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ABSTRACT The frequency of extreme events (e.g., hurricanes, earthquakes, and floods) and man-made
attacks (cyber and physical attacks) has increased dramatically in recent years. These events have severely
impacted power systems ranging from long outage times to major equipment (e.g., substations, trans-
mission lines, and power plants) destructions. This calls for developing control and operation methods
and planning strategies to improve grid resilience against such events. The first step toward this goal
is to develop resilience metrics and evaluation methods to compare planning and operation alternatives
and to provide techno-economic justifications for resilience enhancement. Although several power system
resilience definitions, metrics, and evaluation methods have been proposed in the literature, they have not
been universally accepted or standardized. This paper provides a comprehensive and critical review of current
practices of power system resilience metrics and evaluation methods and discusses future directions and
recommendations to contribute to the development of universally accepted and standardized definitions,
metrics, evaluation methods, and enhancement strategies. This paper thoroughly examines the consensus
on the power system resilience concept provided by different organizations and scholars and existing and
currently practiced resilience enhancement methods. Research gaps, associated challenges, and potential
solutions to existing limitations are also provided.

INDEX TERMS Critical review, extreme events, power system resilience, resilience definitions, metrics,
and enhancement strategies.

I. INTRODUCTION

Power system resilience evaluation and enhancement meth-
ods have been gaining significant momentum. The term
‘‘resilience’’ in power systems has several attributes ranging
from the ability of a power system to ‘‘resist‘‘ and ‘‘recover‘‘
from a disrupting event to the ability to proactively respond
to potential disrupting events and newly emerging threats
[1]–[7]. Although several power system resilience defini-
tions, metrics, evaluation methods, and enhancement strate-
gies have been proposed, there have been no standardized
definitions and metrics to measure the resilience of power
systems and evaluate potential solution alternatives [1].
Therefore, there is an urgent need for a critical review
of current practices, challenges, and research gaps, and
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for comprehensive, concrete, and constructive recommenda-
tions and suggestions to contribute to developing universally
accepted definitions, metrics, and evaluation methods.

Several research papers have provided reviews for
resilience definitions, metrics, and evaluation and enhance-
ment methods [5]–[7]. The work presented in [5] reviews
engineering resilience definitions, differences between
resilience and reliability, and adverse weather events and
their impacts on power systems. Also, the paper provides
discussions on developing resilience assessment methods
and an enhancement framework. In [6], the authors pro-
vide a review for resilience-related definitions, taxonomy on
known, unknown, and unknowable extreme events, impact
of resilience on power systems, and resilience enhancement
methods. The paper also discusses a resilience assessment
framework and identifies and classifies effective strategies
for resilience improvement according to four main criteria:
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preventive, corrective, restorative, and multifaceted. The
work presented in [7] reviews the role of microgrid in power
system resilience enhancement. The paper presents several
resilience enhancementmethods based on dynamicmicrogrid
formation.
Although these review papers provide a good review for

existing resilience definitions and metrics, they do not pro-
vide a critical and comprehensive review nor do they discuss
challenges and potential future directions to contribute to
developing standardized definitions andmetrics. Theymostly
either tackle a specific type of systems, such as microgrids,
or focus on listing definitions, metrics, and evaluation and
enhancement methods and comparing them with power sys-
tem reliability. Also, these papers do not discuss resilience
evaluation criteria, optimization methods used for resilience
evaluation and enhancement, solution algorithms, andmodel-
ing of system components and extreme events—weather and
manmade—for both resilience evaluation and enhancement.
Therefore, providing a review paper that tackles these gaps
will help the power and energy society to develop univer-
sally accepted and standardized resilience definitions and
metrics and establish a framework for resilience evaluation
and enhancement.
This paper provides a critical and comprehensive review

of current practices of power system resilience metrics, eval-
uation methods, and enhancement strategies. Also, it reviews
optimization methods used for power system resilience eval-
uation and enhancement as well as the system, event, and
failuremodeling approaches. This paper is unique in the sense
that it (1) tackles several aspects of power system resilience
including transmission and distribution system (DS) aspects,
operation and planning practices, and deterministic and prob-
abilistic resilience evaluation and enhancement; (2) provides
a critical review for power system resilience including def-
initions, metrics, evaluation methods, enhancement strate-
gies, optimization methods used for resilience evaluation
and enhancement methods, and system, event, and failure
modeling approaches; and (3) discusses future directions and
recommendations to develop resilience metrics, evaluation
methods, and enhancement strategies. Therefore, this paper
will contribute to the ongoing efforts of several entities to
develop universally accepted and standardized power sys-
tem resilience definitions, metrics, evaluation methods, and
enhancement strategies.
The remainder of the paper is organized as follows.

Section II discusses extreme events and their impacts on
power system resilience. Sections III to IX provide a review
to the state of the art, discuss current and future challenges to
develop resilience metrics, evaluation methods, and enhance-
ment strategies. The prior art in the area of power system
resilience can be categorized as follows: definitions, enhance-
ment strategies, evaluation methods, metrics and criteria,
optimization methods for resilience enhancement and eval-
uation, and modeling of extreme events, failures, and system
components. Section XI provides concluding remarks. Fig.1
provides the framework of the paper.

II. IMPACTS OF EXTREME EVENTS ON

POWER SYSTEM RESILIENCE

The frequency of extreme weather events (e.g., hurricanes,
earthquakes, and floods) has been exponentially increasing.
For example, the average number of disaster events in the
United States from 2014 to 2018 is more than double the
average number of disaster events from 1980 to 2018 [8].
Fig. 2 shows the number of disaster events in the United
States from 1980 to 2019 that exceed one billion dollars in
losses.

Extreme weather events have led to large blackouts and
major destructions of power grids resulting in economic
losses and more importantly, long outage duration times.
An ice storm in China in 2008 caused a power outage
for 200 million people and the direct cost of the event
was estimated to be more than 2.2 billion dollars [9].
The Great East Japan Earthquake (GEJE) and subsequent
tsunami of March 2011 caused the loss of power supply
of 8.5 million customers [10]. The super-storm sandy of
October 2012 caused over 8 million customers to lose power
across 15 states in the United States [11]. Hurricane Irene
in 2011 caused the power outage for 6.5 million people [11].
Hurricane Harvey of 2017 caused the power outage to more
than 2 million customers [12]. A fierce storm in Australia
in 2016 caused the power outage to 1.7 million people [13].
A windstorm in Canada in 2015 caused the power outage to
more than 710 thousand customers [14]. Cyclone Dagmar,
a powerful European windstorm, caused the loss of power
outage to 570 thousand customers [15]. Tornado of Jiangsu
Province of China in 2016 caused the power outage to
135 thousand households [16].

Blackouts due to cyber-attacks and technical issues have
also been increasing [17]. For example, the cyber-attack in
the Ukrainian power grid in 2015 caused power outages
to approximately 225,000 customers [18]. Recent (June 16,
2019) blackout in South America caused power outages
to more than 48 million customers [19]. The most recent
power outage (August 3, 2019) in the capital of Indone-
sia caused the power outage to more than 10 million
customers [20].

To provide a complete and concise summary of large black-
outs caused by extreme weather events, technical issues, and
cyber-attacks, we have collected data from several research
papers and technical reports [8]–[20], and expressed them in
a graphical format based on their intensity and history. The
summary of these data is given in Fig. 3.

From Fig. 3, it is clear that extreme weather events
have significantly impacted the reliability and resilience
of power supply which has short- and long-term negative
societal and economic impacts. Therefore, power system
resilience evaluation and enhancement have become more
important than ever before. Developing strategies to enhance
grid resilience and methods to measure the improvements
and compare different alternatives have become important
factors for future power system planning, operation, and
control.
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FIGURE 1. Framework of the paper.

III. DEFINITIONS

The term ‘‘resilience’’ has originally appeared in psychology
and ecology fields, which has been used to draw attention
to trade-offs between conflicting objectives and attributes
such as efficiency and persistence [21]. Also, it has been
used in psychology to describe the ability to recover from
trauma [22]. Recently, the term ‘‘resilience’’ has been pre-
sented in various fields such as interdependent infrastruc-
tures, national security, and power and energy systems. The
intergovernmental panel on climate change has defined power
system resilience in terms of anticipation, absorption, and
quickly and efficiently recover after hazardous events [23].
In [24], United States’ presidential policy directive–21 has
defined resilience in terms of prepare, adapt, withstand, and

recover rapidly from disruptions. The disruption could be
a natural threat or man-made misery such as cyber-attacks.
Although definitions of resilience vary among various fields
of study, this paper focuses only on the definitions and
attributes that are related to power systems including both
transmission and distribution levels.

A. EXISTING DEFINITIONS

Converging to a universally accepted definition for power
system resilience has been a concern for the power and energy
engineers. Several taskforces have been formed and several
research teams from different research institutions have come
together to develop a commonly agreed upon and universally
accepted definition.
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FIGURE 2. Number of disaster events in the United States from
1980 to 2019 that exceed one billion dollars in losses [8].

Several definitions have been introduced which are dis-
cussed as follows. Electric Power Research Institute (EPRI)
has defined power system resilience in terms of three ele-
ments: prevention, recovery, and survivability [25]. The U.S.
National Infrastructure Advisory Council (NIAC) has defined
power system resilience as to prepare and plan, absorb,
recover, and adapt to adverse events [26]. North America
Electric Reliability Corporation (NERC) has adopted the def-
inition of NIAC in [27]. United Kingdom Energy Research
Center (UKERC) [28] has defined resilience as ‘‘the capa-
bility of an energy system to tolerate disturbance and to
continue to deliver affordable energy service to consumers.’’
According to UKERC, resilient energy systems should be
able to recover quickly and provide fast alternatives to sat-
isfy the energy service at the time of external calamities.
The ASIS (initially it was American Society for Industrial
Security, later it became ASIS International to include inter-
national countries) International has defined resilience as the
capability of a power system to resist and timely recover
to an acceptable level during extreme events [29]. It has
been defined by the United Nation-international strategy for
disaster reduction (UNISDR) in [30] to measure the degree
of system’s ability to maintain its functionality and cope
with hazards by organizing and learning from prior disasters.
The U.S. National Association of Regulatory Utility Com-
missioners (NARUC) has described resilience in terms of
robustness and recovery characteristics of the power system
during and after disasters [31]. NARUC has also provided a
detailed review of resilience definition provided by different
organizations in [32].
The resilience has been defined as to anticipate, absorb,

and rapidly recover from low-frequency high impact events
in [33]. Power system resilience has been defined in terms
of several properties of power systems such as resourceful-
ness, robustness, adaptability, and rapid recovery in [34].
Robustness refers to the ability of power system to absorb
a shock and continue to operate; resourcefulness is the ability
of power system to skillfully manage a crisis as it onset;
rapid recovery signifies the ability of power system to quickly
restore service to normal state; and adaptability is defined as
the ability to incorporate lessons learned from past events

to improve resilience. In [35], resilience has been defined
in terms of withstand, rapidly recover, and adapt to mitigate
the impact of future similar disasters. In [4], resilience has
been defined as the ability of the power system to with-
stand within an acceptable level and recover within accept-
able time and cost. In, [36] resilience has been defined as
‘‘ability to prepare, plan for, recover from, and adapt to
adverse events.’’ In [37], resilience has been defined through
three attributes: anticipate, perceive, and respond. Resilience
has been also identified in four terms: anticipate, perceive,
respond, and adapt in [38]–[40]. More definitions for power
system resilience can be found in [5], [6], [41]–[43].

B. DISTURBANCE AND SYSTEM RESPONSE CURVES

The concept of resilience through a disturbance and impact
resilience evaluation (DIRE) curve has been provided
in [38], [39] which is shown in Fig. 4. The DIRE curve
illustrates the relative performance of a system to optimal
and minimum performance level (resilient thresholds) that
the system needs to maintain to be considered resilient. The
DIRE curve has been suggested as the initiator to develop
resilience metrics. Several common terms such as robustness,
agility, adaptive capacity, adaptive insufficiency, resilience,
and brittleness have been presented in the DIRE curve. The
DIRE curve provides temporal demarcation as follows: ti is
the disturbance starting instant; tBi indicates the time at
which the performance of the system falls below a minimum
normalcy; tR is the instant at which the system reaches a
minimum performance level; tBf indicates the time at which
the performance of the system achieves minimum normalcy
again; and tf 1 indicates the time at which the restoration
processes start. In these notations, i indicates the start of the
event and f indicates the end of the event. Also, it is worth
mentioning here that the restoration processes could take a
long time (i.e., tf 2 ≫ tf 1).

A conceptual resilience curve, which is similar to the DIRE
curve, has been presented in [33] to define the resilience con-
cept. In this curve, different resilience features are provided
for various system states. Before an event occurs, the system
remains at the resilient state; at this state, the system should
be robust and strong enough to withstand initial disturbances.
After the event progresses, the system enters to a post-event
degradation state, where redundancy, resourcefulness, and the
adaptive organization provide corrective operation state to
adapt and deal with changing conditions. At the restoration
state, the system should provide a fast response and recovery
to normal state as quickly as possible. After the restoration
state, the post-restoration process starts where full restoration
of the system might not happen as different damaged infras-
tructure may take a longer time to recover to normal state.

C. RESEARCH GAPS, CHALLENGES, AND

FUTURE DIRECTIONS

Although several studies have been conducted to provide
a clear definition to power system resilience, it has not
been standardized yet. Some attempts have provided insights
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FIGURE 3. Examples of extreme events, where M denotes the number of customers without power in million.

FIGURE 4. Disturbance and impact resilience evaluation (DIRE) Curve (i=initial, f=final) [38].

into the required features of power system resilience rather
than providing a definition. Whereas some definitions relate
resilience to system characteristics, others treat resilience

as system performance, similar to power system reliability.
Several studies have suggested that resilience should cap-
ture the dynamics of the system along with its performance.
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Furthermore, some of the terms used in the literature to define
resilience are very vague, unclear, and sometimes they do not
capture the essence of resilience. Therefore, further research
is required to develop a universally accepted definition that
should encompass all possible elements of power system
resilience so that it can be eventually standardized.
Although converging to a universally accepted definition

seems daunting, there is a general agreement about resilience
attributes. From the above definitions, resilience can fall
under the following attributes: absorptivity, adaptability, and
recoverability. These attributes can help in forming a defini-
tion that not only be commonly accepted but also leads to
developing standardized resilience metrics thereof.

IV. METRICS

Until now, there have been no standard resilience metrics,
nor are there standard methods to evaluate them. Although
several resilience metrics have been proposed, there is still
a great discussion on how to establish a standardized set
of resilience metrics. This section discusses the advances
in resilience metrics in terms of their general attributes and
features.

A. GENERAL ATTRIBUTES OF POWER SYSTEM

RESILIENCE METRICS

Generally, resilience metrics can be categorized into
attributes- and performance-based metrics [1], [44].
Attributes-based metrics provide answers to what makes
the system more or less resilient than system current sta-
tus. For example, several system attributes such as robust-
ness, adaptability, resourcefulness, and recoverability are
measured using the attribute-based metrics. On the other
hand, performance-based metrics answer how resilient the
system is. Performance-based metrics are used to interpret
quantitative data that describe infrastructure outputs, spec-
ify disturbances, and formulate metrics of infrastructure
resilience.
Several recommendations to develop resilience metrics

have been proposed [1], [33], [44]. These recommendations
can be generally summarized as follows. They should

• Capture only the high impact low probability (HILP)
events and their consequences (i.e., loss of load, rev-
enue, cost of recovery, number of people without electric
power, power outage to critical load, and interruption of
business due to power loss);

• Be performance-based rather than system attributes;
• Reflect true intrinsic uncertainties. These uncertainties
drive response and planning activities such as disruptive
conditions, damages from the affected population, and
response time.

• Be simple, enable retrospective and forward-looking
analysis, and highly consistent;

• Capture spatiotemporal correlation of the disasters on
the power system resilience; and

• Provide both global and component-specific resilience
of power systems.

B. METRICS BASED ON RESILIENCE FEATURES

Several resilience metrics have been proposed in the litera-
ture based on power system resilience features and attributes
(resourcefulness, rapid recovery, robustness, and adaptabil-
ity) [26]. Five resilience metrics have been proposed in [45]:
(i) load shedding investment costs (for resourcefulness);
(ii) restoration saving costs (for rapid recovery); (iii) alge-
braic connectivity (for robustness); (iv) betweenness cen-
trality (for robustness); and (v) adaptability percentage (for
adaptability). Different weights have been assigned to each
parameter to adjust the overall resilience metrics. In [46],
three metrics have been proposed to capture various features
of resilience: (i) flexibility metrics (for resourcefulness)—the
ratio of amount of load served following each recovery iter-
ation through topology control, to the total system demand;
(ii) outage cost recovery metrics—the amount of total cus-
tomer interruption costs regained after each corrective action;
and (iii) outage recovery capacity metrics—the percentage of
recovered load in each recovery step from total lost demand
due to disruption.

In [47], the authors have proposed three metrics to quantify
the resilience which are Resistancy, Recovery, and Resilience
metrics. The resistancy metric is defined as the ratio of the
summation of active powers supplied to the non-interrupted
costumers to the total power demand of the system loads,
considering the load priority factor. The recoverymetric is the
ratio of the expected energy supplied to recovered loads to the
sum of the total energy required to the interrupted load during
the same period. The resilience metric is defined as the ratio
of the expected energy supplied to the loads during the study
period (loads recovered because of the formation of micro-
grids (MGs) and loads connected to non-faulted feeders) to
the total energy required to system loads. A resilience metric
based on the speed of the system response, efficiency of the
recovery, and economy of the recovery has been proposed
in [48] to quantify system resilience after extreme events.
In [49], [50], a resilience metric has been defined as the ratio
of recovered loads to the actual loads of AC/DC sides of
microgrids. This metric ensures the survivability of at least
the most critical loads [49], [50]. Also, it is measured on
a scale from zero to one where zero represents the lowest
resilient level and one represents the highest level [49], [50].

In [51], the authors have proposed a resilience metric based
on social welfare between the power grid and water systems
where the resilience metric was defined as the summation of
the robustness of the system, recoverability of the system in
a predetermined time, and rapidness of the system recovery.

A conceptual resilience curve has been developed in [33]
to define and quantify power system resilience. It shows the
level of resilience as a time-dependent function with respect
to disaster event as shown in Fig. 5. A set of metrics have
been proposed in [52], [53] based on the resilience curve.
These metrics are abbreviated as FLEP which stands for:
how fast (F) and how low (L) resilience drop in phase I (dis-
turbance progress); how extensive (E) the post-disturbance
degraded state is in phase II (post-disturbance degradation);
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and how promptly (P) the network recovers in phase III
(restorative). Also, this resilience curve has been used in [54]
to develop a resilience metric that considers the critical load
supply at restorative and post-restorative state which is eval-
uated as follows.

R =

∫ tr+T
0

tr

F(t)dt, (1)

where F(t) denotes the function of system performance;
tr represents time at which restoration phase starts; and T 0

represents the duration of restoration and post-restoration
phase. The system performance function has been defined as
the total power that is supplied to critical loads based on their
priority. Similar metrics have been proposed in [55]–[57].
In [58]–[60], the resilience of the power system has been

defined as the ratio of the area under the target performance to
the actual performance curve. The target performance curve is
usually modeled as constant while the real performance curve
could vary with time under system restoration efforts and
major disaster events. A resilience metric based on maximum
reduction in system performance and loss incurred has been
proposed in [61], [62], which is expressed as follows,

R = 100(1 −
LMm

Lmax
), (2)

where LMm is the measure of the maximum reduction in
system performance and Lmax is the loss incurred by the
operator when all loads and distributed generators (DGs) are
disconnected.
A resilience metric based on event duration and profile has

been proposed in [63]. This metric is expressed as follows.

Resilience (Re) =
Ti + F1Tf + R1Tr

Ti + 1Tf + 1Tr
, (3)

whereF is the failure profile;R is a recovery profile; Ti is time
to incident;1Tf is failure duration;1Tr is recovery duration.

A resilience metric based on Cobb-Douglas Production
Function (anticipate, adapt, perceive, and respond) has been
proposed in [38], which can be expressed as follows.

CR = Aρ
+ ADβ

+ Pγ
+ RDϕ, (4)

where CR is the collective resilience and A, AD, P, and
RD, represent, respectively, anticipate, adapt, perceive, and
respond. The exponents (ρ, β, γ , and φ) represent the weights
of relative importance of the ability where ρ+β+γ +ϕ = 1.

C. CODE-BASED METRICS

In order to capture both the magnitude and duration of an out-
age, a code-based metric has been proposed in [64]. At first,
unscaled resilience is calculated using (5) and (6) then a
scaling process is applied to transform metric values on a
scale from one to nine as shown in Table 1.

m′
= c(α + exp (f ))(1 + f ), (5)

f =
Load unaffected by PDS events (kW)

Total load of PDS (kW)
, (6)

TABLE 1. Scaling of resilience metrics.

wherem′ is the unscaled resilience value; c is a binary variable
which stores the status of the event occurrence in considerable
time frame; α is the duration of outage in seconds; and f is the
fraction of unaffected load (based on voltage or current distor-
tion) due to power disturbance events. In code-based metric,
it has been assumed that the repair time can be between
100 to 106 seconds.

D. RELIABILITY-BASED METRICS

Reliability-based metrics have been proposed in [65]–[68] to
quantify the resilience of power systems. In [65], a time series
analysis-based system resilience approach has been devel-
oped to provide a relationship between loss of load frequency
(LOLF), energy not supplied (ENS), loss of load expectation
(LOLE), capacity margin, and the frequency and intensity
of storms. Loss of load after occurrence of disastrous events
has been used in [66] to evaluate power system resilience.
In [67], four metrics have been proposed to measure the
impacts of extreme events on MGs: (i) a metric (metric-K)
that is used to measure the expected number of lines outages
due to destructive events; (ii) LOLP is used to measure the
loss of load due to extreme events; (iii) expected demand not
supplied (EDNS) is used to measure the expected demand not
supplied due to extreme events; and (iv) a metric (metric-G)
that is used to measure the difficulty level of grid recovery.
In addition, a resilience metric based on the availability of
system components has been proposed in [68]. This met-
ric captures both time and performance-related properties
of the system before and after disasters using steady-state
availability and event time. The proposed metrics in [68]
are evaluated by multiplying the ratio of availability and the
natural logarithm of recovery time before and after external
shock.

E. OTHER RESILIENCE METRICS

In [69], resilience metrics have been defined as the reciprocal
of average comprehensive load loss considering critical loads.
A resilience metric based on the average of total energy
curtailment in multi-microgrid systems during a disturbance
event has been proposed in [70]. In [71], a resilience metric
has been developed to measure the functional service loss
during an extreme event. A resilience metric for power dis-
tribution systems using graph theory and Choquet integral
has been proposed in [72]. This metric is based on seven
factors: overlapping branches, redundancy of paths, repeated
sources, operations of switches, penalty factor and probability
of availability, and dominance of aggregated central point.
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FIGURE 5. Resilience curve [33].

A metric to evaluate resilience against earthquakes based
on the ratio between discharged energy of battery energy
storage system (BESS) during the emergency time and
the demanded energy by critical loads have been proposed
in [73].

F. RESEARCH GAPS, CHALLENGES, AND

FUTURE DIRECTIONS

Although numerous metrics have been documented to eval-
uate the resilience of power systems, they are yet to be
universally accepted and cannot comprehensively capture the
essence of the power system resilience [45], [64]. These met-
rics (i) often undervalue the impacts of high impact events and
focus on normal operating scenarios (these metrics cannot
completely address the outage caused by cyber-attacks and
extreme natural disasters); (ii) use flat rate price scheme for
lost load—however, the outage caused by extreme event can
compound the price of lost load when they last for long dura-
tions; (iii) are mostly based on probability of system failure
and thus cannot assess system robustness against disruptions;
and (iv) are defined on fixed steady-state probability analysis
that usually involves approximation of system state before
and after contingencies.
Several perspectives need to be considered to comprehen-

sively capture the essence of the power system resilience:
system performance and system attributes; deterministic and
probabilistic features; and quantitative and qualitative anal-
ysis. Moreover, these metrics must: (i) be able to address
the impacts caused by HILP events such as cyber-attacks
and extreme weather events; (ii) compound the lost load

price according to their duration of outage; (iii) be able to
consider the system robustness; and (iv) be able to capture the
dynamics of system recoveries from disruption along with the
steady-state probability analysis.

V. RESILIENCE EVALUATION CRITERIA

Identifying resilience evaluation criterion is the first step
toward developing resilience metrics. For example, if a
resilience metric is defined as given in (1), the system per-
formance function, F(t), represents the criterion. Several
resilience evaluation criteria have been proposed in the liter-
ature, and some of them have been used to evaluate power
system resilience. Interruption of service, duration of out-
ages, cost of recovery, and cost for prevention have been
used in [42] to evaluate power system resilience. Also, since
universally accepted resilience metrics are not available yet,
resilience has been evaluated in terms of several determin-
istic and probabilistic criteria: served/unserved energy, load
curtailment and restoration, and outage duration.

Several criteria to develop resilience metrics have been
suggested in [1] to capture consequences of extreme events
from different perspectives based on (i) electric service—
total number of customer hours of outage, total number
of customer energy demand not served, average number of
customers experiencing outage during a given time period;
(ii) critical electric service—cumulative outage hours of criti-
cal customer, energy demand not served to critical customers,
average number of critical loads that experience an outage;
(iii) restoration time, recovery time, and cost of recovery;
(iv) monetary—loss of revenue, cost of grid damage, avoided
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outage cost, loss of perishables and assets, cost of inter-
ruption of business, impact on total municipal product or
total regional product; and (v) community function—critical
service without power, without power for more than certain
hours, and key facilities without power such as military facil-
ities. Existing resilience evaluation criteria are explained as
follows.

A. LOAD CURTAILMENT MINIMIZATION (LOAD

SHEDDING MINIMIZATION)

The minimization of load shedding/curtailment or cost of
loss of load has been considered as a resilience evaluation
criterion in the deterministic approaches. In these approaches,
critical load curtailments are considered to degrade system
resilience more than noncritical load curtailments. In other
words, a system is considered more resilient if no or a very
small amount of critical loads is curtailed due to disaster.
Although minimization of critical load curtailment can be
a priority, in some cases, power supply to parts or all of critical
loads is not possible due to system constraints (e.g., damage
of lines). In these cases, extra available power is supplied
to noncritical loads. Load shedding or cost of load shedding
minimization has been considered as a resilience evaluation
criterion in several studies [41], [49], [61], [62], [66], [70],
[71], [74]–[97]. Also, the minimization of load shedding or
cost of load shedding combined with service restoration time
has been considered in [45], [51].

B. RATE OF RECOVERY

Rate of recovery has been commonly used as a resilience
evaluation criterion—service restoration for critical loads has
a higher priority over non-critical loads [47], [56], [58], [65],
[98]–[102]. In [47], [98]–[100], the authors have considered
the maximization of critical load restoration after the disaster
as an evaluation criterion. Maximization of load restoration
and minimization of restoration time have been considered
as evaluation criteria in [56]. Minimization of the recovery
time has been considered as a resilience evaluation criteria
in [58], [65]. Moreover, reinforcement of the physical energy
infrastructure and reduction of recovery time have been used
as resilience evaluation criteria in [101].

C. SERVED ENERGY

Both deterministic (minimization of unserved energy and
maximization of the weighted sum of restored loads over
time) and probabilistic approaches (minimization of the
weighted sum of expected energy not supplied) have been
used as resilience criteria. Maximization of energy supplied
to critical loads has been used in [54], [56] as a resilience eval-
uation criterion. Also, the minimization of expected energy
not supplied has been considered as resilience evaluation
criteria in [103]. Minimization of unserved energy [104],
minimization of the weighted sum of curtailed loads [105],
and the maximization of the weighted sum of restored loads
over time [106], [107] have also been assumed as resilience
evaluation criteria.

D. RESEARCH GAPS, CHALLENGES, AND

FUTURE DIRECTIONS

Although several studies have been conducted to capture
various aspects of resilience evaluation criteria, these criteria
can not measure the dynamics of the system response. For
example, the robustness of a power system to large distur-
bances should be considered as a resilience criterion. Also,
resilience evaluation criteria should not be confused with
resilience metrics.

VI. RESILIENCE ENHANCEMENT METHODS

Resilience enhancement strategies for both electric power
distribution and transmission systems are gaining significant
momentum [108]–[114]. Although resilience enhancement
at the distribution level has gained significant interest [7],
[56], [75], several resilience enhancement methods have
been proposed for the transmission level [45], [115] and for
the interdependent systems such as power and natural gas
systems [78], [90], [116].

Resilience enhancement strategies can be generally clas-
sified into planning-based and operation-based methods.
Planning-based methods focus on establishing grid expan-
sion plans to harden transmission and distribution systems
against future extreme events, whereas operational-based
methods develop optimization-based strategies to utilize
available assets against failures and extreme weather
events [45], [111], [117]. A highlight of the most well-known
strategies has been presented in [52]. Fig. 6 provides a sum-
mary of resilience enhancement strategies.

FIGURE 6. Summary of enhancement.
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A. OPERATION-BASED RESILIENCE

ENHANCEMENT METHODS

Operational resilience provides immediate solutions to
reduce the impact of adverse events on the power grid [52].
Operation-based strategies for distribution systems can
be generally classified into network reconfiguration-based
methods; microgrid islanding formation; utilization ofmobile
emergency resources and energy storage units; and load
restoration-based approaches.

• Reconfiguration-based methods to enhance the
resilience of power distribution systems have been
proposed in [50], [56], [67], [72], [93], [97], [98],
[102], [105]–[107], [118]. An integrated framework of
network reconfiguration, generation rescheduling, con-
servation voltage reduction (CVR), optimal setting of
drop-controlled units and demand-side resources, and
utilization of backup generation to enhance resilience
has been proposed in [106].

• Microgrid forming and splitting the power grid into
smaller independent and reliable microgrids have
been studied extensively as a resilience enhancement
method [7], [41], [47], [56], [62], [72], [77], [78],
[81], [94], [95], [100], [119]. Microgrid islanding and
topology reconfiguration have been presented in [105].
Microgrid-based pre-disturbance scheduling to improve
the resilience of the distribution grids has been presented
in [89]. Determining feasible islands of hybrid micro-
grids for resilience enhancement has also been studied
in [49], [67]. In [53], the authors have used a defensive
islanding strategy to prevent cascading events that can
be triggered due to lines damaged by extreme weather
events. A demand response program to reduce load
curtailments during emergency periods in microgrids
has been developed in [50]. In [70], the unused capac-
ity of available resources in extreme events have been
employed to enhance microgrid resilience. A detailed
review of microgrids to enhance the resilience of power
supply has been presented in [120].

• Utilization of mobile emergency resources and energy
storage units has been widely applied to improve the
resilience of electric power distribution systems [7],
[56], [73], [76], [79], [93], [102], [105]–[107], [117].
In [75], the authors have provided an optimal operation
of mobile energy resources during normal and emer-
gency situations. Transportable energy storage, gen-
eration rescheduling, and network reconfiguration are
integrated to enhance the resilience of electric power
distribution systems [97].

• Load restoration-based approaches have also been
studied and presented [45], [51], [64], [79], [98],
[114], [121]. Some studies have focused on dispatch-
ing of repair crew to improve restoration of grid ele-
ments [106], [117]. The effect of DG to speed up the
restoration processes during and after extreme events
has been presented in [78]. A three-step look-ahead
load restoration strategy using synchronizedDG through

restoring critical loads after a major natural disaster has
been developed in [57], [99]. In [104], the authors have
developed a distribution service restoration model to
generate optimal switching sequence based on remotely
and manually controlled switches and dispatchable DGs
in extreme events.

In [82], a situational awareness-based integrated resilience
response framework (e.g., predicted power outages), pre-
ventive response (e.g., security-constrained optimal power
flow), and emergency response (e.g., topology switching and
load shedding) have been developed to enhance power grid
resilience. Mobile dc de-icing devices (MDIDs) schedul-
ing and routing to improve the resilience of electric power
transmission systems have been presented in [88]. Trans-
mission system reconfiguration has been comprehensively
studied in [117].

B. PLANNING-BASED RESILIENCE

ENHANCEMENT METHODS

Planning-based resilience enhancement methods have
also been widely studied [3], [5], [6], [32], [33], [46],
[51], [52], [59], [73], [83], [84], [86], [108]–[114], [118],
[121]–[123]. These methods are classified as follows: (i)
undergrounding distribution and transmission lines, build-
ing redundant transmission/distribution routes, and upgrad-
ing poles and other structure with stronger materials [43],
[85], [90], [95], [96], [105], [124]; (ii) elevating substa-
tion and facilities, adding backup generators, and installing
remote control switches [91], [92]; (iii) enhancing vegetation
management [125], [126]; (iv) determining optimal locations
and sizes of battery energy storage units and renewable
energy sources (RES) [75], [103], optimal placement of sepa-
ration relays, and optimal allocation of black start resources;
and (v) developing protocols for encrypted communication
of critical data [80]; and integrated electricity and natural gas
transportation system planning [66], [127].

C. RESEARCH GAPS, CHALLENGES, AND

FUTURE DIRECTIONS

A summary of research gaps and challenges to resilience
enhancement strategies and potential solutions are provided
as follows.

• The proposed resilience enhancement approaches have
not given a serious emphasis on proactive operation
strategy. Although there are several challenges related
to the involvement of various operational components,
the implementation of proactive operation strategies will
help minimize the damage andmaximize the load served
during disasters.

• Cost-benefit analysis has not received considerable
attention. The trade-off between the cost and uninter-
ruptible power supply during extreme events makes it
very challenging for cost justification. Serious research
efforts are needed to study the cost-benefit analysis
when proposing enhancement techniques.
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• Power systems are interdependent with other critical
infrastructures such as water supply, communication,
and gas supply system. However, due to the complexity
of the interdependent systems, enhancement strategies
for interdependent systems are still in its early stages.

• Isolated areas (without any power source) have been
ignored while modeling and proposing enhancement
techniques disregarding the criticality of their loads.
It may not be feasible to provide power to all loads of
these areas because of limited availability of resources
(mobile energy resources, connecting lines), however,
some of the very critical loads should be supplied
through mobile energy resources.

• Cost-benefit analysis should be carried out while
proposing enhancement planning strategies.

VII. EVALUATION METHODS

Developing mathematically accurate and computationally
efficient resilience evaluation methods is a key factor for
building resilient power systems. In the literature, several
approaches have been proposed to evaluate power system
resilience including sequential and non-sequential (state sam-
pling) Monte Carlo simulation-based methods, preselected
scenario-based methods, contingency-based methods, and
machine learning-based methods. The existing approaches
to evaluate power system resilience are described as
follows.

A. SEQUENTIAL MONTE CARLO SIMULATIONS

The Sequential Monte Carlo (SMC) simulation-based meth-
ods have been used in the literature to assess the impacts of
failure events on both transmission and distribution systems.
They have been used to generate outage scenarios based
on failure probabilities of system components (e.g., trans-
mission lines and towers) under extreme weather events.
Extreme weather events can cause outages across large
regions, depending on the size and type of the power system
and the intensity of extreme weather events, and may divide
the system into several islanded regions.
In [121], all transmission lines have been assumed in a

single corridor and failure probabilities of each line under
different wind speed and intensity have been used to generate
outage scenarios. In [81], it has been assumed that failure
of a tower or line creates a transmission corridor where the
fragility curve is used to generate outage scenarios. In the
work presented in [35], [41], [113], [117], the test system
has been divided into different regions with different event
intensities and failure probabilities. The SMC simulation is
used to generate outage scenarios for each region to deter-
mine the spatiotemporal impacts of extreme events on power
systems. Also, in [58], a cell-partition method has been used
to divide a power system into several regions, and then SMC
simulations are used to generate outage scenarios based on
the intensity of weather events and failure probabilities of
system components.

B. NON-SEQUENTIAL MONTE CARLO SIMULATIONS

The Non-sequential Monte Carlo (NSMC) can be used to
evaluate the spatial impacts of extreme events on power sys-
tems. NSMC simulations have been used both independently
and integrated with other methods (e.g., Markov chain and
Kantrovich distance-based scenario reduction) to evaluate
the impacts of failure events on power system resilience.
Both historical data-based andweather intensity-based failure
probabilities of system components have been used to sample
outage scenarios. In [60], the NSMC simulation has been
used to evaluate the expected percentage of customers with
a power outage at different areas under hurricanes. Sampled
scenarios in [60] have considered two types of probabilities:
(i) tree wind-throw-based outage probabilities of overhead
conductors, and (ii) probabilities of the number of customers
that are out of service due to failure of local distribution
circuits. The NSMC has been used in [69] to sample outage
scenarios using weather-based failure probabilities of system
components. In [107], the expected amount of survived loads
under extreme events have been calculated using the NSMC
simulation through repeatedly generating damage scenarios.
On the other hand, in [67], power system resilience has
been evaluated in two steps: (step I) state transition of a
power system under extreme events is determined based on
the Markov chain, and (step II) resilience indices are calcu-
lated when the network topology is changed after extreme
events. In [86], the NSMC simulation has been integrated
with Kantrovich distance-based scenario reduction method
to evaluate the power system resilience. First, a large num-
ber of scenarios are generated using the NSMC simulation
to capture the complete spectrum of all possible scenarios.
Second, the Kantrovich distance-based scenario reduction
method is used to find the optimum number of scenarios.
In [103], the availability of each component under an extreme
event has been determined first based on the intensity of the
event, and then, the NSMC simulation is used to determine
the reachability between nodes.

C. CONTINGENCY-BASED METHODS

Power system resilience has been evaluated for specific types
of contingencies. These contingencies can be classified into
the following groups:

• Vulnerability-based contingencies: Vulnerability-
based contingencies have been used in a significant
number of studies. Typically, vulnerabilities of system
components depend on both intensities and directions
of weather events. In [77], [78], [83], a selected num-
ber of contingencies have been assumed using weather
intensity-based vulnerabilities of power system com-
ponents whereas [56], [84], [85], [92] have selected
the number of contingencies based on considering vul-
nerabilities of system components positioned in the
direction of extreme weather events. On the other hand,
system vulnerability depends on the failure of sys-
tem components. In other words, a power system may
become strongly vulnerable due to failure of specific
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components, while the system may become less vulner-
able to the failure of other components. In [73], power
system resilience has been evaluated for different system
vulnerabilities.

• Failure probability-based contingencies: Selected
number of contingencies have been assumed
using failure probabilities of system components in [65],
[90], [93]. Failure probabilities of system components
have been determined either arbitrarily or using a
fragility curve.

• Arbitrarily selected contingencies: Arbitrarily sele-
cted contingencies have been used in a significant
number of studies to validate their proposed meth-
ods based on two factors: arbitrarily selected compo-
nent failures [46], [57], [66], [75], [88], [97], [99],
[104], [116], [127], [127] and arbitrarily selected outage
durations [64].

• Microgrid formation probability-based contingen-

cies: Selected number of contingencies have been
assumed using extreme weather intensity-based prob-
abilities of forming microgrids to evaluate resilience
in [106].

• Cascading failure-based contingency: A contingency
considering cascading failure of the entire system has
been used in [45] to determine the restoration strategies
after disasters.

D. MACHINE LEARNING-BASED METHOD

A predictive statistical machine-learning algorithm has been
developed in [122] to evaluate the resilience of power sys-
tems in terms of the number of outages, outage durations,
and the number of interrupted customers. The required data
set to train and validate the network is developed based on
characteristics of hurricanes, the climate of service areas, and
network topologies. The data set is divided into two groups
to train and validate the network: 50% of the total samples
are used to train the network and the remaining 50% are used
to validate the trained network. A validation technique (five-
fold cross-validation) is used to find the optimal number of
samples.

E. BAYESIAN NETWORK-BASED METHOD

A dynamic Bayesian network-based method has been pro-
posed in [68] to evaluate the resilience of power grids. The
structural andmaintenance resources have been considered as
the main elements of resilience in [68] and failure probabili-
ties are evaluated for both with and without external shocks.
Power system states (success and failure) are represented by
the sates of nodes. The failure and repair rates of each system
component are modeled using a dynamic Bayesian network.

F. RESEARCH GAPS, CHALLENGES, AND

FUTURE DIRECTIONS

Failure of selected components during extreme events have
been assumed in a significant number of papers without
providing proper justification for the components selection.

Also, the selection of specific components may fail to cap-
ture the effects of a large number of components. Thus,
the accuracy of the results will be reduced. Also, Monte Carlo
simulations have been performed in several studies with-
out defining proper stopping criteria (stopping criteria are
needed to achieve accurate results). Moreover, Monte Carlo
simulations may not capture rare and extreme events unless
these events are exposed (e.g., importance sampling tech-
nique). Generally, modeling of the exact number, types, and
locations of damaged system components in evaluation meth-
ods is extremely demanding in terms of computation. There-
fore, mathematically accurate and computationally efficient
methods need to be developed to evaluate the actual impacts
of failure events on power system resilience.

VIII. OPTIMIZATION METHODS FOR RESILIENCE

EVALUATION AND ENHANCEMENT

Developing suitable optimization problems for power system
resilience evaluation and enhancement methods has been
a concern since the introduction of the resilience require-
ment. Power system resilience can be treated as an objective
function or as a constraint or both. Although there are sev-
eral commonly used optimization methods for power system
operation and control, more sophisticated optimization meth-
ods are needed due to the complexity of the problem and
the involvement of multi-interdependent infrastructures and
other resources. For example, determining an optimal opera-
tion strategy for distribution systems with multiple resources
during extreme events requires coordination between sev-
eral infrastructures (e.g., gas and electricity) and available
resources (e.g., repair crew and movable generators and stor-
age devices) to serve critical loads. These factors include
continuous and discrete variables with different timescales
and modeling approaches.

Several optimization methods have been introduced in
the literature for power system resilience evaluation and
enhancement with different objective functions. The opti-
mization methods include deterministic methods such as lin-
ear programming [64], mixed-integer linear programming
(MILP) [41], [47], [56], [57], [66], [70], [74], [82], [84],
[89], [90], [93], [94], [97]–[100], [102], [104]–[106], [127],
mixed-integer nonlinear programming (MILNP) [45], and
mixed-integer second-order cone programming (MISCOP)
[75], [88], [107], [116]; stochastic methods such as stochastic
mixed-integer linear programming [91], [92], [96], [102]
and stochastic mixed-integer nonlinear programming [61],
[62], [83]; and population-based intelligent search methods
such as genetic algorithm (GA) [51]. The objective func-
tions can be categorized into resilience-based and multi-
objective. These objective functions include minimization of
load curtailment, unnerved energy, and restoration time and
maximization of critical loads restoration. An overview of
the existing optimization techniques in the field of resilience
is provided in Fig. 7. Existing optimization methods and
objective functions in the field of power system resilience
evaluation and enhancement are explained as follows.
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FIGURE 7. Optimization methods for resilience evaluation and
enhancement.

A. RESILIENCE-BASED OBJECTIVE FUNCTIONS

Resilience-based objective functions have been expressed in
terms of resilience elements such as minimization of load
curtailment and outage duration and maximization of load
restoration, the weighted sum of survival loads, and rate of
recovery. These objective functions are related to various
states of power system which can be represented as follows:
(i) pre-event (resilient state); (ii) during the event (surviv-
ability state); and (iii) post-event (recovery state). In the
pre-event state, all available resources of a power system
are utilized to minimize operational (i.e., unit commitment
and load shedding) costs. The weighted sum of survived
loads during a disaster is maximized in the survivability state.
In the recovery state, the weighted sum of restored loads
is maximized while the costs of auxiliary functions such as
transportation of MPS and battery life-cycle degradation are
minimized.
In [82], the authors have presented two objective functions

to minimize costs in both the preventive and emergency
states (i.e., load shedding costs considering maximum load
shedding limit). One objective function for the preventive
state (unit commitment cost minimization) and two objective
functions for post-event (mid-level maximization of criti-
cal load supply ignoring operational costs and inner-level
minimization of load—electricity, gas, and heat—curtailment
in worst case scenario) state have been proposed in [127].

In [61], [62], a bi-level objective function has been pro-
posed where the operator tries to minimize operational costs
(e.g., voltage regulation, load control, load shedding, and
islanding) and the attacker tries to maximize loss for the
attacks. In [56], two interdependent stochastic stages—the
first stage maximizes the total energy supplied to customers
and minimizes the generation cost and the second stage
determines the shortest path for truck-mounted mobile emer-
gency resources (MERs) using Dijkstra’s algorithm—have
been constructed based on Unscented transformation (UT).
In [102], a two-stage dispatch framework (i.e., expected load
outage duration is minimized based on demand size and
priority of loads in the first stage and the Dijkstra’s shortest
path algorithm is used in the second stage to solve vehicle
routing problem) has been presented as the objective function
to enhance power resilience.

Objective functions focusing on survivability and recov-
ery of systems have been considered in [107]. Several
objective functions have been proposed focusing on mini-
mization of priority-based load curtailments in [41], [74],
[77], [83], [93] and maximization of load restoration in [47],
[57], [94], [99], [100]. In priority-based load curtailment,
the non-critical loads are curtailed before curtailing the crit-
ical loads. Minimization of costs for gas and electric loads
curtailment and repair duration has been assumed in the
formulated objective function in [78]. An objective function
has been proposed in [98] to maximize the amount of critical
load restoration and minimize the effective restoration path
unavailability. The maximization of the weighted sum of the
restored load over time and minimization of the total number
of travels of repair crew and movable power systems (MPSs)
with the very high objective for load restoration has been
provided in [106]. In [54], [104], the authors have provided an
objective function that minimizes unserved energy based on
the criticality of loads in their proposed objective functions.

B. MULTI-OBJECTIVE FUNCTIONS

Multi-objective functions have been expressed in terms of
integrated functions such as resilience, operational, invest-
ment, and planning. In these objective functions, opera-
tional, planning, and investment-based elements are usually
included to minimize their cost before the occurrence of the
events. In the second stage, costs related to the minimization
of load curtailment and outage duration, maximization of
load restoration and the weighted sum of energy served, and
other operational elements during and after the occurrence
of events are considered. Although operational and resilience
elements have been combined in these objective functions,
maximization of resilience has been always prioritized over
the minimization of operational costs.

Two-stage optimization functions have been formulated
focusing on: (i) unit commitment decisions in the normal state
(first stage) and minimization of costs for gas production,
storage, electricity purchase, and load shedding in the second
stage (worst contingency) [116]; (ii) minimization of costs for
both dispatchable and non-dispatchable renewable generating
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units, and load curtailment of microgrids in the first stage, and
dispatchable distributed generator units, renewable energy
sources, battery energy storage systems, and load curtailment
in second stage [70]; (iii) minimization of operational cost in
normal mode and operational cost with dynamic penalty cost
for load curtailment in the emergency mode [49], [50], [79];
(iv) minimization of normal operational cost and inelastic
load curtailment with elastic load curtailment limits [89];
(v) minimization of investment cost at planning stage and
operational cost with resilience constraints in the second
stage [66]; (vi) minimization of investment cost in first stage
and maximization of performance which has been measured
based on load accessed to power and water in the second
stage [51]; (vii) minimization of resilience-oriented-design
investment cost based on line hardening and allocation of
resources such as distributed generators and switches [91];
(viii) minimization of resilience oriented design-based invest-
ment costs such as line hardening and allocation of resources
(e.g., distributed generators and switches) [92]; and (ix) the
minimization of sum of cost for operation of generating unit
and energy storage degradation in normal stage and penalty
costs for load loss with operational cost in the emergency
stage have been considered in the proposed management
energy system in [75]. A three-level objective function has
been proposed in [85] to minimize load shedding costs and
hardening investment under worst-case scenario. The first
level determines the vulnerable lines and hardening strate-
gies. The second level determines the maximum amount of
damage that can be caused by an event. The third level
minimizes load shedding based on the priority of loads and
available power.
The optimization functions have been formulated focus-

ing on minimization of (i) total costs for customer inter-
ruption, generation, transportation of transportable energy
storage system (TESS), and maintenance of battery [97];
(ii) operational and penalty costs for load shedding based
on the given prioritized conditions [71], [86]; (iii) invest-
ment cost to make transmission lines protection more reli-
able against physical attack based on minimizing load
curtailment [80]; (iv) base case startup, shutdown, and
pre-positioning costs and worst-case operation (includes load
shedding cost and power generation cost) and movable
resources costs [88]; (v) generation and power outage costs
for critical customers [84]; (vi) operation cost—AC and DC
generating units, electricity purchase—in normal mode and
both operating and load shedding penalty costs in emergency
mode [76]; (vii) network upgrade cost with limit on load shed-
ding [96]; and (viii) simulation-based optimization function
for both PV and battery systems to minimize the total cost to
maintain a certain level of the power supply reliability during
islanding condition [87].
A bi-level optimization problem has been formulated

in [45] to minimize the total cost associated with restoration
time, load curtailment, and generation of power in the upper
level (sectionalization) and minimize the cost of load loss,
cost of delay in restoration, and cost of generation in the

lower level (energization level). The authors of [90] have
formulated a defender-attacker-defender (DAD) model for
the gas-electric system to minimize costs for production of
power and gas, gas storage, and the penalty for not serving
power and gaswhile another DADmodel has been formulated
in [105] to minimize the weighted sum of load shedding.
Four objective functions have been proposed in [103]: the first
objective function minimizes costs for PV and battery storage
and operation of the entire system; the second objective func-
tion maximizes the duration of load support with the PV and
BESSs during disruption; third objective function maximizes
the support for non-black-start unit; and the fourth objective
function minimizes the expected energy not supplied.

C. SOLUTION TECHNIQUES USED TO SOLVE THE

OPTIMIZATION PROBLEMS

As most of the optimization problems have been modeled
as MILP, MINLP, MISCOP, stochastic MILP, and stochas-
tic mixed integer-nonlinear problem, these problems are
very complicated and computationally exhaustive. There-
fore, a proper decomposition algorithm is necessary to sim-
plify and efficiently solve them. Commonly used solution
algorithms to solve the optimization problems are column
and constraints generation (C&CG); nested C&CG; Bender’s
decomposition; greedy search algorithm; dual decomposition
algorithm; scenario-based decomposition; and progressive
hedging algorithm. These algorithms have been implemented
in various integrated development environment (IDE) such
as GAMES and MATLAB and solved by various off-the-
self solvers such as IBM ILOG CPLEX Optimization Studio,
Gaurobi, interior-point optimizer (IPOPT), and DDSIP.

D. RESEARCH GAPS, CHALLENGES, AND

FUTURE DIRECTIONS

A significant number of authors have linearized the nonlin-
ear optimization problem without considering the accuracy
of the methods. Also, these problems are very complicated
and computationally expensive. Therefore, further research is
needed to develop computation efficient methods and algo-
rithms that can capture the true nonlinear behavior of the
power system. Integrated machine learning and stochastic
approach could be a good approach to tackle these challenges.

IX. MODELING

Modeling of evolvements of extreme events, system com-
ponents, and failure propagations is an important factor to
evaluate the resilience of power systems. Extreme weather
events have different models depending on the type and inten-
sity of the given event. For example, HAZUS (Hazards US)
models are usually used to forecast hurricanes and floods.
Modeling of failure propagations due to simulated weather
extreme events is usually carried out using fragility curves.
The performance of the system is usually evaluated using
system-widemodels and constraints such as power flowmod-
els. This sections discusses the various models that have been
used in power system resilience enhancement and evaluation.
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A. EXTREME EVENTS MODELING

Although power system resilience has been assumed to be
related to HILP events, HILP events are no longer low proba-
bility events [8]. Extreme weather events have catastrophic
impacts on the society [5], [7], [34], [110], [128] as well
as on the resilience of power grids [108], [117]. Man-made
events such as cyber-attacks have also been considered as
high impact events [129]. Each extreme event has distinct
impacts on the performance of power systems. For example,
earthquakes, wind storms, and hurricanes usually result in the
failure of underground cables, transmission poles, and over-
head transmission lines of power systems [56], [64], [89].
On the other hand, cyber-related events impact the power
grid through communication channels and control cen-
ters [130]. This section provides a classification andmodeling
approaches of extreme events in existing studies.
Disasters have been categorized based on their nature

into three main categories: (i) physical-attacks (e.g., weather
events, accidental events, and terrorist attacks); (ii) cyber-
attacks (e.g., data centers and communication channels);
and (iii) cyber-physical attacks (e.g., control centers) [5],
[34], [43], [80], [110], [111], [123], [128]. A detailed illus-
tration on interconnection between physical, cyber, and
cyber-physical attacks has been presented in [3] where
cyber-related events have been grouped into four categories:
Reconnaissance, command injection, denial of service (DoS),
and measurement injection. In [6], HILP events have been
classified into (i) system catastrophic failures such as cas-
cading failures and blackouts; (ii) extreme natural events;
(iii) cyber and physical events; and (iv) space weather events.
A proper model is required for any extreme event to iden-

tify its propagation and impact. For instance, wind speed
has been widely used to determine the intensity of hurri-
canes [85], [117]. Several approaches have been presented to
describe physical- and cyber-attacks. Both probabilistic [45]
and deterministic [121] methods have been used to model
weather-related events. Most of the studies in the field of
resilience rely either on historical data of extreme events [50],
[113], [114], [131] or forecasting models provided by mete-
orological agencies to model extreme events [77], [82]. The
forecasting and historical weather data can be obtained from
the National Weather Service (NWS), National Oceanic and
Atmospheric Administration (NOAA) andWeather Research
and Forecasting (WRF) model [132]. In this paper, exist-
ing extreme event modeling approaches are categorized into
four different groups (i.e., weather-related events, physical-
attacks, cyber-attacks, and cyber-physical attacks) as shown
in Fig. 8.

1) WEATHER-RELATED EVENTS

Several models have been proposed in the existing work
to model weather events. In [121], the Yang Meng wind
field model has been used to calculate the wind speed for
a moving typhoon and determine the duration of the event.
Satellite big data has been used to identify the path of hur-
ricane [56], whereas a tri-level scaled hourly historic wind

FIGURE 8. Types of extreme events.

profile during hurricane events has been applied in [117].
In [81], [113], an hourly wind speed profile—obtained by
MERRA (Modern-Era Retrospective analysis for Research
and Applications)—has been scaled-up based on the Beaufort
wind scale provided by the U.K. meteorological office to
present a realistic wind profile to model hurricanes. The
scaling factors for the provided models have been deter-
mined based on characterizing spatiotemporal properties of
adverse events through U.K. historical time series of wind
gust data. In [65], a simulator has been used to reproduce
observed spatial correlation and extreme statistics of adverse
winds incorporating the occurrence of storms throughout
the year. One of the most widely used hurricane models
named HAZUS-MH2 has been developed to simulate a
real hurricane event based on historical records [131]. The
HAZUS-MH model has been developed by the federal emer-
gency management agency (FEMA) to simulate flood sce-
narios based on historic data [133]. The HAZUS-MH model
has been used to simulate a typhoon scenario for critical
infrastructure resilience assessment [114].

On the other hand, several models have been proposed for
earthquakes, wildfires, and floods. In [86], a model has been
proposed based on the rate of spread, solar radiation, and
radiative heat flux to model wildfire using historical data.
A probabilistic earthquake energy transfer model has been
proposed based on auto regressive (AR) estimation method
in [73]. The proposed model can be used to estimate the peak
ground acceleration parameter based on three main variables:
earthquake intensity in Richter, the distance between the
earthquake center and location of interest, and the ground
type. In [77], a flood model has been used which is based on
rainfall intensities using weather agencies’ prediction model.
A forecasting model has been used to estimate the ice thick-
ness forecast error in [88]. An ice disaster model has been
proposed in [58] to calculate the rate of ice accretion based
on five main parameters: rate of precipitation, the content of
the liquid water, speed of the wind, path, and moving speed.

2) CYBER-ATTACKS

Cyber-attacks can severely impact the resilience of power
systems especially if they are planned based on prior recon-
naissance missions. Although there have been no sufficient
historical data to model cyber-attacks, modeling of cyber
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layers and their interactions with physical layers can capture
the extent to which cyber-attacks can impact the function-
ality of power systems. Cyber incidents can be classified as
inefficiency in the communication, distortion in information,
malfunction in the device, leakage in secrecy, and misconfig-
uration in applications. The main domains for cyber-attacks
are application software, communication network, and field
devices. Cyber-attack approaches have been reviewed focus-
ing on illustrating several ways to create a cyber-attack
event [130]. To simulate a cyber-attack, the control systems
of 50 generators have been infected by a malware known
as Erebos Trojan. A cyber vector represents the path that an
attacker takes to target specific cyber elements. The malware
was able to drive the generators to the overloading phase
leading to the collapse of the system [129], [130].

3) PHYSICAL-ATTACKS

Although physical-attacks may not impact a large part of
the grid as compared to cyber-attacks, if an attacker iden-
tify and attack a critical component in the grid, the damage
can be significant. In [59], two different types of malicious
attacks have been studied for resilience enhancement strategy
which are: high degree adaptive (HDA) and optimal collective
influence (CI). Both models rely on identifying and attacking
the most critical edges in a graph-based network. In [80],
physical attacks have been simulated as N-2 contingencies for
small transmission systems and N-3 contingencies for larger
systems.

4) CYBER-PHYSICAL ATTACKS

In [61], [62], a two-level cyber-physical disruption model
has been presented. In the first level, distribution network
disturbance based on predefined security scenarios has been
developed by the National Electric Section Cybersecurity
Organization Resources (NESCOR) in [134]. In the second
level, the transmission network disturbance is modeled based
on sudden voltage drop or sudden frequency drop. A security-
constrained N-1 and N-2 contingency approaches have been
used to simulate cyber-physical attacks in [135].

5) RESEARCH GAPS, CHALLENGES, AND

FUTURE DIRECTIONS

Although modeling extreme events, especially weather-
related events, have been under extensive studies and
development, there are still several research gaps that
need further research. First, in most of the available
weather-related forecasting methods, several assumptions
and approximations have been encountered which reduces
results’ accuracy. Themeteorological data used in forecasting
weather-related events mostly rely on local historic datasets
capturing the propagation of a single event in a specific
geographical location. Therefore, the forecasting models can
only be used for the specified location. Moreover, used data
are usually assumed to be fully reliable for the given study.
However, noise, communication and calibration errors and
all encountered uncertainties should be modeled. In order to

enhance weather forecasting models, big data analytics and
deep learning methods can be utilized to obtain forecasting
models with higher accuracy levels. They can also be utilized
to develop a more generic scenario creation tool that captures
the spatiotemporal effect of adverse weather events. On the
other hand, developing a method to simulate cyber-attacks is
still a big challenge due to the lack of sufficient historical
datasets and the involvement of many uncertainties.

B. FAILURE MODELING

The impact of extreme events on failure of power grids
can be classified into system-level failure model and
component-level failure model as shown in Fig. 9. Com-
ponent failure models usually apply probabilistic fragility
curves to estimate the probability of failure as a function of
weather parameter. On the other hand, system failure models
estimate the failure risk based on characteristics of power
systems, events, and geographical areas [132].

FIGURE 9. Categories of failure models.

1) SYSTEM-LEVEL FAILURE MODELS

Two main approaches to model the overall system failure
which are multivariate regression-based statistical model and
tree-based mining model have been presented. Although a
detailed comparison between these methods has been studied
in [136] using a statistical validation approach, none of them
achieves a 100% accuracy level [132]. Moreover, most of
these methods assume that power system components are
stationary in nature and no changes take place over the time
horizon.

a: SYSTEM STATISTICAL REGRESSION MODELS

In [136], two regression models have been studied; gener-
alized linear model (GLM) and generalized additive model
(GAM). The GLM is a linear regression model that requires:
(1) a conditional distribution for the event for each param-
eter; (2) a link between event parameters and function of
explanatory variables; and (3) a regression equation explain-
ing the function of explanatory variables. On the other
hand, the GAM can be used for non-linear relationships.
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A multivariate approach has been proposed in [122] to esti-
mate a hurricane outage duration, outage frequency, number
of customers affected based on hazard characteristics such
as wind speed and wind duration, systems’ topology such as
protection devices, regions’ land-cover, and topography such
as soil type and tree trimming.

b: SYSTEM TREE-BASED MINING MODELS

The tree-based mining model uses the recursive binary par-
titioning of historical data sets to exploit the relationship
between response variables such as transmission poles and
the explanatory variables [136]. Two models of tree min-
ing approaches have been studied: classification and regres-
sion tree (CART) and Bayesian additive regression tree
(BART) [136]. In the CART model, a single tree captures
the relationship based on the data clustering method [136],
whereas the BART model consists of a large number of small
trees with a limited contribution of each tree to the final
model [137].

2) COMPONENT-LEVEL FAILURE MODELS

Most of the resilience-based studies have focused on mod-
eling failure of system elements toward extreme weather
events. The HILP events are very hard to model due
to their stochastic behavior and lack of historical data [43],
[50], [57]. The most well-known models to allocate failed
elements are the random outage methods, scenario-based
methods, and fragility curves [75], [117]. In random outage
methods, several elements are selected randomly to be in the
down state without considering a forecasted event scenario
or real-time event scenario [67], [83], [118]. A scenario-
based method implements either a historical real event or
a simulated event on a geographical map to determine the
impacted points on a real power system [76], [83], [106].
A fragility curve model has been used extensively to calculate
the probability of failure of system elements for a given
event parameter such as wind speed or earthquake ground
acceleration [6], [33], [35], [53], [66], [73], [74], [102], [121].

a: FRAGILITY CURVE

A fragility curve captures the stochastic behavior of weather
conditions with respect to sequential and regional character-
istics based on historical data [41]. To obtain a fragility curve,
four main approaches have been studied which are: (1) statis-
tical representations of large historical failure data; (2) expert
judgments; (3) experimental study based on variable shocks
of a given element; and (4) a mixed approach of the three
methods [65], [127]. The fragility curve varies according to
the event measuring parameter [117] and the event severity
level [73]. A detailed fragility modeling approach has been
presented in [113] to estimate the failures of transmission
towers caused by severe windstorms. The presented fragility
model has been obtained through analyzing geometrical and
material nonlinearities under a wide range of wind loading
using finite element analysis and European codes. In [60],
a lognormal probability distribution function has been used to

create a fragility curve for hurricanes based on modeled hur-
ricane scenarios using HAZUS-MH3. Also, another fragility
curve has been constructed based on log data of distribution
line failures due to wind speeds obtained from national fault
and interruption report scheme database [50].

b: WEATHER-RELATED FRAGILITY MODELS

A fragility curve provides a means to assess the impact
of extreme events on various system elements and deter-
mine their unavailability. At every simulation instant, a fore-
casted weather profile is mapped to the fragility curve
to obtain the failure probabilities [81]. Several fragility
curves have been studied in weather-related resilience
studies [35], [85], [121]. A seismic vulnerability assessment
algorithm using four fragility curves based on peak ground
acceleration due to the earthquake has been presented in [73].
A fragility curve model has been implemented in [53], [121]
for transmission lines and towers based on wind speeds.
In [47], [50], [51], [69], [91], [93], [98], a pre-developed
fragility curve has been used for distribution poles and con-
ductors. A fragility model, developed by the Resilient elec-
tricity Networks for Great Britain (RESNET), has been used
to assess elements failure based on wind speed [41], [117].
A flood-induced fragility model based on rainfall intensity
has been used for a microgrid proactive scheduling strategy
in [77]. A detailed methodology has been studied in [138]
to estimate the probability of line failure based on wind
force andmaximum rated line perpendicular stress resistance.
A log-normal fragility curve has been presented in [138] to
determine the probability of substation failures against wind
storms. A fragility model has been used to determine the
failures of transmission poles and lines against ice storms
in [58], [74], [95].

c: OTHER MODELS

Various equipment failure models and approaches have been
presented and studied in the literature of power system
resilience. In [80], [97], [100], [104], physical attacks have
been simulated by identifying a specific number of attacked
lines, substations, and poles. In [80], [97], [100], [104],
a scenario-based decomposition algorithm has been used to
reduce the number of physical attacks, whereas in [105] the
attacked nodes have been selected based on attackers’ budget.
Another framework has been presented in [57] to estimate the
location and duration of fault based on the number, type, loca-
tion, and resources. A weather forecasting model has been
integrated to estimate microgrid islanding time and duration
for a proactive management strategy in [89]. A distribution
power grid has been divided into a specified number of
regions where a defined number of power line outages have
been determined using uncertainty modeling in [66], [116],
and the same approach has been implemented on transmis-
sion lines in [82]. On the other hand, Monte Carlo simulation
has been used in [107] to simulatemore than 10,000 randomly
generated damage scenarios for power branches. A bi-level
interdiction optimizationmodel has been proposed to identify
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target points to be attacked in a hybrid gas/power interdepen-
dent system in [90]. In [88], the forecasted ice thickness level
on transmission lines has been used to determine the faulty
lines. In [86], themain distribution feeder has been selected to
be attacked by a wildfire, whereas the failure points have been
identified in [106] based on a predefined weather scenario.
A trojan malware has been used to control 50 generators and
initiate a cyber-attack scenario in [130].

3) RESEARCH GAPS, CHALLENGES, AND

FUTURE DIRECTIONS

Despite the extensive research to develop an accurate failure
models to assess power system resilience, further research is
still required to develop holistic failure models. First, most of
the studies implement fragility curves for failure modeling
which lack the advantage of capturing the spatiotemporal
effects of extreme events. In other words, fragility curves can
not provide a realistic realization and propagation of extreme
events and their impacts on the failure of power grid devices.
Moreover, the interdependency between the grid’s cyber and
physical layers has not been well-developed and requires
more extensive studies to understand the propagation of both
cyber-attacks on the physical layer and physical-attacks on
communication and cyber layers. Integrating scenario-based
simulation methods with more accurate fragility curves could
provide a means to develop holistic and accurate failure
models. Furthermore, the correlation between interdependent
energy systems should be extensively studied to capture the
impact of the failure of each system element on the other
connected system elements.

C. SYSTEM MODELING

Several models have been presented to model electric power
systems in resilience based-studies which vary according to
(1) types of systems (e.g., transmission and DSs, microgrids,
and interdependent systems); (2) enhancement strategies
(e.g., smart grid technologies, utilization of energy stor-
age systems, and resilience-based maintenance scheduling);
(3) power flow models (e.g., AC, DC, and linearized Dist-
Flow); (4) solution algorithms (e.g., mixed-integer program-
ming, heuristic algorithms, and optimal power flow); and
(5) operation and technical constraints (e.g., power balance,
ramp rates, and availability). Each category plays a vital role
in the formulation of the system model for resilience evalua-
tion and enhancement.Moreover, some studies have reviewed
the main assessment models and tools that are encountered in
resilience-based problems [109], [123].
The system type is the first and main point to be considered

when conducting resilience assessment and enhancement
studies. Distribution systems usually have radial network
configuration [72] whereas transmission systems are mostly
meshed networks [45]. Unit commitment, power balance,
and power losses are the main constraints to be considered
in any transmission level study [81], [117]. On the other
hand, distributed generators, energy storage units, and sta-
tuses of switches are usually considered for the distribution

level studies [77], [86]. Apart from these, interdependent
infrastructure systems require modeling the interdependency
between different layers in the system [51], [78], [114].

Smart grid operational strategies, such as network recon-
figuration, decentralized control, and adaptive restoration,
usually require imposing configuration feasibility con-
straints, sectionalizing constraints, critical load prio-
rity constraints, and recovery time constraints [7], [48], [52],
[72], [117]. Also, the utilization of energy storage systems
in resilience enhancement usually requires constraints for the
state of charge (SoC) and energy capacity [70], [79], [103].
For resilience-based maintenance scheduling, constraints
related to crew, vehicles, roads, and repair priorities have been
also considered [56], [75], [76], [78].

Similar to other studies, power flow models are essen-
tial components in modeling power systems for resilience
assessment and enhancement. The main differences between
existing power flowmodels are the degrees of complexity and
approximations. AC power flow models provide a detailed
representation for the power flow [66], [80], whereas DC
power flow models are less accurate [74]. Both AC and DC
power flow models have been applied to model distribu-
tion systems and microgrids [50], [69]–[71], [76], [77] and
transmission systems [82]–[84] for resilience evaluation and
enhancement. Unbalanced three-phase power flow models
have been implemented using OpenDSS in [92]. Despite the
more frequent use of AC and DC power flow models, a lin-
earized DistFlow model has been proposed for distribution
systems [78], [97], [98], [107].

RESEARCH GAPS, CHALLENGES, AND FUTURE DIRECTIONS

Voltage and frequency regulations are usually ignored in
systemmodeling to simplify the computations. Most of exist-
ing studies have neglected protection-related parameters and
settings during a disaster because it is more challenging
to implement segmentation and islanding with conventional
protection systems. However, work similar to [139] could
be a good initiative where new adaptive protection systems
should be studied to accommodate bidirectional energy flow
for microgrid resilience-enhancement applications. On the
other hand, the dynamic behavior of RES, BESS, mobile
emergency resources is usually neglected inmicrogrid island-
ing and formation approaches because of the associated
uncertainties such as weather-related variabilities. Also, short
scheduling simulation horizon, usually one day, has a nega-
tive impact on girds with a high penetration level of renewable
energy and energy storage units, resulting in shedding of
load in the following day while supplying critical load in
the current day. Therefore, of the horizon scheduling should
be considered by using multi-stage (parallel) optimization
approaches.

In distribution systems, most of existing approaches con-
sider radial topology configurations for simplicity. How-
ever, real meshed network configurations still need more
implementation and extensive studies. Although the pro-
cess of integrating all meshed network related-constraints
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is computationally exhausting because of high complexity
level, it is needed to capture the performance of practical
systems.
Lessons learned from Japan after earthquake and tsunami

show that demand-side management (DSM) plays an impor-
tant role after the occurrence of disasters [10]. Although
emulating the behavior of customers during disasters is a very
complicated process, developing an algorithm to understand
these behaviors will facilitate system restoration.
Most of the existing approaches neglect the role of

customer-owned energy resources in the resilience restoration
phase. The current interconnection standards (primarily the
IEEE-standard 1547), which requires customer-owned DGs
to be disconnected during disturbance for safety and power
quality, is holding back the development of distributed control
approaches to include such energy resources for faster system
restoration. However, there is no clear compensation scheme
for privately-owned energy resources during blackouts. Thus,
proper rate incentive plans with new policies should be
designed to encourage DGs to participate in grid services.
Also, the availability of perfect information has been assumed
whilemodeling the allocation of the resources, whichmay not
be reliable or accessible during and after disasters.
For interdependent infrastructure systems, the impact of

extreme events on fuel supply has been neglected resulting
in unrealistic evaluation results. Since extreme events have a
direct impact on fuel supply, it is a must to study the relation-
ship between fuel and other power system elements. Also,
the amount of fuel needed during disasters can be calculated
using event information to maintain a minimum resilience
level.

X. GENERAL CONSIDERATIONS

This section provides general discussion about the attributes
of power system resilience and it’s relevance to other studies.

1) SYSTEM PERFORMANCE VS SYSTEM CHARACTERISTICS

Power system resilience has been evaluated as a system per-
formance as well as system characteristics. In terms of power
system reliability and stability assessment, the reliability
measures system performance whereas the stability measures
system dynamics (i.e., system characteristics). Therefore,
resilience attributes such as withstand, absorb, recover, and
adapt can be regarded as the intrinsic characteristic of power
systems. Also, a technical report prepared by Pacific North-
west National Laboratory suggests that resilience is an intrin-
sic characteristic of a grid or portion of a grid [2]. Therefore,
for the aforementioned attributes, power system resilience
can be regarded as system intrinsic characteristic.

2) NUMBER OF RESILIENCE METRICS

Several metrics may be needed to assess power system
resilience as is the case for power system reliability and
security assessment. Potential metrics can measure the afore-
mentioned resilience attributes: withstand, absorb, recover,
and adapt. Also, transmission and distribution systems should

have different resiliencemetrics because: (1) they have differ-
ent response dynamics to disturbances; (2) they have different
restoration and recovery processes; and (3) whether extreme
events may have different impacts on them (they are diffident
in sizes and spread over different geographical areas).

3) RESILIENCE AND RELIABILITY

The North American Electric Reliability Corporation
(NERC) defines the reliability of bulk power systems based
on two concepts: adequacy and operating reliability [140].
The adequacy measures the ability of a power system to
supply the load demand whereas the operating reliability
measures the ability of a power system to withstand sudden
disturbances. Power system reliability focuses on the rate
of occurrence of events whereas resilience may focus on
withstanding disturbances and extreme events as well as the
recovery process rather than the rate of occurrence. Also,
reliability metrics typically describe system performance but
they do not describe system response nor do they include
outage information. Therefore, resilience and Reliability
assessment are distinct but they do interlink.

4) OPERATING AND PLANNING RESILIENCE

Power system resilience metrics can be divided into operat-
ing and planning metrics. The operating resilience has been
defined as the characteristic that would help a power sys-
tem maintain its operational strength and robustness against
disasters (e.g., keeping all customers connected). Operating
resilience metrics would measure the ability of power grids to
withstand, absorb, and recover from sudden disturbances and
extreme events with existing resources and control systems.
Planning resilience metrics would determine critical compo-
nents so that they could be used to enhance the resilience of
the power grid.

5) IMPACTS OF RES ON POWER SYSTEM RESILIENCE

RES can both enhance and deteriorate the resilience of power
systems. High penetration of RES will have negative impacts
on system inertial response and voltage stability [141], [142].
On the other hand, RES can improve system ‘recovery’ and
expedite the restoration processes after blackouts.

Negative impacts of RES can be mainly related to the
angle and voltage stability of transmission systems in that a
small disturbance may lead to system-wide instability. Sev-
eral technical reports and research papers have shown that
power systems become prone to instability if the penetration
of RES reaches a certain level (these levels are system-
dependent) [143]–[146]. Therefore, in terms of power system
resilience definitions and attributes, RES may deteriorate the
ability of bulk power systems to ‘withstand’ disturbances.

RES can improve system resilience by supplying local
loads and isolated areas at the distribution level and partic-
ipating in blackout restoration processes at both transmission
and distribution levels. Also, RES can be used to provide
local voltage support and to develop autonomous microgrid
reconfiguration after disturbances [7], [119]. Therefore,
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in terms of power system resilience definitions and attributes,
RES may improve the ability of power systems to ‘recover’
from disturbances and blackouts.

XI. CONCLUSION

This paper has provided a comprehensive and critical review
of existing definitions and currently practiced power system
resilience metrics and evaluation methods. Also, it has thor-
oughly examined the consensus on power system resilience
definitions and metrics provided by different organizations
and scholars. Furthermore, this paper has identified research
gaps and associated challenges, proposed potential solutions,
provided future directions for developing resilience metrics
and evaluation methods, and discuss general considerations
for various resilience related-attributes. The work presented
in this paper is intended to contribute toward the development
of universally accepted and standardized definitions, metrics,
and evaluation methods for power system resilience. In addi-
tion to the necessity of developing universally accepted power
system resilience definitions, metrics, and evaluation meth-
ods, it is critical to develop multi-objective optimization
methods for both resilience enhancement and evaluation.
Also, comprehensive modeling of system components and
inter- and intra-actions between and within subsystems and
interconnected systems is a necessary step toward develop-
ing effective resilience evaluation methods and enhancement
strategies. Therefore, optimization methods and strategies
for resilience enhancement and various modeling and their
associated challenges, research gaps, and potential solutions
have also been provided in this paper.
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