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ABSTRACT-Modern Power Systems are equipped with 

new technologies like renewable energy sources (RES) and 

flexible power-consuming devices. These new technologies 

introduce uncertainties in system generating and loading 

profiles which in turn affect the dynamic characteristics, 

and the stable operation of the system might be at risk. 

This paper employs sensitivity analysis method for the 

identification and ranking of critical uncertain 

parameters affecting transient stability in a large meshed 

network with renewable generation. Copula method is 

used in this paper in order to model the correlations 

between uncertain parameters based on real system data. 

The paper develops methodology for identifying 

influential parameters which have the dominant effect on 

network transient stability behaviour. “Heat Map” is used 

as graphical representation of the results on which the 

influence of system uncertainties is clearly demonstrated. 

Economic and optimal operation of the power system in 

terms of stability can be achieved through concentrating 

resources in the monitoring and fine-tuning of the 

identified critical parameters. 

Keywords-Copula method, renewable generation, 

sensitivity analysis, transient stability 

I. INTRODUCTION 

Modern power systems are characterised by the increasing 

penetration of Distributed Energy Resources (DERs). These 

DERs can be in the form of power electronics interfaced 

Renewable Energy Sources (RES) which exhibit intermittent 

characteristic in system generation. The uncertainties 

introduced by RES, together with market/load driven 

uncertainties, result in an overall increase of system uncertain 

parameters. The dynamic signature of modern power systems 

can be significantly changed with more and more new 

technologies like DERs, replacing conventional generators for 

better operational efficiency, reduced CO2 emissions and 

enhance flexibility. It is very important to investigate the 

effect of uncertain parameters on power system stability from 

the perspective of secure operation of modern power systems.  

Traditional deterministic stability analysis is no longer 

suitable when uncertainties are introduced in power systems 

since the ‘worst case scenario’ analysis may lead to an overly 

conservative system design [1-3]. Probabilistic transient 

stability assessment (TSA) has hence been used widely by 

researchers, and it is proved to be an appropriate way to 

assess the influence of system uncertainties on transient 

stability [4-6]. The Monte Carlo simulations are commonly 

used to perform this kind of probabilistic studies [5, 6]. In 

conventional power systems the uncertainties that are 

normally considered are those associated with the system 

loading and fault location/duration [5-8]. More and more 

studies, e.g. [9], are investigating the impact of penetration of 

DERs on power system dynamics. This paper combines the 

two in a way and considers the uncertainties in DERs (Wind 

generation and PhotoVoltaics generation) and system loading, 

and assesses their influence on system transient stability. 

Considering that typical modern power systems are large 

and that the number of uncertain parameters is increasing, the 

conventional Monte Carlo simulations for power system 

stability analysis can be time and resources consuming. In 

such cases, priority ranking of system uncertain parameters 

based on their influence on system dynamics can help the 

operators to allocate resources to accurate estimation of 

critical parameters and use only those to perform fast online 

assessment. Previous studies employed sensitivity analysis 

(SA) techniques for the identification of influential 

parameters affecting voltage/small-disturbance stability 

within a network with RES generation [10-12]. The advanced 

Morris screening sensitivity analysis method (MSSA) is 

compared with the commonly used local sensitivity analysis 

method (LSA) and the global sensitivity analysis method 

(GSA) and its efficiency and accuracy have been 

demonstrated. This paper expands the application of MSSA to 

transient stability analysis.  

Most of the above studies use independent probability 

distributions for modelling parameter uncertainty. Due to the 

fact that the input datasets for uncertain parameters are 

randomly generated, they fail to capture the correlations 

among uncertainties within the real system, hence the results 

of the analysis may not be accurate [13-15]. The Copula 

theory has been employed in the past for this purpose, i.e., for 

the modelling of correlations among system parameters. A 

throughout comparison between different copula families 

when different dependence structures are required is 

presented in [15]. The multivariate Gaussian copula is 

reported as the most effective and accurate approach for 

representation of the correlations between uncertainties 

involved in this study. 

This paper employs MSSA for the priority ranking of 

critical parameters affecting power system transient stability. 

The multivariate Gaussian copula is introduced for correlation 
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modelling between uncertain parameters. The main focus of 

this paper is to identify the group of critical parameters which 

have dominant effect on system transient stability. The 

importance of considering correlations between uncertain 

parameters is also demonstrated. The approach developed can 

be used for fast on-line system security and risk-assessment 

and set references for system operators. 

II. METHODOLOGY 

The priority ranking of system uncertain parameters based 

on their influence on network transient stability follows 4 

major steps: (i) initially, proper probability distribution 

functions are applied to generate dataset of uncertain 

parameters, and copula approach is employed for correlation 

modelling of input parameters; (ii) the Optimal Power Flow 

(OPF) is solved in order to determine the conventional 

generation dispatching; (iii) the Transient Stability Indices are 

calculated; (iv) the SA approach is applied for the 

identification of critical parameters affecting power system 

transient stability. 

A. Stability Indices 

There are two indices used in this paper for the 

quantification of the impact of uncertain parameters on 

system transient stability. 

The first index is the transient stability index (TSI) as 

defined in [16]. The TSI is capable of the assessment of non-

oscillatory behaviour of generators in TSA, given by 

Equation (1). 

𝑇𝑆𝐼 = 100 ∗
360 − 𝛿𝑚𝑎𝑥

360 + 𝛿𝑚𝑖𝑛

                          (1) 

In Equation (1), δmax is the maximum rotor angle 

separation between any two generators in system after a fault. 

A negative TSI value indicates that a generator or a group of 

generators is out of synchronism with the rest of the system 

and the system is unstable. For positive TSI values, the larger 

the TSI the more stable the system is. 

The second index is the settling time of the rotor angle of 

each generator. This index is used as the indication of 

oscillatory stability, given by Equation (2) 

𝑂𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟𝑦 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = |
𝛿𝑖𝑓𝑖𝑛𝑎𝑙 − 𝛿𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝛿𝑖𝑖𝑛𝑖𝑡𝑖𝑎𝑙
| ∗ 100%  (2) 

Equation (2) measures the magnitude of oscillations of 

each generator’s rotor angle after a period of time after the 

fault. The system is considered to settle to a new steady state 

if the index value is smaller than 5% [9]. 

B.  Probabilistic Modelling of Uncertain Input Parameters 

This paper follows the probabilistic approach of TSA; 

hence the probabilistic modelling of the system uncertain 

parameters is employed. The uncertain parameters considered 

in this paper are system loads, wind speed for wind farm and 

solar irradiation for PV generating. Table I illustrates the 

probability distribution for selected system uncertainties and 

their corresponding model parameters. 

C.  Priority Ranking of System Uncertain Parameters 

The identification of critical system parameters is 

performed by using sensitivity analysis (SA). The SA 

approaches describe numerically how the input uncertainties 

can affect the output variabilities after they go through a 

modelled system. This paper employs the advanced MSSA 

for the priority ranking of critical parameters affecting system 

transient stability. The MSSA is designed to perform a 

designated semi-global search among the input variabilities. It 

is recommended by [10-12] as an efficient approach for the 

priority ranking of uncertain parameters in large meshed 

network from the perspective of stability analysis. 

Equations (3), (4), and (5) are the sensitivity indices 

defined for the MSSA method, named as elementary effects, 

mean of elementary effects and standard deviation of the 

elementary effects, respectively [17]. 

𝐸𝐸𝑝
𝑖 (𝑥) =

[𝑦(𝑥1,𝑥2,…,𝑥𝑖−1,𝑥𝑖+𝛥,𝑥𝑖+1,…,𝑥𝑝)−𝑦(𝑥)]

𝛥
      (3)  

µ𝑝
∗ =

1

𝑟
∑|𝐸𝐸𝑝

𝑖 |                                (4)

𝑟

𝑖=1

 

𝜎𝑝
∗ = √

1

𝑟
∑ (|𝐸𝐸𝑝

𝑖 | − 𝜇𝑝
∗)

2𝑟

𝑖=1
                 (5) 

In Equation (4), µp
∗  serves as the ranking score for 

individual input uncertainties. The value of the score 

demonstrates the influence of the corresponding uncertainty. 

The higher the µp
∗  is, the more influential is the uncertainty 

considered. A higher score in σp
∗  indicates the corresponding 

input uncertainty has a non-linear effect on the output. p is the 

number of input uncertainties, r is the ‘level’ of MSSA 

(usually between 4 to 10, higher r values can provide more 

accurate simulation results), and Δis the step size determined 

through Δ =
1

r−1
. The number of simulations required for 

MSSA isn = p ∗ r + 1. The semi-global search within input 

parameters makes the computational burden of MSSA 

significantly lower compared to conventional GSA method 

such as, for example, the Sobol total indices method [10, 11] 

Table I  
Probabilistic Distribution and Model Parameters of System Uncertainties of 

the Test Network 

Uncertain 
Parameter 

Probability 
Distribution 

Probabilistic 

Model 

Parameters 

Level of 
Uncertainty 

Load Demand 

(%) 
Normal 3δ=10% of µ 

10% 

Wind Speed 

(𝑚𝑠−1) 
Weibull α=2.2, β=11.1 

Solar 

Irradiation 

(𝑘𝑊ℎ−2) 

Beta a=13.7, b=1.3 
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D.  Correlations between Input Uncertainties 

The copula method is capable of generating a correlated 

input dataset for modelled uncertainties in power systems. 

[15] suggested that the multivariate Gaussian (mvG) copula is 

an accurate and efficient approach for the modelling of 

system uncertain parameters from the perspective of power 

system stability analysis. The mvG copula provides the 

flexibility to model a higher number of dimensions, and is 

very useful to model relationships among the variables when 

the individual variables are from different distributions. This 

has been adopted here as the modelled uncertainties namely, 

system load, wind and solar data follow different probability 

distributions as shown in Table 1.  

Equation (6) defines the copula function for the mvG 

copula. 

𝐶(𝑢1, 𝑢2, … , 𝑢𝑛; 𝛴) = 𝜙𝛴[𝜙
−1(𝑢1), 𝜙

−1(𝑢2), … , 𝜙−1(𝑢𝑛)](6)  

In Equation (6), Σdenotes a symmetric, positive definite 

matrix withdiag(Σ) = I, ϕΣis the multivariate normal 

distribution with correlation matrixΣ, and ϕ−1(∎)is the 

inverse of the Normal cumulative distribution function (cdf). 

The correlation matrix Σ(or the covariance matrix) in 

Equation (6) is expressed as Equation (7) 

𝛴 = [
1 ⋯ 𝜌1𝑛

⋮ ⋱ ⋮
𝜌𝑛1 ⋯ 1

]                              (7) 

The covariance matrix in this paper is formed with the 

Pearson correlation coefficient ρ obtained from real data of 

the IEEE NETS-NPYS (New England Test System-New 

York Power System) test system. 

E.  Monte-Carlo Stopping Rule 

The correlation modelling of uncertain parameters employs 

the Monte Carlo simulation. A certain number of repeated 

random sampling of the uncertain data is required when 

Monte Carlo simulation is used to represent the stochastic 

behaviour. Equation (8) determines the required Monte Carlo 

run [18]. 

ɛ >

[
 
 
 
 {𝜙−1 (1 −

𝛿
2
) ∗ √𝜎2(𝑋)

𝑁
}

�̅�

]
 
 
 
 

                (8) 

In Equation (8), ɛ is the sample mean error, ϕ−1(·) is the 

inverse Gaussian conditional probability distribution with a 

zero mean value and a one standard deviation value, σ2(·) is 

the variance of a sample, δ is the required confidence level, 

and X̅ is the mean of the samples. 

Previous studies on the IEEE 68-Bus NETS-NYPS test 

system indicated that for transient stability studies the 

sampling number required for a 5% sample mean error with 

99% confidence interval is 6000 simulations [9]. However it 

is also demonstrated in [9] that 1000 simulations are enough 

as more simulations tend to give the same results but at a 

higher cost of time. 

III. TEST NETWORK  

This study employs the 16 machines, 68 buses reduced 

order modified equivalent model of the New England Test 

System and the New York Power System (NETS-NYPS)[19], 

see Fig. 1. The test network consists of 5 sections, with 

generator G1-G9 in the NETS area, generator G10-G13 in the 

NYPS area, and G14, G15, G16 in 3 equivalent areas 

connected to NYPS. The renewable generation is integrated 

by using 7 equivalent wind generators and 7 equivalent PV 

generators. The renewable generators are connected to 7 

system buses (buses 60, 57, 68, 26, 53, 33, and 17) to 

simulate the distributed energy resources. The wind turbines 

are modelled as Doubly Fed Induction Generators (DFIGs) 

and the PV-plants are modelled as Full Converter Connected 

Generators (FCCs). The total number of the considered 

uncertain parameters is 66 (including 52 load buses and 14 

RES generators). Hence the total number of simulation runs 

for MSSA is 661 with r=10 levels. However due to the fact 

that there exist 17 buses which do not have a load connected 

(no load uncertainty), the number of ranked system 

uncertainties is 49.  

 

The loads in this study are all modelled to be the classical 

exponential load model. Equations (9) and (10) define the 

load model used in the test network. 

𝑃𝐿 = 𝑃𝑛(
𝑈

𝑈𝑛

)0                                          (9) 

𝑄𝐿 = 𝑄𝑛(
𝑈

𝑈𝑛

)2                                       (10) 

In Equations (9) and (10), PL and QL are the active and 

reactive power, respectively, drawn by the loads at voltage 

magnitude U. Pn and Qn are the active and reactive load 

drawn by the loads when the system is operating at rated 

voltage Un. 

Study also considers different loading levels for the 

assessment of system dynamic behaviour under various 

loading conditions. The analysed loading levels are selected 

from the daily loading curve with the values of 0.3p.u, 0.6p.u 

and 1.0p.u. In Equation (11) and (12), the renewable 

Figure 1: Modified IEEE 68-Bus NETS-NYPS test system with RES 

generations. 
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generation penetration level PLRES is calculated. PL is the 

system loading, GSM is the active power generation from 

synchronous machines and GRES is the active power 

generation from RES generations. The system loading levels 

and their corresponding PLRES are listed in Table II. 

𝑃𝐿 = 𝐺𝑆𝑀 + 𝐺𝑅𝐸𝑆                                (11) 

𝑃𝐿𝑅𝐸𝑆 =
𝐺𝑅𝐸𝑆

𝑃𝐿

                                     (12) 

The simulations run in this study are performed using two 

software platforms. The probabilistic modelling of input 

parameters (with/without Correlation Modelling), the data 

analysis for MSSA and the calculation of the optimal power 

flow (OPF) are carried out in Matlab. The RMS simulation 

for TSA is performed in DIgSILENT PowerFactory. 

IV. ILLUSTRATIVE RESULTS AND DISCUSSION 

A.  Priority Ranking for Transient Stability 

The priority ranking of critical parameters affecting power 

system transient stability is performed through sensitivity 

analysis. The disturbance employed is a three-phase fault on a 

transmission line followed by the line disconnection. The 

fault duration is set to be 13 cycles in this study [20]. The 

rotor angles of all synchronous generators are recorded for 20 

seconds to illustrate system transient dynamic behaviour.  

There are six transmission lines selected for fault 

deployment and line disconnection. This is to demonstrate the 

influence of fault location on power system transient stability 

behaviour. The selected six transmission lines are line 12 

(between buses 21 and 68, near critical generator G9), line 56 

(between buses 33 and 38, near critical generator G11), line 

42 (between buses 60 and 61, tie-line between NETS-NYPS), 

line 45 (between buses 53 and 54, tie-line between NETS-

NYPS), line 70 (between buses 40 and 41, tie-line between 

NYPS-G14) and line 72 (between buses 18 and 50, tie-line 

between NYPS-G16).  

Figure 2 employs heatmap for the demonstration of the 

priority ranking of the parameters affecting power system 

transient stability. The heatmap is divided into three major 

sections. It demonstrates the system transient stability 

behaviour under the selected 1p.u, 0.6p.u and 0.3p.u loading 

conditions, respectively. It is observed that for fault applied to 

line 12 and 56 (near critical, low inertia generators G9 and 

G11), the uncertainties in large system loads (L17 with 

6000MW, L18 with 2470MW, L41 with 1150MW etc.) are 

identified to be more influential compared to other 

uncertainties considered in this study. However it can also be 

observed that when the fault is applied to line 42, 45, 70 and 

72, i.e., further away from critical generators, the transient 

stability of the test network is not anymore that much 

dominated by the large loads. Figure 2 also demonstrates that 

as the proportion of RES penetration level increases, the 

importance of the RES increases, and hence the uncertainties 

of wind and PV generators are becoming influential when the 

system loading levels decrease to 0.6p.u and 0.3p.u.  

B.  Ranking considering the correlations between 

Uncertainties 

The correlations between the input system uncertainties are 

considered to both, represent the real operating conditions 

more accurately and investigate the importance of accurate 

correlation modelling. The system uncertainties and their 

correlation patterns are obtained from[21, 22]. Figure 3 is a 

49*49 matrix (trained from the actual test network data) of 

Pearson correlation coefficients among 49 system uncertain 

parameters. In this figure, rows/columns 1-35 are system 

loads, 36-42 are wind speed and 43-49 are solar irradiance.  

The intra-dependence and inter-dependence within the 

parameter groups can be easily identified in Figure 3. For 

example, five groups of closely located system loads are 

highlighted through their high intra-dependence structure. 

These identified load-load intra-dependence structures can be 

explained as the results of different lifestyles of their 

corresponding consumers (industry/living load, weather 

depended load, etc.). For the intra-dependence structures 

between wind-wind and PV-PV, they are mainly influenced 

Table II  
The RES Generation Penetration Level under Variable Loading 

Demand Selected from Daily Loading Curve 

Loading Demand 1.0p.u 0.6p.u 0.3p.u 

𝑃𝐿𝑅𝐸𝑆 20% 33% 67% 

 

 
Figure 2: Heatmap of ranking for transient stability index showing different system loading. 
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by the distance between the RES generators, as the weather 

pattern can be similar for closely located generation plants. It 

should be noticed that for PV-PV correlation, the intra-

dependence structures are very strong as they are determined 

by day-time hours when the sampling time scale is very long, 

in this case over a year. 

The inter-dependence structures between load-wind and 

wind-load are low. This indicates the parameters in load and 

wind generation are poorly correlated. The inter-dependence 

structures between load-PV and PV-load are relatively high. 

This is true as people need to turn on lights during working 

hours and night-time, or use AC during summer time with 

longer daylight time. 

Figure 4 shows a heatmap which indicates the identified 

influential parameters for power system transient stability 

analysis when the correlations between input parameters are 

considered. The groups of system loads from L41 to L49 and 

L17 to L26 are identified as influential parameters affecting 

test network transient stability performance. The influence of 

the uncertainties in loads is generally bigger than the 

uncertainties in RES generation as the loading condition is at 

1p.u and the RES penetration level is low.  

The importance of accurate modelling of the correlations 

between input parameters is illustrated by comparing Figure 2 

and 4. When independent probabilistic modelling of the 

system parameters is applied, the loss of correlation between 

parameters can lead to the omission of an important 

parameter which may not be influential on its own but is 

highly correlated to an influential parameter. This is not 

desirable for risk-based assessment as the risk of a critical 

condition may be ignored and result in system failure. 

C.  Effect of Fault Duration and RES Penetration Level 

Finally, the study considered the effect of fault duration 

and RES penetration level on the test network transient 

stability dynamic performance. The TSI is employed in this 

section to assess the general system performance under 

different pre-fault conditions. In addition the settling time of 

the rotor angle of each generator is employed as an indication 

of oscillatory stability. The advanced MSSA with 661 

simulations is used again to obtain the above mentioned two 

stability indices. The average value of the TSI among all 661 

simulation runs is calculated, and the number of cases where 

any generator is still oscillating after 20 sec are recorded, as 

shown in Table III. 

In Table III, case studies with fault applied on line 42, line 

56 and line 70 are illustrated for demonstration purpose. Two 

fault durations, 10 cycles and 13 cycles are considered and it 

can be concluded that the selected fault durations have almost 

no effects on TSI values, which means that the considered test 

network transient stability is mostly determined by its pre-

fault conditions (Note that longer than usual fault durations of 

10 and 13 cycles are adopted to generate sufficient number of 

unstable cases with considered test network. Otherwise one 

would typically consider faults lasting 4-7 cycles at 

transmission system level). The effect of RES penetration 

level on test network transient stability analysis is also 

demonstrated in Table III. In this study, the optimal power 

flow calculation will de-load and/or disconnect synchronous 

generators when loading level decreases. The amount of RES 

generation is kept constant hence the RES penetration level 

will increase. The lower system loading level results in a 

higher TSI value though the number of unstable cases first 

 

 
Table III  

Effect of Fault Duration and RES Penetration Level on Transient Stability 

Performance 

Fault 

Line 

RES 

Penetration 
Level 

Fault Duration 

10 cycles 13 cycles 

TSI 

No. of 

Oscillatory 
Instability 

TSI 

No. of 

Oscillatory 
Instability 

Line42 

20% 63 9 61 569 

33% 72 661 70 661 

67% 76 661 76 657 

Line56 

20% 61 251 57 509 

33% 70 661 68 661 

67% 77 661 76 661 

Line70 

20% 67 190 72 569 

33% 75 544 75 635 

67% 80 341 80 385 
 

Figure 3: Stochastic dependence structure of NETS-NPYS load, wind speed and 

solar irradiance over a year. 

 
Figure 4: Ranking of critical parameters for transient stability when correlations between input parameters are considered. 
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increases and then starts to decrease again. The actual effect 

of RES on transient stability is determined by the number of 

de-loaded (the rotational reserve increases while the inertia of 

the system remains the same) and disconnected (the rotational 

reserve and inertia in the system decrease) synchronous 

generators at the time of fault and the ride through 

characteristics and control settings of RES, hence careful 

consideration of all these parameters is required prior to any 

generalisation.  

V. CONCLUSIONS 

This paper employs sensitivity analysis for the priority 

ranking of critical parameters affecting power system 

transient stability in a system with RES generation. The 

multivariate Gaussian copula is applied to the input data set 

for the correlation modelling of input parameters. The results 

of the priority rankings of critical parameters with/without 

parameter correlation are then compared to demonstrate the 

importance of the accurate modelling of the correlation 

structures between input data set while performing power 

system transient stability related analysis. This paper reveals 

the disadvantage of independent modelling of system 

parameters during real network dynamic analysis. This is due 

to the fact that even though some of the system parameters 

may be uninfluential on their own, their variation/uncertainty 

can have a significant impact on system dynamic behaviour 

due to their correlation with other influential parameters.   

The large system loads (namely L17, L18, L42, etc.) and 

those loads highly correlated are considered to have critical 

effect on test network transient stability behaviour. It can also 

be observed that the influence of the uncertainties in RES 

generation increases when the RES penetration level 

increases as the system inertia decreases due to conventional 

generator disconnection.  

The fast and accurate priority ranking of critical parameters 

is favoured in power system stability related analysis as it can 

help to narrow down the number of parameters which are 

critical for stable operation of the power system. Resources 

can then be concentrated on the selected parameters to 

achieve better management of the system with less 

monitoring. The approach proposed in this paper can also be 

used to establish the system security profile under various 

conditions. Fast and accurate tuning of the system can then be 

achieved by mapping the operation conditions into the system 

security profile. 
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