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Advances in high-throughput genotyping and the International HapMap Project have enabled association studies at
the whole-genome level. We have constructed whole-genome genotyping panels of over 550,000 (HumanHap550) and
650,000 (HumanHap650Y) SNP loci by choosing tag SNPs from all populations genotyped by the International HapMap
Project. These panels also contain additional SNP content in regions that have historically been overrepresented in
diseases, such as nonsynonymous sites, the MHC region, copy number variant regions and mitochondrial DNA. We
estimate that the tag SNP loci in these panels cover the majority of all common variation in the genome as measured
by coverage of both all common HapMap SNPs and an independent set of SNPs derived from complete resequencing of
genes obtained from SeattleSNPs. We also estimate that, given a sample size of 1,000 cases and 1,000 controls, these
panels have the power to detect single disease loci of moderate risk (k ; 1.8–2.0). Relative risks as low as k ; 1.1–1.3
can be detected using 10,000 cases and 10,000 controls depending on the sample population and disease model. If
multiple loci are involved, the power increases significantly to detect at least one locus such that relative risks 20%–
35% lower can be detected with 80% power if between two and four independent loci are involved. Although our SNP
selection was based on HapMap data, which is a subset of all common SNPs, these panels effectively capture the
majority of all common variation and provide high power to detect risk alleles that are not represented in the HapMap
data.
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Introduction

Researchers have used several approaches to identify
genetic variation that predispose individuals to common
diseases. For Mendelian disease traits, the method of choice
has been linkage analysis in families [1]. For many complex
disease traits where many alleles contribute to the trait, the
effect of any single gene or locus may be relatively small and
difficult to detect by linkage analysis. A more sensitive
approach to identifying risk alleles with smaller gene effects
is to employ a case-control association study in which allelic
markers, such as SNPs, are used to find regions of the genome
enriched (or depleted) in a particular risk allele or haplotype
between the cases and controls. This study design can provide
more power to detect relatively small gene effects [1].
Historically, association studies have employed markers in
candidate genes; unfortunately this approach requires a
priori knowledge about which genes to choose. A more
comprehensive and agnostic approach is to employ markers
encompassing the entire genome. Whole-genome association
studies survey common genetic variation by probing a dense
set of SNPs across the genome. Because whole-genome studies
allow researchers to identify genes not previously known to
be involved with disease etiology and may be more sensitive
for detecting the multiple small gene effects often found in
complex disease traits, they may be the most appropriate
method to identify variants that predispose individuals to
common diseases.

Whole-genome association studies require a dense map of
hundreds of thousands of SNPs across the genome and
sufficiently large sample sizes to provide power to detect
relatively small gene effects [2,3], but knowledge of the

underlying LD (LD) structure can be used to minimize the
number of genotyped SNPs [4,5]. The International HapMap
Project [6] has provided a densely mapped and validated set
of SNP loci genotyped in four populations that can be used to
select these SNPs. The complete HapMap dataset (release 21)
contains over 2 million common SNPs (minor allele fre-
quency [MAF] ‡0.05) in each population studied (Utah
residents with ancestry from Northern and Western Europe
[CEU], Han Chinese/Japanese in Tokyo, Japan [CHB þ JPT],

Editor: Michel Georges, University of Liège, Belgium
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and Yoruba in Ibadan, Nigeria [YRI]). One of the many results
shown in the HapMap data is that LD is often discontinuous,
appearing as ‘‘block-like’’ structures [7,8], and a typical SNP is
highly correlated with many of its neighbors in any given
population. This correlation can be used to build highly
efficient whole-genome genotyping panels by choosing tag
SNPs that serve as proxies for many other highly correlated
neighboring SNPs [9]. A tag SNP approach drastically reduces
the number of genotyped loci while producing more
information content than a large set of randomly-chosen
loci [8,10].

We have recently developed a whole-genome genotyping
assay [11,12] that has the capability of genotyping hundreds of
thousands of markers, enabling whole-genome association
studies on a single microarray. Using this assay, we have
constructed whole-genome genotyping panels of over 550,000
(HumanHap550) and 650,000 (HumanHap650Y) SNP loci by
choosing tag SNPs from all populations in the International
HapMap Project. We estimate that these tag SNP loci cover
the majority of all common variation in the genome and show
that most association studies using these panels should detect

genetic risk factors even for complex traits where each risk
allele only confers a moderate risk.

Results

Content Selection
We constructed the HumanHap550 panel, a whole-genome

genotyping panel of 555,352 SNPs, to effectively tag CEU
(European) and CHBþ JPT (Asian) sample populations (Table
1). A majority of the SNPs were selected by tagging the more
than 2 million common HapMap SNPs, but the panel also
includes variation types that have been found to be over-
represented in diseases such as nonsynonymous SNPs [1],
SNPs in the MHC region [13], SNPs in commonly reported
CNV regions [14], and mitochondrial SNPs [15]. Because
individuals with African ancestry have distinct and lower
levels of LD compared to those with European or Asian
ancestry [16], we added another 100,000 common YRI
(African) tag SNPs to increase coverage of the YRI samples
for the HumanHap650Y panel. In this publication, genome
coverage and power are calculated using the HumanHap550
panel for CEU and CHB þ JPT samples and the HumanH-
ap650Y panel for YRI samples. Coverage calculation has been
previously described for a subset of ;314,000 SNPs from
these panels (the HumanHap300 panel) [17,18].

Genome Coverage Estimations
We assessed how well the whole-genome genotyping panels

capture all variation in the human genome. To do this, we
measured how well all variation is captured by at least one
SNP on the array at various levels of LD as measured by r2

[19,20]. Since all variation in the genome is currently not
known, one can use proxies for all variation to estimate
genomic coverage. These include SNPs genotyped in the
International HapMap Project [6], the HapMap ENCODE
resequencing and genotyping project [21], and other com-
plete resequencing data such as the SeattleSNPs Program for
Genomic Applications (PGA) data (http://pga.gs.washington.
edu/). Genomic coverage was estimated from HapMap release
21 and SeattleSNPs PGA genotype data. Because the PGA
data contains 68 genes whose variants were publicly released
after the HapMap SNPs had been selected, and Human-
Hap550 and HumanHap650Y tag SNPs were derived from the

Table 1. HumanHap550 and HumanHap650Y Coverage

Content HumanHap550 HumanHap650Y

Number of SNPs 555,352 655,352

HapMap data for tag SNP selection Release 20 Release 20

.2 million common SNPs .2 million common SNPs

MAF threshold (‡) 0.05 0.05

CEU r2 ¼ 0.8 +/�10 kb genes, ECR r2 ¼ 0.8 +/�10 kb genes, ECR

r2 ¼ 0.7 rest of genome r2 ¼ 0.7 rest of genome

CHB+JPT r2 ¼ 0.8, all bins .2 SNPs r2 ¼ 0.8, all bins .2 SNPs

YRI r2 ¼ 0.7, all bins .4 SNPs r2 ¼ 0.7, all bins .2 SNPs

nsSNPs 7,779 7,948

MHC SNPs 1,800 1,800

mtSNPs 177 177

SNPs in CNV regionsa 96,082 111,781

aSNPs in 2,714 CNV regions derived from the Database of Genomic Variants (Feb 2007, http://projects.tcag.ca/variation/)
doi:10.1371/journal.pgen.0030170.t001
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Author Summary

Advances in high-throughput genotyping technology and the
International HapMap Project have enabled genetic association
studies at the whole-genome level. Our paper describes two
genome-wide SNP panels that contain tag SNPs derived from the
International HapMap Project. Tag SNPs are proxies for groups of
highly correlated SNPs. Information can be captured for the entire
group of correlated SNPs by genotyping only one representative
SNP, the tag SNP. These whole-genome SNP panels also contain
additional content thought to be overrepresented in disease, such
as amino acid–changing nonsynonymous SNPs and mitochondrial
SNPs. We show that these panels cover the genome with very high
efficiency as measured by coverage of all HapMap SNPs and a set of
SNPs derived from completely resequenced genes from the Seattle
SNPs database. We also show that these panels have high power to
detect disease risk alleles for both HapMap and non-HapMap SNPs.
In complex disease where multiple risk alleles are believed to be
involved, we show that the ability to detect at least one risk allele
with the tag SNP panels is also high.



HapMap, this dataset provides a relatively unbiased estimate
of genomic coverage beyond HapMap. Since most of the
SNPs genotyped in the HapMap ENCODE regions were part
of the HapMap release 16c data, estimates of genomic
coverage in ENCODE regions is not an independent assess-
ment of genomic coverage. Coverage of ENCODE regions was
very similar to coverage of the entire HapMap data and is not
shown.

Coverage of common variation (MAF ‡ 0.05) was estimated
from the HapMap data (release 21) for each population (CEU,
CHB þ JPT, YRI). To calculate coverage, the maximum
pairwise r2 value [19,20] between each common HapMap
release 21 SNP and a SNP in either HumanHap550 or
HumanHap650Y was determined. The cumulative proportion
of HapMap release 21 loci captured by HumanHap550 and
HumanHap650Y is shown in Figure 1. The mean maximum r2

was 0.93 and 0.91 between HumanHap550 SNPs and common
HapMap SNPs in the CEU and CHB þ JPT samples,

respectively, and 0.81 for HumanHap650Y SNPs in the YRI
samples. Using a strict r2 threshold of 0.8, HumanHap550
captures 90% and 87% of the common HapMap SNPs in the
CEU and CHB þ JPT samples, respectively, and the
HumanHap650Y captures 67% of common HapMap SNPs
in YRI samples. Using a less-stringent r2 threshold (0.5), the
HumanHap550 panel captures 96% and 95% of the common
HapMap variants in the CEU and CHB þ JPT samples,
respectively, and the HumanHap650Y captures 85% of
common variants in YRI samples. Because both SNP selection
and genomic coverage of the HumanHap550 panel was based
on the same HapMap data, these estimates are likely to be an
overestimate of true genomic coverage.
Although the International HapMap Project genotyped

over 5.8 million SNPs in four populations, these SNPs do not
necessarily represent all genomic variation due to biases in
SNP discovery and genotyping. Furthermore, as mentioned
previously, there is a slight upward bias for our estimate of
genomic coverage because the SNP selection used for these
panels was based on the samples and markers in the HapMap
project. An unbiased estimate of the coverage of these panels
can be obtained from regions that are fully sequenced
independently from the HapMap project. Regions sequenced
before the HapMap project may be overrepresented in the
HapMap data because more complete knowledge existed for
these regions when SNPs were selected for the HapMap
project. The SeattleSNPs Program for Genomic Applications
(PGA; http://pga.gs.washington.edu/) has resequenced 68 genes
(as of 29 September 2006) related to inflammatory response
in 23 and 24 individuals in common with the HapMap CEU
and YRI samples, respectively. The PGA’s earliest SNP entries
into dbSNP are build 125 for these 68 genes, after when SNPs
from the HapMap Project were selected (http://www.hapmap.
org/) [6]. The HumanHap550 panel has a mean maximum r2

of 0.84 and captures 72% of common variation in the CEU
population (r2 ¼ 0.8), and HumanHap650Y has a mean
maxiumum r2 of 0.68 and captures 45% of the common
variation in the YRI population (r2¼ 0.8), respectively (Figure
1B). These values are 18% and 22% less than what is seen in
the HapMap data for the CEU and YRI samples, respectively.
It is possible that the 68 genes in the PGA dataset may not
accurately reflect all variation in the genome since these are
candidate genes for inflammatory response and may be
undergoing selection or have atypical patterns of natural
variation. To test if these genes are undergoing selection, we
calculated the average Tajima’s D statistic for the 68 genes
and found that they are close to neutrality and not
significantly different from all genes for which data is
available (Table S1).

Power for a Single Risk Allele
Quantifying coverage according to r2 does not fully address

the probability that a study will detect risk alleles in
genotype–phenotype association studies. Because the sample
size required to maintain the same power is inversely
proportional to r2 [3,22,23], LD coverage allows us to estimate
the reduction in power that will occur by not genotyping
every SNP directly. Other factors are more important than r2

for the power of an association study (i.e., the probability that
a risk allele will be observed at significantly higher frequen-
cies in the cases versus controls), such as the risk conferred by
the allele and the frequency of the disease. In addition, the

Figure 1. Coverage of the HapMap (A) or SeattleSNPs (B) Datasets As

Measured by the Proportion of Common Variation in Each Dataset That Is

Captured by a SNP in Either HumanHap550 (CEU; CHB þ JPT) or

HumanHap650Y (YRI) at Various r2 Thresholds

Lines show coverage for the CEU (red), CHBþ JPT (green), and YRI (blue)
populations.
doi:10.1371/journal.pgen.0030170.g001
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frequency of the risk allele is a very important factor in how
much power an association study will have to detect the risk
allele because low frequency risk alleles are much more
difficult to detect than high frequency risk alleles. As long as
the genotyped SNPs have some correlation with the risk

alleles, increasing the sample size of a study can overcome all
these factors so that a study can be sufficiently powered with a
large enough sample size. Selecting SNPs in a way that
maximizes the coverage of all SNPs through LD allows us to
maximize our power for a given sample size.

Power to Detect a Single HapMap Risk Allele
For a model where there exists a single risk allele, we

estimated the total power to detect a single risk allele
represented by the HapMap data where each SNP is equally
likely to be the risk allele. For each SNP in the HapMap data,
we combined the frequency and maximum r2 with a nearby
SNP on the HumanHap550 or HumanHap650Y to estimate
the power to detect that SNP if it is a risk allele for various
sample sizes and disease models. For each risk allele
frequency, sample size, and disease model, the power was
estimated from 10,000 simulated case-control datasets (see
Methods). Then, under the assumption that each SNP in the
HapMap dataset is equally likely to be the risk allele, we
calculated the total power, PT, to detect a risk allele
represented in the HapMap data for a 5% false-positive rate
after applying a Bonferroni correction to account for
multiple testing (see Methods).
Under the multiplicative disease model, an individual’s

baseline risk of having the disease or phenotype is multiplied
by k if they carry one copy of the risk allele and k2 if they
carry two copies of the risk allele. Figure 2 (red line) shows the
total power to detect an association using HumanHap550
(CEU and CHBþ JPT) and HumanHap650Y (YRI) for a study
design with 1,000 cases and 1,000 controls for different
relative risks, k. For the CEU and CHB þ JPT samples, the
power drops below 80% when the relative risk is less than
;1.69 under the multiplicative model, whereas for the YRI
samples the power drops below 80% when the relative risk is
less than ;1.85 (Figure 2).
We have also performed the power analysis for an additive

model where an individual’s baseline risk is multiplied by k if
they carry one copy of the risk allele and 2k if they carry two
copies of the risk allele (see Figure S1). Under the additive
model the power drops below 80% when the relative risk is
less than ;1.61 in the CEU and CHBþ JPT samples and ;1.80
in the YRI samples (Figure S2).
These simulations were based on sample sizes of 1,000 cases

and 1,000 controls but a lower relative risk can be detected by
increasing the study size. To illustrate this, we also estimated
power in a variety of study sample sizes to examine the
minimum relative risk detectable at 80% power under the
multiplicative and additive models for larger sample sizes
(Figure 3 [CEU] and Figure S2 [CHBþ JPT and YRI]). Under
the multiplicative model, disease variants with relative risks as
low as ;1.20 for the CEU and CHBþ JPT samples and ;1.24
for the YRI samples can be detected with 80% power with
10,000 cases and 10,000 controls (Figure S2; Tables S2 and S4).
Under the additive model, diseases variants with relative risks
as low as ;1.06 for the CEU and CHB þ JPT samples and
;1.12 for the YRI samples can be detected with 80% power
with 10,000 cases and 10,000 controls (Figure S2; Tables S3
and S5).
These power estimates are strongly influenced by the

frequency spectra of the SNPs in the HapMap data. While the
power is relatively low to detect a single risk allele if the
minor allele frequency is less than 0.10, the power is

Figure 2. Total Power to Detect a Single Common Risk Allele in the

HapMap Data Using HumanHap550 for CEU (A) and CHB þ JPT (B) and

HumanHap650Y for YRI (C) in a Study Size of 1,000 cases and 1,000

Controls under a Multiplicative Disease Model

Power is calculated for a 5% false discovery rate after a Bonferroni
correction for multiple testing (red line). The solid black line represents
the power to detect a risk allele if all the common HapMap SNPs in each
respective population are genotyped using the same significance cutoff.
Also shown are the powers for different frequency ranges as dashed
lines, where the lower line indicates the power for risk allele frequencies
from 5%–10% and the upper line indicates the power for risk allele
frequencies from 40%–50%.
doi:10.1371/journal.pgen.0030170.g002
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significantly greater for risk alleles with minor allele
frequencies greater than 0.40 (dashed lines in Figure 2). For
example, under the multiplicative model, relative risks as low
as 1.50–1.57 can be detected in 1,000 cases and 1,000 controls
if the minor allele frequency is greater than 0.40, but when
the minor allele frequency is less than 0.10, the risk allele can
only be detected at this sample size if the relative risk is
greater than 2. Unknown factors such as the risk allele
frequency may significantly increase the power to detect a
particular disease even though the above estimates indicate
that a study is underpowered. Conversely, even a supposedly
well-powered study may have little ability to detect associa-
tions if the risk allele frequencies are low, unless they confer a
very large risk.

Power to Detect a Single Non-HapMap Risk Allele
Since there are ;7.1 million common (MAF ‡ 0.05) SNPs

in the genome [24] and 2.0 million, 2.2 million, and 2.5
million common SNPs have been genotyped by the HapMap
Project in the CHB þ JPT, CEU, and YRI populations,
respectively, approximately 70% of the common risk alleles
are not contained in the HapMap data. For SNPs that are not
contained in the HapMap data, the power will be lower than
shown in Figures 2 and 3 because the tag SNPs selected for
the HumanHap550 and HumanHap650Y were chosen specif-
ically to maximize coverage of the HapMap SNPs. To explore
how the HumanHap550 and HumanHap650Y will perform
for the non-HapMap SNPs, we estimated the coverage of non-
HapMap SNPs using the SNPs found in 68 genes that were
completely resequenced by SeattleSNPs after the release of
the HapMap data. It is important to note that for this analysis
we excluded all SNPs that are in the HapMap dataset to
provide an unbiased estimate of the power for SNPs outside
of HapMap. Following the same procedure as outlined above,
we estimated the power to detect the common SNPs (MAF ‡
0.05) that are not in the HapMap data (Figure 4 multiplicative
model; Figure S3 additive model). In 1,000 cases and 1,000

controls, the minimum relative risks that we can detect at
80% power is ;14%–22% higher for non-HapMap SNPs
compared with our estimates for just the HapMap data
(Tables S2–S5). In 10,000 cases and 10,000 controls, the
minimum relative risks that we can detect at 80% power is
;6%–11% higher for non-HapMap SNPs compared with our
estimates for just the HapMap data (Tables S2–S5). The
SeattleSNPs dataset represents a small number of SNPs (668
for non-HapMap SNPs for CEU and 1,429 for YRI), so even
though these genes represent over ;2.4 Mb of the human
genome, these are rough estimates and more extensive data
will help refine these numbers. Overall, these estimates of
power are very promising for studies that wish to detect risk
alleles both within and outside of the HapMap SNPs.

Genome-Wide Power Risk Loci
The total power to detect a common risk allele in an

association study is a weighted average of the power to detect
a HapMap risk allele and the power to detect a non-HapMap
risk allele where the weights are the relative fraction of SNPs
within and outside of the HapMap data (see Methods). We

Figure 3. The Minimum Risk Detectable at 80% Power with p � 0.05

after a Bonferroni Correction for Multiple Testing (v2 ‡ 28.5687) for

Various Sample Sizes under Multiplicative (Red) and Additive (Blue)

Models

Power is calculated as the ability to detect a single common risk allele in
the HapMap data in a whole genome association study within CEU
samples.
doi:10.1371/journal.pgen.0030170.g003

Figure 4. Total Power to Detect a Single Common Risk Allele outside of

the HapMap Data Using 1,000 cases and 1,000 Controls under a

Multiplicative Model

The power is estimated using the common SNPs in 68 resequenced
SeatleSNPs genes that were not characterized in the HapMap Project for
(A) 23 CEU samples using HumanHap550 and (B) 24 YRI samples using
HumanHap650Y. Power is calculated for a 5% false discovery rate after a
Bonferroni correction for multiple testing (red line). The solid black line
shows the power to detect a common risk allele in the HapMap data (i.e.,
solid red lines in Figure 2).
doi:10.1371/journal.pgen.0030170.g004
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have combined our power calculations to estimate the
genome-wide power for a variety of disease models and study
designs (Tables S2–S5). In 1,000 cases and 1,000 controls, the
minimum relative risks that we can detect at 80% power is
;10%–18% higher genome wide compared with our esti-
mates for just the HapMap data. In 10,000 cases and 10,000
controls the minimum relative risks that we can detect at 80%
power is ;4%–8% higher genome-wide compared with our
estimates for just the HapMap data (Tables S2–S5).

Power for Multiple Loci
The power calculations shown above were done assuming

that a single, common risk allele is represented in the
genome. For most complex traits with a significant genetic
component, multiple risk alleles and loci are likely to be
involved [25]; therefore, the power estimates calculated under
the assumption that there is only one risk allele may be overly
conservative. Risk alleles have been detected in multiple
genes for many diseases [26–33].

While the most desirable case power-wise is to have a single
high-risk allele that explains the entire genetic component of
a disease, the presence of multiple risk loci will improve the
power for association studies—compared with a single loci of

the same frequency and risk—if the loci are segregating
independently and noninteractively in the population. For
example, if there are two risk alleles segregating independ-
ently, and one confers a multiplicative relative risk of k¼ 1.5
and the other k¼ 1.6, the genome-wide power to detect each
SNP in 1,000 cases and 1,000 controls is 0.42 and 0.59,
respectively (Table S2). However, the power to detect at least
one of the two risk loci is one minus the probability that we
do not detect either locus (0.76), greatly improving the power
to detect any particular single locus. To further illustrate how
the power improves when multiple loci are involved, we
started from the whole-genome estimates and examined the
case where a phenotype has genetic risk factors at two or four
unlinked loci (see Methods). If two unlinked loci are involved,
studies with the same sample sizes and power may be able to
detect smaller gene effects (Figure 5). As shown in Tables 2
and 3, at 80% power, the minimum relative risk to detect at
least one of the two risk alleles can be as much as 17% smaller
for the multiplicative model and 23% for the additive model.
If four unlinked loci are involved, even smaller gene effects
may be detected at 80% power given the same sample size.
The minimum relative risk detectable with 80% power can be
as much as 23% smaller for the multiplicative model and 36%
for the additive model when four unlinked loci are involved
(Tables 2 and 3). These values require that each risk allele
confers at least the same relative risk or greater and thus can
only be considered rough estimates. Even so, the presence of
multiple unlinked risk alleles will greatly improve the power
of association studies.

Discussion

Just as high-throughput sequencing and the human
genome project have greatly advanced the study of genomics
[34], so have advances in high-throughput genotyping and the
HapMap project enabled association studies at a whole-
genome level. Using data from the International HapMap
Project [6], we have constructed genotyping panels for whole-
genome association studies. These panels are invaluable tools

Figure 5. Power to Detect At Least One Risk Allele in CEU (Human-

Hap550) and YRI (HumanHap650Y) in 1,000 Cases and 1,000 Controls

under a Multiplicative Model

Curves represent the cases where there is a single risk locus (red), two
independent loci (blue), or four independent loci (green). The red lines
are the single risk loci as shown in Figure 4. Under the multiple loci cases,
the relative risk represents the minimum risk for all risk alleles and the
corresponding power represents a lower bound on the power.
doi:10.1371/journal.pgen.0030170.g005

Table 2. Minimum Risk Detectable at a p-Value � 0.05 after a
Bonferroni Correction for Multiple Testing (v2 ‡ 28.5687 for CEU
and v2 ‡ 28.8976 for YRI) with 80% Power under the
Multiplicative Model for Various Sample Sizes and Number of
Unlinked Disease Loci

Samples CEU YRI

1 locus 2 loci 4 loci 1 locus 2 loci 4 loci

500 .2.00 1.884 1.698 .2.00 .2.00 1.833

1,000 1.870 1.581 1.471 .2.00 1.739 1.551

2,000 1.578 1.391 1.318 1.782 1.491 1.376

3,000 1.463 1.311 1.270 1.615 1.392 1.294

4,000 1.391 1.280 1.229 1.523 1.342 1.269

5,000 1.353 1.254 1.191 1.464 1.296 1.238

6,000 1.315 1.221 1.184 1.416 1.278 1.199

7,000 1.291 1.197 1.180 1.384 1.260 1.191

8,000 1.277 1.191 1.177 1.361 1.242 1.186

9,000 1.263 1.187 1.174 1.338 1.223 1.182

10,000 1.250 1.184 1.171 1.316 1.202 1.179

doi:10.1371/journal.pgen.0030170.t002
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for discovering etiologic variants of complex diseases. We
have shown that, given a sample size of 1,000 cases and 1,000
controls, these panels have the power to detect single disease
loci of moderate risk (k ;1.8–2.0). Relative risks as low as k
;1.2–1.3 can be detected using 10,000 cases and 10,000
controls, depending on the sample population and disease
model. If multiple loci are involved, the power increases
significantly such that relative risks 20%–35% lower can be
detected with 80% power if between two and four independ-
ent loci are involved. Although our SNP selection was based
on HapMap data, which is a subset of all common SNPs, these
panels effectively capture the majority of all common
variation and provide high power to detect risk alleles that
are not represented in the HapMap. Additionally, we have
focused on common (MAF ‡ 0.05) variants in this study, and
it should be stressed that because there are many more rare
variants in the population, there will likely be many more
rare risk alleles. The power for these rare risk alleles will be
much lower than the average power that we have used (e.g.,
dashed lines in Figure 2), and discovering these low-frequency
risk alleles will likely require resequencing efforts.

Using the known relationship between sample size and r2

[3,22], we estimated the probability of having a positive
outcome under various scenarios of study size and different
disease models (i.e., risks). Recently, this relationship between
r2 and sample size has been questioned [23]. It is true that if
tag SNPs are selected using small sample sizes, the LD
between SNPs will be upwardly biased compared with larger
datasets but this bias will only be large if the training sample
is small and/or the LD criteria used to select the tag SNPs is
low. When tag SNPs are selected using high-LD criteria (e.g.,
r2 . 0.5 ) and sample sizes are greater than ;50 samples, this
bias is minimal (e.g., Figure 1 of [23]). Because our tag SNPs
are selected using a stringent r2 criteria (r2 . 0.8) and more
than 50 individuals were genotyped in each of the CEU, CHB
þ JPT, and YRI populations, the bias in LD will be small for
these tag SNPs [35].

One method to increase power in a whole-genome
association study is to use imputation methods to infer

genotypes for unobserved markers [30,36,37]. This method
relies on phased genotype data from a known set of
genotyped markers, i.e., the HapMap. The reliability of the
imputed genotyped data is dependent on how well correlated
the observed (genotyped) SNPs are to the unobserved
(imputed) genotyped SNPs. Therefore, whole-genome geno-
typing panels selected using tag SNPs would likely provide
more reliably imputed genotypes as the same number of non-
tag SNPs. Reliability of the inferred genotypes is also
dependent on the study population being similar to the
HapMap population being used to impute genotypes.
The use of multi-marker haplotypes would also increase

power in a whole-genome association study by providing
greater specificity for detecting the actual risk allele [38–41].
In the extreme example where allelic heterogeneity exists and
the disease variant occurs on two different haplotypes, where
each haplotype does not contain any alleles in common (i.e.,
AB versus ab), the association would be missed using single-
marker analysis, but could be detected if a haplotype analysis
was used. The power estimated in this paper used single-
marker analysis only, and therefore power could be improved
beyond what is presented here if multi-marker haplotypes are
used.
Since we made the assumption that risk alleles exist as

either a single noninteractive SNP or a couple of unlinked
loci, it is important to understand how our results would be
affected if some of the risk alleles are in LD with one another.
If multiple risk alleles are in LD with one another then they
could mask the signal of each other and be much more
difficult to detect in simple association studies. An extreme
example of how one risk allele may mask another would occur
is if two risk alleles (both of which confer the same risk) were
in perfect LD such that every chromosome contained one of
the risk alleles but never contained both (i.e., D9¼�1). In this
example, the genetic risk factors would be impossible to
detect using simple association studies. While this scenario
may occur, it seems unlikely that this would be any more
prevalent than a scenario where the risk alleles are correlated
in such a way that they increase the probability of detection;
e.g., both risk alleles always occur on the same chromosome
(i.e., D9¼ 1). Thus, our results probably represent the average
scenario and some association studies will have more power
and some will have less power, due to LD between risk alleles.
A more difficult example would occur when there are
epistatic interactions between loci that mask the overall gene
effect signal that we would expect to get from each marker
independently. Searching for these types of interactions will
require at the very least multi-marker analyses. The power
calculations presented here do not cover epistatic disease
models and our results would substantially overestimate the
power under these disease models.
Complex diseases as a group vary across of range of genetic

risks, environmental factors, and other complexities. At one
extreme are the simpler diseases that contain relatively strong
genetic components, such as Crohn Disease (sibling relative
risk, ks ¼ 17–35 [42,43]) and Type I Diabetes (ks ¼ 15 [44]).
Isolating the high-risk genetic components for diseases
similar to these may not require as many markers or samples
because even SNPs that are loosely correlated with markers of
these risks will be expected to show association. Conversely,
diseases towards the other end of the spectrum of complexity,
such as Type 2 Diabetes Mellitus (ks¼3 [45]), where many risk

Table 3. Minimum Risk Detectable at a p-Value � 0.05 after a
Bonferroni Correction for Multiple Testing (v2 ‡ 28.5687 for CEU
and v2 ‡ 28.8976 for YRI) with 80% Power under the Additive
Model for Various Sample Sizes and Number of Unlinked Disease
Loci

Samples CEU YRI

1 locus 2 loci 4 loci 1 locus 2 loci 4 loci

500 .2.00 1.820 1.504 .2.00 .2.00 1.734

1,000 1.836 1.415 1.183 .2.00 1.654 1.346

2,000 1.494 1.196 ,1.10 1.733 1.362 1.133

3,000 1.367 1.114 ,1.10 1.542 1.252 ,1.10

4,000 1.293 ,1.10 ,1.10 1.439 1.189 ,1.10

5,000 1.250 ,1.10 ,1.10 1.372 1.151 ,1.10

6,000 1.215 ,1.10 ,1.10 1.324 1.121 ,1.10

7,000 1.188 ,1.10 ,1.10 1.288 ,1.10 ,1.10

8,000 1.170 ,1.10 ,1.10 1.264 ,1.10 ,1.10

9,000 1.155 ,1.10 ,1.10 1.242 ,1.10 ,1.10

10,000 1.142 ,1.10 ,1.10 1.221 ,1.10 ,1.10

doi:10.1371/journal.pgen.0030170.t003
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alleles, each with relatively small gene effects, are expected to
occur, will require denser marker sets and larger samples sizes
to detect an association [46]. To detect risk alleles, a key
component is the design of genome-wide association studies.
For example, in choosing patient samples, case subjects with
specific disease subphenotypes are collected to decrease
phenotypic heterogeneity and appropriate controls are used
to eliminate false positives from population stratification
[31,47] . A second key component to genome-wide association
studies is the marker set. To address this, we have designed
the HumanHap550 and HumanHap650Y whole-genome
genotyping panels to maximize the likelihood of detecting
etiologic variants. By selecting tag SNPs, we reduced the
amount of required genotyping of more than 2 million
common HapMap SNPs to ;550,000–650,000 while retaining
most of the power (e.g., Figure 2). Furthermore, to increase
the chance of detecting etiologic variants, we have selected
SNPs in gene regions and regions that have historically been
overrepresented in disease, such as copy-number variation
regions and mitochondrial DNA. Already, the success of
genome-wide association studies are coming to bear and
candidate risk alleles have been discovered for several
disorders [26–33,47–56]. In summary, whole-genome tag
SNP panels, such as the HumanHap550 and HumanHap650Y
panels, should greatly aid in our understanding of how
genetic variation affects both human health and disease.

Methods

Public data used. HapMap release 16c, 20, and 21 data were
downloaded from http://www.hapmap.org/. The filtered, nonredun-
dant genotypes were used for all analyses. SeattleSNPs data were
downloaded on 29 September 2006 from http://pga.gs.washington.
edu/. SeattleSNPs sequenced 23 CEU and 24 YRI unrelated
individuals from the HapMap samples. Tajima’s D values for the
SeattleSNPs genes were taken directly from the SeattleSNPs website.
The 18,411 RefSeq genes and their coordinates were downloaded
from the University of California Santa Cruz (UCSC) genome browser
(hg17; http://genome.ucsc.edu/). Genomic regions demonstrating
conservation across species and the respective PHAST scores were
downloaded from the UCSC genome browser (phastConsEle-
ments.txt.gz). Copy number variant (CNV) regions of the genome
were obtained from the Database of Genomic Variants (http://
projects.tcag.ca/variation/), consisting of 2,714 CNV loci (February
2007). All SNP coordinates are shown with respect to build 35 and
dbSNP124.

Data quality. To validate the whole-genome genotyping panels,
accuracy and completeness of the genotypes generated on both the

HumanHap550 and HumanHap650Y panels were measured with
respect to call rates, Mendelian inconsistencies, reproducibility, and
concordance to HapMap genotype data. These data quality param-
eters are shown in Table 4.

Tag SNP selection. Tag SNPs were by chosen from HapMap data
using an algorithm incorporating the LD statistic r2 [19]. The genome
was divided into 1-Mb nonoverlapping segments, and pairwise r2

values were calculated for loci within 200 kb. Approximately 314,000
SNP loci were first selected from the CEU population from the Phase
I HapMap data (release 16c). HapMap release 16c had approximately
775,000 SNP loci with MAF ‡ 0.05 in the CEU population. First, tag
SNPs were chosen using a strict r2 threshold of 0.8. If any SNP in a bin
of correlated SNPs was within 10 kb of a RefSeq gene or in an
evolutionarily conserved region (ECR), the tag SNP was retained as a
‘‘must-keep’’ SNP. A SNP was defined as being in an ECR if the SNP
mapped to one of the phastCons elements with a PHAST score ‡ 50.
A second analysis was done using a less-stringent r2 threshold of 0.7,
choosing additional tag SNPs genome-wide in addition to the ‘‘must-
keep’’ tag SNPs selected from the previous analysis. This strategy
provided a higher density of tag SNPs within 10 kb of genes or in
ECRs.

To construct the HumanHap550, an additional ;240,000 tag SNPs
were selected from the Phase II HapMap data (release 20) and
combined with 313,505 HumanHap300 loci. Using the Human-
Hap300 tag SNP list as ‘‘must-haves,’’ an analysis was conducted using
the full release 20 data in the CEU population (.2,100,000 SNPs with
MAF ‡ 0.05), prioritizing tag SNP selection for those loci that were
polymorphic in all HapMap populations. Again, SNP selection in the
CEU population was done choosing a higher density of tag SNPs
within 10 kb of RefSeq genes and in ECRs (r2 ¼ 0.8 in gene regions/
ECRs; r2¼ 0.7 in rest of the genome). All tag SNPs were retained with
the exception of singleton bins (those SNPs not tagging any
additional SNPs) not within 10 kb of a gene or in an ECR. An
additional tag SNP was selected for those bins with 10 or more loci.
After the core set of tag SNPs were determined in the CEU
population, additional tag SNPs were included from the Han
Chinese/Japanese (CHB þ JPT; all bins .2 SNPs at r2 ¼ 0.8) and
Yoruba populations (YRI; all bins .4 SNPs at r2 ¼ 0.7), respectively.
Additional content was added to the panel including 7,779 nsSNPs,
177 mitochondrial SNPs (selected from http://www.broad.harvard.
edu/mpg/tagger/mito.html [57]), 4,284 SNPs in 495 reported copy
number regions of the genome [58–60], and a higher density of tag
SNPs in the MHC region. After this final list was selected, any gaps ‡
100 kb between common SNPs for each population were filled with
common SNPs for that particular population. The mean spacing
between consecutive common SNPs on autosomal chromosomes is
5.5 kb, 6.5 kb, and 6.3 kb for CEU, CHBþ JPT, and YRI, respectively.

To construct the HumanHap650Y, 100,000 additional YRI-specific
tag SNPs were added to the 555,532 previously selected SNPs. Using
the 555,532 tag SNPs list as ‘‘must-haves,’’ an analysis was conducted
using the release 20 data in theYRI population and tag SNPs from the
largest bins were selected (bins .2 SNPs, r2¼0.7). The mean spacing
between consecutive common SNPs on autosomal chromosomes is
5.3 kb, 6.2 kb, and 5.4 kb across the genome in the CEU, CHBþ JPT,
and YRI populations, respectively.

To calculate coverage of HapMap or SeattleSNPs, pairwise r2

Table 4. HumanHap550 and HumanHap650Y Data Quality

Parameter HumanHap550 HumanHap650Y

Counts % Counts %

Total samples 120 159

CEU samples 52 52

CHB + JPT samples 30 30

YRI samples 38 77

Replicate DNA samples 8 11

Parent–offspring trios 28 28

Call rate 66,498,377/66,642,240 99.78% 103,243,756/103,722,362 99.54%

Reproducibility 4,421,059/4,421,414 99.99% 7,134,117/ 7,131,998 99.99%

Mendelian inconsistencies 5,534/15,452,032 0.036% 7,071/17,172,467 0.039%

HapMap concordance 59,189,425/59,341,039 99.74% 91,993,171/92,232,370 99.74%

doi:10.1371/journal.pgen.0030170.t004
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values were calculated using the expectation algorithm [20] based on
the genotypes from HapMap release 21 and the 68 genes resequenced
in the PGA samples. Maximum r2 values were calculated for each SNP
list (HapMap release 20 or 68 PGA genes) with a SNP on either
HumanHap550 or HumanHap650Y. All pairwise combinations were
considered within 200 kb. For chrX, only female individuals were
used; otherwise, all unrelated individuals were used.

Power to detect risk alleles. To calculate the power to detect a risk
allele with a given risk, risk allele frequency and sample size we
generated a series of simulated datasets. For a single sample, we
assigned the genotype homozygous for the risk allele and hetero-
zygous or homozygous for the nonrisk allele with Hardy-Weinberg
probabilities p2, 2pq, q2 where p is the frequency of the risk allele and q
¼ 1 � p is the frequency of the nonrisk allele. An individual sample
was assigned a disease status with probabilities defined by the disease
model and assigned as a case or control accordingly. For example, for
an associated risk, k, under a multiplicative model and a baseline risk,
p, an individual has the probability being a case of k2p, kp and p
depending on whether that individual is homozygous for the risk
allele, heterozygous, or homozygous for the nonrisk allele, respec-
tively [61]. Using a program written in C, we generated the allele
frequencies for 10,000 case-control simulations following the above
procedure for a wide range of risk allele frequencies, disease models,
and sample sizes. We then calculated the v2 value for the
corresponding 2 3 2 table of allele frequencies and estimated the
power for each case as the fraction of times that the v2 value
exceeded the p-value 0.05 after a Bonferroni correction for multiple
testing (v2 ‡ 28.5687 for HumanHap550 and v2 ‡ 28.8976 for
HumanHap650). This amounted to 188,600,000 simulated case
control calculations for each disease model examined (multiplicative
and additive).

Using the above power estimates, for each genotyped SNP or SNP
tagged at r2¼ 1, we assigned it a power value according to its minor
allele frequency for each disease model and study design (i.e., number
of cases and controls). This allows us to do a single power estimation
for each of the possible minor allele frequencies (5%–50% in
increments of 1%) rather than doing an individual calculation for all
possible ;2.2 million common SNPs. This method works when the
SNP is directly genotyped or perfectly correlated with one of the
genotyped SNPs. Alternatively, if the risk allele is not directly
genotyped but instead, one or several nearby markers are genotyped,
then the power is expected to be reduced if none of these genotyped
markers are perfectly correlated with the risk allele. The amount that
the power is reduced is equivalent to reducing the study sample size
by r2, where r2 is the maximum LD between the genotyped markers
and the risk allele [22]. For example, genotyping a SNP that is in LD
with a risk allele at r2 ¼ 0.5 in 1,000 cases and controls has the same
power as directly genotyping the risk allele in 500 cases and controls.
In this example, the effective sample size is 500 and is equal to the
actual sample size multiplied by r2. When the power for the effective
sample size was not previously calculated, we linearly interpolated
between the power values calculated for sample sizes above and below
to estimate the power.

The probability of detecting a SNP in a case control study is the
probability that the SNP is a risk allele multiplied by the power to
detect it if it is a risk allele [62]. Assuming that a single risk allele is
involved in a disease and each SNP is equally likely to be a risk allele,
then the total power, PT, for all SNPs is just the sum of the powers for
each SNP and given by the equation:

PT ¼
1
N

XN

i¼1
Pi; ð1Þ

where Pi is the power to detect an association at SNP i and N is the
number of SNPs.

Writing the probability that a SNP is in the HapMap data as PH, the
total power for the entire genome, PA, can be written as:

PA ¼ PHPT
H þ ð1� PHÞPT

NH ; ð2Þ

where PH is the probability that the risk allele is in the HapMap data
and (1 � PH) is the probability that that risk allele is outside of the
HapMap data, PT

H is the power to detect one of the HapMap SNPs,
and PT

NH is the power to detect one of the non-HapMap SNPs. It is
estimated that PH, common SNPs represented in the HapMap data,
represents 30% of all common SNPs [24], so PH ¼ 0.30. The power
values, PT

H and PT
NH , are taken from the simulated estimates according

to the disease model and study design (e.g., Tables S1–S4).
Power to detect multiple risk alleles. For a given set of N risk alleles

of unknown frequency and total powers P0, P1,. . .,PN, the probability

of detecting at least one of these risk alleles—if they are independent
of each other—is equal to 1� (1�P0)(1�P1),. . .,(1�PN), assuming the
risk alleles are independent of one another. While knowing the risks
associated with all disease markers is not likely, the lower bound of
this estimate can be calculated as 1� (1� Pi)

N where Pi is the power
for the lowest-powered risk allele and N is the number of
independent loci. Thus, if the power to detect a single risk allele is
0.5 and there are two risk alleles, then the power to detect one of
these risk alleles is 0.75, and if there are three risk alleles, then the
power to detect at least one risk allele is 0.875.

Supporting Information

Figure S1. Total Power to Detect a Single Common Risk Allele in the
HapMap Data Using HumanHap550 for CEU (A) and CHBþ JPT (B)
and HumanHap650Y for YRI (C) in a Study Size of 1,000 Cases and
1,000 Controls under an Additive Disease Model

Power is calculated for a 5% false discovery rate after a Bonferroni
correction for multiple testing (red line). The solid black line
represents the power to detect a risk allele if all the common
HapMap SNPs in each respective population are genotyped using the
same significance cutoff. Also shown are the powers for different
frequency ranges as dashed lines where the lower line indicates the
power for risk allele frequencies from 5%–10% and the upper line
indicates the power for risk allele frequencies from 40%–50%.

Found at doi:10.1371/journal.pgen.0030170.sg001 (17 KB PDF).

Figure S2. The Minimum Risk Detectable at 80% Power for Various
Sample Sizes (N Cases and N Controls) under Multiplicative (Red) and
Additive (Blue) Models

Power is calculated as the ability to detect a single common risk allele
in the HapMap data in a whole-genome association study within CHB
þ JPT (A) and YRI (B) samples.

Found at doi:10.1371/journal.pgen.0030170.sg002 (17 KB PDF).

Figure S3. Total Power to Detect a Single Common Risk Allele
Outside of the HapMap Data Using 1,000 Cases and 1,000 Controls
under an Additive Model

The power is estimated using the common SNPs in 68 resequenced
SeatleSNPs genes that were not characterized in the HapMap Project
for (A) 23 CEU samples using HumanHap550 and (B) 24 YRI samples
using HumanHap650Y. Power is calculated for a 5% false discovery
rate after a Bonferroni correction for multiple testing (red line). The
solid black line represents the power to detect a common risk allele in
the HapMap data from Figure S1.

Found at doi:10.1371/journal.pgen.0030170.sg003 (13 KB PDF).

Figure S4. The Minimum Risk Detectable for Common SNPs outside
of the HapMap Data at 80% Power for Various Sample Sizes (N Cases
and N Controls) under Multiplicative (Red) and Additive (Blue)
Models

Power is calculated using the SeattleSNPs data and defined as the
ability to detect a single common risk allele outside the HapMap data
in a whole-genome association study within either CHBþ JPT (A) or
YRI (B) samples.

Found at doi:10.1371/journal.pgen.0030170.sg004 (16 KB PDF).

Table S1. Tajima’s D statistic on PGA genes

Found at doi:10.1371/journal.pgen.0030170.st001 (31 KB DOC).

Table S2. Power in CEU Samples for Multiplicative Model

Found at doi:10.1371/journal.pgen.0030170.st002 (102 KB DOC).

Table S3. Power in CEU Samples for Additive Model

Found at doi:10.1371/journal.pgen.0030170.st003 (103 KB DOC).

Table S4. Power in YRI Samples for Multiplicative Model

Found at doi:10.1371/journal.pgen.0030170.st004 (105 KB DOC).

Table S5. Power in YRI Samples for Additive Model

Found at doi:10.1371/journal.pgen.0030170.st005 (103 KB DOC).
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