
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jul 2005

Power Transmission Control using Distributed Max-Flow Power Transmission Control using Distributed Max-Flow

Bruce M. McMillin
Missouri University of Science and Technology, ff@mst.edu

Austin Armbruster

Mariesa Crow
Missouri University of Science and Technology, crow@mst.edu

Michael R. Gosnell
Missouri University of Science and Technology, mrghx4@mst.edu

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
B. M. McMillin et al., "Power Transmission Control using Distributed Max-Flow," Proceedings of the 29th
Annual International Computer Software and Applications Conference (2005, Edinburgh, UK), vol. 2, pp.
256-263, Institute of Electrical and Electronics Engineers (IEEE), Jul 2005.
The definitive version is available at https://doi.org/10.1109/COMPSAC.2005.121

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been
accepted for inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of
Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for
redistribution requires the permission of the copyright holder. For more information, please contact
scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/COMPSAC.2005.121
mailto:scholarsmine@mst.edu

Power Transmission Control Using Distributed
Max-Flow

A. Armbruster M. Gosnell B. McMillin M. L. Crow
�aearmbru, mrghx4, ff�@umr.edu crow@umr.edu
Department of Computer Science School of Materials, Energy, and Earth Resources

Intelligent Systems Center
University of Missouri–Rolla, Rolla, MO 65409-0350

Abstract— Existing maximum flow algorithms use one proces-
sor for all calculations or one processor per vertex in a graph to
calculate the maximum possible flow through a graph’s vertices.
This is not suitable for practical implementation. We extend the
max-flow work of Goldberg and Tarjan to a distributed algorithm
to calculate maximum flow where the number of processors is
less than the number of vertices in a graph. Our algorithm is
applied to maximizing electrical flow within a power network
where the power grid is modeled as a graph. Error detection
measures are included to detect problems in a simulated power
network. We show that our algorithm is successful in executing
quickly enough to prevent catastrophic power outages.

Index Terms— Fault Injection, FT Algorithms, FT Communi-
cation, maximum flow, power system.

I. INTRODUCTION

A maximum flow (max-flow) algorithm calculates the max-
imum flow possible between two given vertices through a
connected graph. Although sequential and distributed algo-
rithms exist for calculating max-flow, they are not practical
for all applications. Existing max-flow algorithms use either
one processor or one processor per vertex in a graph. In a real-
world system, such as power flow control, many vertices will
be computed by a single processor. We present a distributed
algorithm to calculate the maximum flow where the number
of processors is less than the number of vertices in the graph.
Our algorithm is applied to electrical flow in a power network
where the power grid is modeled as a graph. Fault tolerance
measures are included in our application to govern problems
in the simulated power network.

Section II gives a background of maximum flow within a
graph and its relationship to a power network. Our distributed
maximum flow algorithm is presented in Section III. Error
detection based on assertion checking is used to produce a
fail-stop system for simulations on power systems. Section IV
presents timing and error detection results from applying the
algorithm to a power network simulation. A conclusion and
future work follow in Sections V and VI, respectively.

II. BACKGROUND

A. Power Transmission as a Graph

The power transmission grid can be modeled as a directed
graph with power flowing from generators (sources) to loads

This research supported in part by NSF IGERT grant DGE-9972752, NSF
MRI grant CNS-0420869, and in part by the UMR Intelligent Systems Center.

(3,3)

(10,10)

(8,8)

(17,17)

(40,40)

(50,50)

(22,22)(28,28)

(100,100)

(30,30)

(15,15)

(20,20)

(10,10)

(50,50)

S

t

D

C

BA

E

Fig. 1. Power network shown as a directed flow graph with virtual vertices
s and t. Edges are labeled with (flow, capacity). The capacity over all edges
is fully utilized.

(sinks). Given a graph ���� �� ��� where the set of vertices,
� �, corresponds to the buses of the power network, the power
flowing between vertices ��� �� � � � is represented by an edge
���� ��� � ��.

For each vertex � � � �, power in must equal power out.
Generators, however, can be modeled as outputting power
without any input and loads can be modeled as power in with
no power out. This can be modeled as a flow problem by
adding to the graph a virtual source, �, that connects to all the
generators, and a virtual sink, � which connects to all loads [1].
The virtual source can supply infinite power, but its outward
arcs are limited by the generator capacities. The virtual sink
can potentially consume an infinite amount of power flow,
but is constrained by the inward arcs representing loads. The
resultant graph, ������, is shown in Fig. 1.

A power network ���� �� ��� corresponding to the graph
from Fig. 1 is shown in Fig. 2. The power network example
shows generators at locations A and B which were supplied by
� in Fig. 1. The arrows not connected to another power bus, or
vertex, represent the edges to the virtual sink. It can be seen
from Fig. 2 that the power in each edge of � � corresponds to

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

A

~ ~D

E

C

B
100

28
50

22
50

815

2040
17

3

30

10
10

Fig. 2. Example power system network with generators of 100 at A and 50
B and loads of 40, 50, 20, 30, and 10.

the maximum flow in each edge of �.

B. Controlling Power Flow

Cascading failures are the most severe form of failure that
can occur in a power system. A cascading failure occurs
when the loss of one line leads to the loss of another until
the transmission grid can no longer sustain the power flow.
Cascading failures have occurred in the United States in the
1960’s, 1970’s, and 2003. One reason for cascading failures
is that present control of the transmission grid limits power
service providers to selecting which lines are available, not
how much power flows through them. When a power line
is lost, remaining power redistributes throughout the grid
according to the laws of physics. Since natural power flow
is not determined by the capacity of the line, a line can be
overloaded even though there is enough remaining capacity in
the grid to transfer the power. To mitigate overloads, power
companies either manually trip off a line when too much power
is flowing through or redistribute generation. To use the other
transmission lines that can handle the flow, power electronic
devices need to be used to change properties of the lines so that
power will choose to use the capacity of all lines. Flexible AC
Transmission System (FACTS) devices can change power line
properties and control the amount of flow on a line, preventing
cascading failures due to line loss [2]. However, determining
and coordinating FACTS devices is crucial to finding settings
that will avoid cascading failures.

A natural approach to calculate flow and determine FACTS
settings is to model the power flow as a maximum flow
problem as first reported in [3]. Using techniques from Sec-
tion II-A, one can model the power network as a graph with
vertex set � . Each FACTS device, �� � � contains power
electronics and an embedded computer and computes settings
for a subset of vertices ��� using the state of the power system
as a weighted graph of line flows. The state can be obtained
through the techniques described in [4]. A distributed max-
flow algorithm can then be used to determine settings to force
the flow on the lines where FACTS devices are located. In
the worst case, if the power network can no longer satisfy the
load, max-flow can also shed load.

III. MAX-FLOW

A. Sequential Max-Flow

The sequential max-flow algorithm was developed in 1955
to calculate commodity flows in a graph. Many improvements
followed, leading to the push and relabel method pioneered
by Goldberg [5] that was further refined with Tarjan [6]. The
push and relabel algorithm builds a ladder with vertices on
various rungs. The flow can only pass from one vertex to a
vertex a level below it [6].

B. Distributed Max-Flow

In addition to the many sequential max-flow algorithms,
several parallel or distributed max-flow algorithms have been
developed [6]–[8]. Three solutions were presented by Gold-
berg and Tarjan: a parallel solution using a PRAM model,
a synchronous distributed model, and an asynchronous dis-
tributed algorithm that requires one processor per vertex [6].
The asynchronous variant works by sending messages listed
in Definition 3.1, which constitute the message sets in Def-
inition 3.2. When flow is pushed from one graph vertex to
another, a message PFm is sent. Each vertex maintains a
distance variable that is the distance from the sink, �. The
receiving vertex first checks the distance in the message to
verify that the message can be accepted. If the distance sent
is one more than the current distance, an accept message AFm
is returned; otherwise, a reject message RFm is sent as the
reply. A distance message, Distm, is sent to every neighboring
vertex every time the distance at a vertex is updated. Although
there are several distributed max-flow algorithms, for example
the Goldberg-Tarjan asynchronous algorithm, none of them
address the problem of executing where a single processor
handles multiple vertices.

Definition 3.1: Max-Flow Message Types
Cm: The message currently being processed.
PFm: A message attempting to push flow to a

neighboring vertex.
AFm: A message replying to a PFm indicating the

requested flow is accepted.
RFm: A message replying to a PFm indicating the

requested flow cannot be accepted.
Distm: A distance message indicating an update to

a nodes distance.
MFm: A max-flow message (PFm, AFm, RFm, or

Distm).
Tm: A token message used to get a snapshot to

determine if the algorithm is finished.
Dm: A done message indicating the algorithm is

finished.
Fm: A fault message indicating a fault was detected.
Ctrlm: A control message (Tm, Dm, or Fm).

Definition 3.2: Message Communication Sets
MFS����� : A set of MFm’s sent from �� to �� where

��� �� � � .
MFS����: A set of MFm’s sent from �� � � to all

other � � � � ��.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

MFS���� : A set of MFm’s received in �� � � to all
other � � � � �� .

MFS����
�

MFS����� � ��� � ��� � �� � ��� .
MFS����

�
MFS����� � ��� � ��� � �� � � � ��� .

MFS����
�

MFS����� � ��� � ��� � �� � � � ��� .
MFS�

�
MFS���� � ��� � � .

Definition 3.3: Queue Definitions
Let �� be the message queue on process �� � � .
Let � be the set of messages added to ��. At any

given time �� �
�

MFS������� � ��� .
Let �� be the set of messages removed from ��, thus,

�� � �� � ��.
Let �	
������ � ����������� �

	������������� � � � ���.
Definition 3.4: Time Definitions

Let � be the time to process a message locally.
Let � be the time from removing a message from � �,

through adding the message to �� , and processing
the message locally on �� .

Definition 3.5: Graph Definitions
Let � be the set of processors.
Let � � be the set of vertices.
Let � � � � � ��� ��.
Let �� be the set of edges. � � consists of pairs

���� ��� where ��� �� � � .
Let � be the set of edges such that if ���� ��� � ��,

then ��� � ��� � �. If ��� � ��� �� ��� ���� � ��� � �.
Let ��� be the set of vertices processed on �� � � .
Let ��� be the set of edges entirely on process �� �

� . ��� consists of pairs ���� ��� where ��� �� �
��� .

Let Æ�� be the set of edges connected to �� � � . Æ��
consists of pairs ���� ���.

Let ��� be the set of neighbors of �� � � . ��� �
��� ��� � �� � ���� � ����� � ������� �� � �
or ��� �� � �� � ����

The algorithm of this paper was adapted from Goldberg
and Tarjan’s push-relabel maximum flow algorithm mapping
many vertices to one processor. The code for the blocked style
max-flow is presented in Fig. 3 and Fig. 4. The algorithm
uses the same accept and reject message passing system using
messages from Definition 3.1, but instead of instantly sending
the messages, they are queued at the processor. If message Cm
is being delivered to a vertex located on the same processor,
Cm is processed immediately and the generated messages
are added to the end of its FIFO queue. If message Cm
needs to be delivered to another processor, Cm is put in
the other process’ queue and progress continues. Inherently,
due to communication delays, it takes considerably longer to
process a message that must be sent to another processor.
This difference in time for sending messages to the same or
different processes means partitioning and mapping of vertices
to processes is an important factor to this algorithm.

Grouping vertices in the same process saves time only if
communication can be overlapped with computation. Defini-
tion 3.6 and Theorem 3.1 show that the new algorithm requires

no more messages between processes than the algorithm in [6].
A reasonable mapping of vertices to processes increases the
number of local messages � MFS����� , where ��� �
� ���� �� � ��� . Theorem 3.2 places a bound on the number
of messages that �� could be waiting to complete processing
before being allowed to communicate with � � . Experimental
times for the power flow problem are reported in Section IV-B.

Definition 3.6: Let � be the fraction of messages that are
sent between all processes in � .

� �

��

��� �MFS������

��� �MFS�����

Theorem 3.1: � � � if �� � � �� �.
Proof: Due to the pigeon hole principle, when �� � �

�� � ��� � � such that ���� � � �. If ��� � � and ���� �� �
��� such that MFS����� 	�
, then � � � by Definitions 3.6
and 3.2. If ��� � � ���� �� � ���MFS����� �
, � � � by
Definitions 3.6 and 3.2.

Theorem 3.2: The number of messages added to � � on
process �� � � without an external communication ranges
between � and ����� � � ��� ���� �� � ����� � � ��� ���� �� �
����� � � ��� ������ ����� ��� � ����� � � ������� � � ���.

Proof: External communication occurs in � � during step
6a in Blocked Max-Flow (Fig. 3) only when � � �

or during QMR (Fig. 4). The longest sequence of mes-
sages without external communication is the longest sequence
of messages, � � ����� ���, such that �� �
�� 	������� ��
������ � ��� and �� 	�
 between consec-
utive executions of 6 in Blocked Max-Flow. ��� is maximal
when ��� � ����� � � � �� ���� � � when � � �	
������
and ��������� ���� does not change. That sequence
is equivalent to computing max-flow on the smaller graph,
����� � ��� ����. From Lemmas 3.8, 3.9, and 3.10 in [6],
the number of relabelings per vertex is at most ��� � � �, the
number of saturating push operations in the sequence is at most
���� �� ������ �, and the number of nonsaturation push opera-
tions is at most ���� ����������� ����� ������� ��������� ����.
Thus, sequence uses at most ���� ��������� ������ �����
���� � � ���� � � �� � ������ ����� �� � ���� � � ������� � � ��
messages.

Theorem 3.3: With a reasonable mapping of vertices to pro-
cessors, the algorithm runs in �MFS���

�	 � ����MFS�� ��� ��.
Proof: A reasonable mapping will balance the processing

time on each processor. Since processing is based upon
messages, �MFS�� � time is needed to process each message,
which becomes �MFS���

�	 � , when processing is balanced. With
any distributed algorithm, time will be needed for communi-
cation. In this case, the additional time is ���MFS����� ��.

It remains to be shown that this algorithm correctly com-
putes the maximum flow. The approach is to show that it
preserves the correctness of the original Goldberg and Tarjan
algorithm.

Theorem 3.4: If all messages generated by the vertices are
delivered, the flow at termination is a maximum flow.

Proof: In [6], the original algorithm was proven to be

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Blocked Max-Flow as executed on �� � �

1) Assign an initial flow (����� ��� � � ���� �� � ���� � ���)
2) Assign an initial distance (����� � ���� � ���)
3) Assign an initial distance to the sink (���� � �)
4) Assign an initial distance to all sources(����� � �� � for all source vertices in �)
5) �� � � � � 	
 �
����, push flow from the source.
6) while (not completed)

a) If �� � �, wait until �� �� �.
b) Let Cm= �	�
�����
c) If Cm is a Ctrlm, ControlProcessing(Cm)
d) Else

i) If 	������� �������Cm� �� ��� , QMR(Cm, ��) � 	������� �������Cm� � ��� .
ii) If 	������� �������Cm� � ��� and Cm is PFm or RFm, set all Tm in Token List to busy.

iii) If 	������� �������Cm� � ��� and Cm is not Ctrlm, VertexProcessing(Cm).

e) �� � ��

�
Cm

ControlProcessing(Cm)

1) If Cm is a Tm, check to see if a matching Tm has already been received. Token Message’s Tm � and Tm� match if the
	�	�	��	�� �����

�Tm�� � 	�	�	��	�� �����

�Tm�� and ����� ������Tm�� � ����� ������Tm��. Let Tm� be
the Tm� Token List matching Cm if one exists.

a) If Cm � Token List decrease the count on Tm� by one.
b) If Cm �� Token List, create Tm� setting �����Tm�� � ���� � � �, 	�	�	��	�� �����

�Tm�� �

	�	�	��	�� �����

�Cm�,
������Tm�� �
������Cm� and ����� ������Tm�� � ����� ������Cm�. Let
Token List � Token List

�
Tm�. �� � ��� �
������Cm�, QMR(Tm�, �).

c) If Tm� is not busy and Cm is busy, set the Tm� as busy.
d) If �����Tm�� � � and �� �� 	�	�	��	�� �����

�Tm��, QMR(Tm�,
������Tm���.
e) If �����Tm�� � � and �� � 	�	�	��	�� �����

�Tm�� and Tm� is not busy, �� � ��� QMR(Dm, �). Set the

process as completed.

2) If Cm is a Dm, �� � ��� QMR(Dm, �). Set the process as completed.
3) If Cm is a Fm, �� � ��� QMR(Fm, �). Set the process as completed and set the execution as faulty.

Fig. 3. Blocked Distributed Push-Relabel Algorithm for Max-Flow. Each � � � runs a copy of this algorithm.

correct. Since our algorithm generates the same messages, it
is also correct as long as the messages are delivered.

Theorem 3.5: ��� � ���� � ��� ��� � � such that � �
�� , �	� �.

Proof: A message may be delivered to a vertex on the
same process, 	 � �, or to a different process, 	 �� �. Assume
	 � �. Given steps 6a and 6b and that ��

�����’s form a
monotonically increasing sequence, �� � � ��� � �	�
�����
only once. Thus, each execution of step 6a and 6b, increases
��

�������	�
������. Given that the general algorithm ter-
minates [6], the set of ��

�����’s is finite. Thus, ��� �
���� � ��� ��� � � such that � � �� when 	 � �. Given the
proof for 	 � �, when 	 �� �, it must be shown that �� � �
���� � �� where 	������� ��������� �� ��� � ��� � �
such that � � �� and 	������� ��������� � ��� . When
	������� ��������� �� ��� , step 6(d)i of Blocked Max-
Flow is executed. In that step, QMR is executed. QMR does
not terminate until �� � �. From Theorem 3.2, there is a
bound on �� , which along with the proof for 	 � � gives
that eventually, �� � �, and QMR will terminate. Thus,

��� � ���� � ��� ��� � � such that � � �� , �	� �.

C. Organization of Vertices to Processors

As mentioned in Section II-B, a power system will have
�� � processors, see Definition 3.5, each � � � located on
a FACTS device which execute all max-flow calculations
over �� � vertices using message passing. Mapping vertices
to processors to minimize � is the well-known partitioning
and mapping problem. For our partitioning, vertices were
weighted commensurate to the weight of the corresponding
arc to the sink1 and partitioned using a multilevel Kernighan-
Lin heuristic [9]. It is beyond the scope of this paper to explore
the optimal mapping.

D. Error Detection in Distributed Max-Flow

The power network is susceptible to errors that can include
hardware malfunction or failure, software malfunction or cor-
ruption, malicious attacks, and unknown or unseen failures.

1The assumption is that higher arc weight may imply more flow messages
to that vertex.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

VertexProcessing(Message)

1) Let Cm= Message. Let IV=�������� �������Cm�.
2) If Cm is a PFm and IV is not a source or sink and ��Cm� � ���	 � � �, let ���	 � � ���	 � �
���Cm�, let �

�������Cm�, let
��	� � �
��	� � �
���Cm�, and create AFm� setting �������� �������AFm�� � �������Cm�
and �������RFm�� � �	 . Execute AddLocalMessage(AFm�). If ������� ������IV� � �, execute Pulse(IV).

3) If Cm is a PFm and IV is not a source or sink and ��Cm� �� ���	 ���, create RFm� setting �������� �������RFm�� �
�������Cm�, �������RFm�� � �	 , and
���RFm�� �
���Cm�. Execute AddLocalMessage(RFm�).

4) If Cm is a PFm and IV is a source or sink, create AFm� setting �������� �������AFm�� � �������Cm�. Execute
AddLocalMessage(AFm�). Create Tm���� setting ���������� ��������Tm����� � �� and ����� �������Tm����� � ����� �
and ���������� ���������� � ����� �. Let Token List = Token List

�
Tm����. �� � ��� , execute QMR(Tm����, �).

5) If Cm is an AFm, let ������� ������IV� � ������� ������IV� � �. If ������� ������IV� � � and ��IV� � �,
Pulse(IV).

6) If Cm is a RFm, let � �������Cm�, ������� ������IV� � ������� ������IV�� �, ���	 � � ���	 � �
���Cm�
and
��	� � �
��	� � �
���Cm�. If ������� ������IV� � �, Pulse(IV).

7) If Cm is a Distm, update IV’s knowledge of �������Cm�’s distance.

Pulse(IV)
1) Let continuePulsing = true
2) while (continuePulsing is true)

a) Until ���	 � � �, � such that ��� � ���	 � � �� �� ��	� � � �, create a PFm, PFm�, set-
ting �������� �������PFm�� � , ��PFm� � ���	 �, �������PFm�� � �	 and
���PFm�� �
�������	 �� �� ��	� ��. Let ������� ������IV� � ������� ������IV� � �, ���	 � � ���	 � �
���PFm��
and
��	� � �
��	� � �
���PFm��. Execute AddLocalMessage(PFm�).

b) If ������� ������IV� � � and ��IV� � �, set ��IV� � ���������� ��	� � � ��. Create Distm, Distm�, and let
��Distm�� � ��IV�. �� � Æ�� , execute AddLocalMessage(Distm�).

c) If ������� ������IV� � �, let continuePulsing = false.

QMR(�, �): Once �	 � �, on �	 , AddLocalMessage(�).
AddLocalMessage(�): Prior to first execution, ������������� � �.

1) ������������� � ������������� � �

2) Let ������������ � �������������.
3) �� � ��

�
�

Fig. 4. Blocked Distributed Push-Relabel Algorithm for Max-Flow Continued. Each FACTS device runs a copy of this algorithm.

Fault tolerance requires detecting the error, reconfiguring
around it, and recovering. The focus of this paper is to
construct a fail-stop system for errors that would lead to an
incorrect result. Future work can address reconfiguration and
recovery.

This paper constructs a fail-stop system through executable
assertion checking. This is in contrast to various other forms of
error detection such as masking redundancy through hardware
or software [10] that require extensive hardware replication
or software diversity. Assertion checking is advantageous
in that it can not only detect errors in data corrupted by
faulty hardware, but it can also detect errors in data received
from external inputs. Our error detection is implemented by
checking constraints, or assertions, on the state of the system.

When using constraint checking, there is a greater depen-
dency on knowing the correct, or expected, behavior of the
system. The constraints that must be maintained are given as
Constraints C1, C2, and C3. These constraints apply to both
the max-flow algorithm and the power system.

Constraint C1: Flow Balance
�� � 	 � ��� ��� � � 	

�

�� �� � ���� �

�

��� ��

Constraint C2: Flow Feasibility
��� � 	 � ���
��� � � ���� �
Constraint C3: Reverse Flow
��� � 	 � ���
��� � � �
�� ��
Theorem 3.6: ��� � � 	 � ��� �� 	�� such that � � 	��

and 	�	 such that � � 	�� , if
	� � �� � �	 where �

is a PFm or AFm such that �������� ��������� � �, and
��������� � �, or RFm such that �������� ��������� � �,
and ��������� � �, Constraints C1 and C3 are invariant over
the algorithm’s execution.

Proof: At the start of the algorithm, �� � 	� ���� � � and
��� � 	�
��� � � � and ���� � � �, so the constraints
are satisfied. In order to invalidate one of the constraints,
a change must be made to
 or �.
 and � are modified
in steps 2 and 6 of VertexProcessing as well as step 2a
of Pulse. Consider step 2 of VertexProcessing. During that
step, ���� becomes ���� �
���Cm�, and
��� � becomes

��� � �
���Cm�. Both of those expressions are on the

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

right hand side of C1, thus the addition and subtraction of
flow results in a net zero (0) change, and Constraint C1 is
maintained. In step 6 of VertexProcessing, ���� and ���� ��
are changed in the same manner as step 2; therefore, step 6
also maintains Constraint C1. In step 2a of Pulse, a set amount
flow is subtracted from ���� and added to ���� ��; therefore,
step 2a of Pulse maintains Constraint C1 as well.

In step 2a of Pulse, a message � � PFm� from � to �
is added to �� and ���� �� becomes ���� �� � �������. At
the end of the step ���� �� �� ���� ��, but � � ��, which
still satisfies the theorem. Thus, step 2a of Pulse does not
invalidate the theorem. The same � is � �� � �� through
processing of 	 �
���
����������� for �. After finishing
	 �
���
����������� for �, � �� ����� ��Cm����Cm��.
Steps 1, 4, 5, and 7 of VertexProcessing do not affect the
theorem. In step 2, ���� �� becomes ���� �� � �������.
Before step 2a of Pulse for � and step 2 of VertexProcessing
for �, ���� �� � ����� ��, and after both steps, ���� �� �
������� � � ����� ��� ��������. Thus, Constraint C3 and
the theorem are satisfied for step 2 of VertexProcessing. In
step 3, message �� � RFm� is created satisfying the theorem
since �� � �� � �� with �������� ��
������� � �, and
�����
���� � �. The same �� is � ����� through processing
of 	 �
���
������������ for �. In step 6 of VertexPro-
cessing, �� is processed and ���� �� becomes ���� �� �
��������. Since �������� � �������, the value of ���� ��
is returned to the value prior to executing step 2a of Pulse,
which means that Constraint C3 is satisfied.

Theorem 3.7: Constraint C2 is invariant over the algo-
rithm’s execution.

Proof: At the start of the algorithm, �� � 	� ���� � � and
��� � � 	� ���� �� � � and ���� �� � �, so the constraint is
satisfied. In order to invalidate the constraint, a change must
be made to � or �. � is never modified in the algorithm.
� is modified in steps 2 and 6 of VertexProcessing as well
as step 2a of Pulse. In step 2a of Pulse, a message, �, is
created, and ������� � ���������
� ��� ���. Let
� ��� �� �
���� �� � ���� ��.

���� �� � ���� �� � �������

���� �� � ���� �� ����������
� ��� ���

���� �� � ���� �� ���������� ���� �� � ������� ���

���� �� � �������� � ���� ��� ���� ���

Thus, in step 2a of Pulse, ���� �� becomes no more than
���� ��, and ������� � ���� ��. In steps 2 of VertexProcess-
ing, ���� �� becomes ���� �� � �������. Since ���� �� �
���� �� initially, step 2 does not violate Constraint C2.
In step 6 of VertexProcessing, ���� �� becomes ���� �� �
�������. Since ���� �� � ���� �� initially, step 2 does not
violate Constraint C2.

It is not enough to check Constraints C1-C3 in a sin-
gle process; errors that affect the computation could also
affect the constraint check. Thus, it is desirable to check
the constraints in each processor such that non-faulty pro-
cessors can check potentially faulty processors. This requires

distributing the state of the system across processors that
preserves the correctness of the constraint evaluation. The
key to this approach is to define the constraints as invariants
over all interleavings of processes in the algorithm. The astute
reader will note that correctness of this approach is inspired
by the formal proof system of [11]. In [12], we define a
run-time system for checking program invariants based on
collecting and evaluating the distributed state of the system in
a partial order induced by Lamport clocks [13]. This system is
implemented as CCSP [14] (C in CSP) system for transmitting
state variables and is used here.

Theorem 3.8: If Constraints C1, C2, and C3 are proven to
be invariant over a program’s execution, then it is invariant
over the state variables collected by CCSP.

Proof: In [12], it was proven that when a constraint is
invariant over a program’s execution, CCSP’s distribution of
state variables will maintain the invariant.

In max-flow, the distributed state variables are the capacities
of the arcs, the flow of the arcs, and the excess flow at the
vertices. The state variable changes are passed at the same
time as other communication. This allows constraints to be
checked on a consistent cut of the system. By allowing the
processes to not only exchange state variables, but also the
message data during a rendezvous communication, extraneous
communication is avoided and run times are improved.

Theorem 3.9: Constraints C1, C2, and C3 are accurately
checked under all possible interleavings of process execution.

Proof: Following the proof of Theorems 3.6 and 3.7,
Constraints C1, C2, and C3 are invariant over all process
interleavings. By Theorem 3.8, any interleaving that delays
a state update must be consistent with a possible interleaving
of the program.

Not all processes need to check all disseminated state infor-
mation. The following Corollary preserves the logical correct-
ness of this approach through invariance of the constraints. The
amount of disseminated state information can be reduced to
minimize the impact of the state variable changes; the updates
are only sent to processes a set number of hops away from
the process that changed the value of the variable. As long
these regions of state dissemination overlap sufficiently [15],
a good error coverage can be obtained. The constraints can
still be checked according to Theorem 3.9.

Corollary 3.1: Not every process needs to receive state
information about every process in order to correctly check
Constraints C1, C2 and C3.

Proof: Immediate from Theorem 3.9 and [15].

IV. PERFORMANCE AND FAULT INJECTION

A. Distributed Max-Flow with Error Detection

Five Ultra Sparc machines were used to simulate FACTS
devices cooperatively determining max-flow. Each machine
had a 440MHz UltraSPARC-IIi processor (110MHz bus), 256
MB of memory, and was connected through a full duplex 100
Mb/s Ethernet switch on a dedicated VLAN. Although ma-
chine usage was monitored before execution, these machines
were available in an unregulated multi-user environment.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

Each execution of the max-flow algorithm was configured
to use a vertex-to-processor mapping. Multiple vertex-to-
processor mappings obtained from the multilevel Kernighan-
Lin heuristic were tested with multiple executions of the
proposed distributed max-flow algorithm over the standard
IEEE 118-bus power flow test system [16]. Running a set of
100 runs with one of the better mappings yielded statistics
shown in Table I. One outlier, which might be attributed to an
unregulated multi-user testing environment, was removed.

TABLE I

RUN TIME RESULTS AND THE NUMBER OF MESSAGES EXCHANGED OVER

ALL PROCESSORS. TIMES ARE FOR ALL PROCESSORS TO REALIZE THE

ALGORITHM TERMINATED.

Maximum Run Time 7.37 seconds
Minimum Run Time 4.87 seconds
Average Run Time 5.72 seconds
Std Dev Run Time 0.73 seconds
Avg. External Messages 667.24
Avg. Total Messages 25547.11

The metric used for evaluating the effectiveness of our
algorithm was the completion of the max-flow algorithm in
a time that would allow for re-configuration before events that
would lead to a cascading failure. In the cascading failure
that led to the 2003 blackout, the first event that started to
change the pattern of flow in the power grid happened four
hours before the rapid sequence of changes that resulted in
widespread power loss [17]. Both the average and maximum
execution times of less than 8 seconds were well within the
timeline associated with the cascading failures this algorithm
was designed to help prevent.

B. Performance of Error Injection

A variety of errors were injected into the system to deter-
mine if our distributed max-flow algorithm would detect them.
These errors are not comprehensive, but are representative of
errors resulting from algorithm corruption, transmission errors,
and some cyber attacks in the form of message or program
modification. This section evaluates testing and detection of
errors based on Constraints C1 through C3. The errors were
injected individually with results summarized in Table II. Ver-
tex Errors and Edge Errors were tested for each of the vertices
and each of the edges connected to a vertex, respectively.
Constraint C1 was explicitly tested by injecting Vertex Errors.
Constraint C2 was explicitly tested by injecting Edge Errors.
The remaining errors in Table II tested Constraint C2 and
Constraint C3 as well as the ability to detect errors for both
excessive and minimal failures within the system. Bounds on
the number of messages until detecting and disseminating the
errors are given in Theorems 4.1 and 4.2.

Theorem 4.1: An error that violates one or more of Con-
straints C1–C3 is detected in ���� ���������� messages.

Proof: An error is detect at communication boundaries.
Thus, detection is not guaranteed until a process communi-

cates, which happens within ���� ���������� messages accord-
ing to Theorem 3.2.

Theorem 4.2: A detected error is disseminated in
���� ���������� messages.

Proof: An error could be detected by any process, possibly
quite early in the computation, but to disseminate the error, all
processes must be ready to receive that an error occurred. This
is not guaranteed until a process communicates, which happens
within ���� ���������� messages according to Theorem 3.2.

Nearly all injected errors were detected, and the error was
properly disseminated to the other processes. The two Vertex
Error instances detected by connection termination ended
in local infinite loops which exhausted resources before the
specified timeout of 200 seconds. The Edge Error and Vertex
Error instance not listed above actually has zero (0) flow
through the vertex, so there was no error. The associated bus
is at the end of a path and communicates with only one other
vertex in the corresponding graph. In 150 trials of injecting
the Randomly Lose Flow Messages error, 15 runs contained no
errors, 131 runs detected the injected errors, and 4 runs failed
to detect the injected errors. Three of the four undetected errors
randomly lost only one message. The results of the undetected
errors violated Constraint C3 within the corresponding graph.
For Constraint C3 to be violated, the flows must not match
and the number of PFm’s sent from vertex � to vertex � must
agree with the number of AFm’s and RFm’s sent from � to
�. The fact that the flows did not match was known, but the
counts were not the same since the sent count was larger due
to the lost PFm. Adding a flag to the constraint signifying
the end of the algorithm would allow for Constraint C3 to be
checked at least at the end of the program.

V. CONCLUSION

This paper presented a distributed max-flow algorithm with
fewer processors than vertices in a graph. Our algorithm was
augmented with an error detection fail-stop through constraint
checking to control the active power flow through a simulated
power system using FACTS devices. Each FACTS device
processed multiple vertices in the graph, utilizing a multilevel
Kernighan-Lin heuristic for mapping vertices to processors.
The IEEE 118 bus system was used as a test bed to show
the effectiveness of the graph vertex to processor allocation
and the error detection system. It was shown that with an
appropriate mapping of vertices to processors, max-flow com-
pleted quickly enough to prevent cascading failures. Most
injected errors were detected with the given constraints, and
with additional constraints on local resource usage and variable
state upon determining that the algorithm had finished, test
executions could detect all errors.

VI. FUTURE WORK

Work continues in reducing the time required to run the
fault-tolerant algorithm as well as improving error detection
capabilities. In particular, the findings in [18] have not been
implemented, and may prove beneficial. The fail-stop nature is
only a starting point; reconfiguration and recovery techniques

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

TABLE II

ERROR DETECTION CAPABILITIES OF THE DISTRIBUTED MAX-FLOW IMPLEMENTATION.

Error Type Errors Detected By Unreported Coverage Average
Program Timeout Connection Errors of Errors Time

Termination Detection (sec)

Edge Error 117 0
(Increase Edge Flow by 10%) (100%) (0%) 0 (0%) 0 (0%) 100% 3.437

Vertex Error 115 0
(Double Excess) (98.3%) (0%) 2 (1.7%) 0 (0%) 98.3% 1.181

Lose All 0 100
Flow Messages (0%) (100%) 0 (0%) 0 (0%) 100% NA
Randomly Lose 0 131
Flow Messages (0%) (97.0%) 0 (0%) 4 (3.0%) 97.0% NA

Alter All Flow Messages 50 0
(by One Unit) (100%) (0%) 0 (0%) 0 (0%) 100% 0.454

Randomly Alter Flow Messages 50 0
(With Probability 0.1%) (100%) (0%) 0 (0%) 0 (0%) 100% 0.452

Invert All Accept/ 100 0
Reject Messages (100%) (0%) 0 (0%) 0 (0%) 100% 11.803

Randomly Invert Accept/Reject 50 0
(With Probability 0.1%) (100%) (0%) 0 (0%) 0 (0%) 100% 6.852

for the system need to be developed. It has been observed
that excess flow is passed back and forth between a set of
vertices until the flow is returned to the source. The gap relabel
heuristic presented in [18] could reduce the number of passes
between vertices and possibly messages between processors. A
few errors were not detected due to local infinite loops. Those
errors are not detected due in part to the mapping of vertices
to processors. Alternative mappings that make it impossible to
enter the infinite loop will be investigated.

A real-time simulation environment is being constructed
which will more thoroughly test hardware and software in-
teractions and better predict what may happen in real power
system scenarios. This simulation will open up new methods
of failure that can’t currently be tested, and open new methods
of attacking the system to better test our fault tolerance.

REFERENCES

[1] C. Berge, Graphs and Hypergraphs. North-Holland Publishing Com-
pany, 1973.

[2] N. Li, Y. Xu, and H. Chen, “FACTS-based power flow control in
interconnected power systems,” IEEE Transactions on Power Systems,
vol. 15, no. 1, February 2000.

[3] A. Armbruster, B. McMillin, and M. L. Crow, “Controlling power flow
using FACTS devices and the max-flow algorithm,” in Proceedings of
the International Conference on Power Systems and Control, December
2002.

[4] D. E. Bakken, Encyclopedia of Distributed Computing. Kluwer
Academic Press, 2001, ch. Middleware.

[5] A. Goldberg, “Efficient graph algorithms for sequential and parallel
computers,” Ph.D. dissertation, Massachusetts Institute of Technology,
1987.

[6] A. Goldberg and R. Tarjan, “A new approach to the maximum-flow
problem,” Journal of the ACM, vol. 35, pp. 921–940, 1988.

[7] T.-Y. Cheung, “Graph traversal techniques and the maximum flow
problem in distributed computation,” IEEE Transactions on Software
Engineering, pp. 504–512, 1983.

[8] B. Awerbuch, “Reducing complexities of the distributed max-flow and
breadth-first-search algorithms by means of network synchronization,”
Networks, vol. 15, no. 4, pp. 425–437, 1985.

[9] B. Hendrickson and R. Leland, “A multilevel algorithm for partitioning
graphs,” in Proceedings of the 1995 ACM/IEEE conference on Super-
computing (CDROM). ACM Press, 1995, p. 28.

[10] R. Chown and T. Johnson, Distributed Operating Systems & Algorithms.
Addison Wesley, 1998.

[11] G. M. Levin and D. Gries, “A proof technique for communicating
sequential processes,” Acta Informatica, vol. 15, pp. 281–302, 1981.

[12] H. Lutfiyya, M. Schollmeyer, and B. McMillin, Fault-Tolerant Dis-
tributed Sort Generated from a Verification Proof Outline. Springer-
Verlag, 1992, pp. 71–96.

[13] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, pp. 558–565, 1978.

[14] B. McMillin and E. Arrowsmith, “CCSP - a formal system for distributed
program debugging,” Programming and Computer Software, vol. 21,
no. 1, pp. 45–50, 1995.

[15] M. Schollmeyer and B. McMillin, “A general method for maximizing
the error-detecting ability of distributed algorithms,” IEEE Transactions
on Parallel and Distributed Systems, vol. 8, no. 2, pp. 164–172, February
1997.

[16] R. Christie, “Power systems test case archive: 118 bus power flow test
case,” May 1993.

[17] U. S. DOE, “Initial blackout timeline of the August 14, 2003 outage,”
2003.

[18] B. V. Cherkassky and A. V. Goldberg, “On implementing the push-
relabel method for the maximum flow problem,” Algorithmica, vol. 19,
no. 4, pp. 390–410, September 1997.

Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05)

0730-3157/05 $20.00 © 2005 IEEE

	Power Transmission Control using Distributed Max-Flow
	Recommended Citation

	Power transmission control using distributed max-flow

