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 
Abstract—Historical electrical disturbances highlight the 

impact of extreme weather on power system resilience. Even 

though the occurrence of such events is rare, the severity of their 

potential impact calls for (i) developing suitable resilience 

assessment techniques to capture their impacts and (ii) assessing 

relevant strategies to mitigate them. This paper aims to provide 

fundamentals insights on the modelling and quantification of 

power systems resilience. Specifically, a fragility model of 

individual components and then of the whole transmission system 

is built for mapping the real-time impact of severe weather, with 

focus on wind events, on their failure probabilities. A 

probabilistic multi-temporal and multi-regional resilience 

assessment methodology, based on optimal power flow and 

sequential Monte Carlo simulation, is then introduced, allowing 

the assessment of the spatiotemporal impact of a windstorm 

moving across a transmission network. Different risk-based 

resilience enhancement (or “adaptation”) measures are 

evaluated, which are driven by the resilience achievement worth 

(RAW) index of the individual transmission components. The 

methodology is demonstrated using a test version of the Great 

Britain’s system. As key outputs, the results demonstrate how, by 

using a mix of infrastructure and operational indices, it is possible 

to effectively quantify system resilience to extreme weather, 

identify and prioritize critical network sections, whose criticality 

depends on the weather intensity, and assess the technical 

benefits of different adaptation measures to enhance resilience. 
 

Index Terms—Critical infrastructure, Extreme Weather, 

Fragility Curve, Resilience, Resiliency  

I. INTRODUCTION 

XTREME weather conditions, as high-impact low-
probability (HILP) events, may affect significantly the 

operational resilience of a power system. Climate change 
projections indicate that the frequency and severity of such 
events might increase in the near future [1]. Therefore, power 
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systems need to be not only reliable to the known and credible 
threats, but also resilient to HILP events. 

The effect of severe weather, such as floods, hurricanes and 
ice storms, is increasingly evident on power networks 
worldwide [2]. Modelling the impacts of extreme weather on 
the reliability of power systems has mainly focused on 
characterizing the effect of weather conditions on the 
reliability attributes of power system components, i.e., failure 
and restoration rates. Different techniques have been used, 
such as Markov modelling (e.g. [3, 4]) and Sequential Monte 
Carlo simulation (SMCS) [5-8]. An extensive review of 
weather-related reliability assessment techniques is provided 
in [9], while methodologies and challenges of assessing the 
risk of cascading outages are provided in [10]. On the other 
hand, differently from the previous works more focused on 
reliability, resilience-oriented quantitative models, metrics and 
enhancement strategies have been developed in [11-18]. In 
this respect, an overview of previous research studies on 
resilience of power systems under natural disasters is 
presented in [19], and a framework for understanding, 
conceptualizing and boosting power systems resilience has 
been presented in [20] and [21]. However, these previous 
works (including [8] and [18] by the authors) do not describe 
how to build the network fragility model, or implement the 
comprehensive approach needed to quantify network 
resilience to extreme weather; likewise, it is not shown before 
how, by using a mix of infrastructure and operational indices, 
it is possible to demonstrate the benefits and implications of 
different enhancement strategies that target parts of the system 
specifically identified through a suitable algorithm. 

On the above premises, this paper presents a comprehensive 
methodology for multi-temporal and multi-regional resilience 
assessment and enhancement of transmission systems to 
extreme weather conditions, with application on the impact 
modelling of severe windstorms on transmission networks. 
The approach is an extension of a CAT modelling approach 
used by the insurance industry to obtain the expected losses to 
an insurance portfolio for a given hazard (e.g. earthquake, 
flooding, wind etc.).  This method is gaining popularity and 
has recently been adopted by the Federal Emergency 
Management Agency (FEMA) for their standardized method 
for estimating losses for earthquake, flood and hurricane 
(HAZUS) [22].  In this work, we extend this method to 
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capture system impacts on electricity infrastructure due to 
severe windstorms. However, we argue that, as this simulation 
model and our resilience indices would be the same for other 
hazards, it is also applicable to these; nevertheless, a new 
hazard model and fragility curves would need to be used. It 
can also be argued that it is possible to apply the approach to 
hazards in combination; nevertheless, if the hazards are not 
independent then joint probability hazard models need to be 
developed.  Similarly, if the infrastructure response is also 
dependent on two hazards (e.g. damage due to wind and ice) 
then fragility curves that consider the combination of these 
hazards being experienced must be used. In our modelling 
framework, a time-series probabilistic simulation model is 
presented, which stochastically models and evaluates the 
spatiotemporal impact of weather fronts as they move across a 
large-scale transmission network. A fragility model of power 
system components is developed and thoroughly presented in 
this paper to characterize their failure probability as a function 
of the weather they experience at any given time.  

The time- and spatial-dependent reliability features of all 
components are then fed into a SMCS engine to estimate, 
supported by Optimal Power Flow (OPF), specific reliability 
indices that are used to capture the operational effect of the 
weather event. Different from previous works (including work 
by the authors), these are used in combination with other 
infrastructure indices (e.g., number of lines going offline) in a 
risk-based fashion to quantify the impacts of a windstorm and 
the degradation in the resilience of a power system, as well as 
support the development of resilience enhancement strategies.  

For the latter, the Cabinet Office, UK [23] identifies 
resistance, redundancy and response/recovery as key resilience 
features. Therefore, here we evaluate different resilience 
enhancement strategies that are well in line with these key 
resilience features, namely, making specific corridors more 
robust/resistant or redundant, or making the repairing crews 
more responsive. Following the approach proposed in [24], the 
criticality of individual components within a system and 
where to apply these resilience measures are selected based on 
an algorithm that estimates the Resilience Achievement Worth 
(RAW) index of individual corridors. This is performed for 
different windstorm intensities, allowing the evaluation of the 
criticality of each corridor and the effectiveness of these 
strategies under varying stress imposed by the windstorm. 

Summarizing, the key contributions of this work are:  
- the development of structural fragility curves for 

transmission elements by civil engineers and their 
effective integration into an advanced power system 
model in collaboration with electrical power engineers, 
thus effectively developing a system resilience model that 
accounts for both infrastructure and operational aspects; 

- a SMCS-based simulation engine for assessing the time-
varying and space-varying impact of extreme weather on 
power systems resilience using fragility curves and multi-
temporal optimal power flow; 

- a specifically introduced mix of operational and 
infrastructure indices, based on consolidated and thus 
simple to interpret reliability indices, aimed at getting a 
more complete picture of the resilience degradation due to 

the extreme event for increasing intensities (i.e., 
increasing maximum wind speeds); 

- a general technique for the identification of resilience-
critical components and the prioritization of relevant, 
specific interventions; 

- the demonstration that this criticality is dependent on the 
weather intensity and hence that the adaptation planning 
and reinforcement strategies need to be flexible; and 

- the impact evaluation of different resilience enhancement 
strategies in line with key resilience features. 

The rest of the paper is organized as follows. Section II 
presents the fragility modelling and resilience assessment of 
transmission corridors, while Section III discusses 
transmission network probabilistic resilience assessment and 
enhancement procedure. The designed models are illustrated 
in Section IV using a reduced version of the GB transmission 
network. Section V summarizes and concludes the paper. 

II. FRAGILITY MODELLING AND RESILIENCE ASSESSMENT OF 

TRANSMISSION COMPONENTS AND CORRIDORS 

A system model has been developed to assess the impact of 
windstorms on the resilience of transmission networks.  This 
includes the fragility modelling of individual towers and lines 
and the assessment of resilience to severe windstorms. 

A. Modelling assumptions 

National scale risk analysis of complex, coupled 
environmental-engineering systems presents particular 
challenges in terms of data acquisition, numerical computation 
and presentation of results. Therefore, a methodology has been 
developed here that addresses these difficulties through the 
following appropriate approximations that reduce the 
complexity of the processes being considered whilst capturing 
key system behavior, but without affecting the generality and 
applicability of the methodology itself: 
- Generation is not directly affected by the windstorm (with 
the exception of wind generation), although generation nodes 
can be disconnected due to outages of transmission corridors. 
- Load does not change before, during and after the weather 
event; it is thus considered weather-independent. 
- All towers and lines in the test system used are assumed to 
share the same fragility function. Tower fragility is derived 
from structural analysis modelling, whereas line fragility is 
based on a statistical analysis [25]. 
- Whilst towers are designed to common standards, there are 
some variations in design (e.g., terminal and angle towers) and 
although towers are fully refurbished every 20 years, the 
precise condition of each tower is not known.   
- The outage of each transmission tower is considered to be 
independent of the condition of adjacent towers. 
- Due to lack of actual restoration times of the 
collapsed/damaged transmission corridors following extreme 
weather, times to repair are based on expert judgement (in 
discussion with the system operator) and limited reported data 
from international studies [26], but adjusted to reflect the 
increasing damage and time to repair for higher wind speeds. 
- Due to lack of the wind conditions experienced by the 
transmission corridors with the desired spatial and temporal 
resolution, the test network in the case study application is 
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divided into regions which are assumed to have homogenous 
weather conditions. 
- AC OPF is used as a dispatch tool. 

B. Tower fragility modelling 

A fragility function describes the probability of failure of a 
structure or structural component, conditional on a loading 
that relates the potential intensity of a hazard (e.g., wind speed 
on a transmission tower) and as such, it is useful for inclusion 
in Monte-Carlo based risk assessments of populations of 
infrastructure assets to a given hazard [27, 28].  

Fragility curves can be derived: (i) empirically from 
statistical analysis of a large set of observed failures, (ii) 
experimentally by deliberately failing towers, (iii) analytically 
using a structural simulation model, (iv) using expert 
judgment, or (v) through a combination of these methods. 
Empirical curves can often be constructed for distribution 
network towers for which there are more failure records due to 
their greater number and lower design standard [29]. 
However, in the case here analytical fragility curves had to be 
produced as there are insufficient wind-related failures of 
transmission towers in the UK and globally to develop 
empirical curves. Also, towers are generally too large and 
expensive to destroy to consider a full scale experimental 
program, effectively ruling out (ii). Finally, expert judgement 
would be highly uncertain as there might be too few 
experiences to draw on. 

A broad-scale system analysis requires a fragility function 
that captures the structural performance and associated 
uncertainties (e.g., due to different deterioration rates) of a 
population of similar assets. These only need to be described 
to a precision commensurate with the other aspects of the 
system analysis. The methodology used here has been adapted 
by transferring the principles set out by the Applied 
Technology Council (ATC 58), which was developed for the 
Federal Emergency Management Agency to improve the 
structural performance of buildings to seismic hazards [30], to 
calculate failure probabilities of power system components as 
a function of wind loading.  

Many structural engineering phenomena, such as material 
strength properties in laboratory specimens, have a lognormal 
distribution.  For a given hazard intensity (e.g., wind speed 
associated with a particular threshold of structural damage), 
the probability of being in, or exceeding, a damage state ds is 
described by the lognormal function: 

 
,

1
ln d

d
d dsds

S
P ds S

S
      

  
|  (1) 

where: 𝑆𝑑̅,𝑑𝑠 is the median value of engineering demand 
parameter (e.g., displacement or stress) at which the asset 
reaches the threshold of the damage state ds; 𝛽𝑑𝑠, is the 
standard deviation of the natural logarithm of engineering 
demand parameter at which the asset reaches the threshold of 
the damage state ds; and 𝛷 is the standard normal cumulative 
distribution function.  

A structural model of the UK National Grid L2 
transmission towers was analyzed using the commercially 
available ABAQUS software. Beam finite elements were used  

 
Fig. 1: Wind fragility curves of transmission lines and towers (base and robust 
case studies) 

to represent structural members.  Forces on the structure were 
calculated using European codes and the UK national annexes: 
self-weight of insulators and conductors were obtained from 
BS EN 50341-1 and wind loads were calculated using BS 
EN50341-1, which is broadly consistent with other approaches 
(e.g., [31]). Analysis of both geometrical and material 
nonlinearities, under a range of wind loadings, was used to 
construct the tower fragility curve, shown in Fig. 1 (“base” 
case), and expressed as: 

_

0,                    

( ) ( ),       

1,                   

critical

T T hw critical collapse

collapse

if w w

P w P w if w w w

if w w

 


  
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 (2) 

where PT(w) describes tower failure probability as a function 
of wind speed (w), hw stands for high winds, wcritical is the 
wind speed at which the tower’s failure probability picks up 
and wcollapse is the wind speed at which the tower has a 
negligible probability of survival (considered to be 45m/s and 
150m/s here, respectively). When connected in series, collapse 
of a single tower trips the transmission corridor: 

1 2

[  ] 1 [  ]

                              =1 [( 0) ( 0) ..... ( 0)] 
N

P Towers Failure P Towers Survival

P F F F

 
      

 (3) 

where F is the failure function of an individual tower and N is 
the number of towers across the transmission corridor, which 
is given by the ratio of the corridors’ length and the distance 
between the towers (taken as between 300m and no more than 
400m depending on overall corridor length). Although failure 
of one tower can lead to increased mechanical forces on 
adjacent towers, no such instance has been recorded in Great 
Britain, and modeling studies and empirical data from North 
America suggest that this is extremely uncommon for wind 
loading of high voltage lattice transmission towers [32, 33]. In 
keeping with the principles of system analysis, transmission 
towers are therefore assumed to fail independently of one 
another, so that (3) can be simplified as: 

1

[  ] 1 (1 )
N

k

k

P Towers Failure P


    (4) 

which is further simplified if the tower failure probabilities are 
assumed to be the same for each tower: 

[  ] 1 (1 ( ))N

TP Towers Failure P w           (5) 

where PT(w) is the individual tower failure probability as 
obtained by (2). If the wind conditions experienced by a  
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Fig. 2: Generic component approach for determining the effect of a hazard on 
the status of a transmission corridor at every simulation step 

transmission tower are accurately available with appropriate 
spatial and temporal resolutions, they can be used to define the 
exact, individual wind-dependent failure probability of each 
tower across a transmission corridor. 

C. Line fragility modelling 

The resilience of a transmission line is similarly affected by 
local weather conditions, which may result in the failure of the 
line due to several reasons, e.g., shackle failure. The failure of 
a line is considered to be independent from pylon failure, so a 
different weather fragility curve is needed. 

An example of a line fragility curve is depicted in Fig. 1 
(“base” case), which relates the failure probability of a 
transmission line to the wind speed. Similarly to (2): 

_

,                

( ) ( ),      

1,                  

L critical

L L hw critical collapse

collapse

P if w w

P w P w if w w w

if w w

 


  
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 (6) 

where PL(w) refers to the line failure probability as a function 
to the wind speed. 𝑃̅𝐿 is the “good weather conditions” failure 
rate, considered equal to 1x10-2 here. A linear relation between 
the lines’ failure probability and high wind speeds between 
wcritical and wcollapse is applied, which are considered equal to 
30m/s and 60m/s respectively. The wcritical used here is in line 
with a statistical study performed in [25], which relates the 
lines’ failure probability in GB to wind speed. Empirical 
statistical data from the electrical utility can be used to adjust 
these fragility curves to reflect the real behavior of the lines. 

D. Transmission corridor resilience assessment 

Fig. 2 shows the generic simulation procedure for 
determining the effect of any hazard on the status of each 
transmission corridor at every simulation step of the SMCS 
approach. In this specific application, the hazard h refers to the 
windstorm intensity (w). Hence, the PL(h) and PT(h) in Fig. 2 
correspond to PL(w) and PT(w) respectively. 

At simulation step i, the wind intensity (wi) is calculated 
and integrated over the wind fragility curves of Fig. 1, which 
provides PT(wi) and PL(wi). A corridor outage can occur due to 
a conductor failure or a tower collapse. The latter can cause a 
double circuit failure if the two circuits are on the same tower, 
which is a Common Cause Failure (CCF). 

After obtaining the wind-dependent failure probability of 
the transmission corridor (i.e., PL(wi) and PT(wi)), it is 
evaluated if the corridor will trip at this simulation step by 
comparing PL(wi) and PT(wi) with a uniformly distributed 
random number r~U(0,1). As these failure probabilities of the 
transmission components are dynamically updated every step 
of the SMCS procedure depending on the prevailing weather 
conditions, the random number r is generated and compared 
with the failure probabilities each hour. A single circuit outage 
occurs if: 

0,       ( )
( , )

1,       ( )
L i

L i i

L i

if P w r
F w L

if P w r


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where FL is the failure function of the transmission line, while 
a double-circuit outage due to a tower collapse occurs if: 

0,       ( )
( )

1,       ( )
T i

T i

T i

if P w r
F w

if P w r


  

 (8) 

where FT is the failure function of the transmission tower. It 
has to be noted here that PL(wi) and PT(wi) are compared 
independently with r because the effect of PL(wi)>r (i.e., line 
outage) and PT(wi)>r (i.e., tower outage) is different, i.e., a 
single and double circuit outage respectively. 

Following a line or tower outage, the Time to Repair (TTR) 
is randomly generated. The TTR represents the time required 
for repairing a fallen line or tower, i.e., the time required for 
the repair crew to get to the affected areas, transfer the spare 
components and restore to service the tripped components. A 
different TTR for the transmission lines and towers is required. 
The TTR of these components under normal weather 
(TTRnormal) can increase at higher wind speeds due to increased 
overall damage as well as subsequent accessibility of the 
affected areas. In particular, three damage levels are 
considered here: low, moderate and severe. To reflect the 
increasing corridor damage, a TTR that increases with the 
damage level is used, which helps capture an additional 
dimension of resilience: the effect of extreme weather events 
on the restoration time of faulted components. The damage 
level is determined here based on the maximum wind speed 
(wmax) of the wind profile that would cause the highest damage 
to the corridors. A uniformly distributed random factor within 
a predetermined range is then used to multiply TTRnormal for 
each damage level.  

By applying the procedure set out in Fig. 2 to every 
transmission corridor, their wind-affected operational state, 
including power flows evaluated using an OPF engine, at 
every simulation step of the SMCS procedure can be obtained. 
This is critical in modelling the behavior of the transmission 
corridors under the real-time operating conditions they 
experience. The continuous update of the corridors’ status 
based on the prevailing weather conditions using the fragility 
curves allows the realistic modelling of the weather event as a 
continuously fluctuating phenomenon.  

III. TRANSMISSION SYSTEM PROBABILISTIC RESILIENCE 

ASSESSMENT AND ENHANCEMENT  

This Section describes the probabilistic resilience 
assessment approach for the whole system considering moving  
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Fig. 3: System approach for resilience assessment and enhancement 

weather fronts, and then introduces the RAW index based on 
which resilience enhancement strategies can be carried out. 

A. Multi-temporal and multi-regional resilience assessment  

Fig. 3 shows the simulation procedure for assessing system 
resilience to real-time operating conditions (indicated by the 
inner loop). After initializing the system parameters at t=0, the 
approach of Fig. 2 is followed for updating the corridors’ 
status at each simulation step based on the prevailing real-time 
operating and weather conditions.  

In the majority of the weather-related studies in the 
distribution networks, it is usually considered that the entire 
network is exposed to the same weather conditions. However, 
in transmission networks, the impact of a weather event varies 
as the weather front moves across the network. In this study, 
in order to account for the spatial weather impact in different 
transmission areas, the transmission network is arbitarily 
divided into six regions which are assumed to have 
homogeneous weather conditions. If the wind profiles with the 
desired spatial resolution and accuracy along the transmission 
corridors were available, then they could be used in the 
simulations instead of dividing the network in regions.  

The weather-dependent failure probabilities are then fed to 
the AC OPF-based SMCS to capture the multi- temporal and 
multi-regional impact of these real-time operating conditions. 
It has to be noted here that even though AC OPF is considered 
an appropriate dispatch tool for this specific application, it 
does not consider other important relevant issues, such as 
transient stability and unit commitment. However, the 
proposed tool offers the capability and flexibility to include 
such constraints for modelling additional dimensions of the 
problem. The weather model is calibrated against hourly time 
steps and so this is used as the simulation step (ti) here.  
Nevertheless, even higher time resolution could be used in this 
approach, if the relevant data were available. The OPF is run 
at each step and until the end of the simulation (ts) is reached. 
For the purposes of the OPF implementation, the load 
shedding that might occur at each simulation step is 
considered equal to the output of very expensive, virtual 
generators placed at the load buses of the network. 

At the end of the simulation period ts, the multi-temporal 
and multi-regional system resilience is assessed and evaluated. 
For this purpose, in this paper specific reliability indices (i.e., 

Loss of Load Frequency (LOLF, occs/year) and Expected 
Energy Not Supplied (EENS, MWh/year)) and the generation 
capacity going offline during the weather event are used to 
reflect the operational effect of the weather event, supported 
by infrastructure indices, and in particular the number of 
transmission lines going offline due to extreme weather. The 
use of both operational and infrastructure indices allows the 
systematic risk-based assessment of the resilience degradation 
of a power system subject to severe weather. This also enables 
the evaluation of the benefits of options considered important 
for critical infrastructures by Cabinet Office, UK [23].  

B. Resilience enhancement analysis and adaptation measures 

The aim of this study is to provide insights into potential 
strategies to enhance network resilience against future (similar 
or unforeseen) events. A number of resilience enhancement 
strategies may be considered for adaptation, especially if the 
resilience level resulting from specific studies is deemed 
insufficient. Therefore, following the resilience assessment, 
different options for boosting the key features of power grid 
resilience are evaluated as shown in Fig. 3. In this work the 
impact of the following enhancement options are considered:  
a) Redundancy, by adding identical transmission lines in 
parallel with the existing ones; 
b) Robustness, improving the resistance of the components to 
the weather event (as shown in Fig.1, i.e., shifting the fragility 
curves of the transmission lines and towers to the right, 
making them more robust to high wind speeds); and 
c) Responsiveness, whereby it is assumed the weather event 
has no impact on TTR, i.e., no multiplication factor is used for 
increasing TTRnormal for high wind speeds.  
Strategies (a) and (b) aim to boost the infrastructure resilience 
of the network, while strategy (c) aims to improve its 
operational resilience and reaction to the weather event. 

In order to apply targeted, risk-based resilience 
enhancement actions, information is required on the criticality 
and contribution of each transmission corridor to the overall 
network resilience. For this purpose, the index RAW [24] is 
used here, which here expresses the percentage improvement 
in the resilience indices when each line is considered 
100%reliable during the simulations: 

( 1)
100s s n

s

R R R
RAW=

R

 
  (9) 

where Rs=system resilience index (e.g., EENS), Rn=individual 
corridor’s reliability and Rs(Rn=1) shows the system resilience 
by considering that corridor n will never fail during the 
simulation procedure (i.e., Rn = 1). Therefore, Rs-Rs(Rn=1)>0.  
Then, the RAW indices of the transmission corridors are 
ranked to determine the most critical corridors and suitable 
adaptation strategies can be in case assessed (see Fig. 3). It has 
to be clarified that the estimation of the RAW indices and the 
criticality ranking of the transmission corridors refer only to 
the time period when the network is subject to the extreme 
weather and for the purposes of resilience assessment only. 

IV. CASE STUDY APPLICATION TO GREAT BRITAIN REDUCED 

TRANSMISSION NETWORK 

This section presents the illustration of the proposed 
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probabilistic resilience assessment tool, with application on 
the impact modelling of severe windstorms (as HILP event) on 
a reduced version of the GB transmission network. A 
simulation period of one winter week is used (i.e., ts=168hrs), 
where the peak demand and extreme winds in GB are 
expected.  

A. Test network and regional wind profiles 

The proposed approach is illustrated using a reduced 29-bus 
version of the GB transmission network (Fig. 4). This model 
consists of 29 nodes, 98 overhead transmission lines in double 
circuit configuration (which are assumed to be on the same 
tower) and one single circuit transmission line (i.e., between 
nodes 2 and 3) and 65 generators with an installed capacity of 
75.3GW, which are located at 24 nodes and include several 
generation technologies such as wind, nuclear, CCGT etc. 
This GB reduced network is based on and has been validated 
against a solved AC Load Flow reference case that was 
provided by National Grid Electricity Transmission (NGET), 
the transmission system operator of GB [34] and it shows the 
main transmission routes.  

Without losss of generality, the test network is arbitrarily  
divided into 6 weather regions (Fig. 4.b) to model the spatial 
and regional impact of the wind event as discussed earlier.  
Data permitting more regions could be used. In this way, the 
wind event can travel at any direction across the network. As 
can be seen in Fig. 4.b, some transmisison corridors cross two 
weather regions (e.g., line 1-2), experiencing different wind 
conditions in each region and in turn different wind failure 
probabilities. In this case, the worst weather conditions that 
the corridor is experiencing among these weather regions is 
considered for obtaining its weather-dependent failure 
probability and modelling its TTR. 

The time-series regional wind profiles are obtained using 
MERRA re-analysis [35]. Time-series wind profiles for 33 
years with an hourly time resolution are generated, and then a 
winter week, hourly wind profile is randomly selected among 
the 33 years for each SMCS trial. These wind profiles were 
generated at different locations within each region, and then 
the wind profile with the maximum wind speeds (that would 
cause the largest damage to the transmission corridor) was 
chosen as representative for each region in order to model the 
“worst-case” windstorm scenarios that could hit the network.  

According to the UK MET office [36], the highest low-level 
wind speed ever recorded is approximately 63.5m/s. Such high 
values in the MERRA wind data are very rare. In order to 
obtain wind speeds that can threaten the resilience of the 
system, the hourly wind profiles obtained by MERRA re-
analysis are scaled-up (i.e., using a multiplication factor for 
the entire wind profile) to generate hourly wind profiles with 
absolute maximum wind speeds close to the historical one. 
Fig. 5 shows the probability density function of the regional 
wind profiles with wmax=40m/s and Fig. 6 depicts an example 
of the hourly regional wind profiles with the same wmax. 

Following this approach, multiple hourly wind profiles with 
increasing absolute maximum wind speeds are obtained. The 
simulations are then carried out for each one of these hourly  

 
Fig. 5. Probability density function of regional wind profiles with wmax=40m/s 

 
Fig. 6. An example of the hourly regional wind profiles with wmax=40m/s 

wind profiles, in order to determine the wind speeds at which 
the test network becomes less resilient. 

It is worth noticing that, although extreme wind does have a 
predominant direction (240o from North for the UK), this has 
not been included in this study because the direction of 
extreme wind obtained from MERRA is not at ground level 
and will be affected by a number of factors (e.g., altitude, 
terrain and orography) which may significantly change its 
angle of attack at the ground surface. Based on the resolution 
of existing reanalysis data sets (approximately 50km over the 
UK), it is therefore not possible to correct for these influences 
as they occur on lower spatial scales than the reanalysis data. 
Furthermore, as there are no documented cases of a large 
number of wind related tower failures in the UK, it is then not 
possible to assess whether the method would be improved 
with the inclusion of direction. 

In general, the repair times of the damaged transmission 
lines and towers would ideally be provided by the network 
operators, based on analysis of a large sample of 
experiences/historical databases and the emergency and 
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Fig. 4: The reduced 29-bus Great Britain transmission network 
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restoration policies and procedures in place. In this case study 
application, assumptions were made following discussions 
with National Grid, the GB transmission system operator, 
which also provided feedback on the application. Specifically, 
the TTR is assumed to be 10 hours for the lines and 50 hours 
for the towers under normal weather conditions (i.e., 
TTRnormal), which also falls within the the range of case studies 
reported by [26]. The three damage levels are defined here as 
follows: wmax≤20m/s, 20<wmax≤ 40m/s and 40<wmax≤60m/s for 
low, moderate and severe damage levels respectively. Then, 
the TTR of the components under these damage levels is 
determined as: 

max

1 max

2 max

,           20m/s

,     20m/s< 40m/s

,     40m/s< 60m/s

normal

normal

normal

TTR w

TTR k TTR w

k TTR w


  
  

 
(10) 

where k1~U(2,4) and k2~U(5,7) are numbers randonly 
generated within these predetermined ranges. No 
multiplication factor is used for the low damage level. For 
example, if wmax=15m/s, then a TTR equal to TTRnormal is used. 
If 40<wmax≤60m/s, then TTRnormal is multiplied by the random 
number k2. In this case, it might take up to about two weeks to 
fully restore a highly damaged transmission tower. With no 
published information on these times, the range of k1 and k2, 
and the thresholds of wmax, have been determined in 
consultation with the National Grid. In the responsiveness case 
study, it is assumed that k1=k2=0.  

B. Evaluating the wind impact on the test network 

Fig. 7 shows the operational indices LOLF and EENS as a 
function of increasing wmax experienced for the base case study  
(i.e., no resilience measures applied). This study helps 
determine the threshold of the wind speeds at which the 
network becomes less operationally resilient, i.e., there is an 
increase in the frequency and severity of customer 
interruptions. The horizontal axis of Fig. 7 represents the 
maximum wind speed (wmax) that the transmission corridors 
are imposed within the different wind profiles by adjusting the 
MERRA values. 

It can be clearly seen that the test network is highly 
operationally robust to wind speeds below 30m/s, as both 
LOLF and EENS are close to zero. For this range of wind 
speeds, which represents a severe storm based on the Beaufort 
wind force scale by Met Office, UK [37], the failure 
probabilities of the components are not affected by the wind 
event, as can be seen in the fragility curves of Figs. 1.a and 
1.b. The likelihood of cascading outages is thus low, resulting 
in low probability of customer disconnection. The operational 
resilience of the test system can effectively withstand a limited 
number of transmission outages, which prevents the failure 
propagation. However, for wind speeds higher than 30m/s, 
which is the wcritical of the line wind fragility curves, a sharp, 
nonlinear increase in LOLF and EENS is observed. It is also 
worth noting that despite the low frequency of such events (as 
from the LOLF), the impact of windstorms with wind speeds 
higher than the threshold of 30m/s can be significantly high, in 
line with the definition of HILP events. 

Fig. 8 shows the percentage of transmission lines that went 

 
Fig. 7: Influence of wind on LOLF and EENS as a function of wmax of each 
wind profile for the base case 

 
Fig. 8: Generation and transmission lines that went offline during windstorms 
with maximum wind speeds of 40, 50 and 60m/s respectively 

offline (i.e., infrastructure indices) during the windstorms 
with wmax of 40, 50 and 60m/s, along with the percentage of 
the generation capacity not connected to the network due to 
transmission line outages and the corresponding EENS from 
Fig. 7 (i.e., operational indices). It can be seen that the 
infrastructure and operational indices perform very differently. 
For wind speeds up to 40m/s the loss of transmission lines 
does not have a proportional loss of generation and demand; 
that is, owing to the available redundancy, the system can 
withstand the impacts of the windstorm, with nearly zero 
EENS. However, as the number of transmission line outages 
substantially grows under higher wind speeds resulting in a 
large degradation in the infrastructure resilience of the test 
network, the amount of generation loss and demand not served 
increases significantly, i.e., large decrease in the operational 
resilience. It is therefore possible to use EENS (or similarly 
LOLF) in conjunction with the infrastructure index (i.e., 
number of lines offline) to understand and quantify the 
impacts of the windstorm. Within this context, EENS will be 
used to support the targeted resilience enhancement strategies 
in the following sections.   

C. RAW results 

The next step is to estimate the RAW indices of each 
transmission corridor using (9). This analysis is performed for 
three of the wind profiles used in the simulations, namely, the 
ones with maximum wind speeds equal to 40m/s, 50m/s and 
60m/s, respectively. This is done to evaluate the criticality of 
each circuit under different wind conditions. These RAW 
indices thus reflect the criticality of each circuit as related to 
the degree of how hard they are hit by the windstorms and to  
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a) RAWEENS ranking of transmission circuits b) RAWEENS mapping for wmax = 40m/s 

Fig. 9: Ranking of circuits based on their RAWEENS indices per wind level (dotted lines indicate the groups of transmission circuits per wind level for which the 
resilience enhancement studies are subsequently applied) 

 
a) wmax = 60m/s 

 
b) wmax = 50m/s 

 
c) wmax = 40m/s 

Fig. 10: Effect of resilience enhancement for different wind levels (base=no resilience enhancement)  

their contribution to not supplying the demand. 
Fig. 9 shows the results of this study. In Fig. 9.a., the 

vertical axis represents the RAWEENS (i.e., percentage decrease 
in EENS achieved by considering the transmission circuit 
100% reliable), while the horizontal axis shows the circuits 
ranking (i.e., 1 to 50, the number of circuits of the test system) 
based on their RAWEENS indices. For each ranking, the critical 
circuits for each wind level are provided (the circuit IDs are 
presented at the top of Fig. 9.a and in Fig. 4.a). Fig. 9.b. maps 
the RAWEENS results on the test network for wmax=40m/s. 

It can be seen that the criticality of the lines changes 
between the wind profiles, as a different reduction in EENS is 
achieved. For example, circuit 45 is the most critical for all the 
wind levels, but the criticality of circuit 34 is ranked 2nd for 
wmax=40m/s and 50m/s, but 4th for wmax=60m/s. This 
observation is key, because it supports potential investment 
decision on specific lines depending on the resilience goals. 
For example, if it is desired to boost the resilience to the 
extreme wind events, despite their much lower probability of 
occurrence, then the robustness of the lines with the highest 
RAWEENS values for wmax=50m/s or wmax=60m/s (which can be 
considered as HILP events) has to be improved. On the other 
hand, if it is preferable to increase resilience to milder 
windstorms, then the lines with the highest RAW values for 
wmax=40m/s needs to be made more robust. It can also be seen 
that among the most critical lines are those supplying London 
(node 25), the largest demand node, e.g., circuits 34 and 45. 

Further, Fig. 9.b. clearly indicates the criticality of each line 
and area based on the RAWEENS analysis for wmax=40m/s. As 

can be observed, the most critical areas of the test network for 
mitigating EENS, and thus increasing its resilience to weather-  
related power outages, mainly include the interconnections 
between North and South GB, as well as South GB where the 
large demand nodes are located. 

D. Resilience enhancement to severe wind events 

As aforementioned in Section III-B, the resilience 
enhancement case studies include “redundancy”, “robustness” 
and “responsiveness” adaptation options. Fig. 1 shows the 
approach followed here for making the towers and lines more 
resistant to the wind event, represented by a translation of the 
fragility curves (indicated by “robust” in Fig. 1).  

These case studies are applied on the transmission corridors 
according to their contribution to system resilience, as this is 
determined based on their RAWEENS indices. In particular, a 
parallel, identical transmission corridor is added for the 
“redundant case”, the resistance to high wind speeds of the 
transmission corridor is increased for the “robustness” case, 
and the time to repair of a transmission corridor is considered 
unaffected and equal to TTRnormal for the “responsiveness” 
case. However, instead of applying these resilience 
enhancement strategies to a single, individual line, e.g., 
between nodes 1 and 2, the transmission corridors are divided 
in resilience enhancement groups based on their RAWEENS 
indices, with each group including 5 corridors (shown by 
dotted lines in Fig. 9). That is, the first group will include the 
first 5 most critical circuits of each wind level, the second 
group will include the first 10 critical circuits, the third group 
the first 15 critical circuits, and so on, up to the 50 circuits that 

Circuit 

ID 

40m/s 

50m/s 

60m/s 
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are included in the test network. For example, for wmax=60m/s, 
the first resilience enhancement group of circuits will include 
the ones with ID 45, 29, 41, 34 and 37 (which lines will be 
made more robust, more responsive and redundant), while the 
second group will include the ones with ID 45, 29, 41, 34, 37, 
42, 44, 38, 18 and 19, and so on for the other groups. For 
wmax=50m/s, the first resilience enhancement group of circuits 
will include the ones with ID 45, 34, 29, 41 and 38, while the 
second group will include the ones with ID 45, 34, 29, 41, 38, 
19, 42, 44, 20 and 18, and so on. 

Fig. 10 shows the percentage increase in the resilience by 
applying the resilience adaptation measures, as expressed 
using the decrease in EENS (similar results are obtained for 
LOLF). The horizontal axis of Fig. 10 shows the number of 
lines (or the number of resilience enhancement groups, e.g., 5 
lines=1 group, 10 lines=2 groups, and so on) for which the 
case studies are applied. There is a big increase in resilience 
(i.e., drop in EENS) for the case studies when the first 5 
critical lines are enhanced, e.g., close to 40% for the robust 
case for wmax=60m/s. Resilience is further increased when the 
resilience of additional individual lines is improved, but this 
becomes smoother (especially for 50m/s and 40m/s), which is 
expected because as their RAWEENS decreases, their 
contribution to the overall test network resilience decreases. 

Comparing the effectiveness of the resilient measures, it can 
be seen that making the transmission lines and towers more 
robust to the wind event has the highest impact, i.e., higher 
increase in resilience, for all the wind levels. This is because it 
results in the lowest wind-affected failure probabilities of the 
components. It is also worth noting that for wmax=40m/s the 
resilience increase reaches almost 100% in the robust case 
when about half of the circuits (i.e., 25-30 circuits) are made 
more robust. This type of technical insights can again be key 
to inform potential investment strategies. 

It can also be observed that for wmax =60m/s and 50m/s the 
responsive case has a higher impact than the redundant, 
because the fast response to the numerous circuit outages due 
to the wind event is critical. However, making the components 
redundant becomes more effective (i.e., higher percentage 
increase in resilience) for wmax = 40m/s, where the components 
can withstand the wind event, leading to a much smaller 
number of wind-related outages. The fast response to the 
circuit outages thus becomes less important than having 
additional transmission assets. Again, this shows that 
depending on the targeted resilience event (in this case, wmax), 
different mitigation options may be more or less adequate, 
with also different economic impact. Further, it is highlighted 
that the prioritization of resilience enhancement interventions 
might change for different wind speeds.     

V. CONCLUSIONS 

This paper has described and demonstrated a probabilistic 
methodology to assess and evaluate adaptation measures to 
increase the resilience of power systems to extreme weather. 
An integral part of the proposed methodology is the 
consideration of the multi-temporal and multi-regional 
fragility of power system components to extreme weather 
conditions, with focus on the resistance of transmission 
network to extreme wind events. Further, differently from 
previous works, the resilience evaluation is performed using a 

mix of infrastructure and operational indices, allowing the 
systematic estimation of the resilience degradation of a 
transmission network subject to extreme weather and the 
development of strategies for boosting the key infrastructure 
and operational resilience features. The illustration of the 
proposed methodology using the reduced version of the GB 
transmission network clearly highlights its capability of 
assessing and quantifying the resilience of power systems to 
severe weather and the effect of different resilience 
enhancement strategies, based on the RAW index. Our results 
clearly demonstrate that the criticality of network sections 
depends on wind speed. Hence, as the projected changes to the 
wind environment resulting from climate change are highly 
uncertain, adaptation strategies need to be flexible. 

The methodology presented in this paper is applicable to 
any power system and capable of modelling the effect of any 
weather event or natural disaster, as well as the combined 
impact of multiple weather parameters (e.g., wind and rain) on 
power systems resilience, as demonstrated in [18]. This can be 
done provided that the required information is available, 
which includes hazard characteristics, corresponding fragility 
models for these hazards, which can be provided through 
different ways, such as empirically, experimentally, 
analytically, etc., and the repair times for each component.  

Future work will develop a cost/benefit analysis and a 
decision making framework for both operational and 
reinforcement measures to enable the determination of a 
practical and economical roadmap to transition power 
networks towards higher levels of resilience.  
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