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ABSTRACT 
Accurate diagnosis of power transformers is critical for the reliable and cost-effective 

operation of the power grid. Presently there are a range of methods and analytical 

models for transformer fault diagnosis based on dissolved gas analysis. However, these 

methods give conflicting results and they are not able to generate uncertainty 

information associated with the diagnostics outcome. In this situation it is not always 

clear which model is the most accurate. This paper presents a novel multiclass 

probabilistic diagnosis framework for dissolved gas analysis based on Bayesian 

networks and hypothesis testing. Bayesian network models embed expert knowledge, 

learn patterns from data and infer the uncertainty associated with the diagnostics 

outcome, and hypothesis testing aids in the data selection process. The effectiveness of 

the proposed framework is validated using the IEC TC 10 dataset and is shown to have 

a maximum diagnosis accuracy of 88.9%. 

   Index Terms — dissolved gas analysis, transformer diagnosis, condition monitoring, 

Bayesian networks, Normality test probabilistic diagnosis. 

 

1 INTRODUCTION 

 POWER transformers are vital components in the power 

transmission and distribution systems. The consequences of a 

power transformer failure can result in economic and safety 

penalties. Accordingly, they tend to be a focus for condition 

monitoring research and applications, e.g. [1], [2]. Transformers 

are complex assets and different parameters have been used for 

transformer health management [3], [4]. This paper focuses on 

transformer insulation health assessment through dissolved gas 

analysis (DGA) [5]. Operational and fault events in the transformer 

generate gases which are dissolved in the oil. DGA is a mature and 

industry-standard method that focuses on the measurement of 

concentrations of these gases over time [5]. The effective 

application of DGA enables a timely diagnosis of possible 

insulation problems, e.g. [6]. 

The gassing behavior of the transformer is typically analyzed  

 

with respect to the rate of change of fault gas concentrations. In 

order to aid in the rapid diagnosis of possible transformer faults, 

different ratio-based DGA analysis techniques have been proposed 

such as Doernenburg’s ratios [5], Rogers’ ratios [7], or Duval’s 
triangle [8]. According to these techniques, transformer faults are 

classified depending on the predefined range of specific gas ratios. 

However, the limitations of ratio-based DGA diagnosis techniques 

for transformer fault classification are as follows: 

(1) Crisp decision bounds. Tight decision bounds make it 

difficult to generalize the ratio-based techniques for 

different transformers and application environments. 

(2) Deterministic results with 100% assignment to a failure 

mode (FM). This can lead to inconsistencies when different 

techniques point to different FMs with full confidence. 

(3) Classification of different FMs. Some techniques diagnose 

high-level FMs (thermal fault), whereas other techniques 

diagnose lower-level FMs (thermal fault with T>700°C).  

These three issues directly affect the performance of ratio-based 

diagnosis techniques. To overcome these limitations different 
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solutions based on artificial intelligence techniques have been 

proposed (see Section 2). These methods are mostly black-box 

diagnostic models, representing purely numerical connections and 

lacking an interpretation of physical significance. That is, they 

represent data correlations rather than logical causal relationships 

between the transformer faults and dissolved gasses. Besides, 

black-box models do not integrate the uncertainty associated with 

the decision-making process and they assign 100% belief to a 

single failure mode (or a deterministic probability value in the best 

case). These factors affect the interpretation of the results and 

consequently, the adoption of black-box models for industrial 

practice is limited.  

White-box models capture expert knowledge either as a causal 

model or through first-principle models. They generate the 

uncertainty associated with the decision-making process by 

quantifying the probability density function (PDF) of the 

likelihood of different health states. This function represents the 

strength of the model's diagnosis, i.e. the wider the variance, the 

lesser the confidence on the diagnostics outcome and vice-versa. 

For instance, assume that a model has been trained to classify 

certain faults. So long as the test data is comprised of faults which 

are similar to the trained model it should return a prediction with 

high confidence. However, if the model is tested on an unseen 

class of fault, the model should be able to quantify this with 

uncertainty levels, which can convey information about the 

confidence of the diagnostics of the model. This information is 

completely lost with black-box models. 

To the best of the authors’ knowledge, there has not been 

proposed a DGA diagnostics approach that integrates expert 

knowledge, uncertainty modelling, and statistical learning 

techniques, in order to clarify the true diagnosis under the most 

challenging conditions. These challenging conditions arise when a 

given sample is diagnosed as different fault modes by different 

ratio techniques, and no further information is available to help the 

engineer determine the true fault. Therefore, the main contribution 

of this paper is the proposal of a probabilistic diagnosis framework 

based on continuous Bayesian networks and hypothesis testing, 

which can mitigate such situations by providing the engineer with 

a more detailed understanding of the probability of each fault 

mode.  

The proposed framework overcomes the main limitations of 

ratio-based and black-box DGA diagnosis methods. The Bayesian 

framework (i) captures the qualitative causal relationship between 

dissolved gases and transformer faults, and (ii) quantifies the 

conditional density functions corresponding to fault diagnoses 

which integrate the uncertainty criteria. The results obtained 

highlight the importance of taking into account the underlying 

assumptions of the learning techniques when selecting input data. 

The maximum accuracy of the classifier is 88.9%, which is higher 

than other methods tested with the same conditions (multiclass 

classification, IEC TC 10 unbalanced dataset, 80% training and 

20% testing) including ratio-based DGA, discrete Bayesian 

network models, and continuous Bayesian network models which 

do not take into account the distribution of gases. 

The rest of the paper is organized as follows. Section 2 reviews 

related work. Section 3 presents basic concepts of Bayesian 

networks. Section 4 introduces the IEC TC 10 benchmark dataset 

which contains DGA measurements and failure causes [9]. Section 

5 implements hypothesis testing on the IEC TC 10 dataset. Section 

6 presents the proposed probabilistic diagnosis framework. Section 

7 presents results and, finally, Section 8 discusses the proposed 

framework, and presents conclusions and future goals.  

2 RELATED WORK 

2.1 DGA DIAGNOSIS METHODS 

There have been various alternatives proposed to improve the 

accuracy of the ratio-based DGA diagnosis techniques. In this 

paper the DGA diagnosis improvement techniques are divided into 

data-driven artificial intelligence (AI) techniques, fuzzy-logic 

based approaches, and evolutionary computing techniques. 

AI techniques. Different authors have used different AI 

solutions to deal with the ratio-based problems stated in the 

introduction. Mirowski and LeCun [10] tested different AI 

techniques (Support Vector Machines (SVM), k-Nearest Neighbor 

(kNN), C-45, and Artificial Neural Networks (ANN)) using all the 

available gas data in the IEC TC 10 dataset [9]. The classification 

task focuses on identifying “normal” or “faulty” gas samples. 
SVM and kNN solutions show a high accuracy for the binary 

classification problem (90% and 91%, respectively).  

Tang et al [11] used discrete Bayesian Networks (BN) based on 

IEC599 ratios and applied the method to an internal dataset. 

Recently, Wang et al [12] used deep learning techniques through a 

Continuous Sparse Autoencoder (CSA) so as to boost the accuracy 

of the diagnosis up to 99%. The CSA approach is also tested on 

the IEC TC 10 dataset [9] for a multiclass classification problem. 

Normal degradation samples are not taken into account, but they 

classify five types of faults: PD: partial discharge, LED: low 

electrical discharge, HED: high electrical discharge, TF1: thermal 

faults < 700 °C, and TF2: thermal faults > 700 °C. 

Fuzzy logic-based techniques. Fuzzy logic enables the 

specification of vague requirements including uncertainty criteria 

or loosely defined constraints. It has been widely implemented to 

enable the specification of, e.g. soft-boundaries, which enable 

reasoning about the final outcome with uncertain specifications. 

For instance, Abu-Siada et al [13] focus on standardizing DGA 

interpretation techniques through fuzzy logic. The model is tested 

on an internal dataset comprised of 2000 transformer oil samples. 

Fuzzy logic provides a reasoning framework to deal with 

uncertainties and crisp bounds. It is mainly based on the use of 

distribution functions (instead of single-point values) and making 

inferences about the outcome using these distributions. The 

specification of these functions (e.g., triangular, rectangular, or 

Gaussian membership functions) is based on experience and/or 

knowledge. The work introduced in this paper focuses on data-

driven Bayesian inference algorithms in order to determine these 

bounds and deal with uncertainties. The proposed approach avoids 

relying solely on expert knowledge and extracts knowledge (i.e. 

the distribution functions) directly from data. 

Evolutionary computing algorithms. These techniques are 

focused on optimizing the selection of input parameters (i.e., raw 

gases or ratios) through metaheuristics so as to improve the 

diagnosis accuracy. Shintemirov et al [14] resample the DGA data 



 

using bootstrap techniques to equalize the number of samples for 

each of the considered four classification groups (normal 

degradation, LED, HED, and thermal faults). Then classification 

features are generated from the synthetic dataset based on 

trigonometrical functions. Subsequently Genetic Programming 

(GP) techniques select optimal input features for the classifier. 

Using the selected features, ANN, kNN, and SVM models are 

trained as classifier models and kNN obtains the highest accuracy 

(92%) with 45 neighbors and 8 input features. 

Abu-Siada et al [6] present a transformer criticality assessment 

based on DGA data through gene expression programming. They 

assign the criticality and failure cause to the model output. The 

model is tested using an internal dataset comprising of 338 oil 

samples of different transformers. Recently Li et al [15] defined 28 

ratio candidates, and used Genetic Algorithms (GA) to choose a 

set of input ratios and SVM parameters which maximize the 

classification accuracy. The optimal ratio and parameter selection 

is based on the accuracy of the classifier for each GA iteration. 

Then they classify faults through SVM models using the optimal 

ratio and classifier parameters. The model is tested on the IEC TC 

10 dataset with an absolute maximum accuracy of 92%.  

 

2.2 LIMITATIONS OF ARTIFICIAL INTELLIGENCE 

AND EVOLUTIONARY METHODS APPLIED ON THE 

IEC TC 10 DATASET 

Although the diagnosis accuracy of black-box models tends to 

be high, these models lack a representation of uncertainty and 

there is no explainability of the results. Therefore, these techniques 

may be less desirable for engineering usage, since there is no 

further information about the confidence in the result. The 

engineer must trust that a given oil sample is one of the nine in ten 

that is correctly diagnosed, and not the one in ten that is 

misclassified. Secondly, the test conditions for these black-box 

models are different (fault classes, number of training and testing 

samples), and therefore, it is not always possible to directly 

compare classification results. 

Table 1 displays methods applied to the IEC TC 10 dataset 

divided into fault classes, number of training and testing samples, 

outcome of the diagnosis model and accuracy of the classifier. 

 
Table 1. DGA methods tested on IEC TC 10 dataset. 

Ref Method Fault classes Train/test 
Diagnosis 

Outcome 
Acc. 

[10] 

kNN 

{Normal, Fault} 134/33 

Binary value 91% 

SVM 
Deterministic 

probability 
90% 

ANN Binary value 89% 

[12] CSA 
{PD, LED,  

HED, TF1, TF2} 
125/9 Binary value 99% 

[14] GP+kNN 
{Normal, LED, 

HED, Thermal} 
830/228 

Binary value 
92% 

[15] GA+SVM 
{Normal, LED,  

HED, TF1, TF2} 
134/33  Binary value 92% 

 

The results in Table 1 show that AI techniques (along with 

metaheuristics) can improve the accuracy of transformer fault 

diagnosis based on the IEC TC 10 dataset under some specific 

conditions and for some specific applications. Applications are 

focused on black-box models (ANN, kNN, SVM, CSA) or a 

combination of learning methods (GP + kNN, GA + SVM). These 

models have been applied to “fault/no fault” [10] and multiclass 

[12], [14], [15] classification problems. This paper focuses on 

multiclass classification problems, and accordingly, comparisons 

are made with multiclass diagnostics methods. 

The number of training and testing samples directly influences 

the classification accuracy. The more samples that are used for 

training (and the less for testing), the greater will be the accuracy 

of the classifier (e.g. [12]). However, the generalization of the 

diagnostics model is penalized when the testing set is much smaller 

than the training set. Therefore, this work adopts the 80% training, 

20% testing approach (i.e., 134 training and 33 testing samples in 

the IEC TC 10 dataset). 

It is true that stochastic optimization methods along with black-

box models (GP in [14] and GA in [15]) can increase the accuracy 

of the diagnosis model by selecting gas samples that minimize the 

error, or resampling the data space to balance the data from each 

fault class. Resampling methods generate synthetic data samples 

by analyzing the statistical properties of the inspection data. 

However, this process may impact the adoption of these methods 

in the industry because with the extra synthetic data generation 

process there is a risk of losing information when undersampling 

and overfitting when oversampling [16]. The use of complex and 

highly parametric models increases the risk of overfitting the 

training data and worsening the generalization of the diagnostics 

model [10]. Therefore, these techniques are not implemented in 

this work. 

Additionally the analyzed black-box models lack an explanation 

of physical significance because they represent the correlation 

obtained from the training data instead of causal relationships 

among variables. Besides, the selection of hyper-parameters 

affects the model performance and this is not driven by 

engineering knowledge. Metaheuristics as in [14], [15] can aid in 

the selection of hyper-parameters, but then the application of the 

method is prone to overfitting and the selection of these parameters 

has no physical meaning (e.g. number of neighbors of kNNs, 

number of hidden units or neurons of ANN, the architecture in a 

CSA model, or the penalty factor and kernel of SVMs). 

As for the diagnostics outcome and uncertainty management of 

black-box models, they lack mechanisms to include uncertainty 

criteria. Generally these methods generate either a binary value 

indicating if a certain fault class has occurred or not, or a 

deterministic probability value indicating the discrete probability 

of the occurrence of a fault. Continuous Bayesian networks enable 

the inclusion of uncertainty information by generating density 

functions of the DGA gases and classification results. These 

density functions include uncertainty criteria that have also been 

modelled with Fuzzy models to specify probabilistic decision 

bounds (e.g. [13]). However, the uncertainty information is lost in 

the diagnostics outcome with these models. 

Finally, note also that the reported accuracy values in Table 1 

are calculated in different ways. While [12] and [14] report the 

mean accuracy plus the standard deviation, [15] shows the 



 

absolute maximum accuracy. This work will extract a set of 

accuracy figures from the randomly sampled IEC TC 10 dataset, 

and then the reported accuracy will be based on the mean and 

standard deviation of these results. 

As demonstrated in [11] Bayesian networks can provide a solid 

probabilistic diagnosis framework. Accordingly, this work focuses 

on probabilistic diagnosis models based on Bayesian networks. 

The work presented below extends the work in [11] by proposing 

a diagnosis framework using not only discrete Bayesian network 

configurations (including ones for the Duval, Doernenburg and 

Rogers methods), but also through extending the application 

framework for continuous Bayesian networks. The BN 

framework enables the integration of expert knowledge and 

data through a causal representation of the variables linking 

causes (fault classes) with their effects (DGA gases). After 

learning the conditional probabilities from the training dataset, 

in the continuous BN model the likelihood of each node 

reflects the uncertainty associated with the decision-making 

process.  

The proposed method is tested on the publicly available IEC TC 

10 dataset and can be used as a benchmark for other techniques. 

The conditions for training and testing the model are based on 

the original unbalanced IEC TC 10 dataset, and treated as a 

multi-class classification problem. 

3 BASICS OF BAYESIAN NETWORKS 

Bayesian networks (BN) are statistical models that use 

stochastic graphical models to represent probabilistic 

dependencies among random variables [17], [18]. The structure of 

the BN model is interpretable as each state can be mapped to the 

health condition of the component under study. 

In a Bayesian network model, a directed acyclic graph (DAG) 

represents graphically the relation between random variables [17], 

[18]. Assume that the DAG is comprised of p random variables, 

denoted X={X1=x1,…, Xp=xp}. These variables are linked through 

edges to reflect dependencies between variables (see Figure 1). 

In BN terminology a node x1 is said to be a parent of another 

node x2 if there exists an edge from x1 to x2, and x2 is a child of x1. 

 

 
Figure 1. Discrete Bayesian network example. 

 

The directed edges in the DAG represent dependencies. 

Statistically, dependencies between random variables are 

quantified through conditional probabilities. For instance the 

conditional probability of node x2 dependent on node x1, P(x2 | x1), 

is specified as follows (Figure 1): 

 

(1)                      )(/)()|( 11212 xPxxPxxP 
 

 

From the conditional probability in equation (1), Bayes’ theory 
states that the posterior probability, P(x2|x1), can be estimated by 

multiplying the likelihood, P(x1|x2), and the prior probability, 

P(x2), and normalizing with the probability of evidence, P(x1): 

 

(2)              )(/)()|()|( 122112 xPxPxxPxxP   

 

Through the application of the Bayes’ theorem in equation (2) 

inferences are performed in the Bayesian network model, i.e. 

updating the probabilities of nodes given new observations. To this 

end, the qualitative causal structure of the DAG is exploited 

systematically. However, prior to the inference task, the structure 

of the DAG and likelihood values have to be specified through 

expert knowledge or learning algorithms. 

Bayesian networks are a compact representation of joint 

probability distributions [17]. In probability theory, the chain rule 

permits the calculation of any member of the joint distribution of a 

set of random variables using conditional probabilities [17]. 

Accordingly the joint distribution of the set of random variables 

X={X1=x1,…, Xp=xp} is defined as follows: 

(3)                       ),..., |()(
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


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pi xxxPXP  

Using the information encoded in the DAG, equation (3) can be 

simplified to account only for parent nodes. Namely, if X is 

comprised of discrete random variables (e.g., Figure 1), the joint 

probability density function (the global distribution) is represented 

as a product of conditional probability distributions (the local 

distributions associated with each variable xi   X, 1<i<p) [17]: 
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1
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


p

i

i xxP  

where xpa(i) is the set of parents of xi and P(xi|xpa(i)) is the 

conditional probability distribution containing one distribution for 

each variable. If instead X is comprised of continuous random 

variables, the BN model is known as a Gaussian Bayesian network 

(GBN) model, and the joint probability density function is defined 

as [17]: 

(5)                                            ) |((X)
1
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i xxfP  

where f denotes the conditional Gaussian probability density 

function containing one density function for each continuous 

random variable. 

The strength of relations among dependent nodes are 

synthesized through conditional probability tables (CPT). CPTs 

are defined for each node xi   X of the BN model expressing the 

conditional probability distributions (CPD) for all the parent nodes 

xpa(i). If the nodes are discrete random variables, the CPD can be 

expressed as a multinomial distribution (see Subsection 6.1), and 

for continuous random variables, dependencies are expressed 

through Normal distributions (see Subsection 6.2) [17].  

In the discrete case, if a node does not have parents (also known 

as a root node) it will have a marginal probability table (e.g., node 

x1 in Figure 1). If a node does have parents, each cell of the CPT 

will specify the conditional probability for the node being in a 

specific state given a specific configuration of the states of its 



 

parent nodes (nodes x2 and x3 in Figure 1). In the continuous case, 

the CPT of the root nodes will be specified with a univariate 

Normal distribution. If the node has parents, the CPD will be a 

linear combination of Gaussian distributions. 

A BN model is completely defined by the DAG and the 

conditional probabilities between the nodes, i.e. BN=(DAG, θ), 
where θ denotes the parameters of the CPT. The process of 

estimating the conditional probabilities between nodes is called 

parameter learning and the process of estimating the posterior 

distributions (i.e. diagnosis in the presence of specific data) is 

called probabilistic inference. 

 

3.1 PARAMETER AND STRUCTURE LEARNING 

CPT values can be estimated via parameter estimation 

techniques both for continuous and discrete random variables. 

Classical examples of parameter learning techniques for 

Bayesian networks include maximum likelihood estimation 

(MLE) and Bayesian estimation [17]. This paper focuses on the 

MLE algorithm by maximizing the likelihood of making the 

observations given the parameters.  

Given a training dataset D={D1,…,D|train|}, first it is necessary to 

estimate the likelihood L that the dataset was generated by the 

Bayesian network BN=(DAG , θ), and then to find the maximum 

likelihood estimator, ̂ , as follows: 

 

(6)                                      )}|(max{argˆ DL    

 

The MLE algorithm can be seen as the maximization of the 

agreement between the selected parameters and the observed data. 

Depending on the discrete or continuous nature of the random 

variables, the CPD will be modelled with different distributions 

and the likelihood will be different (see Subsections 6.1 and 6.2 for 

DGA examples). 

It is also possible to learn from a dataset the structure of the 

DAG. The problem in this case focuses on finding a BN 

structure which maximizes the value of a scoring function. In 

order to deal with possible overfitting issues, different 

information criteria are used as scoring functions (e.g., Akaike 

or Bayesian information criterion [18]). The structure 

optimization problem can be solved through different 

metaheuristics, and this process is called structure learning 

[17]. The work below focuses on parameter learning steps and 

the DAG model is elicited from knowledge derived from DGA 

standards. Therefore, structure learning techniques are not 

considered further here. 

3.2 PROBABILISTIC INFERENCE 

After determining the structure of the Bayesian network and 

learning the parameters, the BN model can be used to make 

inferences. The goal of this work is to perform diagnosis or causal 

analysis: reasoning from effects (measured DGA values) to causes 

(transformer faults).  

The causal analysis consists of updating the probabilities of 

unobserved nodes through the BN and making inferences about 

the most probable status of the system. That is, measured gas 

values are given as evidence to the BN model and through the 

DAG structure the posterior probability of possible causes is 

evaluated, P(transformer fault | gas data). 

The posterior probability of each node enables inferences to be 

made about the status of unobserved parameters and the most 

likely status for the node. The inference process is different for 

discrete and continuous cases (see Subsections 6.1 and 6.2 for 

details). 

4 INTRODUCTION TO IEC TC10 DATASET 

The IEC TC 10 [9] dataset contains sets of seven different 

gases: ethane (C2H6), ethylene (C2H4), hydrogen (H2), methane 

(CH4), acetylene (C2H2), carbon monoxide (CO), and carbon 

dioxide (CO2) sampled from different transformers, and 

labelled with their corresponding fault mode. Faults are 

classified into Normal degradation samples, Thermal faults 

(T<700°C and T>700°C), Arc faults (low and high energy 

discharges), and partial discharge (PD) faults. 

In order to generate this database, faulty equipment was 

removed from service, visually inspected by experienced 

engineers and maintenance experts, and the fault clearly 

identified. In all cases relevant DGA results were available [9]. 

The IEC TC 10 database also contains typical normal 

degradation values observed in several tens of thousands of 

transformers operating on more than 15 individual networks. 

In total, the dataset is comprised of 167 samples but it is not 

well balanced in relation to proportions of classification types, 

e.g. 5.3% partial discharge failure samples, 44.4% arcing 

failure samples, 20.4% thermal failure samples and 29.9% 

normal degradation samples. The classification of unbalanced 

datasets becomes challenging, especially for those classes 

which have a smaller proportion of data samples, i.e. partial 

discharge in this case. One direct solution is to balance the 

dataset by resampling the data samples for the classes that 

have fewer data samples and change the classification problem 

into a balanced classification problem. However, this may also 

have consequences for generalization and adoption in industry 

(see Section 2). Therefore, this work focuses on unbalanced 

classification problems without modifying the data. 

5 NORMALITY TESTING OF IEC TC 10 DATASET 

Since Bayesian networks with continuous variables use Normal 

distributions for learning and inference tasks, the data that best fit 

with this distribution is expected to generate the most useful 

information for diagnosis. Accordingly, a hypothesis test is 

implemented to analyze if the gases in the IEC TC 10 dataset come 

from the Normal distribution. The following hypotheses are 

defined: 

 H0=data is consistent with the Normal distribution 

 H1=data is not consistent with the Normal distribution 

There are different tests to evaluate the Normality of the data 

and verify if the null hypothesis is satisfied [19]. The main 

difference among different tests is on the evaluated Gaussian 

properties. Test values represent the error when approximating 

with a Normal distribution and therefore the lower the test values, 

the greater the confidence in the null-hypothesis. For simplicity 

this paper focuses on two different tests. 

On the one hand, the Jarque-Bera (JB) test evaluates the 

skewness and kurtosis of the dataset based on the fact that the 

Normal distribution has a skewness of 0 and kurtosis value of 3 



 

[19]. The JB test measure is given by: 

  (7)                      3-K
24

n
S

6

22 
n

JB

 

where n is the number of samples, S is sample skewness, and K is 

kurtosis. 

On the other hand, the Cramer-von Mises (CvM) test evaluates 

the approximation error based on the empirical cumulative 

distribution function [19]: 
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where Φ is the cumulative distribution function of the Normal 

distribution, µ and σ are the mean and standard deviation of data 

values, and n is the number of samples. 

In order to evaluate the representativeness of the results,  

p-values are also calculated. The p-values are defined as the 

probability of obtaining a result equal to or more extreme than was 

actually observed, when the null hypothesis is true. The greater the 

p-value, the higher the confidence (weight) in the null-hypothesis 

(i.e., data comes from a Normal distribution). A widely accepted 

criterion is that if the p-value is below 0.05 the null hypothesis can 

be rejected (i.e. 95% of the times the null hypothesis H0 will be 

correctly rejected), otherwise it is considered to be valid. Table 2 

displays the results obtained from the Normality tests. 

 
Table 2. Normality test results. 

Test 
Jarque-Bera Cramer - von Mises 

Score p Score p 

C2H6 0.34 0.83 0.077 0.22 

C2H4 0.69 0.67 0.14 0.02 

H2 1.36 0.44 0.12 0.05 

CH4 2.74 0.18 0.08 0.15 

C2H2 4.5 0.08 0.17 0.01 

CO 25.69 0.003 0.83 8e-9 

CO2 43.3 0.001 0.83 8e-9 

 

It is possible to see in Table 2 that both tests suggest that the 

best fitted gas is C2H6, and the worst fitted gases are C2H2, CO 

and CO2. Differences between both tests when ranking the rest 

of the gases (C2H4, H2, CH4) arise from the underlying 

properties of each test, however, their p-values suggest 

consistently that the null hypothesis can be accepted. The 

score and p-values of CO and CO2 gases suggest that the null 

hypothesis cannot be accepted, and therefore, it cannot be 

assumed that these gases follow a Normal distribution. 

6 BAYESIAN DIAGNOSIS FRAMEWORK 

Figure 2 shows the proposed Bayesian diagnosis framework 

divided into four main phases: cross-validation, data 

preprocessing, learning and inference. The left path through the 

chart is dedicated to discrete random variables and the process in 

the right path is suited for continuous random variables.  

The goal of the cross-validation stage is to (i) validate each of 

the generated BN models by obtaining more accurate estimates of 

the classification performance of the proposed framework, and (ii) 

assess how the diagnostics results will generalize to an 

independent dataset. To this end, Monte Carlo cross-validations 

are implemented through the following steps [20]: 

(1) Initialize the trial counter, trials=0; 

(2) Random shuffle the dataset and execute preprocessing, 

learning and inference steps, and store the results; 

(3) If trials<Max_trials, iterate from the previous step and 

increase the trial counter by 1; 

(4) If trials=Max_trials, end the loop, and then extract mean 

and standard deviation of the stored diagnosis results; 

 

 
Figure 2. Proposed Bayesian framework. 

 

For each trial, the random shuffle and the train/test steps 

generate different training and testing datasets, and therefore, this 

process trains and tests the framework with Max_trials different 

training and testing datasets (Max_trials=103 trials in this paper). 

As a results this validation process enables higher confidence and 

consistency in the diagnosis results [20].  

The data preprocessing stage starts by applying a log-scale step. 

This step is applied because diagnostic information does not reside 

in absolute gas values but instead in the order of magnitude 

[10]. Firstly, the logarithm of every gas sample in the dataset is 

taken and then each variable in the dataset is scaled to mean zero 

and standard deviation one. This is done for each gas within the 

dataset, by subtracting the mean value and dividing by the standard 

deviation, for each sample of the variable. 

Subsequently, different preprocessing, learning and inference 

algorithms are implemented depending on the nature of the DGA 

data. In both discrete and continuous configurations, as shown in 

Figure 2, the dataset is divided into train/test datasets using the 

80% and 20% of the randomly shuffled dataset, respectively. The 

different activities for discrete and continuous datasets are 

explained in Subsections 6.1 and 6.2 below. 

Different DGA analysis techniques use different fault 

classification criteria for dividing thermal and electrical faults into 

different levels (see Tables 3, 9, and 11). In order to generate 

consistent and comparable results, a common classification 

framework is defined for all the techniques, classifying all possible 



 

transformer insulation failure modes into: Thermal, Arc, PD 

(partial discharge), and Normal degradation. This classification is 

also in agreement with the IEC TC 10 case study dataset, which 

includes samples for each of these failure fault modes. 

The R bnlearn package [18] was used for the implementation of 

learning and inference tasks of the discrete and continuous 

Bayesian network models reported here. 

6.1 PROBABILISTIC DGA THROUGH DISCRETE 

BAYESIAN NETWORKS 

In a discrete Bayesian network model, the conditional 

probability distributions with discrete random variables, P(xi|xpa(i)), 

are commonly expressed through multinomial distributions [17].  

If an experiment which can have k outcomes is performed n 

times and xi denotes the number of times the ith outcome is 

obtained, the mass function of the experiment (and the multinomial 

distribution) is defined as: 
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In this work n will correspond to the number of training gas 

samples, and k will be the possible set of discretized outcomes 

of the sample. The discretization process is explained below. 

The key data preprocessing step for discrete BN models is the 

discretization process. Using the intervals defined by the ratio-

based techniques (Doernenburg, Duval, Rogers), all the DGA data 

can be discretized according to each ratio-based technique. 

Table 3 shows the original Doernenburg’s classification ratio 
values, where R1=CH4/H2, R2=C2H2/C2H4, R3=C2H2/CH4 and 

R4=C2H6/C2H2 [5].  

 
Table 3. Original Doernenburg’s classification ratios [5]. 

R1 R2 R3 R4 Diagnosis 

>1 <0.75 <0.3 >0.4 Thermal 

<0.1 N/A <0.3 >0.4 PD 

0.1-1 >0.75 >0.3 <0.4 Arcing 

 

The classification intervals in Table 3 were discretized through 

the coding shown in Table 4, where the ranges for each ratio were 

drawn from [5]. 

 
Table 4. Doernenburg’s coding values. 

Ratio R1 R2 R3 R4 

Code 0 1 2 0 1 0 1 0 1 

Range ≤0.1 0.1-1 >1 ≤0.75 >0.75 ≤0.3 >0.3 ≤0.4 >0.4 

 

This way it is possible to transform any absolute gas values into 

discretized Doernenburg’s code values.  

The coding for the occurrence of failure modes is specified with 

binary coding (1: occurred, 0: non-occurred), e.g. PD=0, Arc=0, 

Thermal=1, and Normal=0 denotes a thermal fault. 

The same codification process was applied for the Duval’s 
triangle and Rogers’ ratio techniques (see Appendix). 

In order to design the BN structure the links between ratios and 

fault types were examined. For instance, Figure 3 shows the 

discrete BN model for the Doernenburg´s ratio technique, where 

Thermal and Arc faults are determined using R1, R2, R3 and R4; 

and PD uses R1, R3 and R4. Although the classification ratios in 

Table 3 do not include normal degradation values, when designing 

the BN model it is assumed that the Normal condition is indicated 

by the remainder values of all the ratios (i.e. when there is no 

diagnosis of Thermal, Arc, or PD). This allows the model to be 

trained for normal data. 

 

 
Figure 3. Doernenburg’s discrete Bayesian network. 

 

After designing the BN structure, it is possible to estimate the 

conditional probability tables corresponding to each node through 

the maximum likelihood estimation algorithm. In order to simplify 

the maximization process the logarithm of the likelihood function 

was used, i.e. log-likelihood, LL. The log-likelihood of the training 

dataset D = {D1, …, D|train|} is: 
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It is possible to see that the scoring function in equation (10) 

decomposes into a series of terms, one per node xi. The next step is 

the estimation of the parameters of each node’s conditional 

probability values given its local training data. Using the 

multinomial distribution defined in equation (9) the closed form 

solutions for the log-likelihood function can be obtained (see [17] 

for more details). 

The outcome of the learning step is the set of conditional 

probability tables which specify the conditional probabilities for 

each node. Table 5 shows the CPT for a specific configuration of 

the Doernenburg BN model. 
 

Table 5. Subset of the conditional probability table learned from data. 

R1 PD=0, Arc=0, Thermal=1, Normal=0 

0 0.04 

1 0.08 

2 0.88 

 

From the example in Table 5 one can deduce that when there is 

a Thermal fault, the value of R1 is very likely (88%) to be in the 

range determined by the discretized number 2 (R1>1, see Table 4). 

Tracing back this value to the original Doernenburg’s ratio (see 

Table 3) it is possible to see that this matches with a Thermal fault.  

This example node supplies one piece of probabilistic evidence 

for diagnosis. By utilizing the evidence from all nodes for a given 

sample, one can evaluate probabilistically all the possible failure 

types. It is possible to see the benefit of using a probabilistic 

diagnosis framework, where instead of giving a single output, 

more information about the strength of belief in a given diagnosis 

is combined into the overall decision. 

The next step is the inference step (Figure 2). To this end, the 

conditional probability queries are implemented (i.e., 

Pr(Transformer fault|gas data), where gas data is the evidence and 

transformer fault is modelled through BN nodes) through the logic 

sampling algorithm [17]. It is a Monte Carlo simulation approach 



 

which combines rejection sampling and uniform weights [17]. The 

main idea is to generate a set of random variables and then 

estimate the posterior probability, P(xi|xpa(i)), taking as input the 

Bayesian network with N nodes X={X1, …, XN}, and the evidence 

(or test) data E={e1,…,e|test|}. For instance, P(PD=1|e1) is inferred 

given the BN in Figure 3 and e1={R1=1, R2=1, R3=1} as follows: 

(1) Initialize counters: evidence, count(e)=0, and joint scenario 

and evidence, count(x, e)=0; 

(2) Prior distribution sampling specified by the BN: generate 

random samples from parents to children in the BN model 

in topological order. Once parents are sampled proceed in 

the BN structure to obtain the conditional probabilities of 

children. Discretize the results; 

(3) If the generated samples do not satisfy evidence reject 

them, otherwise if they satisfy the evidence (i.e. R1=1, 

R2=1 and R3=1) then increase count(e) by 1; 

(4) If both the scenario and the evidence are true (i.e. PD=1, 

R1=1, R2=1 and R3=1), then increase count (x, e) by 1; 

(5) Repeat steps (2)-(4) for a large number of times; 

(6) Estimate the posterior, P(x|e), as follows:  

P(x|e)=count(x, e)/count (e). 

Given the test data with discretized ratio values and the 

Bayesian network model, this algorithm infers the probability of 

each failure mode. The failure mode with the highest likelihood is 

the final diagnosis of the model.  

The same data processing, learning and inference steps are 

applied for the Duval and Rogers based diagnosis techniques (see 

Appendix). 

6.2 PROBABILISTIC DGA THROUGH GAUSSIAN 

BAYESIAN NETWORKS 

Ratio techniques lend themselves well to discrete Bayesian 

networks, since the ratios are analyzed based on discrete ranges 

specified by each technique. However, these ranges present crisp 

decision boundaries. It may be expected that DGA samples close 

to a ratio boundary will have a different likelihood of indicating a 

fault than another sample near the middle of the range. One 

method of capturing this variation is to treat the ratios as 

continuous random variables.  

When a Bayesian network is comprised of continuous random 

variables the probability tables are replaced by continuous 

distributions. A widely implemented approach adopted in this 

paper is the use of Gaussian Bayesian networks (GBN) [17], [18]. 

In a GBN the conditional probability distributions are defined 

through linear Gaussian distributions and local distributions are 

modelled through Normal random variables, whose density 

function is defined as: 
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where x is the variable under study, µ is the mean and σ2 is the 

variance, often denoted as x~N(µ, σ2). 

Local distributions are linked through linear models in which 

the parents play the role of explanatory variables. Each node xi is 

regressed over its parent nodes. Assuming that the parents of xi are 

{u1,…,uk}, then the conditional probability can be expressed as 

p(xi|u1,…,uk) ~ N(β0 + β1u1+ …+ βkuk; σ2), that is: 
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where β0 is the intercept and {β1,…, βk} are the linear regression 

coefficients for the parent nodes {u1,…,uk}. 

Figure 4 shows the DAG for the GBN model with all gases. 

It is assumed that all gases affect each of the failure modes. 

 
Figure 4. GBN model for all gases configuration. 

 

As in the discrete BN case, the parameter learning process is 

implemented through maximum likelihood estimation by using the 

MLE expression derived from the linear Gaussian density function 

[17]. The log-likelihood of the training dataset  

D = {D1, …, D|train|} is a sum of terms for each node i: 
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Using the linear Gaussian distribution to define the conditional 

probability values, f(xi|xpa(i)), the closed-form solution of log-

likelihood can be estimated (see [17] for more details). 

The outcome of the learning step is the set of conditional 

probability tables which specify the conditional probability density 

functions for each node. Focusing on the GBN model shown in 

Figure 4, the model is first trained with the training set, i.e. a 

matrix with 8 columns (7 gas values and the failure mode) and 

134 rows. The learning step estimates the corresponding 

parameters for each node in the BN model, e.g. for the Arc 

node: P(Arc | C2H6, C2H2, CH4, C2H4, CO2, CO, H2) ~ N(β0 + 

β1C2H6 + β2C2H2 + β3CH4 + β4C2H4 + β5CO2 + β6CO + β7H2; σ2). 

As the graphical representation of the fitted distribution 

becomes complex with more than two parent nodes, the 

goodness-of-fit of the distributions for each gas node are 

examined. Figure 5 shows the Q-Q plots based on the quantiles 

of the fitted Normal distributions. 

 

 
Figure 5. Q-Q plots for all the fitted gases. 



 

 

Figure 5 confirms the Normality test results displayed in 

Table 2, that is, CO and CO2 do not follow the Normal 

distribution. Therefore, a second GBN was trained with the 

dataset of only Normally distributed gases. 

Probabilistic inference for a GBN is based on the likelihood 

weighting (LW) algorithm [17]. Likelihood weighting is a form of 

importance sampling which fixes the test DGA gas samples 

(evidence) and uses the likelihood of the evidence to weight 

samples. The LW algorithm calculates the weighted probability of 

occurrence of a given node Xi   X, where X={X1,…,Xn}; given the 

evidence E={e1,…,e|test|}. For example, P(PD|e1) is inferred given 

the BN in Figure 4, with Xi=PD and e1={C2H6=0.5, C2H2=0.8, 

CH4=0.1, C2H4=0.81, CO2=0.25, CO=0.05, H2=0.1} as follows: 

(1) Initialize W, a vector of weighted counts for each possible 

value of PD 

(2) For each variable Xi   X, where X={X1,…Xn} (Figure 4) 

a. Initialize wi=1 

b. If Xi is an evidence variable with value xi in E, e.g. 

C2H6=0.5: 

i. assign Xi=ei; 

ii. compute wi=wi.P(ei|xpa(i)) 

c. If Xi is not an evidence variable 

i. draw a random sample xi~P(Xi|xpa(i)) 

(3) Update the weight vector, W[Xi]=W[Xi]+wi 

(4) Repeat previous steps (2)-(3) for K samples to be generated 

(also known as particles); 

(5) Normalize the weight vector 

When applied to the DGA dataset, for each of the analyzed 

failure modes, fi, the outcome of the inference is a set of weighted 

values (i.e., the pair [wi, xi]; with 1<i<K), whose density values 

can be calculated through Kernel density estimates [21]. Figure 6 

shows an inference outcome example of a GBN model trained and 

tested with Normally distributed gases.  

 

 
Figure 6. Inference results for continuous variables. 

 

In order to determine the cause of the fault, the maximum 

likelihood values among the failure modes are compared. The x-

axis in Figure 6 denotes random samples drawn from the 

conditional distribution of the node given the evidence, 

Pr(fi|C2H6,C2H4, H2, CH4, C2H2). The x-axis value of the peak 

density indicates the maximum likelihood value. That is, the PD 

fault is the likely cause of failure.  

Inference results enable informed decision-making taking 

into account the uncertainty criteria. This information becomes 

critical for engineers when they have different methods and 

they need to reach a conclusion about the cause of the fault. 

That is, different maintenance decisions can be studied not 

only from the perspective of the highest likelihood value, but 

also considering distribution function. For instance, the 

narrower the width of the density function, the higher the 

confidence of the GBN model in its final diagnosis. This 

information is lost with most of the AI methods because their 

classification results are either a binary value or a deterministic 

probability value and therefore, the uncertainty cannot be 

accurately captured for subsequent maintenance decisions. 

7 RESULTS 

Firstly the results obtained from the application of the traditional 

ratio-based techniques are analyzed, without applying Bayesian 

networks, defined in Table 3 (Doernenburg), Table 9 (Duval) and 

Table 11 (Rogers). Table 6 displays the obtained accuracy results 

after performing 103 trials and extracting mean and standard 

deviation from all the gathered accuracy results. This process 

is applied to the overall accuracy and to the accuracy for the 

diagnosis of each specific failure mode. 

From Table 6 it is possible to see that Doernenburg and 

Duval methods do not diagnose normal degradation 

transformers and this impacts negatively on the overall 

classification accuracy. However, note that these techniques 

are very good at identifying partial discharge faults (Duval) 

and arcing faults (Duval, Doernenburg). 

 
Table 6. Ratio-based diagnosis results. 

Approach 
Accuracy 

Overall Thermal PD Arc Normal 

Rogers 
42.39% ± 

7.4% 

58.5% ± 

18.72% 

12.7% ± 

33.53% 

66.2% ± 

11.4% 

3.7% ± 

11% 

Doern. 
60.8% ± 

6.5% 

74.3% ± 

16.9% 

73.9% ± 

35.2% 

94% ± 

6% 
0% 

Duval 
68.9% ± 

7.2% 

87.7% ± 

12.6% 

96.9% ± 

17% 
100% 0% 

 

Table 7 displays the results obtained by applying the 

Bayesian framework for the analyzed cases. Discrete Bayesian 

network models improve the diagnosis accuracy with respect 

to the ratio-based diagnosis techniques displayed in Table 6.  

 
Table 7. Bayesian network results. 

Approach 
Accuracy 

Overall Thermal PD Arc Normal 

Rogers 
73.76% 

± 7.2% 

70.2% ± 

18% 

34.08% 

± 13.6% 

93.72% 

± 6.1% 

61.5% ± 

15.8% 

Doern* 
79.86% 

± 6.6% 

74.3% ± 

16.9% 

73.9% ± 

35.2% 

94% ± 

6% 

64% ± 

15% 

Duval* 
72.8% ± 

7% 

49.9% ± 

20.2% 

96.3% ± 

18.8% 

96.3% ± 

5% 

49.7% ± 

16.1% 

GBN: All 

gases 

80.9% ± 

6.6% 

67.7% ± 

18.5% 

81.1% ± 

11.3% 

93.94% 

± 6.5% 

73.07% ± 

14.9% 

GBN: 

Normal 

gases 

82.3% ± 

6.6% 

68.7% ± 

17.4% 

94.4% ± 

6.8% 

94.19% 

± 6.8% 

72.9% ± 

15.4% 

* including normal states in the BN model 

This is certainly to be expected in the cases of Doernenburg 

and Duval BNs, because of their ability to capture normal 



 

degradation. However, the Rogers BN also shows an overall 

improvement. Note that the Normal degradation state has been 

taken into account by assuming that all the gas ratios may 

generate this state (see Figures 3, 7, and 8 for Doernenburg, 

Duval and Roger discrete BN models).  The GBN models give 

further improvement. Among the GBN models, inclusion of 

only Normally distributed gas variables gives best results with 

a maximum overall accuracy of 88.9%, i.e. 82.3%+6.6%. 

Note that Table 7 reports mean accuracy and standard 

deviation values and avoids reporting only absolute maximum 

accuracy results because this can lead to over-optimistic 

conclusions. All the models in Table 7 have been examined 

103 times in order to validate and generalize the results 

according to the Monte Carlo cross-validation method (see 

Figure 2). For each trial, firstly the dataset is randomly 

shuffled, then it is divided into training and testing datasets 

and finally, learning and inference steps are completed. In 

total, the models in Table 7 are trained 103 times and tested for 

33103 data samples. 

Focusing on the accuracy of the Bayesian network models 

for specific failure modes, note that the Thermal fault is best 

captured by Doernenburg’s ratio values (mean accuracy 

74.3%); the PD fault is best captured with Duval’s gas values 
(mean accuracy 96.3%); the Arc fault is best captured by the 

GBN based on Normally distributed gas variables (mean 

accuracy 94.19%), and finally the Normal degradation is best 

modelled with the GBN model with all gas variables (mean 

accuracy 73.07%). Note also that due to the underlying 

assumptions of the inference algorithms at times it is possible 

to have variance bounds exceeding the accuracy limits, e.g. 

Duval’s PD fault in the discrete BN model. 

Although the number of samples for the PD fault is small 

compared with the rest of classes (Section 4), Table 7 shows 

that the continuous BN model effectively learns the 

conditional distribution of this fault. This happens because the 

trend of the PD samples in the dataset is predictable (as 

confirmed by the Duval’s triangle results in Table 6) and the 

pattern can be described with few samples. The Arc 

degradation samples are accurately predicted by the Duval 

triangle too, but if Normal degradation samples were 

considered, there will be an increased number of false 

positives (see Table 8). 

 
Table 8. Diagnostics output examples. 

Config. Rogers Doern. Duval GBN Truth 

#1 N/A N/A Arc Arc Arc 

#2 Arc N/A Thermal Thermal Thermal 

#3 N/A PD Thermal Thermal Thermal 

#4 N/A N/A PD PD PD 

#5 Arc N/A Thermal Normal Normal 

#6 Normal N/A Thermal Normal Normal 

 

Table 8 displays some DGA samples covering all 

conditions, the observed truth health state, and the outcome of 

the best GBN configuration in Table 7 along with the outcome 

of classical DGA methods. These are the gas values for each 

configuration (all units in ppm): 

#1 H2=1330, CH4=10, C2H2=182, C2H4=66, C2H6=20. 

#2 H2=66, CH4=60, C2H2=1, C2H4=7, C2H6=2.  

#3 H2=2031, CH4=149, C2H2 =1, C2H4=3, C2H6=20. 

#4 H2=9340, CH4=995, C2H2 =7, C2H4=6, C2H6=60. 

#5 H2=200, CH4=50, C2H2=30, C2H4=200, C2H6=50. 

#6 H2=134, CH4=134, C2H2=1, C2H4=45, C2H6=157. 

 

Figure 6 shows the classification result of the configuration 

#4 inferred from the proposed GBN model. 

8 CONCLUSION 

DGA is a mature and industry-standard method that focuses 

on the measurement of dissolved gasses over time. Classical 

DGA methods (Duval’s triangle, Roger’s ratios, 

Doernenburg’s ratios) use crisp decision bounds, they assign 
100% belief to a single failure mode, and they classify 

different failure modes. Different black-box artificial 

intelligence models have been proposed so as to improve the 

accuracy of the classical DGA methods. However, the 

diagnostics outcome of the proposed models is a deterministic 

probability value and they lack an explanation of physical 

significance because they represent the correlation obtained 

from the training data. This may represent challenges to 

interpret conflicting results, post-process the results, and adopt 

informed decisions. 

In this context, this paper presents a novel method for 

transformer diagnosis based on Gaussian Bayesian networks 

(GBNs). This method not only transforms crisp decision 

bounds into probability functions, but also the inference of the 

likelihood of each failure mode reflects the uncertainty 

associated with the decision-making process, and it enables the 

integration of expert knowledge and data through a causal 

representation of causes and consequences. Distribution 

functions and causal relationships become crucial from a 

practical end-use perspective. That is, when different methods 

classify different faults, maintenance decisions can be studied 

from the perspective of the inferred density functions for an 

informed decision-making under uncertainty.  

The results obtained in this paper can be used as a 

benchmark to other techniques because the IEC TC 10 dataset 

is publicly available [9]. So as to make consistent and fair 

comparisons, it is necessary to implement classifiers modelled 

and tested in the same conditions. The model presented in this 

paper was validated using Monte Carlo cross-validation which 

enables the extraction of general accuracy statistics. Besides, 

this work was focused on a multiclass classification problem 

classifying normal, partial discharge, thermal and arcing 

samples. In these conditions the maximum accuracy of the 

proposed GBN model is of 88.9%.  

This paper also highlights the importance of using data 

distributions well-fitted with the diagnostics model. Although 

some methods have been extended for generic distributions, 

some techniques such as GBNs are limited to the application 

of a given distribution function, and in this situation hypothesis 

testing becomes a critical tool for selecting an appropriate 

technique. In this case the Normality of the data was tested 

using various methods and accordingly the best fitted gas 

values were selected. 

Future work may address the use of continuous Bayesian 

networks with distributions other than the Normal distribution, 



 

in order to incorporate all available gases. 

APPENDIX 

The original classification scheme for Duval’s triangle 
proposed in [8] evaluates the relative amount of three gasses 

(C2H2, CH4, C2H4) and classifies them within the coordinates of a 

triangle. Fault regions within the triangle can be transformed into a 

numerical classification method as displayed in Table 9 [22]. 

 
Table 9. Duval’s classification ratios [22]. 

C2H2% CH4% C2H4% Diagnosis 

0-0.02 0.98-1 0-0.02 PD 

0-0.04 
0.46-0.8 0.2-0.5 Thermal 300°C<T<700°C 

0.76-0.98 0.02-0.2 Thermal T<300°C 

0-0.15 0-0.5 0.5-1 Thermal T>700°C 

0.04-0.13 0.47-0.96 0-0.4 

Mixture of thermal and electrical faults 0.13-0.29 0.21-0.56 0.4-0.5 

0.15-0.29 0-0.35 0.5-0.85 

0.13-0.29 0.31-0.64 0.23-0.4 
High energy discharge 

0.29-0.77 0-0.48 0.23-0.71 

0.13-1 0-0.87 0-0.23 Low energy discharge 

The classification intervals in Table 9 can be discretized 

through the coding shown in Table 10. 

 
Table 10. Duval’s coding values. 

Gas Code Range Gas Code Range 

C2H2% 

0 [0-0.02] 

CH4% 

0 [0-0.21] 

1 [0.02-0.04] 1 [0.21-0.31] 

2 [0.04-0.13] 2 [0.31-0.35] 

3 [0.13-0.15] 3 [0.35-0.46] 

4 [0.15-0.29] 4 [0.46-0.47] 

5 [0.29-0.77] 5 [0.47-0.48] 

C2H4% 

0 [0-0.02] 6 [0.48-0.5] 

1 [0.02-0.2] 7 [0.5-0.56] 

2 [0.2-0.23] 8 [0.56-0.64] 

3 [0.23-0.4] 9 [0.64-0.76] 

4 [0.4-0.5] 10 [0.76-0.8] 

5 [0.5-0.71] 11 [0.8-0.96] 

6 [0.71-0.85] 12 [0.96-0.98] 

7 [0.85-1] 13 [0.98-1] 

 

Figure 7 shows the Bayesian network model corresponding 

to Duval’s triangle. 

 
Figure 7. Duval’s discrete Bayesian network. 

 

Rogers’ ratios (R1=CH4/H2, R2=C2H2/C2H4, R5=C2H4/C2H6) 

were proposed in [7]. Table 11 displays the coding scheme 

used by the Rogers’ ratio method. 

 
Table 11. Original Rogers’ classification ratios [7]. 

R1 R2 R5 Diagnosis 

>0.1-1 <0.1 <1 Normal degradation 

<0.1 <0.1 <1 PD 

0.1-1 0.1-3 >3 Arcing 

>0.1-1 <0.1 1-3 Low temperature thermal 

>1 <0.1 1-3 Thermal <700°C 

>1 <0.1 >3 Thermal >700°C 

 

The classification intervals in Table 10 can be discretized 

through the coding shown in Table 12. 

 
Table 12. Rogers’ coding values. 

Ratio R1 R2 R5 

Code 0 1 2 0 1 2 0 1 2 

Range ≤0.1 0.1-1 >1 ≤0.1 1-3 >3 ≤1 1-3 >3 

Figure 8 shows the BN model corresponding to the Rogers’ 
ratio model. 

 

 
Figure 8. Rogers’ discrete Bayesian network. 
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