieved. The degradation occurs as the execution
time gained when increasing from 30 to 36 threads ( P

30
−

P
36
),

is smaller than the overhead cost of creating and managing
the six extra threads (OHC(36)−OHC(30)). An extensive
discussion of this phenomenon can be found in [16], [28].

Figure 7 shows the real-time performance of the algorithm.
When the wall time curve is above the real-time line, then the
simulation is lagging; otherwise, the simulation is faster than
real-time and can be used for more demanding applications,
like look-ahead simulations [34], training simulators or hard-
ware/software in the loop. On this power system, the proposed
algorithm performs faster than real-time when executed on 24
or more cores.

Finally, Table III summarizes the speedup and scalability of
the algorithm of Machines 2 and 3, which are normal laptop
multi-core computers. It can be seen that these computers can
simulate the scenario in 106 s (resp. 67 s), providing a speedup
of 2.3 (resp. 3) and a scalability of 1.3 (resp. 1.8) times.
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Figure 8. Expanded Nordic test-system

VII. RESULTS ON EXPANDED NORDIC TN-DN SYSTEM

A. Test system and its two-level decomposition

This section reports on results obtained with a large com-
bined transmission and distribution network model. The TN
part is based on the Nordic test system, documented in [35]
and shown in Fig. 8. This model has been expanded with
146 DNs which replace the loads of the Nordic system. The
model and data of each DN were taken from [36] and scaled
to match the original aggregate loads seen by the TN. Multiple
DNs were used to match the original load powers, taking into
account the nominal power of the TN-DN transformers.

Each one of the 146 DNs is connected to the TN through
two parallel transformers equipped with LTCs. Each DN
includes 100 buses, one distribution voltage regulator equipped
with LTC, three PhotoVoltaic (PV) units [37], three type-2, two
type-3 Wind Turbines (WTs) [38], and 133 loads represented
by small induction motors and exponential loads. All the
DGs comply with the Low Voltage and Fault Ride Through
(LVFRT) requirements, taken from [39].

The whole, combined transmission and distribution system
includes 14653 buses, 15994 branches, 23 large synchronous
machines, 438 PVs, 730 WTs, and 19419 dynamically mod-
eled loads. The resulting model has 143462 differential-
algebraic states. The first decomposition is performed on the
boundary between TN and DNs, thus creating L = 146 Satel-
lite DN sub-domains attached to the Central DN sub-domain.
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Figure 9. Expanded Nordic: Voltage evolution at TN bus 4044
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Figure 10. Expanded Nordic: Voltage evolution at a DN bus
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Figure 11. Expanded Nordic: DG terminal voltages in two DNs

Next, each sub-domain is decomposed into its network and
injectors. This leads to NS1 = NS2 = ... = 141 and NC = 24.

B. Test-case dynamics

The disturbance considered is a 5-cycle, three-phase, solid
fault near the TN bus 4032, cleared by the opening the faulted
line 4032-4042, which remains open. The system is simulated
with a time-step size of one cycle (20 ms).

The system is stable in the short term but experiences long-
term voltage instability under the effect of LTCs unsuccess-
fully attempting to restore the DN voltages, and OXLs acting
on the TN-connected generators. Both contribute to depressing
the TN voltages. This is illustrated in Fig. 9 which shows a
zoom of the voltage evolution at TN bus 4044 until the final
collapse (t ≈ 155 s). The corresponding voltage evolution at
a DN bus is shown in Fig. 10.

Furthermore, Fig. 11 shows the voltage at buses in two
different DNs connected to TN buses 1041 (DN1) and 4043
(DN2), respectively. DGs are connected to these DN buses
and the voltage evolution is compared to the LVFRT curve

Table IV
EXPANDED NORDIC: PERFORMANCE INDICES ON MACHINE 1

Integr. Proposed parallel algorithm
Cores Used 1 1 6 12 24 36 44

Elapsed Time 1132 857 160 92 70 63 62
Speedup - 1.3 7.1 12.3 16.2 17.9 18.3

Scalability - 1.0 5.4 9.3 12.2 13.6 13.8

Table V
EXPANDED NORDIC: PERFORMANCE INDICES ON MACHINES 2 AND 3

Integr. Proposed parallel algorithm
Cores Used 1 1 2 4

Machine 2
Elapsed Time 532 449 264 -

Speedup - 1.2 2.0 -
Scalability - 1.0 1.7 -

Machine 3
Elapsed Time 464 371 166 128

Speedup - 1.3 2.8 3.6
Scalability - 1.0 2.2 2.9

to decide whether they remain connected or not. It can be
seen that the DG in DN1 disconnects at t ≈ 1.2 s, while
that in DN2 remains connected. The DG tripping leads to
losing approximately 140 MW, which increases the power
drawn by the DNs from the TN. This example illustrates the
need for detailed combined dynamic simulations when the DG
penetration level becomes significant.

C. Sequential and parallel performance

The speedup and scalability indices are presented in Ta-
ble IV for Machine 1. The proposed algorithm is 1.3 times
faster than the benchmark integrated scheme in sequential
execution. As explained in Section V-B, this performance
gain in sequential execution is mainly due to the numerical
acceleration techniques shown in Section IV.

When proceeding to the parallel execution, the simulation
is performed in 62 seconds, that is 18.3 times faster than the
sequential Integrated scheme, with the use of 44 cores. The
proposed algorithm, can simulate the test-case in real-time
when using 44 cores on Machine 1.

Table V reports on the speedup and scalability of the algo-
rithm when using Machines 2 and 3. It can be seen that even on
these small multicore machines, this large-scale power system
model can be simulated efficiently. A speedup of 1.2 (resp. 1.3)
is observed in sequential execution on Machine 2 (resp. 3) due
to the acceleration techniques of Section IV. When proceeding
to parallel computing, this speedup reaches 2.0 (resp. 3.6)
times, considering both the numerical acceleration and the
parallelization gains.

From the scalability index, it can be seen that the execution
is 1.7 (resp. 2.9) times faster in parallel compared to the
sequential execution of the same algorithm. This performance
gain can be attributed solely to the parallelization.

Furthermore, it is worth noting that in Machine 3, a slightly
super-linear scalability is observed when using two cores (2.2
times on two cores). This type of behavior, although rarely
observed, is usually due to the increase of the cache size and
the optimization of the cache use when in parallel [28].
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Figure 12. Expanded Nordic: Speedup comparison of parallel methods

D. Comparison with other parallel algorithms

In this section, the proposed algorithm is compared against
two other parallel algorithms applied to the same test case.
First, the sequential sparse solver used in the Integrated bench-
mark (namely MA41 from Harwell library [32]) is replaced by
the parallel solver MKL PARDISO. Second, the proposed two-
level algorithm is compared against the single-level, Schur-
complement-based, decomposition algorithm in [16].

The speedup of each algorithm, compared to the Integrated
with sequential sparse solver, is shown in Fig. 12.

The Integrated algorithm using the PARDISO solver (de-
noted IntegratedP ) is 20% slower in sequential execution than
the same algorithm using the MA41 solver. However, when
more computing threads are used, IntegratedP becomes up
to 2.2 times faster. While the factorizations and solutions of
the integrated sparse linear system are performed in parallel,
these only sum for 65% of the simulation time. Thus, using
(19) and ignoring the OHC, it can be seen that the scalability
of IntegratedP is limited to 2.9 times. The computation of the
Jacobian matrix, the convergence check, the discrete events,
etc. are all performed in the sequential part of IntegratedP .
In addition, the numerical techniques presented in Section IV
cannot be applied, since the entire system is treated as one
domain.

Next, the single-level, Schur-complement, decomposition
algorithm of [16] reaches a speedup of 6.1 times. While
the parallelization potential of this algorithm is higher than
IntegratedP , still the transmission and distribution network is
treated as one sub-domain and this sequentiality impedes the
scalability.

Finally, the proposed two-level algorithm reaches a speedup
of 18.3 times (see also Table IV) due to the higher paralleliza-
tion potential provided by the decomposition of the TN and
the DNs, and their individual treatment allowing to exploit the
techniques of Section IV.

VIII. CONCLUSION

In this paper, a parallel, two-level, Schur-complement-
based algorithm for the dynamic simulation of electric power
systems has been presented. It accelerates the simulation in
two ways. On the one hand, the procedure is accelerated
numerically, by exploiting the locality of the sub-systems
and avoiding many unnecessary computations (factorizations,
evaluations, solutions). On the other hand, the procedure is

accelerated computationally, by exploiting the parallelization
opportunities inherent to DDMs at both decomposition levels.

The previous acceleration techniques do not affect the accu-
racy of the simulated response. Furthermore, due to the Schur-
complement approach used to treat the interface variables, the
algorithm convergence is not sensitive to the selected partition-
ing or simulated contingency. However, another technique, first
introduced in [40], can be used to calculate linear, sensitivity-
based, equivalent models of the Satellite sub-domains during
the dynamic simulation to further accelerate the simulation
while sacrificing some accuracy.

Along with the proposed algorithm, an implementation
based on the shared-memory parallel programming model has
been presented. The implementation is portable, as it can be
executed on any platforms supporting the OpenMP API. It
exhibits good sequential and parallel performance on a wide
range of inexpensive, shared-memory, multi-core computers.

Finally, it was shown that the proposed algorithm can
provide significantly higher speedup compared to modern,
"off-the-shelf", parallel sparse linear solvers. The higher per-
formance is made possible by the two-level decomposition
which allows to extract higher parallelization.

REFERENCES

[1] T. Van Cutsem, M. E. Grenier, and D. Lefebvre, “Combined detailed
and quasi steady-state time simulations for large-disturbance analysis,”
International Journal of Electrical Power and Energy Systems, vol. 28,
no. August, pp. 634–642, 2006.

[2] R. C. Green, L. Wang, and M. Alam, “High performance computing
for electric power systems: Applications and trends,” in Proceedings of

2011 IEEE PES General Meeting, Geneva, 2011.
[3] J. Machowski, J. Bialek, and J. Bumby, Power system dynamics: stability

and control. JohnWiley & Sons, 2008.
[4] A. Toselli and O. Widlund, Domain Decomposition Methods - Algo-

rithms and Theory, ser. Springer Series in Computational Mathematics.
Berlin-Heidelberg: Springer-Verlag, 2005, vol. 34.

[5] G. Kron, Diakoptics: the piecewise solution of large-scale systems.
London: MacDonald, 1963.

[6] F. Alvarado, “Parallel Solution of Transient Problems by Trapezoidal
Integration,” IEEE Transactions on Power Apparatus and Systems, vol.
PAS-98, no. 3, pp. 1080–1090, May 1979.

[7] M. La Scala, G. Sblendorio, and R. Sbrizzai, “Parallel-in-time imple-
mentation of transient stability simulations on a transputer network,”
IEEE Transactions on Power Systems, vol. 9, no. 2, pp. 1117–1125,
May 1994.

[8] F. Iavernaro, M. La Scala, and F. Mazzia, “Boundary values methods
for time-domain simulation of power system dynamic behavior,” IEEE

Transactions on Circuits and Systems I: Fundamental Theory and
Applications, vol. 45, no. 1, pp. 50–63, 1998.

[9] M. Ilic’-Spong, M. L. Crow, and M. A. Pai, “Transient Stability
Simulation by Waveform Relaxation Methods,” IEEE Transactions on
Power Systems, vol. 2, no. 4, pp. 943–949, 1987.

[10] M. Crow and M. Ilic, “The parallel implementation of the waveform
relaxation method for transient stability simulations,” IEEE Transactions
on Power Systems, vol. 5, no. 3, pp. 922–932, Aug. 1990.

[11] V. Jalili-Marandi and V. Dinavahi, “Instantaneous Relaxation-Based
Real-Time Transient Stability Simulation,” IEEE Transactions on Power
Systems, vol. 24, no. 3, pp. 1327–1336, Aug. 2009.

[12] F. Pruvost, P. Laurent-Gengoux, F. Magoules, and B. Haut, “Accelerated
Waveform Relaxation methods for power systems,” in Proceedings of
2011 International Conference on Electrical and Control Engineering,
Wuhan, 2011, pp. 2877–2880.

[13] CRSA, RTE, TE, and TU/e, “D4.1: Algorithmic requirements for
simulation of large network extreme scenarios,” Tech. Rep., 2011.
[Online]. Available: http://www.fp7-pegase.eu/

[14] Y. Liu and Q. Jiang, “Two-Stage Parallel Waveform Relaxation Method
for Large-Scale Power System Transient Stability Simulation,” IEEE

Transactions on Power Systems, pp. 1–10, 2015.



12

[15] V. Jalili-Marandi, F. J. Ayres, E. Ghahremani, J. Belanger, and V. La-
pointe, “A real-time dynamic simulation tool for transmission and
distribution power systems,” in 2013 IEEE Power & Energy Society

General Meeting. IEEE, 2013, pp. 1–5.
[16] P. Aristidou, D. Fabozzi, and T. Van Cutsem, “Dynamic Simulation of

Large-Scale Power Systems Using a Parallel Schur-Complement-Based
Decomposition Method,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 10, pp. 2561–2570, Oct. 2013.

[17] D. Guibert and D. Tromeur-Dervout, “A Schur Complement Method for
DAE/ODE Systems in Multi-Domain Mechanical Design,” in Domain
Decomposition Methods in Science and Engineering XVII. Springer,
2008, pp. 535–541.

[18] P. Aristidou, “Time-domain simulation of large electric power
systems using domain-decomposition and parallel processing methods,”
PhD thesis, University of Liège, 2015. [Online]. Available:
http://orbi.ulg.ac.be/handle/2268/183353

[19] D. Fang and Y. Xiaodong, “A New Method for Fast Dynamic Simulation
of Power Systems,” IEEE Transactions on Power Systems, vol. 21, no. 2,
pp. 619–628, May 2006.

[20] K. Strunz and E. Carlson, “Nested fast and simultaneous solution
for time-domain simulation of integrative power-electric and electronic
systems,” IEEE Transactions on Power Delivery, vol. 22, no. 1, pp.
277–287, Jan 2007.

[21] D. Kulkarni and D. Tortorelli, “A domain decomposition based two-
level Newton scheme for nonlinear problems,” Domain Decomposition

Methods in Science and Engineering, pp. 615–622, 2005.
[22] L. Luo, Y. Zhao, and X.-C. Cai, “A hybrid implementation of two-

level domain decomposition algorithm for solving elliptic equation on
cpu/gpus,” in 13th International Conference on Parallel and Distributed
Computing, Applications and Technologies (PDCAT), Dec 2012, pp.
474–477.

[23] M. Terracol, P. Sagaut, and C. Basdevant, “A multilevel algorithm
for large-eddy simulation of turbulent compressible flows,” Journal of

Computational Physics, vol. 167, no. 2, pp. 439 – 474, 2001.
[24] P. Kundur, Power system stability and control. McGraw-hill New York,

1994.
[25] F. Milano, Power System Modelling and Scripting, ser. Power Systems.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
[26] D. Fabozzi, A. S. Chieh, P. Panciatici, and T. Van Cutsem, “On simplified

handling of state events in time-domain simulation,” in Proc. of 17th

Power System Computational Conference (PSCC), Stockholm, 2011.
[27] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network

structure, dynamics, and function using NetworkX,” in Proceedings of

7th Python in Science Conference (SciPy2008), vol. 836, Pasadena,
2008, pp. 11–15.

[28] D. Gove, Multicore Application Programming: For Windows, Linux, and

Oracle Solaris. Addison-Wesley Professional, 2010.
[29] Y. Saad, Iterative methods for sparse linear systems, 2nd ed. Society

for Industrial and Applied Mathematics, 2003.
[30] B. Chapman, G. Jost, and R. Van Der Pas, Using OpenMP: Portable

Shared Memory Parallel Programming. MIT Press, 2007.
[31] J. Chai and A. Bose, “Bottlenecks in parallel algorithms for power

system stability analysis,” IEEE Transactions on Power Systems, vol. 8,
no. 1, pp. 9–15, Feb. 1993.

[32] HSL, “A collection of Fortran codes for large scale scientific
computation.” 2014. [Online]. Available: http://www.hsl.rl.ac.uk/

[33] S. Bernard, G. Trudel, and G. Scott, “A 735 kV shunt reactors automatic

switching system for Hydro-Quebec network,” IEEE Transactions on

Power Systems, vol. 11, no. 4, pp. 2024–2030, 1996.
[34] Z. Huang, S. Jin, and R. Diao, “Predictive Dynamic Simulation for

Large-Scale Power Systems through High-Performance Computing,”
in 2012 SC Companion: High Performance Computing, Networking

Storage and Analysis. IEEE, Nov. 2012, pp. 347–354.
[35] T. Van Cutsem and L. Papangelis, “Description, Modeling and

Simulation Results of a Test System for Voltage Stability Analysis,”
University of Liege, Tech. Rep. November, 2013. [Online]. Available:
http://hdl.handle.net/2268/141234

[36] A. Ishchenko, “Dynamics and stability of distribution networks with
dispersed generation,” Ph.D. dissertation, Eindhoven University of Tech-
nology, 2008.

[37] “Wind Power Plant Dynamic Modeling Guide,” Western Electricity
Coordinating Council (WECC), Tech. Rep., 2014.

[38] A. Ellis, Y. Kazachkov, E. Muljadi, P. Pourbeik, and J. J. Sanchez-Gasca,
“Description and technical specifications for generic WTG models -
A status report,” in Proceedings of 2011 IEEE PES Power Systems
Conference and Exposition (PSCE 2011), Phoenix, Mar. 2011.

[39] J. Schlabbach, “Low voltage fault ride through criteria for grid connec-
tion of wind turbine generators,” in Proceedings of 5th International

Conference on the European Electricity Market, Lisboa, May 2008.
[40] P. Aristidou and T. Van Cutsem, “Dynamic simulations of combined

transmission and distribution systems using decomposition and local-
ization,” in Proceedings of IEEE PES 2013 PowerTech conference,
Grenoble, 2013.

Petros Aristidou (M’10) obtained his Diploma in Electrical and Computer
Engineering from the National Technical University of Athens, Greece, and
his Ph.D. in Engineering Sciences from the University of Liège, Belgium, in
2010 and 2015, respectively. He is currently a postdoctoral researcher at the
Swiss Federal Institute of Technology in Zürich (ETH Zürich). His research
interests include power system dynamics, control, and simulation.

Simon Lebeau received his B.Eng. degree in Electrical Engineering from
École Polytechnique, Montréal, in 2001. He is with the Hydro-Québec
TransEnergie Division where is involved in operations planning for the Main
Network using dynamic simulations.

Thierry Van Cutsem (F’05) graduated in Electrical-Mechanical Engineering
from the University of Liège, Belgium, where he obtained the Ph.D. degree
and he is now adjunct professor. Since 1980, he has been with the Fund
for Scientific Research (FNRS), of which he is now a Research Director.
His research interests are in power system dynamics, stability, security,
monitoring, control and simulation. He has been working on voltage stability
in collaboration with transmission system operators from France, Canada,
Greece, Belgium and Germany. He is a fellow of the IEEE and Past Chair of
the IEEE PES Power System Dynamic Performance Committee.


