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Abstract

In this paper we propose a novel pricing-hedging framework for volatility derivatives which
simultaneously takes into account rough volatility and volatility jumps. Our model directly
targets the instantaneous variance of a risky asset and consists of a generalized fractional
Ornstein-Uhlenbeck process driven by a Lévy subordinator and an independent sinusoidal-
composite Lévy process. The former component captures short-term dependence in the in-
stantaneous volatility, while the latter is introduced expressly for rectifying the activity level
of the average forward variance. Such a framework ensures that the characteristic function
of average forward variance is obtainable in semi-closed form, without having to invoke any
geometric-mean approximations. To analyze swaps and European-style options on average
forward volatility, we introduce a general class of power-type derivatives on the average for-
ward variance, which also provide flexible nonlinear leverage exposure. Pricing-hedging for-
mulae are based on a modified numerical Fourier transform technique. A comparative empir-
ical study is conducted on two independent recent data sets on VIX options, before and during
the COVID-19 pandemic, to demonstrate that the proposed framework is highly amenable to
efficient model calibration under various choices of kernels.
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1 Introduction

“Rough volatility” is a relatively new and yet already familiar jargon that has flourished in the fi-
nancial world since the pioneering research work of [Gatheral et al, 2018] [17], which provided
striking empirical evidence suggesting rough sample paths (compared to those of a semimartin-
gale) of volatility observed in high-frequency financial time series and thus the presence of short-
term dependence, while the idea of introducing frictions into volatility quantities goes back to the
much earlier work of [Alòs et al, 2007] [2] motivated from observations in option price-implied
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Power-type volatility derivatives

volatility surfaces. Over the past three years, a good number of works have been devoted to empir-
ical justifications of rough volatility in various asset types. To name a few, [Livieri et al, 2018] [31]
confirmed the existence of rough volatility by studying implied volatility-based approximations
of spot volatility of the S&P500 index, [Takaishi, 2020] [45] collected further evidence supporting
volatility roughness in the cryptocurrency (in particular Bitcoin) market, and [Da Fonseca and
Zhang, 2019] [13] even demonstrated that rough volatility is also present in the VIX index.

Although the introduction of rough volatility has successfully reproduced stylized facts of his-
torical volatility of asset prices, a series of difficulties have arisen in the meantime due to the
loss of Markov and semimartingale properties. As a result, when developing pricing-hedging
techniques accounting for rough volatility one will probably sojourn at Monte-Carlo simulation
methods, whereas the inaccessibility of infinitesimal generators has disabled methods based on
the Feynman-Kac formula. So far, simulation-based pricing-hedging methods have already been
studied in depth; for example, [Jacquier et al, 2018] [24] adopted a hybrid simulation scheme for
the calibration of the rough Bergomi model initially proposed in [Bayer et al, 2016] [6] on VIX
futures and options. On the other hand, under the so-called “rough Heston model” which is con-
structed from a stationary power-type kernel and belongs to the family of affine Volterra processes
discussed in [Jaber et al, 2019] [23] (see also [Gatheral and Keller-Ressel, 2019] [18]), characteristic
function-based pricing methods were derived in [El Euch and Rosenbaum, 2019] [15] which de-
pend, partially, on solving a fractional Riccati equation, where their applicability was also demon-
strated by a simple calibration exercise on S&P500 implied volatility surfaces; the paper [El Euch
and Rosenbaum, 2018] [14] by the same authors considered from a theoretical standpoint simi-
lar hedging problems, after being able to write the characteristic function of the log-asset price in
terms of a functional of its corresponding forward variance curve. We also notice the up-to-date
work of [Horvath et al, 2020] [21], which adopted a martingale framework using forward variance
curves in the goal of studying volatility options. It is worth mentioning that all these recent works
have universally emphasized the role of a Brownian motion, having paid little attention to jumps
in asset prices and their volatility, which are, of course, thought to complicate the pricing problems
to great extent.1

All relevant models notwithstanding, one should however bear in mind that the key idea be-
hind rough volatility is the exhibition of short-term dependence, or more precisely, rapidly decay-
ing autocorrelation near the origin, rather than inherent reliance on Brownian sample paths, or
path continuity, which characteristic is arguably an estimation assumption imposed in [Gatheral
et al, 2018] [17] and deemed nonessential. In fact, extensive use of the Brownian motion in the
cited literature is more or less an act of simplicity, mainly due to log-instantaneous volatility shown
to be empirically close to normally distributed. On the other hand, disregarding the exclusive use
of the Brownian motion sheds light upon another important aspect – the presence of volatility
jumps. In a semimartingale setting, this would send us back to the work of [Todorov and Tauchen,
2011] [47], which, by analyzing from high-frequency VIX index data the activity level of some pre-
sumed mean-reverting instantaneous variance model, showed that stock market volatility should
be most suitably depicted as a purely discontinuous process without a Brownian component. No-
tably, this concern may seem inconsequential in a non-semimartingale model with frictions, as
pointed out in the same paper: In short, the activity level of the process can be flexibly adjusted

1For instance, the aforementioned Riccati equation will turn into an integro-differential equation entailing more
computationally expensive numerical schemes and the resultant model distributions will no longer be stable but sub-
ject to substantial changes under integral operations.
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according to the controlling fraction parameter. For this reason, inclusion of volatility jumps in a
model that is already fractional has seemingly been ignored for investigation. Nevertheless, since
increased activity levels are an inevitable consequence of increased path roughness, using a frac-
tional Brownian motion with a fraction parameter less than 1 will only increase the activity level
of the resultant variance process, which to a degree neglects the empirical findings of [Todorov
and Tauchen, 2011] [47]; see also [Bollerslev and Todorov, 2011] [9] and [Bardgett et al, 2019] [4]
for similar confirmations of the necessity of volatility jumps. In connection with this, we expect
that replacing the Brownian motion with a purely discontinuous process whose sample paths are
less active, combined with suitable modifications, is able to strike a balance between these two
important aspects (short-term dependence and volatility jumps) and eventually yield desirable
modeling outcomes.

These inspire us to take on a new path deviating from the use of a fractional Brownian mo-
tion in the establishment of rough volatility and switch to purely discontinuous square-integrable
Lévy processes of infinite activity. In more detail, we want to propose a flexible framework for the
instantaneous variance based on the sum of a generalized fractional Ornstein-Uhlenbeck process
subject to an integrable kernel and an independent bounded process; a key feature of this formu-
lation is that it is not derived from taking logarithms but yet is capable of simultaneously capturing
short-term dependence and possible jumps in the instantaneous variance, as well as achieving an
arbitrary suitable activity level of the corresponding forward variance curve. It is fundamentally a
quasi-linear framework resembling the well-known BNS models of [Barndorff-Nielsen and Shep-
hard, 2001] [5]. We note that models of non-exponential type have also been widely applied in
volatility analysis, some recent developments including [Hofmann and Schulz, 2016] [20] and [Is-
saka and SenGupta, 2017] [22]. Needless to say, despite that inclusion of jumps may not result in
significant improvement of the model fit of volatility distributions observed at high frequencies, as
noted in [Gatheral et al, 2018, Sect. 6] [17], it is undoubtedly innocuous and the model distribution
in logarithm can also become arbitrarily close to normality by properly tuning scale parameters,
thanks to the central limit theorem. On the contrary, introducing jumps into the instantaneous
variance gives rise to an analytically tractable structure for the characteristic function of the av-
erage forward volatility, facilitating the pricing and hedging of volatility derivatives of interest. In
particular, such a structure requires no inexact transformations, such as the geometric-mean ap-
proximation adopted in e.g. [Horvath et al, 2020] [21], for the average forward volatility, which
appear to be inevitable under exponential models.

Besides, although our main results are given in a general setting, attention will be drawn to
three particular types of stationary kernels, all of which are comfortable to work with and have
their own advantages. While the first type is recognized for its incommensurable simplicity, the
second is compatible with the transformation of the instantaneous variance dynamics into a usual
Ornstein-Uhlenbeck process but driven by a fractional Lévy process. The third type is arguably a
result of reverse engineering and designed specifically to avoid certain transcendental functions
that are relatively costly to implement. In so doing it will be interesting as well to compare the
overall suitability of various types of kernels, despite their considerable similarity to each other in
shape.

As already noted, our ultimate objective in the present paper lies in analyzing European-style
financial derivatives written on the average forward volatility, such as the VIX index, including
swaps and options. Under the proposed model framework, we obtain pricing-hedging formu-
lae for a more general class of power-type derivatives, which raise the underlying volatility or the
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standard option payoff to a certain nonnegative power. Noteworthily, derivatives with power pay-
off functions written on equity have been thoroughly examined in the literature; see [Tompkins,
1999] [48], [Raible, 2000] [41], [Macovschi and Quittard-Pinon, 2006] [33], and [Xia, 2017] [51] on
single-asset options and [Blenman and Clark, 2005] [8], [Wang, 2016] [49], and [Xia, 2019] [52]
on exchange options. Similar exchange options on zero-coupon bonds have recently been stud-
ied in [Blenman et al, 2020] [7]. Along these lines, consideration of power-type derivatives in the
volatility market also has significance in generating nonlinear leverage effects on the investor’s
risk exposure, and will be conducive to hedging volatility-of-volatility risks. Implementation of the
proposed pricing-hedging formulae will heavily rely on numerical Fourier transform techniques.

The remainder of this paper is organized as follows. In Section 2 we establish our model frame-
work starting from the instantaneous variance dynamics and provide a comprehensive analysis of
its properties, including covariance function and path regularity, and then give an integral repre-
sentation for the characteristic function of the average forward variance. Some simulation tech-
niques are discussed in Section 3, with pertinent convergence results. Section 4 contains our new
pricing-hedging formulae for power-type derivatives that nonlinearly extend standard volatility
derivatives, which then initiate a comparative empirical study in Section 5 focused around VIX op-
tions, utilizing two independent data sets and two of the proposed kernels. Last but not least, we
also provide some insight into how the model framework may be further extended to accommo-
date the presence of rough volatility of volatility in Section 6 by means of a stochastic time change
argument, in catering for the noted finding of [Da Fonseca and Zhang, 2019] [13]. Conclusions
and future research directions are outlined in Section 7 and all mathematical proofs presented in
the end.

2 Construction of rough volatility with jumps

2.1 Fractional Lévy processes

We begin by synthesizing some crucial ingredients of a non-Gaussian fractional Lévy process,
which are necessary for establishing a model for the instantaneous variance of a risky asset whose
sample paths have roughness and jump features. Of course, allowing for positivity of the instanta-
neous variance the background-driving Lévy process must be nonnegative, i.e., a subordinator.

To this end, consider a continuous-time stochastic basis S := (Ω,F ,P;F ≡ {Ft }t≥0), where
the filtration F is assumed to satisfy the usual conditions. Let X ≡ (X t ) be an adapted and square-
integrable Lévy subordinator supported on S, which is exclusively characterized by a Poisson ran-
dom measure NX defined on (R++,R+). According to the Lévy-Khintchine representation, X1 has
the characteristic exponent

logφX1 (l ) := logE
[
e il X1

]= ∫ ∞

0+
(e il z −1)νX (dz), l ∈R,

where i denotes the imaginary unit and νX is the intensity measure associated with NX . For
practicality we impose the assumption that ν is non-atomic so that the distribution of X1 is ab-
solutely continuous with respect to Lebesgue measure (see, e.g., [Kohatsu-Higa and Takeuchi,
2019, Theorem 6.3.4] [27]) and we denote by ξ1 := E[X1] > 0 and ξ2 := Var[X1] > 0. Since X has
independent and stationary increments, it has the familiar covariance function, for any u > 0,
Cov

[
X t , X t+u

]= ξ2t .
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For a continuously differentiable2 kernel g ∈C (1,1) defined in the domain {(t , s) : t > 0, s ∈ [0, t )}
satisfying the integrability condition∫ t

0
g 2(t , s)ds <∞, ∀t > 0,

we then define the fractional Lévy process via the following Volterra-type stochastic integral,

X (g )
t :=

∫ t

0
g (t , s)dXs =

∫ t

0

∫ ∞

0+
g (t , s)zNX (dz,ds), t ≥ 0, (2.1.1)

which is well-definedP-a.s., and is a.k.a. a Lévy-driven fractionally integrated moving-average pro-
cess (see [Marquardt, 2006, Sect. 6.2] [35]). With this representation, for any t ,u > 0, it is easy to

see that E
[

X (g )
t

]= ξ1
∫ t

0 g (t , s)ds and, by using the Lévy-Itô isometry (see, e.g., [Lyasoff, 2017, Sect.
16.32] [32]), the covariance function of the process X (g ) takes the following form,

Cov
[

X (g )
t , X (g )

t+u

]= ξ2

∫ t

0
g (t , s)g (t +u, s)ds.

Notably, if lims↗t g (t , s) =∞ for every t > 0, then the integral
∫ t

0 g (0,1)(t , s)ds is divergent for every
t > 0. In this case, X (g ) exhibits short-term dependence in the sense that there exists$ ∈ (0,1) such
that

Cov
[

X (g )
t , X (g )

t+u

]= Var
[

X (g )
t

]+ξ2C (t )u$+O(u),

where Var
[

X (g )
t

] = ξ2
∫ t

0 g 2(t , s)ds by the dominated convergence theorem and C (t ) is some con-
stant depending only on t > 0.

To give a few examples, the Molchan-Golosov kernel ([Molchan and Golosov, 1969] [38]) reads

g (t , s) = (t − s)d−1
2F1

(
−d ,d −1;d ;− t − s

s

)
, (2.1.2)

for some fraction parameter d ∈ (1/2,3/2), where 2F1(·, ·; ·; ·) is the Gauss hypergeometric-(2,1)
function ([Abramowitz and Stegun, 1972, Sect. 15] [1]) and which is non-stationary. We note that
the specific form (2.1.2) was initially chosen in [Jost, 2006] [25] in an attempt to match the Weyl
integral representation of a fractional Brownian motion living in real-valued time used in [Man-
delbrot and van Ness, 1968] [34]. It was shown in [Tikanmäki and Mishura, 2011] [46], however,
that such transformation does not necessarily lead to the same finite-dimensional distribution in
the more general case of fractional Lévy processes. Another popular choice of g is the following
obviously stationary and yet structurally much simpler Riemann-Liouville kernel,3

g (t , s) ≡ g (t − s) = (t − s)d−1

Γ(d)
, (2.1.3)

2Continuous differentiability is a highly desirable property of the kernel for modeling purposes, hence assumed
throughout this paper. Intuitively, by ruling out kinks and discontinuities it ensures that the frictions brought by g do
not have sudden changes. However, it is not required for defining fractional Lévy subordinators and thus not to be
comprehended as any implicit assumption for the ongoing analysis.

3The same kernel was used in [El Euch, 2018] [14] and [El Euch, 2019] [15] in constructing the (generalized) rough
Heston model.
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for d > 1/2, where Γ(·) denotes the usual gamma function. In particular, with (2.1.3) the fractional
process X (g ) can also be understood as a consequence of repeated path integration of the subor-
dinator X , i.e., for d ∈N++ ≡N\ {0},

X (g )
t =

∫
· · ·

∫ t

0︸ ︷︷ ︸
d

Xs ds . . .ds︸ ︷︷ ︸
d

, (2.1.4)

which can be extended through Cauchy’s repeated integration formula. Of course, for this special
choice roughness is only present if d ∈ (1/2,1), while it also has the obvious drawback, compared
to the Molchan-Golosov kernel, that the resultant fractional process fails to have stationary incre-
ments.

In any case, a well-suited candidate for X , having infinitely many jumps on compact time
intervals, can be a one-sided tempered stable process, i.e., a tempered stable subordinator, which
has three parameters – a > 0, b > 0 and c ∈ (0,1), leading to the following characteristic exponent,

logφX1 (l ) = aΓ(−c)((b − il )c −bc ), l ∈R, (2.1.5)

so that ν(dz) = ae−bz /zc+11(0,∞)(z)dz, for z > 0, which is clearly an infinite measure. The tem-
pered stable distribution constitutes a fairly general family of infinitely divisible distributions (see
[Rosiński, 2007] [42] and [Küchler and Tappe, 2013] [28], as well as the overview in [Schoutens,
2003, Sect. 5.3] [43]), and it has witnessed many applications in constructing volatility models in
discrete time (see, e.g., [Mercuri, 2008] [37] and [Li et al, 2016] [30]). In particular, by taking c ↘ 0
and c = 1/2, from X one recovers the well-known gamma process and inverse Gaussian process,
respectively; in the former case it is understood that logφX1 (l ) =−a log(1− il/b). With (2.1.5) it is
also straightforward to verify that ξ1 = aΓ(1− c)/b1−c and ξ2 = aΓ(2− c)/b2−c .

2.2 Instantaneous variance

Let us consider, instead of the natural logarithm of the instantaneous volatility of a risky asset,
the instantaneous variance process, denoted V ≡ (Vt ). Intuitively speaking, our idea is to express
V as a Volterra-type stochastic integral, up to shifting and positive scaling, analogous to the frac-
tional Lévy process X (g ) in (2.1.1) with a suitable kernel chosen to allow for short- or long-term
dependence as well as long-term mean reversion, which is then supplemented by an independent
bounded semimartingale to adjust the vibrancy of the sample paths. This is done by assuming the
following quasi-Ornstein-Uhlenbeck structure,

V ◦
t =V ◦

0 e−κt + V̄ (1−e−κt )+X (h)
t , Vt =V ◦

t +ς(cos Zt +1), t ≥ 0, (2.2.1)

whose ingredients are set up as follows: κ > 0 specifies a reversion speed and V̄ ≥ 0 a universal
reversion level, h is a continuously differentiable kernel having a power-law left tail and a power-
exponential right tail,

h(t +u, t ) =
{

O(ud−1), as u ↘ 0,

O
(
e−κuu(d−1)+)

, as u →∞,
∀t > 0, (2.2.2)

for a fraction parameter d > 1/2, where (·)+ denotes the positive part; Z is a real-valued purely
discontinuous Lévy process independent from X , also supported on S, with an absolutely con-
tinuous distribution for every fixed t > 0, and ς> 0 is a small (manually adjustable) scaling factor.
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Subject to the law continuity assumption it suffices that Z1 admit a characteristic exponent of the
form

logφZ1 (l ) := logE
[
e il Z1

]= ∫
R\{0}

(e il z −1− il z1{|z|≤1})νZ (dz), l ∈R, (2.2.3)

whenever the above integral is finite, where νZ is the Lévy measure of Z with
∫

0<|z|<1 |z|νZ (z) =∞.
The condition (2.2.2) subtly embodies the intuition of introducing frictions into V without

jeopardizing its mean-reverting property, and it automatically ensures that (2.2.1) is well defined
because supt>0

∫ t
0 h2(t , s)ds < ∞. Besides, we assume that V ◦

0 > 0 has a known value. In fact, if
(2.2.2) holds with d ∈ (1/2,1), then V exhibits mean reversion in the long term but is simultane-
ously allowed to have short-term dependence. As before, with the Lévy-Itô isometry the process
V is seen to have the covariance function equal to

Cov[Vt ,Vt+u] = ξ2

∫ t

0
h(t , s)h(t +u, s)ds +ς2Cov[cos Zt ,cos Zt+u],

for any u > 0, which generally depends on t > 0. Under (2.2.2), if d < 1 then lims↗t h(t , s) =∞ for
any t > 0 and there exists C (t ) ∈R depending only on t such that

Cov[Vt ,Vt+u] = Var[Vt ]+ξ2C (t )u2d−1 +O(u), as u ↘ 0, (2.2.4)

with Var[Vt ] = ξ2
∫ t

0 h2(t , s)ds +ς2Var[cos Zt ]. In this case, the covariance function is rough at the
origin and V exhibits short-term dependence. With the right-tail behavior in (2.2.2) V always
reverts to a positive mean in the long term, with

lim
t→∞E[Vt ] = V̄ +ξ1 lim

t→∞

∫ t

0
h(t , s)ds +ς> 0, (2.2.5)

where we have used limt→∞E[cos Zt ] = 0 as |E[e iZ1
]| < 1 due to the absolute continuity of the

distribution of Z1.
Observably, our construction of the instantaneous variance V in (2.2.1) consists of two compo-

nents: a generalized fractional Ornstein-Uhlenbeck process V ◦ and a composite-sinusoidal Lévy
process ς(cos Z +1). Driven by a subordinator (X ), the first component accounts for large upward
volatility jumps but depicts significant downward movements as continuous corrections. This is
notably in line with recent empirical evidence (see, e.g., [Park, 2016] [39]) about the relative impor-
tance of signed jumps. Meanwhile, the latter component is included for the purpose of capturing
small-scale two-sided volatility movements of suitable activity. Simplicity aside, choosing the co-
sine function has a particular advantage in that it does not alter the nature of (infinite-variation)
small jumps of Z , albeit wiping out large values, for, with the Lévy-Itô decomposition in mind,
cos′ z =−sin z =O(z) as z → 0.

The fractional part of the process V ◦ is actually motivated by the recipe used in [Wolpert and
Taqqu, 2004, Sect. 3] [50] based on repeated integration, where h is specialized as the product of a
usual exponential kernel and the Riemann-Liouville kernel,

h(t , s) ≡ h(t − s) = e−κ(t−s)(t − s)d−1

Γ(d)
, (2.2.6)

which is obviously strictly positive and will be referred to as the type-I kernel. A remarkable differ-
ence, however, is that we assume that the instantaneous variance process is only observed starting
from time 0.

7



Power-type volatility derivatives

Indeed, the structure (2.2.1) represents a wide range of approaches towards achieving path
roughness and mean reversion at the same time, while it gives rise to an Ornstein-Uhlenbeck pro-
cess driven by a fractional Lévy process (subordinator), i.e., the structure used in [Garnier and
Sølna, 2018] [16], with the choice

h(t , s) = g (t , s)−κ
∫ t

s
e−κ(t−v)g (v, s)dv, (2.2.7)

where g is the kernel mentioned in (2.1.1). With an application of Itô’s formula and the Fubini-
Tonelli theorem the first equation in (2.2.1) is reformatted into

V ◦
t =V ◦

0 e−κt + V̄ (1−e−κt )+
∫ t

0
e−κ(t−s)dX (g )

s , (2.2.8)

which is the solution of the fractional stochastic integral equation

V ◦
t = κ

∫ t

0
(V̄ −V ◦

s )ds +X (g )
t .

Since the second term on the left-hand side of (2.2.7) is bounded for every fixed t > 0, it holds that
lims↗t h(t , s)/g (t , s) > 0, provided lims↗t g (t , s) =∞ for any t > 0. Thus, if the sample paths of X (g )

exhibit short-term dependence, then so do those of V , and in fact, their short-term dependence
must be of the same degree. If g is further taken to be the stationary Riemann-Liouville kernel,
then by straightforward calculations (2.2.7) yields the following type-II kernel which also happens
to be stationary,

h(t , s) ≡ h(t − s) = (t − s)d−1 + (−κ)1−d e−κ(t−s)(Γ(d)−Γ(d ,−κ(t − s)))

Γ(d)
, (2.2.9)

where Γ(·, ·) denotes the upper incomplete gamma function. The correlation structure (2.2.4) can
be made more precise with Var

[
X (h)

t

]= ξ2
∫ t

0 h2(s)ds and some

C (t ) ∈ Γ(1−2d)sin(πd)

πΓ2(d)
× (e−2κt ,1), (2.2.10)

which only depends on t . This shows that roughness is established if and only if d ∈ (1/2,1). How-
ever, formed from the Riemann-Liouville kernel the type-II kernel fails to meet the right tail be-
havior condition imposed in (2.2.2), but obeys instead h(t +u, t ) ≡ h(u) = O

(
e−κ1{d=1}uu(d−2)1{d 6=1}

)
as u → ∞, ∀t > 0. This signifies that the Ornstein-Uhlenbeck process V ◦ driven by a fractional
Lévy subordinator based on the Riemann-Liouville kernel can be mean-reverting only if d ≤ 1,
which impedes long-term dependence. Hence, it is no surprise that with this kernel the long-term
mean (2.2.4) of the instantaneous variance is finite only for d ∈ (1/2,1], and is simply given by
limt→∞E[Vt ] = V̄ +1{d=1}/κ+ς (as

∫ ∞
0 h(s)ds = 1{d=1}/κ), thereby indicating that the type-II ker-

nel, unlike the type-I, is not strictly positive when short-term dependence is exhibited with d < 1,
but the resultant process V obviously is (by (2.2.8)).

With the type-I kernel (2.2.6), it is not possible to interpret V ◦ as an Ornstein-Uhlenbeck pro-
cess driven by a fractional Lévy process. Nonetheless, V can still have short-term dependence
since, for d ∈ (1/2,1),

Cov
[
Vt ,Vt+u

]
ξ2

= t 2d−1

(2d −1)Γ2(d)
+C (t )u2d−1 +O(u), as u ↘ 0,

8
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by using (2.2.10). The long-term mean is however unconditionally finite: limt→∞E[Vt ] = V̄ +
ξ1κ

−d +ς.
As another aspect of our innovation, for d ∈ (1/2,1) generating short-term dependence we

propose to construct h by combining the scaled exponential kernel and the Riemann-Liouville
kernel in a piecewise fashion, i.e.,

h(t , s) ≡ h(t − s) =


(t − s)d−1 −τd−1

Γ(d)
+θe−κτ if t − s < τ,

θe−κ(t−s) if t − s ≥ τ,
(2.2.11)

where τ> 0 is some time threshold separating the power-law and exponential parts of the kernel
and θ > 0 is some scaling factor. To ensure continuous differentiability, τ solves the transcendental
equation

eκττd−2 =−κθΓ(d −1). (2.2.12)

In order for (2.2.12) to be solvable onR++, θ has to satisfy the constraint

θ ≥− 1

κΓ(d −1)

(2−d

eκ

)d−2
, (2.2.13)

under which

τ= d −2

κ
Wi

( κ

d −2
(−κθΓ(d −1))1/(d−2)

)
, i ∈ {−1,0}, (2.2.14)

with W·(·) being the Lambert W function, a.k.a. the product logarithm (see [Corless et al, 1996]
[12]). Note that the two solutions in (2.2.14) coincide if and only if equality holds in (2.2.13). We
will refer to (2.2.11) as the type-III kernel.4 Before the type-III kernel can be properly compared to
the other two types, we note that the type-I and type-II kernels both have the parametrical limiting
property that limκ↘0 h(t , s) = (t −s)d−1/Γ(d) and limd↗1 h(t , s) = e−κ(t−s), which correspond to the
Riemann-Liouville kernel without mean reversion and the classical exponential kernel without
fractions, respectively. It is desirable that the same hold for the type-III kernel, which is possible
by its construction. The particular choice of (τ,θ) that achieves this effect is also not difficult to
find by the properties of the Lambert W function, and is given by

τ= 1−d

κ
and θ =− (eκ)1−d

(1−d)2−dΓ(d −1)
.

Then the type-III kernel is uniquely parameterized by κ and d and reads

h(t − s) =


(t − s)d−1 − ((1−d)/κ)d−1

Γ(d)
− κ1−d

(1−d)2−dΓ(d −1)
if t − s < 1−d

κ
,

− (eκ)1−d e−κ(t−s)

(1−d)2−dΓ(d −1)
if t − s ≥ 1−d

κ
.

(2.2.15)

With (2.2.15), we have in (2.2.4) that C (t ) ≡ C = Γ(1− 2d)sin(πd)/(πΓ2(d)) while the long-term
mean (2.2.4) is always finite:

lim
t→∞E[Vt ] = V̄ + 1

(1−d)Γ(d +1)

(1−d

κ

)d
+ς> 0.

4Such a piecewise construction has the same shortcoming as the type-II kernel, namely the restriction of d ∈ (1/2,1),
but instead of sacrificing the mean-reverting property, the type-III kernel is incompatible with differentiability at τ if
long-term dependence (d ≥ 1) is required, in which case (2.2.12) has no positive solutions.
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Using κ = 5 and d = 0.6, Figure 1 below compares the three types of kernels (2.2.6), (2.2.9)
and (2.2.15) over the unit time interval. It is clear that they share the same right-tail behavior,
generating the same degree of short-term dependence. In fact, with d < 1 the type-I and type-III
kernels are both monotone and strictly positive whereas the type-II kernel is not.

Figure 1: Comparison of kernels

On a different note, despite that by the formulation (2.2.1) V lacks increment stationarity, there
is comprehensibly no negative impact placed on characteristic function-based model calibration.

In the next proposition we give some partial results on the regularity of the sample paths of
V . Indeed, from its appellation the interpretation of path roughness is not confined to the in-
volvement of short-term dependence, but should be linked to how degree of irregularity of the
sample paths. Since cos Z is a purely discontinuous semimartingale, we focus on the generalized
fractional Ornstein-Uhlenbeck process V ◦ and consider the case of an infinite Lévy measure νX

allowing for practicality.

Proposition 1. Assume νX (R++) =∞ and (2.2.1). For any fixed time T > 0 we have the follow-
ing three assertions.

(i) If d > 1, then the sample paths of V ◦ are P-a.s. continuous with P-a.s. zero quadratic varia-
tion over [0,T ].

(ii) If d = 1, then the sample paths of V ◦ are P-a.s. discontinuous with P-a.s. finite quadratic
variation over [0,T ].

(iii) If 1/2 < d < 1, then the sample paths of V ◦ are P-a.s. discontinuous and unbounded with
P-a.s. infinite quadratic variation over [0,T ].

Notably, for d > 1, the sample paths of V ◦ are smoothed in a way that all the jumps gener-
ated by X are expunged and, as will be seen in the proof in Appendix A, they are actually Hölder-
continuous for suitable exponents. On the other hand, in the situation of assertion (iii), V can
have infinitely large jumps, so that its sample paths form maps from [0,T ] to [0,∞]. However, this
will not be a problem for modeling in practice because Vt is a.s. finite for any fixed t ≥ 0 and in fact,
it has a finite variance. For the critical value d = 1, V only exhibits mean reversion. For the type-I
and type-II kernels it can be easily verified that in the case d = 1 V is exactly the usual Lévy-driven
Ornstein-Uhlenbeck process and for the type-III kernel this is also true in the limit as d ↗ 1.

10
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Letting t0 ∈ [0, t ] be a fixed time point, we can recast (2.2.1) conditional on Ft0 as

Vt =V ◦
0 e−κt + V̄ (1−e−κt )+

∫ t0

0
h(t , s)dXs +

∫ t

t0

h(t , s)dXs

+ς(cos(Zt −Zt0 )cos Zt0 − sin(Zt −Zt0 )sin Zt0 +1), (2.2.16)

or equivalently,

Vt =V ◦
t0

e−κ(t−t0) + V̄ (1−e−κ(t−t0))+
∫ t0

0

(
h(t , s)−e−κ(t−t0)h(t0, s)

)
dXs +

∫ t

t0

h(t , s)dXs

+ς(cos(Zt −Zt0 )cos Zt0 − sin(Zt −Zt0 )sin Zt0 +1). (2.2.17)

The first integral on the right-hand side of (2.2.17) clearly indicates that V cannot be a Markov
process or a semimartingale in general. In fact, it is so if and only if h is chosen such that h(t , s)−
e−κ(t−t0)h(t0, s) ≡ 0, a clear contradiction with the inclusion of short-term dependence; for in-
stance, with the aforementioned three types of kernels this integral does not vanish. With the
loss of the Markov property, it is oftentimes more comfortable to work directly with (2.2.16). The
conditional mean of the instantaneous variance can then be directly written down. For any fixed
t > t0 and u > 0, we have

E[Vt |Ft0 ] =V ◦
0 e−κt + V̄ (1−e−κt )+

∫ t0

0
h(t , s)dXs +ξ1

∫ t

t0

h(t , s)ds

+ς(E[cos Zt−t0 ]cos Zt0 −E[sin Zt−t0 ]sin Zt0 +1), (2.2.18)

using that both X and Z have independent stationary increments.

2.3 Average forward volatility

After constructing the instantaneous variance model with roughness and jumps, we proceed to
giving an explicit structure for the forward variance curve, i.e.,

Ṽt (u) := E[Vt+u |Ft ], u > 0, t ≥ 0, (2.3.1)

which in light of (2.2.18) admits the following stochastic representation,

Ṽt (u) = Ṽ ◦
t (u)+Ut (u), u > 0, t ≥ 0. (2.3.2)

On the right-hand side of (2.3.2),

Ṽ ◦
t (u) =V ◦

0 e−κ(t+u) + V̄ (1−e−κ(t+u))+
∫ t

0
h(t +u, s)dXs +ξ1

∫ t+u

t
h(t +u, s)ds (2.3.3)

is the forward variance rising from the generalized fractional Ornstein-Uhlenbeck process V ◦,
whose fractional integral is associated with the shifted kernel h(t +u, s), and

Ut (u) = ς(E[cos Zu]cos Zt −E[sin Zu]sin Zt +1) (2.3.4)

stems from the composite-sinusoidal Lévy process that contains small two-sided volatility jumps.

11
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Apart from the contemporaneous instantaneous variance, frictions in the forward variance
curve also result from a new fractional Lévy process X (Hu ) containing additional information over
the entire variance history. In consequence, with a general kernel h the Markov property of Ṽ (u)
is completely lost. If one prefers to view t +u > t as being time-independent, then (2.3.2) really
gives a martingale dynamics for the forward variance curve over [0, t +u], which is similar to the
martingale framework developed in [Horvath, 2020, Sect. 3] [21]. However, we deliberately refrain
from operating on such a framework as it is primarily beneficial from a simulation-based view-
point. It is also worth emphasizing that, since lims↗t Hu(t , s) = h(t +u, t ) = O(1), ∀t ,u > 0, the
modified process X (Hu ) deprives the sample paths of Ṽ (u) of any degree of roughness, restoring
the semimartingale property of Ṽ (u).

Under continuous monitoring over a fixed window∆> 0, the average forward volatility process
is identified as the square root of the ∆-running average of the forward variance process,

It (∆) :=
√

1

∆

∫ ∆

0
Ṽt (u)du, t ≥ 0.

In the case of the VIX index, for instance, ∆ = 6/73 year (equivalent to 30 days). By using (2.3.2),
some direct calculations lead to an integral representation of the corresponding average forward
variance as well. For any ∆> 0 we have using the Fubini-Tonelli theorem that

I 2
t (∆) ≡ 1

∆

∫ ∆

0
Ṽt (u)du = V ◦

0 (e−κt −e−κ(t+∆))

κ∆
+ V̄

(
1− e−κt −e−κ(t+∆)

κ∆

)
+X (H∆)

t +ξ1Υ∆(t )

+ ς

∆

(∫ ∆

0
E[cos Zu]du cos Zt −

∫ ∆

0
E[sin Zu]du sin Zt +∆

)
, (2.3.5)

where

H∆(t , s) := 1

∆

∫ ∆

0
h(t +u, s)du (2.3.6)

is a ∆-forward integrated kernel. By construction H∆ is continuously differentiable and both H∆

and Υ∆ preserve stationarity from h.
After some tedious calculations it can be deduced that, when h is the type-I kernel (2.2.6), then

H∆(t , s) ≡ H∆(t − s) = Γ(d ,κ(t − s))−Γ(d ,κ(t − s +∆))

κd∆Γ(d)
(2.3.7)

and

Υ∆(t ) ≡Υ∆ = (κ∆−d)Γ(d)−κ∆Γ(d ,κ∆)+Γ(d +1,κ∆)

κd+1∆Γ(d)
. (2.3.8)

Similarly, for the type-II kernel (2.2.9) with d ∈ (1/2,1],

H∆(t , s) ≡ H∆(t − s) = e−κ(t−s+∆)(Γ(d)−eκ∆(Γ(d)−Γ(d ,−κ(t − s)))−Γ(d ,−κ(t − s +∆)))

(−κ)d∆Γ(d)
(2.3.9)

and

Υ∆(t ) ≡Υ∆ = ∆d −e−κ∆(−κ)−d d(Γ(d)−Γ(d ,−κ∆))

κ∆Γ(d +1)
. (2.3.10)

For the type-III kernel in its specialized form (2.2.15) with d ∈ (1/2,1), we have

H∆(t , s) ≡ H∆(t − s)

12
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=



(t − s +∆)d − (t − s)d

∆Γ(d +1)
if t − s +∆< 1−d

κ
,

((1−d)/κ)d − (t − s)d

∆Γ(d +1)
+ e−κ(t−s+∆)+1−d −1

κd∆(1−d)2−dΓ(d −1)
if t − s < 1−d

κ
≤ t − s +∆,

−e−κ(t−s+∆)+1−d (eκ∆−1)

κd∆(1−d)2−dΓ(d −1)
if t − s ≥ 1−d

κ

(2.3.11)

and

Υ∆(t ) ≡Υ∆ =


∆d

Γ(d +2)
if ∆< 1−d

κ
,

1

κd+1∆(1−d)1−d

(e−κ∆+1−d

Γ(d)
+ κ∆(d +1)+d(d −3)

Γ(d +2)

)
if ∆≥ 1−d

κ
.

(2.3.12)

Note that all three types of ∆-forward integrated kernels are stationary with constant averaging
functions. From a computational viewpoint, a benefit of the piecewise nature of the type-III kernel
is that one does not need to deal with incomplete gamma functions,5 which are even complex-
valued under the type-II kernel.

The previous formulae for the forward variance curve Ṽ (u) and its average I 2(∆), esp. (2.3.3),
(2.3.4) and (2.3.5), can be conveniently restated for any fixed time interval [t0, t ] ⊆ [0,T ], so that
their conditional distributions may be analyzed. In particular, it is straightforward to deduce that,
for u > 0,

Ṽ ◦
t (u) = Ṽt0 (t − t0 +u)−ξ1

∫ t

t0

h(t +u, s)ds +
∫ t

t0

h(t +u, s)dXs

and

Ut (u) = ς(E[cos Zu](cos(Zt −Zt0 )cos Zt0 − sin(Zt −Zt0 )sin Zt0 )

−E[sin Zu](sin(Zt −Zt0 )cos Zt0 +cos(Zt −Zt0 )sin Zt0 )+1),

which together yield

I 2
t (∆) = 1

∆

∫ t−t0+∆

t−t0

Ṽ ◦
t0

(u)du −ξ1

∫ t

t0

H∆(t , s)ds +
∫ t

t0

H∆(t , s)dXs

+ ς

∆

(∫ ∆

0
E[cos Zu]du(cos(Zt −Zt0 )cos Zt0 − sin(Zt −Zt0 )sin Zt0 )

−
∫ ∆

0
E[sin Zu]du(sin(Zt −Zt0 )cos Zt0 +cos(Zt −Zt0 )sin Zt0 )+∆

)
. (2.3.13)

From the last representation it is also noted that an attendant effect of Ut (u), apart from its original
purpose of capturing small-scale volatility jumps, is that the resultant average forward variance
contains risks that cannot be fully spanned by the forward variance curve, which will only depend
on Z , particularly the quadrant of e iZ .6

5With the type-III kernel one can also discover a closed-form formula for the conditional characteristic function
of the fractional process V ◦ and hence the partial forward variance Ṽ ◦(u), which facilitates derivatives pricing on the
instantaneous or forward variances. Details are put into Appendix B as the interest of the present paper is more for
derivatives on the average forward variance.

6We stress that such volatility risks are not an oddity and the same phenomena also prevail when one considers the
classical framework of log-volatility without resorting to any geometric average approximation. In the present frame-
work, the tolerance of such risks is directly tied to the auxiliary parameter ς> 0.
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At this point, we have all the necessary tools to give a comfortable integral formula for the
conditional characteristic function of the average forward variance, as the following proposition
expounds.

Proposition 2. In the setting of (2.3.5), given any 0 ≤ t0 < t ≤ T and ∆> 0, it holds that

φI 2
t (∆)|t0

(l ) := E[e il I 2
t (∆)|Ft0

]= 1

π
exp

(
il J (t , t0,∆)+

∫ t

t0

logφX1 (l H∆(t , s))ds
)

×
∫
R
ψ(l , x; t0,∆)

∫ ∞

0
Re

[
e−i`xφ

t−t0
Z1

(`)
]
d`dx, l ∈R, (2.3.14)

where φZ1 is recalled to be the characteristic function of the random variable Z1,

J (t , t0,∆) := 1

∆

∫ t−t0+∆

t−t0

Ṽ ◦
t0

(u)du −ξ1

∫ t

t0

H∆(t , s)ds > 0

is a kernel-modulated forward variance quantity, and

ψ(l , x; t0,∆) := exp
( ilς

∆

(
Re

[φ∆Z1
(1)−1

logφZ1 (1)

]
(cos x cos Zt0 − sin x sin Zt0 )

− Im
[φ∆Z1

(1)−1

logφZ1 (1)

]
(sin x cos Zt0 +cos x sin Zt0 )+∆

))
.

The application of Proposition 2 can be facilitated if the density function of the Lévy process
Z , esp. the Fourier inverse (1/π)

∫ ∞
0 e−i`xφ

t−t0
Z1

(`)d`, can be written explicitly, allowing the tar-
get characteristic function to involve up to two parallel (multiplied) numerical integrals. Unfor-
tunately, this would be an impractical requirement in consideration of the empirical finding in
[Todorov and Tauchen, 2011, Sect. 6] [47], which suggests that the Lévy measure νZ of Z typi-
cally has a Blumenthal-Getoor index around 1.78, and there is no commonly known Lévy process
with such a feature and yet has a closed-form density function. Despite this, benefiting from the
composite-sinusoidal structure, Z need not even have a finite variance and we can pick Z from the
family of symmetric α-stable processes with the simple characteristic function φZ1 (l ) = e−|l |

α

, for
α ≈ 1.78. The associated Lévy measure in (2.2.3) is then νZ (dz) = −sec(πα/2)/(2Γ(−α)|z|α+1)dz
for z ∈ R \ {0}. Also, since the scale of the composite-sinusoidal process is already incorporated
into the parameter ς ∈ (0,1), it is redundant to introduce additional parameters to Z , and due
to symmetry of the assumed stable distribution the effect of the composite-sinusoidal process is
solely to generate a suitable activity level of the average forward variance while other large asym-
metric movements are taken account of by the partial forward variance Ṽ ◦(u) resulted from the
generalized fractional Ornstein-Uhlenbeck process V ◦.

Leastwise, with Proposition 2 one can deduce pricing-hedging formulae for derivatives con-
tracts written on the average forward variance, e.g., the squared VIX index, which will be explained
in detail in Section 4. Most importantly, although it is not possible to derive a similar formula for
the characteristic function of the average forward volatility, we will demonstrate how this diffi-
culty may be overcome for volatility derivatives by way of power-type extensions. Moreover, by
forcing ∆↘ 0 (2.3.14) is nothing but the conditional characteristic function for the instantaneous
variance, i.e., E

[
e ilVt |Ft0

]
, l ∈R.
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3 Simulation techniques

Despite general non-stationarity, using (2.2.1) we can still simulate the sample paths of the instan-
taneous variance process. To do this we discretize the generic global time interval [0,T ] by means
of the uniform partition

TM :=
{nT

M

}M

n=0
, M ∈N++, M À 1. (3.1)

Then, using the Gauss quadrature rule ([Golub and Welsch, 1969] [19]) and the Lévy properties of
X , the Volterra-type stochastic integral in the definition of V ◦ in (2.2.1) can be approximated by a
finite random sum,

V̌ ◦
nT /M =V0e−κnT /M + V̄

(
1−e−κnT /M )+n−1∑

k=0
h
(nT

M
,

kT

M

)
X̌k , n ≥ 1, (3.2)

where X̌k ’s are i.i.d. random variables with characteristic function E
[
e il X̌k

]= (φX1 (l ))T /M , for l ∈R.
If the kernel is stationary, h(nT /M ,kT /M) = h((n−k)T /M). Then, we have the following estimator
of (2.2.1) on TM ,

V̌nT /M = V̌ ◦
nT /M +ς

(
cos

n∑
k=1

Žk +1

)
, n ≥ 1,

where likewise Žk ’s are i.i.d. random variables with characteristic function E
[
e il Žk

] = (φZ1 (l ))T /M ,
for l ∈R. The next proposition describes the convergence rate of the discretized process V̌ towards
V over (0,T ] (with trivial equivalence at time 0).

Proposition 3. Under TM , for any fixed t ∈ (0,T ], there exists n ∈ N∩ [1, M ] such that the
estimator V̌nT /M is conditionally asymptotically unbiased towards Vt and

E
[(

V̌nT /M −Vt
)2]= Var[Vt ]+O(M−1), as M →∞.

Note that the convergence rate is unaffected by the fraction index d of h, which applies to the
three types of kernels discussed before. Nonetheless, the above L2-convergence fails in the limit
as d ↘ 1/2. In a similar fashion, we can use the representation (2.3.5) to simulate the sample paths
of the average forward variance I 2(∆) for a given ∆> 0, by using the estimator

Ǐ 2
nT /M (∆) = V ◦

0 (e−κnT /M −e−κ(nT /M+∆))

κ∆
+ V̄

(
1− e−κnT /M −e−κ(nT /M+∆)

κ∆

)
+

n−1∑
k=0

H∆

(nT

M
,

kT

M

)
X̌k +ξ1Υ∆(nT /M)

+ ς

∆

(∫ ∆

0
E[cos Zu]du cos

n−1∑
k=1

Žk −
∫ ∆

0
E[sin Zu]du sin

n−1∑
k=1

Žk +∆
)
, n ∈N∩ [1, M ],

to which the L2-convergence criterion in Proposition 3 naturally applies. Besides, there is no need
to discretize the deterministic integrals containing the sinusoidal composites of Zu which can be
directly computed according to Proposition 2.
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4 Power-type derivatives

In this section we present the main pricing-hedging formulae for European-style derivatives writ-
ten on the adjusted average forward volatility. The setting of Section 2.2 is adopted throughout,
and a fixed maturity date T > 0 is assumed.

4.1 Power swaps

We start with swaps written on the average forward volatility. The payoff of a power swap to its
investor is at T

S(p)
T = I p

T (∆), (4.1.1)

where p ≥ 0 is a predetermined power coefficient. Here we have disregarded the notional amount
for simplicity as it is merely a positive scaling factor. Of course, the extremal case p = 0 corre-
sponds to a fixed cash payment of 1 dollar, while by choosing p = 1 and p = 2, one obtains the
standard volatility swap and the standard variance swap, respectively.

Convention is that, at inception of trading, the price of the swap is set to achieve a zero fair
value, and so the price of the swap at a given time point t0 before maturity can be simply computed
as the expected value of I p

T (∆) conditional on Ft0 , i.e., as

S(p)
t0

= E[I p
T (∆)|Ft0

]
,

and is treatable as a potentially fractional moment of I 2
T (∆).

Proposition 4. At time t0 ∈ [0,T ), the price of the power volatility swap with payoff (4.1.1)
satisfies the quasi-recurrence relation7

S(p)
t0

= (−i)p/2φ
(p/2)
I 2

T (∆)|t0
(0), p ∈ 2N,

 S(p)
t0

= sec
π(p/2−bp/2c)

2

p/2−bp/2c
Γ(1−p/2+bp/2c)

×
∫ ∞

0
Re

[S(2bp/2c)
t0

− (−i)bp/2cφ(bp/2c)
I 2

T (∆)|t0
(l )

l p/2−bp/2c+1

]
dl , p ∉ 2N, (4.1.2)

provided that E
[
I p

T (∆)
]<∞.

Due to the exponential structure (2.3.14) the convergence of (4.1.2) is directly linked to the
smoothness of the characteristic function of X1 and Z1 (refer to (2.1.5) and (2.2.3)). Compre-
hensibly, it is far from exorbitant to demand that φI 2

T (∆)|t0
(·) ∈ C bp/2c+1(R), which condition re-

mains valid for a wide class of square-integrable Lévy processes X . For instance, for X a tem-
pered stable process and Z a stable process, its characteristic function (2.1.5) immediately renders
φI 2

T (∆)|t0
(·) ∈C ∞(R) so that Proposition 4 is automatically applicable for all values of p ≥ 0. Imple-

mentation of (4.1.2) is also nowhere near computationally intense, regardless of specializations of

7For simplicity we use φ($)
t0,T (l ;∆) ≡ ∂$φI 2

T (∆)|t0
(l )/∂l$ to denote the $th derivative of φI 2

T (∆)|t0
(l ) with respect to

l ∈R, for $≥ 0.
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the (∆-)forward integrated kernels, by means of the Gauss quadrature rule for numerical integra-
tion and finite-difference approximations for differentiation of integer orders; for example, given
the required degree of smoothness, a central approximation reads for ε> 0 small

φ
(bp/2c)
I 2

T (∆)|t0
(0) =

bp/2c∑
n=0

(
bp/2c

n

)
(−1)n

φI 2
T (∆)|t0

(( bp/2c
2 −n

)
ε
)

εbp/2c +O(ε2).

In particular, by taking p = 1 in (4.1.2) the pricing formula for the standard volatility swap reads

S(1)
t0

= 1p
2π

∫ ∞

0
Re

[1−φI 2
T (∆)|t0

(l )
p

l 3

]
dl , (4.1.3)

whilst that for the corresponding variance swap is none but the Ft0 -conditional mean of I 2
T (∆)

and we recall (2.3.1) through (2.3.4).
Amidst a non-Markovian setting, it is unrealistic to construct a perfect hedge for these power

volatility swaps based on the forward variance curve only. In light of the structure of the charac-
teristic function (2.3.14), the dominant parts of I 2(∆) not containing the active small-scale jumps
of cos Z can leastways be hedged perfectly with the partial forward variance curve Ṽ ◦(u), esp. the
kernel-modulated forward variance J (T, t0,∆). In other words, we wish to find a partial hedging
strategy designated for those dominant parts over the time period [t0,T ) which will require the
entire forward variance curve {Ṽt0 (u) : u ∈ (T − t0,T − t0 +∆]}, whereas other non-hedged volatility
risks are precisely those that cannot be spanned and are all buried in the bounded sinusoidal com-
posites involving the randomness of Z exclusively. To that end we first define the time-indexed
differential operator

4t := ∂

∂J (t , t0,∆)
, t ∈ (t0,T ],

for a fixed t0 ∈ [0,T ).

Corollary 1. In the setting of Proposition 4 we have8

4T
(
S(p)

t0

)= p(−i)p/2−1φ
(p/2−1)
I 2

T (∆)|t0
(0)

2
=

pS(p−2)
t0

2
, p ∈ 2N,

 4T
(
S(p)

t0

)= sec
π(p/2−bp/2c)

2

p/2−bp/2c
Γ(1−p/2+bp/2c)

∫ ∞

0
Re

[ 1

l p/2−bp/2c+1

(
4T

(
S(2bp/2c)

t0

)
− (−i)bp/2c−1

(
lφ(bp/2c)

I 2
T (∆)|t0

(l )+
⌊ p

2

⌋
φ

(bp/2c−1)
I 2

T (∆)|t0
(l )

))]
dl , p ∉ 2N. (4.1.4)

The first equation in (4.1.4) signifies that if p/2 is an integer, then the size of the (partial) hedge
is equal to the spot price of another power variance swap, with decremented power p/2−1. Again,
after taking p = 1 in the second equation, we find the hedge for the standard volatility swap as

4T
(
S(1)

t0

)= 1p
2π

∫ ∞

0
Re

[φI 2
T (∆)|t0

(l )
p

l

]
dl .

8Although the notation φ(−1)
t0,T (·;∆) can be well understood as an antiderivative, it does not matter here due to multi-

plication by 0.
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Obviously, for the corresponding variance swap, the hedge is exactly J (T, t0,∆), with 4T
(
S(2)

t0

)= 1.
Moreover, we stress that the convergence of (4.1.4) does not rely on integrability of the charac-

teristic function, namelyφt0,T (·;∆) ∈ L1(R). In fact, although this condition is considerably benign
and realistic, it is not necessary for the stated results to hold. The only assumption we have made
in this regard is that X1 and Z1 are continuous random variables, connected with the non-atomic
Lévy measures νX and νZ .

4.2 Asymmetric power options

As mentioned since the introduction, our study for asymmetric power options is motivated by the
average forward volatility being the square root of the average forward variance. In other words, an
option written on the average forward volatility can be effectively treated as a power-type option
on the average forward variance, with power exactly equal to 1/2. For convenience and generality
we still conduct our analysis subject to a positive power coefficient.

Let us consider a European-style put option contract on the average forward volatility IT (∆),
having the terminal payoff

P (p1,p2,(a))
T = (

K p2 − I p1

T (∆)
)+, (4.2.1)

where K > 0 is the volatility strike and p1, p2 ≥ 0 are two predetermined power coefficients. We
refer to this type as being asymmetric since the power imposed on the strike can differ from that
on the average forward volatility. The payoff structure (4.2.1) grants the option investor a leveraged
view on the average forward volatility. Since IT (∆) takes values within the unit interval under
normal conditions, p1 > 1 actually reduces the option investor’s risk exposure, other things equal,
while 0 ≤ p1 < 1 expands it, which is the exact opposite of the case of equity options (see [Xia,

2019, pp. 119] [52]). Obviously, for any fixed p2 ≥ 0, P (1,p2,(a))
T corresponds to the terminal payoff of

the standard volatility put option, while P (1,p2,(a))
T represents that of a standard put option on the

average forward variance. In the case of a call option, we have

C (p1,p2,(a))
T = (

I p1

T (∆)−K p2
)+. (4.2.2)

The following proposition is given for arbitrary-time pricing of the asymmetric power option.

Proposition 5. The price of the asymmetric power put option with terminal payoff (4.2.1) at
time t0 ∈ [0,T ) is given by

P (p1,p2,(a))
t0

= K p2

2
− 1

π

∫ ∞

0
Re

[(
K p2 e−iK 2p2/p1 l + Γ(p1/2+1)−Γ(p1/2+1, iK 2p2/p1 l )

(il )p1/2

)φI 2
T (∆)|t0

(l )

il

]
dl .

(4.2.3)
The price of the asymmetric power call option with terminal payoff (4.2.2) at time t0 ∈ [0,T ) is
given by

C (p1,p2,(a))
t0

= P (p1,p2,(a))
t0

−K p2 +S(p1)
t0

, (4.2.4)

where S(p1)
t0

is the contemporaneous price of a power swap on IT (∆) specified in Proposition 4.

By taking p1 = p2 = 1 one has the pricing formulae for the standard volatility options. In par-
ticular,

P (1,1,(a))
t0

= K

2
− 1

π

∫ ∞

0
Re

[(
K e−iK 2l +

p
π/2−Γ(3/2, iK 2l )p

il

)φI 2
T (∆)|t0

(l )

il

]
dl (4.2.5)
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and, recalling (4.1.3),

C (1,1,(a))
t0

= 1

π

∫ ∞

0
Re

[√ π

2l 3 −
(
K e−iK 2l + i

p
π/2−Γ(3/2, iK 2l )p

il

)φI 2
T (∆)|t0

(l )

il

]
dl − K

2
. (4.2.6)

On the other hand, for the standard put option on the average forward variance with p1 = 2, there
is a significant reduction,

P (2,1,(a))
t0

= K

2
− 1

π

∫ ∞

0
Re

[ (e−iK l −1)φI 2
T (∆)|t0

(l )

l 2

]
dl .

The formulae (4.2.5) and (4.2.6) for the standard volatility options can be implemented with sub-
stantial efficiency provided that the conditional characteristic function takes the form of (2.3.14)
and facilitate calibration of the model on standard option prices.

Hedging of the asymmetric power options resembles that of the corresponding power swap,
which only makes use of the partial forward variance curve. For the following we adopt the differ-
ential operator 4t for t ∈ (t0,T ].

Corollary 2. In the setting of Proposition 5, hedges can be constructed as

4T
(
P (p1,p2,(a))

t0

)=− 1

π

∫ ∞

0
Re

[(
K p2 e−iK 2p2/p1 l + Γ(p1/2+1)−Γ(p1/2+1, iK 2p2/p1 l )

(il )p1/2

)
φI 2

T (∆)|t0
(l )

]
dl

(4.2.7)
and

4T
(
C (p1,p2,(a))

t0

)=4T
(
P (p1,p2,(a))

t0

)+4T
(
S(p1)

t0

)
, (4.2.8)

where 4T
(
S(p1)

t0

)
is as specified in Corollary 1.

Once again, with the choice p1 = p2 = 1, the standard volatility options can be hedged in terms
of

4T
(
P (1,1,(a))

t0

)=− 1

π

∫ ∞

0
Re

[(
K e−iK 2l +

p
π/2−Γ(3/2, iK 2l )p

il

)
φI 2

T (∆)|t0
(l )

]
dl

and

4T
(
C (1,1,(a))

t0

)= 1

π

∫ ∞

0
Re

[( i
p
π/2−Γ(3/2, iK 2l )p

il
−K e−iK 2l

)
φI 2

T (∆)|t0
(l )

]
dl .

We remark that the hedging strategies constructed in Corollary 1 and Corollary 2 only target
the dominant movements in the average forward volatility I (∆) that are governed by the fractional
process X (h), to which the prices of volatility derivatives will be sensitive, whereas the bounded
fluctuations controlling the activity level of the I (∆) remain un-hedged. Nevertheless, these partial
hedges remain valid with or without rough volatility and can be made perfect when the activity
controller process Z is absent.

4.3 Symmetric power options

As in the case of equity options, the volatility option investor’s risk exposure can also be adjusted by
directly forcing a mutual power effect on the standard option payoff (similar to [Raible, 2000, Sect.
3.4] [41] and [Xia, 2019, pp. 120] [52]). This way of generalization understandably does not build
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any useful connection between options on the average forward volatility and the corresponding
forward variance and is hence considered less important from the viewpoint of this paper’s moti-
vation. Nonetheless, for the sake of completeness and our interest we still provide a comprehen-
sive analysis of the pricing-hedging methods for such so-called “symmetric power options.”

In this connection let a European-style put option contract on IT (∆) have the following termi-
nal payoff,

P (p,(s))
T = (

(K − IT (∆))+
)p , (4.3.1)

where K > 0 and p ≥ 0. In this structure both the strike price and the average forward volatility
undergo the same power impact, and with binomial expansion we can rewrite

P (p,(s))
T =

∞∑
k=0

(
p

k

)
(−1)k K p−k I k

T (∆)1{IT (∆)<K } =
∞∑

k=0

(
p

k

)
(−1)k K p−k S(k)

T 1{IT (∆)<K }, (4.3.2)

which shows that, conditional on {IT (∆) < K }, the symmetric put power option can be looked upon
as a weighted sum of power volatility swaps, each associated with an integer power coefficient in
N, which at k = 0 is merely a cash payment of K p . Clearly, (4.3.2) is a finite sum if and only if p ∈N.

Besides, we observe that the plots of the payoff functions P (p,p,(a))
T and P (p,(s))

T against IT (∆) are
symmetric with respect to the line segment joining the points (0,K p ) and (K ,0) over the interval
[0,K ]. For 0 ≤ p < 1, the symmetric power option provides a convex transformation of the standard
option payoff whereas its asymmetric power counterpart provides a concave one; for p > 1 one has
a reversed relation (see Figure 2). Therefore, the two types of power put options can be utilized to
complement each other in terms of severity of risk adjustment when either deeply in-the-money
or closed to at-the-money. However, such effect holds exclusively for put options.

Figure 2: Comparison of leverage effects of power put options

As we write the terminal payoff

C (p,(s))
T = (

(IT (∆)−K )+
)p

=


p∑

k=0

(
p

k

)
(−K )k S(p−k)

T 1{IT (∆)>K }, p ∈N,( bpc∑
k=0

(
p

k

)
(−K )k S(p−k)

T +
∞∑

k=bpc+1

(
p

k

)
(−K )k I p−k

T (∆)

)
1{IT (∆)>K }, p ∉N,

(4.3.3)
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a similar symmetric power call option can be decomposed into exactly bpc weighted power volatil-
ity swaps incremented by an infinite sequence of power-type derivatives on the reciprocal average
forward volatility I−1

T (∆) conditioned to stay below 1/K , which vanishes if and only if p is an inte-

ger. Also, note that in this case the payoff functions C (p,p,(a))
T and C (p,(s))

T are both strictly concave
resp. convex in IT (∆) for 0 ≤ p < 1 resp. p > 1 over [K ,∞), with limx→∞(xp −K p )+/((x −K )+)p = 1.

Based on the two decompositions (4.3.2) and (4.3.3), the next proposition gives the pricing
formulae for these symmetric power options in terms of infinite series.

Proposition 6. The price of the symmetric power put option with terminal payoff (4.3.1) at
time t0 ∈ [0,T ) is given by

P (p,(s))
t0

= 1

π

∞∑
k=0

(
p

k

)
(−1)k K p−k

∫ ∞

0
Re

[ (Γ(k/2+1)−Γ(k/2+1, iK 2l ))φI 2
T (∆)|t0

(l )

(il )k/2+1

]
dl , (4.3.4)

while that of the similar symmetric power call option with (4.3.3) is

C p,(s)
t0

=
bpc∑
k=0

(
p

k

)
(−K )k

(
S(p−k)

t0

− 1

π

∫ ∞

0
Re

[ (Γ((p −k)/2+1)−Γ((p −k)/2+1, iK 2l ))φI 2
T (∆)|t0

(l )

(il )(p−k)/2+1

]
dl

)
+Σ(p)

t0
, (4.3.5)

where S(p−k)
t0

’s, for 0 ≤ k ≤ p, are the contemporaneous power swap prices as specified in Proposi-
tion 4 and

Σ
(p)
t0

=


0, if p ∈N,

1

π

∞∑
k=bpc+1

(
p

k

)
(−K )k

∫ ∞

0
Re

[Γ(1− (k −p)/2, iK 2l )φI 2
T (∆)|t0

(l )

(il )1−(k−p)/2

]
dl , if p ∉N.

Hedges of these symmetric power options using I 2
t0

(T − t0 +∆) also come in similar forms,
which yield the next result.

Corollary 3. Assume the setting of Proposition 6. Then we have

4T
(
P (p,(s))

t0

)= 1

π

∞∑
k=0

(
p

k

)
(−1)k K p−k

∫ ∞

0
Re

[ (Γ(k/2+1)−Γ(k/2+1, iK 2l ))φI 2
T (∆)|t0

(l )

(il )k/2

]
dl ,

and

4T
(
C p,(s)

t0

)=4T
(
Σ

(p)
t0

)+ bpc∑
k=0

(
p

k

)
(−K )k

(
4T

(
S(p−k)

t0

)
− 1

π

∫ ∞

0
Re

[ (Γ((p −k)/2+1)−Γ((p −k)/2+1, iK 2l ))φI 2
T (∆)|t0

(l )

(il )(p−k)/2

]
dl

)
,

where 4T
(
S(p−k)

t0

)
’s, for 0 ≤ k ≤ p, are the contemporaneous power swap hedges as specified in

Corollary 2 and

4T
(
Σ

(p)
t0

)=


0, if p ∈N,

1

π

∞∑
k=bpc+1

(
p

k

)
(−K )k

∫ ∞

0
Re

[Γ(1− (k −p)/2, iK 2l )φI 2
T (∆)|t0

(l )

(il )(p−k)/2

]
dl , if p ∉N.
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5 An empirical study

In this empirical study we illustrate the performance of our model framework established in Sec-
tion 2 as well as the pricing-hedging formulae presented in Section 4. Allowing for overall effi-
ciency, we focus on the type-I and type-III kernels, specializing h according to (2.2.6) and (2.2.15),
respectively; as explained before, the type-II kernel (2.2.9) derived from the Riemann-Liouville
kernel can take negative values and does not possess an exponentially decaying right tail as de-
manded in (2.2.2), and hence is likely to bring about numerical issues. The Lévy subordinator X is
taken to belong to the class of tempered stable subordinators, with characteristic function (2.1.5),
while the auxiliary Lévy process Z is as mentioned in Section 2.3 a two-sided 1.78-stable process.9

5.1 Data and preparation

Since the VIX index is a popular gauge for the stock market volatility, it would be very interesting
to evaluate the model performance under dissimilar market dynamics. For this reason, we have
select two independent VIX option price data sets, in the years 2016 and 2020, which correspond
to, respectively, normal times and the COVID-19 global pandemic – it is known that in the latter
period there has been significantly higher buying pressure into call options amid market fear, gen-
erating anomalous trading volumes. For both data sets, strike prices and option prices are quoted
in the unit of US$100 (data source: [CBOE Global Markets, Inc., 2020] [11]) and we adopt t0 = 0
throughout for simplicity.

In more detail, the first data set reflects ordinary market dynamics where the volatility smile is
easily justified. It consists of 38 put option prices quoted on Jan 26th, 2016, under four different
maturities T = 27,55,90,181 days with the spot price I0(∆) = 0.2667 and the strike price K ranging
from 0.12 to 0.3. The second data set speaks to an abnormally volatile market dynamics with a
conspicuous clustering of call option prices across different maturities. It contains 38 call option
prices quoted as of May 11th, 2020, also corresponding to four maturities T = 72,100,163,191 days
with the spot price I0(∆) = 0.3304 and the strike price K ∈ [0.2,0.9]. It is clear that with these two
data sets we can also simultaneously illustrate the pricing formulae for both call and put options.

By the definition of the VIX index we fix ∆= 6/73 (year). In order to apply Proposition 2 prop-
erly, one challenge that immediately comes to attention is the specification of the (Ft0 -measurable)
kernel-modulated forward variance J (t , t0,∆) > 0, which arises because of the non-Markovian set-
ting and contains all the information about the spot price of the VIX at time t0. Understandably,
it would be undesirable to treat the entire quantity J (t , t0,∆) as an independent parameter to be
calibrated, which can cause severe instability by disregarding the base level of the spot price. To
overcome this difficulty, we employ an expansion argument to transform J (t , t0,∆) into a linear
combination of the square of the spot price (i.e., I 2

t0
(∆)) and a time-dependent remainder term

with refined domains. Such an operation can significantly stabilize calibration by permitting the
use of VIX index data. In particular, the relations (2.3.2) and (2.3.4) permit writing

J (t , t0,∆) = I 2
t0

(∆)−ξ1

∫ t

t0

H∆(t , s)ds + r (t0, t ), (5.1.1)

9In adherence to how it is motivated, the stability index α is to be estimated from high-frequency data for the VIX
index, along the lines of [Todorov and Tauchen, 2011, Sect. 4.2] [47], rather than to be calibrated from option price data.
In this context we simply stick to the value 1.78 in the wake of their empirical findings.
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where the remainder, being bounded using the time-to-maturity and the scaling factor ς,

|r (t0, t )| =
∣∣∣ 1

∆

∫ t

t0

(
Ṽ ◦

t0
(v − t0 +∆)− Ṽ ◦

t0
(v − t0)

)
(t − v)dv − 1

∆

∫ ∆

0
Ut0 (u)du

∣∣∣≤ 1

∆
(t − t0)2 +3ς, (5.1.2)

is to be calibrated independently in the domain [−(t − t0)2/∆− 3ς, (t − t0)2/∆+ 3ς]. With (5.1.1)
and (5.1.2), the corresponding formula (2.3.14) for the characteristic function of the squared VIX
is transformed into

φI 2
t (∆)|t0

(l ) = 1

π
exp

(
il

(
I 2

t0
(∆)−ξ1

∫ t

t0

H∆(t , s)ds + r (t0, t )
)
+

∫ t

t0

logφX1 (l H∆(t , s))−ξ1H∆(t , s)ds
)

×
∫
R
ψ(l , x; t0,∆)

∫ ∞

0
Re

[
e−i`xφ

t−t0
Z1

(`)
]
d`dx, l ∈R. (5.1.3)

The calibration of the reversion level V̄ is automatically encoded into that of the remainder r (t0, t ).
Again, we will specify the foregoing transformed formulae with t0 = 0 and t = T for implementa-
tion and write for simplicity r (T ) ≡ r (0,T ).

On a second look at the standard option pricing formulae (4.2.5) and (4.2.6), there are ul-
timately four numerical integrals to evaluate, having domains of integration (0,∞) 3 `, R 3 x,
(0,T ] ≡ (t0, t ] 3 s, and (0,∞) 3 l , respectively. The first two form a repeated integral, and are then
multipled by the third, whose product is nested with the fourth. This structure may seem intimi-
dating at first glance; however, let us observe that: (i) the first integral (1/π)

∫ ∞
0 Re

[
e−i`xφT

Z1
(`)

]
d`

is none but the probability density function of the 1.78-stable random variable Z1, which are built-
in in most software packages using efficient numerical Fourier inversion techniques; (ii) the scal-
ing factor ς has limited contribution since its only purpose is to ensure that small volatility jumps
have the desired activity index, 1.78; (iii) for a fixed small value (e.g., 0.01) of ς, the second in-
tegral with respect to x can be approximated with arbitrary precision using a cubic smoothing
spline thanks to ψ being uniformly bounded by 1. With these observations in mind, we write
fZT (x) := (1/π)

∫ ∞
0 Re

[
e−i`xφT

Z1
(`)

]
d` and proceed to fixing ς = 0.01 to carry out the following ap-

proximation of the second x-integral to boost computational efficiency,

1

π

∫
R
ψ(l , x;0,∆)

∫ ∞

0
Re

[
e−i`xφT

Z1
(`)

]
d`dx =

∫
R
ψ(l , x;0,∆) fZT (x)dx ≈ f~β(l |ς= 0.01), (5.1.4)

where f~β(l |ς = 0.01) is a cubic spine function defined with parameter ~β = (β0,β1,β2,β3) which is
specified by solving the following minimization problem,

~β= argmin
~β∈R4

n∑
k=1

λ
(∫
R
ψ(lk , x; t0,∆) fZT (x)dx − f~β(lk )

)2
+ (1−λ)

∫ (
f′′~β(l )

)2dl ,

where n is the size of the partitioned l-domain and λ ≥ 0 is an auxiliary smoothing parameter.
The role of the smoothing parameter is to balance between the fidelity to the true function and
the roughness of the estimator by incorporating a penalty term linked to the curvature, and is
set to be 0.0295 by default.10 The l-domain is partitioned by n = 3,000 evenly distributed points
over [−104,104], which is verified to be sufficient to produce a mean squared error estimate of

10All implementation programs are written in MATLAB and are run using the scc2.bu.edu node on Boston University
Shared Computing Cluster (SCC) with a detailed technical summary available at this link.
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7.6×10−11 and 8.2×10−11 for the real and imaginary part, respectively. The effect of approximation
for the real part, imaginary part and real-imaginary combined part are visualized in Figure 3.

Figure 3: Smoothing spline approximation of x-integral

5.2 Calibration exercise

Calibration is carried out jointly taking into account all four different maturities for each com-
plete data set. With the aid of (5.1.3) and (5.1.4), there are a total of six parameters to calibrate,
(a,b,c,d ,κ,r (T )), among which the last one with time dependence needs to be considered sepa-
rately for different maturities and for this purpose we adopt the notation T1 < T2 < T3 < T4. More
specifically, the objective is to minimize the mean squared error (MSE) between the observed mar-
ket prices of the VIX options and the corresponding model prices, so that the optimal parameter
set is given by(

a,b,c,d ,κ, {r (Tn)}4
n=1

)= argmin
a>0,b>0,c∈(0,1),d∈(0.5,1),κ>0,
r (Tn )∈[−T 2

n /∆−3ς,T 2
n /∆+3ς],

n∈{1,2,3,4}|α=1.78,ς=0.01

∑
K ,{Tn }4

n=1

(
(Market Prices)− (C ,P )(1,1,(a))

0

)2,

(5.2.1)
where the sum runs over all available strike prices and maturities.

In order to solve (5.2.1) efficiently, first we adopt the genetic algorithm, which conduces to
locate a decent initial value ϑ0 of the parameters of interest. Then, we apply the pattern search
algorithm taking ϑ0 as the initial value to continuously refine the parameter set. Both of these
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algorithms are parallelized so that the computation speed largely scales with the number of cores
available.11

Table 1: Calibration results (rounded to four decimal places)

Category a b c d κ r (T1) r (T2) r (T3) r (T4) RMSE (%)
01/26/2016 puts

type-I kernel
0.1405 0.9269 0.5004 0.8994 3.0004 0.0044 0.0098 0.0165 0.0243 0.3497

01/26/2016 puts
type-III kernel

0.1378 1.6300 0.4351 0.7279 5.4844 0.0079 0.0118 0.0133 0.0108 0.2560

05/11/2020 calls
type-I kernel

0.3069 0.6716 0.6778 0.7226 6.0632 0.0695 0.0729 0.0655 0.0812 1.1636

05/11/2020 calls
type-III kernel

0.2979 1.8820 0.4732 0.5344 6.3233 0.0261 0.0359 0.0355 0.0459 1.0109

01/26/2016 puts (type-I kernel)

05/11/2020 calls (type-I kernel)

01/26/2016 puts (type-III kernel)

05/11/2020 calls (type-III kernel)

Figure 4: VIX put and call option prices (market vs model)

11In general, while the genetic algorithm search takes up to 8 hours on a 32-core processor, implementation of the
pattern search with the initial value ϑ0 is much faster and the parameters can be refined within 2 hours. For this reason,
for industry applications we recommend using the genetic algorithm to find the initial value ϑ0 once and for all, and
subsequently implement the pattern search algorithm given ϑ0 as an initial point for daily updates.
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Table 1 reports the calibrated parameter values for both data sets under both types of kernels,
along with root mean squared errors (RMSE) at the level of the option prices. The model fits are
further visualized in Figure 4 in four separate panels.

From Figure 4 it is immediately visible that during the COVID-19 pandemic market prices
of call options are squeezed over different maturities, unlike the sparse price distribution of the
put options in 2016. Despite this unusual discrepancy, the applied models have successfully cap-
tured the VIX option price styles for both periods. To be more precise, the calibration results seem
promising for options with either short or long maturities, and for both in-the-money and deeply
out-of-the-money options. From a comparative viewpoint, the model fits are much better for the
first data set (pre-pandemic) which did not undergo abnormal trading volumes, and the same can
be said about the model under the type-III kernel than the type-I. The latter observation may be
partially explained by the piecewise construction of the type-III kernel, which precludes transcen-
dental functions in the ∆-forward integrated kernel (H) and thus facilitates numerical computa-
tions. As a result, the model under type-I kernel has performed relatively poorly with regard to
those long-maturity options.

In interpreting the calibrated parameter values, from Table 1 it is clear that all the applied
models are able to imply fast mean-reverting volatility, with κ ranging from 3 to 6.4. The shape and
scale parameters a and b of the base process X are both close in value, speaking to the stability of
calibration, while the family parameter c, with calibrated values around 0.5, suggests that a typical
inverse Gaussian-driven (with c = 1/2) Ornstein-Uhlenbeck process could be a suitable model
for the instantaneous volatility process to capture volatility jumps. As for the fraction parameter
d , since its value significantly differs from 1, a direct implication is that short-range dependence
is indeed prevalent in volatility dynamics, even under unusual market environments during the
pandemic.

5.3 Power sensitivity analysis

In this section we investigate the sensitivity of the pricing of power-type volatility derivatives for
the VIX index with respect to varying power coefficients, by using the general formulae proposed
in Section 4. For succinctness we only look at one strike price K = 0.25 and one maturity T = 90
days for the first data set on put options and K = 0.35 and T = 100 days for the second on call
options, adopting the parameter values calibrated under the type-III kernel in the third and fifth
rows of Table 1, respectively.

First, to ease comparison between asymmetric power and symmetric power types we assume

for the power coefficients that p1 = p2 = p ∈ [0.8,1.2] and plot the price changes (C (p,p,(a))
0 , P (p,p,(a))

0 ,

C (p,(s))
0 and P (p,(s))

0 ) of corresponding power-type derivatives in Figure 5.
For the infinite series in Proposition 6 we use the approximation

∑4
k=0 which universally leads

to a global error less than 10−4. Plots for power swaps are excluded as they are already reflected in
the call option pricing formulae thanks to the put-call parity. It is seen that, in terms of leverage
exposure, the symmetric power options are able to provide much severer leverage effect for the
VIX index compared to the asymmetric power options given the same power coefficients, despite
that the latter are much easier to handle in general.

Of course, for an asymmetric power option, by letting the two power coefficients vary indepen-

dently we can generate a power surface for its price (C (p1,p2,(a))
0 and P (p2,p2,(a))

0 ), as shown in Figure
6. Apart from showing the magnificent impact of powers on the VIX option price, these are also a
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reliable indicator that the general pricing-hedging formulae can be implemented fairly efficiently.

Figure 5: Power impact on VIX option prices

Figure 6: Asymmetric power surfaces for VIX option prices

6 Extension to rough volatility of volatility

Needless to say, the discovery of [Da Fonseca and Zhang, 2019] [13] provides yet another very in-
teresting implication, that the volatility of the average forward volatility, such as the VVIX index,
also exhibits short-term dependence. Although it is noticeably challenging to establish a comfort-
able framework coalescing both aspects of roughness, we will briefly discuss how the foregoing
pricing problems may be tackled inheriting the structure of (2.2.1). For that purpose we recall the
setting of Section 2.3 and define the composite process

Ĩt (∆) := ITt (∆), t ≥ 0, (6.1)

with

Tt :=
∫ t

0
Y (η)

s ds, (6.2)
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where T0 = 0 and Y ≡ (Yt ) is an F-adapted square-integrable Lévy subordinator and η a kernel
which respectively resemble X and h up to different parameters. The construction (6.1) emulates
the initiative work of [Carr and Wu, 2004] [10] on stochastic time change, which has a fundamen-
tal root in the famous Dambis-Dubins-Schwartz theorem. Clearly, Y (η) = ∫ ·

0η(·, s)dYs is a mean-
reverting process that introduces frictions into the volatility of the average forward volatility and,
if η is associated with a fraction parameter less than 1, say d ′ ∈ (1/2,1], then Proposition 1 informs
that

p
Y (η) also captures volatility-of-volatility jumps. By convention independence between X

and Y is assumed.
Under (6.1), we are able to at least write the unconditional characteristic function12 of the

time-changed average forward variance in terms of nested integrals.

Proposition 7. Let φY1 (l ) := E[e il Y1
]
, l ∈R, denote the characteristic function of Y1. Then, for

any t > 0,

φ̃t (l ;∆) := E[e il Ĩ 2
t (∆)]

= 1

π

∫ ∞

0
φ0,y (l ;∆)

∫ ∞

0
Re

[
exp

(
− iλy +

∫ t

0
logφY1

(
λ

∫ t

s
η(v, s)dv

)
ds

)]
dλdy, l ∈R, (6.3)

where φ0,y (l ;∆) is as given in (2.3.14).

Note that the innermost integral in (6.3) can be expressed explicitly if η is any of the three
types of kernels specified before, while the other three integrals remain numerical in nature. In
particular, the outer two integrals are generally non-interchangeable, i.e., Fubini’s theorem is not
applicable and they should be computed in sequence.

Regardless, we can put (6.3) into the pricing formulae proposed in Section 4 to compute the
prices of power volatility derivatives at time 0. However, since there are at least six numerical inte-
grals (some being parallel) involved, coming up with a robust calibration scheme will be an ardu-
ous task. As a means of reducing calibration burden towards that end, one possibility is to conduct
characteristic function-based estimation (see [Yu, 2004] [53]) based on volatility-of-volatility index
data for the parameters of Y beforehand.

7 Concluding remarks

The modeling of short-term dependence in instantaneous volatility is far from deep-rooted in
Brownian sample paths and can be alternatively realized by way of a purely discontinuous Lévy
process, which is able to capture volatility jumps as well. The latter approach is largely motivated
from a balance between the two major empirical findings of [Todorov and Tauchen, 2011] [47] and
[Gatheral et al, 2018] [17].

The pricing-hedging framework presented in this paper is tailored for volatility derivatives
and built upon a generalized Lévy-driven Ornstein-Uhlenbeck process with a suitable square-
integrable kernel to establish short-term dependence. An independent two-sided Lévy process
in sinusoidal form is utilizable to help attain an empirically evidenced activity level of the average-
forward variance. The elegance of the present framework lies in the unconditional positivity of the

12Evaluating the conditional characteristic function on Ft0 for some t0 ∈ [0, t ) in the presence of time change can
be cumbersome. Even if both η and h are exponential kernels posing no roughness, the time-changed process Ĩ 2(∆)
cannot be Markovian with respect to the filtration F jointly generated by (X ,Y , Z ).
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instantaneous variance, which eludes use of the logarithm, so that integration is largely facilitated
leading eventually to a semi-closed characteristic function for the conditional forward variance.
This signifies that there is no need of inexact transformations by geometric means (as in [Horvath
et al, 2020] [21] e.g.) whose levels of imprecision are, if possible at all, difficult to justify if there is no
intention of running simulations. In other words, our approach is inherently analytical, on which
basis various advanced numerical integration methods can be developed and directly applied.
At the same time, we have discussed three types of kernels, the third of which, being completely
new, is argued to be the most computation-friendly by involving only elementary functions and is
hence recommended as an ideal substitute for the (commonly used) Riemann-Liouville kernel.

Since a volatility derivative is the same as a similar derivative written on the corresponding
variance raised to the power 1/2, it is natural to think of a wider class of power-type volatility
derivatives also as a means of introducing leverage effect into the option payoffs. This is very
much comparable to the original invention of power options written on equity or fixed-income
instruments, in terms of functionalities. The general pricing-hedging formulae proposed in Sec-
tion 4, being entirely analytical in their own right, should be interpreted as model-independent
requiring nothing more than a semi-closed characteristic function of the underlying quantity in
order to operate. Besides, these new formulae can be thought of as power-exponential analogs of
the well-known equity-option pricing formulae with exponential structures that initially appeared
in [Bakshi and Madan, 2000] [3] – more precisely, resultant exponential functions are mostly re-
placed by incomplete gamma functions.

Speaking of outcomes, our empirical study on VIX options has demonstrated that the pro-
posed model framework and pricing formulae are generally highly stable and efficient for appli-
cations. Combined they are expected to fit considerably well for both short- and long-maturity,
in- and deeply out-of-the-money options, and more so when calibrated under the type-III kernel,
which is hence preferred over the first type. All the model parameters can be reliably calibrated
under this framework, even including the fraction index d and the tempered-stable family pa-
rameter c that are tied to highly nonlinear relations, while the activity level of the VIX index is set
to be α = 1.78 to allow for properly active small-scale fluctuations in the light of [Todorov and
Tauchen, 2011]’s [47] discovery. The calibrated parameter values are in keeping with economic
interpretations, confirming the prevalence of fast mean reversion (κ) and short-term dependence
in volatility (d). The value of c points out that large volatility jumps can be suitably dealt with
by something close to an inverse Gaussian model, also signaling to some degree deviation from
the exclusive use of a Brownian motion. In particular, the remarkable fits for the short-maturity
options in the second data set, observed during the COVID-19 pandemic when trading volumes
witnessed abnormal increases, would not likely have been achieved had (upward) volatility jumps
been completely turned aside.

Overall, our methodology has provided new insights into how to think about the pricing prob-
lem of volatility derivatives allowing for both rough volatility and volatility jumps, by making full
use of characteristic functions. With the foregoing remarks in mind, future research could be
for instance devoted to understanding the advanced valuation of VIX derivatives under rough
stochastic volatility of volatility (mentioning [Da Fonseca and Zhang, 2019] [13] again), follow-
ing the idea of Section 6 via a temporal composition process. The exploration of the significance
of rough volatility in pricing derivatives linked to cryptocurrencies (mentioning [Takaishi, 2020]
[45]) would also be an interesting subject.
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Appendix A - Proofs

Proof of Proposition 1

For V ◦ defined in (2.2.1) we focus on the stochastic integral part, namely X (h), the rest being ob-
viously continuous and of finite variation. Since h is continuously differentiable and h(t +u, t ) =
O

(
e−κuu(d−1)+) = o(ud−1) as u → ∞ for any t ≥ 0, by the extreme value theorem there exist two

positive constants bh ≥ ah > 0, which depend only on the parameters of h including κ and d , such
that, for any u > 0 and t +u ∈ [0,T ],

E
[(

X (h)
t+u −X (h)

t

)2] ∈ E[(X (g )
t+u −X (g )

t

)2]× [ah ,bh], (A.1.1)

where g is the Riemann-Liouville kernel (2.1.3) with the same fraction parameter d . This rela-
tion enables us to restrict our analysis to the Riemann-Liouville fractional Lévy subordinator X (g )

without mean reversion. The expectation on the right-hand side of (A.1.1) is then by the Lévy-Itô
isometry

E
(g )
t ,u := E[(X (g )

t+u −X (g )
t

)2]= ξ2

Γ2(d)

(∫ t

0
((t +u − s)d−1 − (t − s)d−1)2ds +

∫ t+u

t
(t +u − s)2(d−1)ds

)
+ ξ2

1((t +u)d − t d )2

Γ2(d +1)
.

In particular, for d > 2 there is the fundamental Riemann integral representation X (g )
t = ∫ t

0

(∫ s
0 (s −

v)d−2/Γ(d −1)dXv
)
ds due to (2.1.4) and so we only need to consider d ≤ 2.

Suppose d ∈ (1,2]. We observe that the uniformly continuous map

R++ 3 u 7→ 1

Γ2(d)

∫ t

0
((t +u − s)d−1 − (t − s)d−1)2ds ∈R++ (A.1.2)

is increasing and convex for every t > 0, hence the only need to compare its left tail behavior
against power-law tails. It is not difficult to see that as u ↘ 0,∫ t

0
((t +u − s)d−1 − (t − s)d−1)2ds =O(u2),

which implies that∫ t

0
((t +u − s)d−1 − (t − s)d−1)2ds ≤ cd (T )umin{2d−1,2}, ∀t +u ∈ [0,T ], u > 0

for some constant cd (T ) > 0 depending on d and T . Also,
∫ t+u

t (t +u − s)2(d−1)ds = u2d−1/(2d −1)
and combining things we claim that there exists another constant c̃d (T ) > 0 such that

E
(g )
t ,u ≤ c̃d (T )umin{2d−1,2}. (A.1.3)

Since the power of u in (A.1.3) strictly exceeds 1, we apply the Kolmogorov-Čentsov theorem (see,
e.g., [Karatzas and Shreve, 1991, Sect. 2.2.B] [26]) to conclude that X (g ), and hence V due to (A.1.1),
admits an a.s. continuous modification over R+; in particular, the modification is guaranteed to
be a.s. locally Hölder-continuous for every exponent in (0,min{d −1,1/2}).
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Furthermore, using the uniform time partition TM (with t0 = 0) in (3.1) of the interval [0,T ], we
define the TM -quadratic variation

QM ([0,T ]) :=
M∑

n=1

(
X (g )

nT /M −X (g )
(n−1)T /M

)2 ≥ 0, M ∈N++, M À 1.

If d ∈ (1,2], by the convexity of (A.1.2) and the upper bound (A.1.3) we have

E[QM ([0,T ])] ≤ ME
(g )
(M−1)T /M ,T /M ≤ c̃d (T )

( M

T

)max{2(1−d),−1}
→ 0, as M →∞,

which by nonnegativity and the relation (A.1.1) implies that V has a.s. zero quadratic variation
over [0,T ] and completes the proof of assertion (i).

Now suppose d ∈ (1/2,1], let X− denote the càglàd modification of X and set

E := {ω ∈Ω : (X t −X t−)(ω) > 0, ∃t ∈ [0,T ]}.

With ν(R++) =∞, it is a familiar result (see again [Lyasoff, 2017, Sect. 16] [32]) that PE = 1. Then
we observe that

X (h)
t −X (h)

t− =
∫ t−

0
(h(t , s)−h(t−, s))dXs +

∫ t

t−
h(t , s)dXs , t ≥ 0. (A.1.4)

Since, for any s ∈ [0, t ), R++ 3 t 7→ h(t , s) ∈R+ is a continuous map with d ∈ (1/2,1], by the domi-
nated convergence theorem the first integral in (A.1.4) is naught (in the sense of L2-convergence)
and ∫ t

t−
h(t , s)dXs = h(t , t−)(X t −X t−).

In consequence, there must exist some t > 0 such that X (h)
t −X (h)

t− ∝ h(t , t−). To put it another way,

E ⊆ {
ω ∈Ω :

(
X (h)

t −X (h)
t−

)
(ω) ∝ h(t , t−), ∃t ∈ [0,T ]

}
. (A.1.5)

By (2.2.2) further, if d = 1 then h is uniformly bounded so that h(t , t−) > 0 for any t > 0, and hence
(A.1.5) proves the a.s. discontinuity of the sample paths of X (h). In this case, since X (h) has no
Brownian part, its quadratic variation is given by the sum of its squared jumps,∑

t∈[0,T ]

(
X (h)

t −X (h)
t−

)2 = ∑
t∈[0,T ]

h2(t , t−)(X t −X t−)2 > 0, P-a.s.,

where the inequality follows from the finiteness of
∑

t∈[0,T ](X t − X t−)2 > 0. On the other hand,
if d < 1, then h(t , t−) = ∞ for any t > 0, which with (A.1.5) gives the a.s. discontinuity and un-
boundedness of the sample paths of X (h), and hence V , over [0,T ]. An immediate implication is
therefore that the sample paths of V have infinitely large squared jumps over [0,T ] P-a.s., from
which follows its (P-a.s.) infinite quadratic variation. Therefore assertions (ii) and (iii) are proved.
ä
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Proof of Proposition 2

According to the conditional representation (2.3.13), we write for fixed 0 ≤ t0 < t ≤ T

I 2
t (∆) = J (t , t0,∆)+

∫ t

t0

H∆(t , s)dXs + logψ(−i, Zt −Zt0 ; t0,∆), (A.2)

where J (t , t0,∆) is as defined in Proposition 2 and preliminarily

ψ(l , Zt −Zt0 ; t0,∆) := exp
( ilς

∆

(∫ ∆

0
E[cos Zu]du(cos x cos Zt0 − sin x sin Zt0 )

−
∫ ∆

0
E[cos Zu]du(sin x cos Zt0 +cos x sin Zt0 )+∆

))
, l ∈C.

Due to the infinite divisible distribution of Z1,
∫ ∆

0 E[cos Zu]du = Re
[∫ ∆

0 φu
Z1

(1)du
] = Re

[(
φ∆Z1

(1)−
1
)/

logφZ1 (1)
]

and similarly
∫ ∆

0 E[sin Zu]du = Im
[(
φ∆Z1

(1)−1
)/

logφZ1 (1)
]
. On the right-hand side

of (A.2)
∫ t

t0
H∆(t , s)dXs is independent from Ft0 . Because the process

∫ ·
t0

H∆(t , s)dXs is additive
(or has independent increments) on (t0,T ] with t treated as fixed and Z is a Lévy process having
an absolutely continuous distribution, using in proper order the independence lemma (for X and
Z ), the infinite divisibility of the distribution of X1, and the inverse Fourier transform, we have for
l ∈R
E
[
e il I 2

t (∆)|Ft0

]= e il J (t ,t0,∆)E
[
e il

∫ t
t0

H∆(t ,s)dXs
]
E
[
ψ(l , Zt −Zt0 ; t0,∆)|Ft0

]
= e il J (t ,t0,∆)

t∏
t0

E
[
e il H∆(t ,s)X1

]ds
∫
R
ψ(l , x; t0,∆) fZt−t0

(x)dx

= e il J (t ,t0,∆)
(

exp
∫ t

t0

logE
[
e il H∆(t ,s)X1

]
ds

)∫
R
ψ(l , x; t0,∆)

1

π

∫ ∞

0
Re

[
e−i`xφ

t−t0
Z1

(`)
]
d`dx,

where
∏·· stands for the geometric integral operator (see, e.g., [Slavík, 2007] [44]) and fZt−t0

(x),
x ∈R, denotes the density function of the random variable Zt−t0 . After rearrangement the desired
integral representation (2.3.14) is therefore obtained. ä

Proof of Proposition 3

First notice that

E
[
V̌nT /M

]=V0e−κnT /M + V̄
(
1−e−κnT /M )+ξ1

n−1∑
k=0

h
(nT

M
,

kT

M

) T

M
+ς

(
E

[
cos

n∑
k=1

Žk

]
+1

)
.

For a given t ∈ (0,T ], we choose n ≡ n(t , M) = bM t/T c, so that limM→∞(n(t , M)T /M) = t . Since
the Riemann integral

∫ t
0 h(t , s)ds is well-defined for t ∈ [0,T ), (3.2) constitutes a conventional rect-

angular Riemann sum approximation and it is familiar that

E
[
V̌ ◦

n(t ,M)T /M −V ◦
t

]=O(M−1), as M →∞.

Also, E
[

cos
∑n(t ,M)

k=1 Žk − cos Zt
] = O(M−1) as the cosine is continuous differentiable. These show

asymptotic unbiasedness. In addition, using the relation

E
[(

V̌n(t ,M)T /M −Vt
)2]= E[V̌n(t ,M)T /M −Vt

]2 +Var
[
V̌n(t ,M)T /M

]
,
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for proving the L2-convergence rate it is sufficient to note that, in the same vein,

Var
[
V̌n(t ,M)T /M

]= ξ2

n(t ,M)−1∑
k=0

h2
(n(t , M)T

M
,

kT

M

) T

M
+ς2Var

[
cos

n(t ,M)∑
k=1

Žk

]
= ξ2

∫ t

0
h2(t , s)ds +ς2Var[cos Zt ]+O(M−1), as M →∞.

ä

Proof of Proposition 4

The relationship between fractional moments and the characteristic function of a real-valued ran-
dom variable has been well established. In particular, knowing that IT (∆) is strictly positive with
E
[
I p

T (∆)
]<∞ for every p > 0, we have ([Pinelis, 2016, Equation (2.19)] [40])

S(p)
t0

= E[(I 2
T (∆)

)p/2|Ft0

]= (−i)p/2φ
(p/2)
I 2

T (∆)|t0
(0). (A.5.1)

If p is even, then (A.5.1) is understood as a conventional derivative corresponding to the first equa-
tion in (4.1.2). Otherwise, it represents a fractional derivative and can be written ([Laue, 1980,
Theorem 2.1] [29])

S(p)
t0

= sec
π(p/2−bp/2c)

2

p/2−bp/2c
Γ(1−p/2+bp/2c)

×Re

[
(−i)bp/2c

∫ `

−∞

φ
(bp/2c)
I 2

T (∆)|t0
(`)−φ(bp/2c)

I 2
T (∆)|t0

(l )

(`− l )p/2−bp/2c+1
dl

∣∣∣∣
`=0

]
. (A.5.2)

Since φI 2
T (∆)|t0

(·) ∈C bp/2c(R), we can apply the dominated convergence theorem together with the
substitution l 7→ −l to recast (A.5.2) as

S(p)
t0

= sec
π(p/2−bp/2c)

2

p/2−bp/2c
Γ(1−p/2+bp/2c)

×Re

[
(−i)bp/2c

∫ ∞

0

φ
(bp/2c)
I 2

T (∆)|t0
(0)−φ(bp/2c)

I 2
T (∆)|t0

(−l )

l p/2−bp/2c+1
dl

]
.

Using that (−i)bp/2cφ(bp/2c)
I 2

T (∆)|t0
(0) = S(2bp/2c)

t0
and the Hermitian property of the characteristic function

we arrive at the second equation in (4.1.2). ä

Proof of Corollary 1

Based on (2.3.14), we have for p/2 ∈N that

4T (φI 2
T (∆)|t0

(l )) = ilφI 2
T (∆)|t0

(l ),

so that (4T (φI 2
T (∆)|t0

(l ))
)(p/2) = i

(
lφ(p/2)

I 2
T (∆)|t0

(l )+
pφ(p/2−1)

I 2
T (∆)|t0

(l )

2

)
.
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Sending l → 0 gives the first equation in (4.1.4).
For the second equation in (4.1.4) we must justify that differentiation under 4T can be done

inside the integral. Interchange with the real part is then simply allowed thanks to the Hermitian

property. Since φI 2
T (∆)|t0

(·) ∈ C bp/2c(R) and φ
(bp/2c)
I 2

T (∆)|t0
(l ) = O(φI 2

T (∆)|t0
(l )) as l → ∞, we only need

to check integrability of the tails of Re[φI 2
T (∆)|t0

(l )]/l p/2−bp/2c for l ≥ 0. From (A.2) we know that
J (t , t0,∆) > 0 and is measurable with respect to Ft0 , allowing us to rewrite

φI 2
T (∆)|t0

(l ) = e il J (t ,t0,X )ϕ(l ;T, t0,∆), l ∈R,

where ϕ(l ;T, t0,∆) denotes the characteristic function of the random variable
∫ T

t0
H∆(T, s)dXs +

logψ(−i, ZT − Zt0 ; t0,∆) > 0, whose distribution admits a well-defined density (recall that H∆ is
continuous, νX and νZ are both non-atomic and infinite). Hence, we have∫ ∞

0
Re

[
e il J (t ,t0,∆)ϕ(l ;T, t0,∆)

]
dl = 0,

which with p/2−bp/2c ∈ (0,1) for any p ∉ 2N implies the desired tail integrability. ä

Proof of Proposition 5

Let f (x;T, t0,∆) and F (x;T, t0,∆), for x > 0, respectively denote the density function and the dis-
tribution function of I 2

T (∆)|Ft0 , which exist because the distributions of X1 and Z1 are both ab-
solutely continuous. For the price of the asymmetric power put option on IT (∆) at t0 ∈ [0,T ), we
adopt p̃ = p1/2 to rewrite its terminal payoff so that

P (p1,p2,(a))
t0

= E[(K p2 − I 2p̃
T (∆)

)+|Ft0

]
=

∫ K p2/p̃

0
(K p2 −x p̃ ) f (x;T, t0,∆)dx

= K p2 F (K p2/p̃ ;T, t0,∆)−
∫ K p2/p̃

0
x p̃ f (x;T, t0,∆)dx

:=E2 −E1.

Further denote K̃ = K p2/p̃ . Using the Fourier inversion formula we have

E2 = K p2

(1

2
− 1

π

∫ ∞

0
Re

[e−iK̃ lφI 2
T (∆)|t0

(l )

il

]
dl

)
and

E1 = 1

π

∫ K̃

0
x p̃

∫ ∞

0
Re

[
e−il xφI 2

T (∆)|t0
(l )

]
dldx = 1

π

∫ ∞

0
Re

[
φI 2

T (∆)|t0
(l )

∫ K̃

0
e−il x x p̃ dx

]
dl , (A.7)

where the second equality uses the Fubini theorem since the integral in x is taken over a finite
interval. To evaluate the inner integral in (A.7), we apply the substitution x 7→ il x and observe that∫ K̃

0
e−il x x p̃ dx = (il )−p̃−1

∫ iK̃ l

0
e−x x p̃ dx
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= (il )−p̃−1
(∫ ∞

0
−

∫ ∞

iK̃ l

)
e−x x p̃ dx

= (il )−p̃−1(Γ(p̃ +1)−Γ(p̃ +1, iK̃ l )),

where the second equality follows because the integrand is analytic over the horizontal half-strip
{x : Rex > 0,Imx ∈ (0, K̃ l )} with l > 0. This establishes (4.2.3) after rearrangement.

The pricing formula for the similar asymmetric call option results from a standard parity argu-
ment that (

I p1

T (∆)−K p2
)+− (

K p2 − I p1

T (∆)
)+ = I p1

T (∆)−K p2 ,

together with Proposition 4. It is important to note that a single integral representation for the
call price is inaccessible due to inapplicability of the Fubini theorem when integration acts over
[K̃ ,∞) 3 x. ä

Proof of Corollary 2

We simply use the bounded-ness and Hermitian property of φI 2
T (∆)|t0

(·) in order to apply 4T to
(4.2.3) inside the real part of the integral. For the call option we use the parity relation (4.2.4). ä

Proof of Proposition 6

First consider the symmetric power put option with the payoff decomposition (4.3.2), so that we
may write

P (p,(s))
t0

= K p F (K 2;T, t0,∆)+
∞∑

k=1

(
p

k

)
(−1)k K p−kĒk

and for every k ∈N++ using the argument in the proof of Proposition 5 we have

Ēk = 1

π

∫ ∞

0
Re

[
φI 2

T (∆)|t0
(l )

∫ K 2

0
e−il x xk/2dx

]
dl

= 1

π

∫ ∞

0
Re

[
φI 2

T (∆)|t0
(l )
Γ(k/2+1)−Γ(k/2+1, iK 2l )

(il )k/2+1

]
dl ,

which obviously allows the series to be augmented to k = 0 and completes the proof of (4.3.4) after
simplification.

For the similar symmetric call option price, we rely on the decomposition (4.3.3) to write

C (p,(s))
t0

=
bpc∑
k=0

(
p

k

)
(−K )kĔp−k +Σ(p)

t0
,

where all the summands with index k > p in conditional expectation are put into Σ(p)
t0

. For every
0 ≤ k < p note that

Ĕp−k = S(p−k)
t0

−
∫ K 2

0
x(p−k)/2 f (x;T, t0,∆)dx,

so that a parity argument can be employed where the integral on the left-hand side is evaluated in

the same vein as in (A.7). If p ∈N then Σ(p)
t0

is clearly naught. On the other hand, if p ∉N, then we
write

Σ
(p)
t0

=
∞∑

k=bpc+1

(
p

k

)
(−K )kĔk ,
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where

Ĕk =
∫ ∞

K 2
x(p−k)/2 f (x;T, t0,∆)dx = 1

π

∫ ∞

0
Re

[
φI 2

T (∆)|t0
(l )

∫ ∞

K 2
e−il x x−(k−p)/2dx

]
dl .

Here the Fubini theorem applies because k −p > 0. At this point it suffices to observe that∫ ∞

K 2
e−il x x−(k−p)/2dx = Γ(1− (k −p)/2, iK 2l )

(il )1−(k−p)/2
,

which is well-defined as p −k cannot be an even number. ä

Proof of Corollary 3

The proof is similar to that of Corollary 2, except that4T acts on (4.3.4) and (4.3.5) termwise, where
the interchange of integration and differentiation is permitted for the same reason. ä

Proof of Proposition 7

By mimicking the steps in the proof of Proposition 2, it can be deduced from (6.2) that the charac-
teristic function of Tt for a fixed t > 0 is given by

φTt (l ) := E[e ilTt
]= exp

∫ t

0
logφY1

(
l
∫ t

s
η(v, s)dv

)
ds, l ∈R.

By assumption the process Y has its own filtration {σ((Ys)s∈[0,t ])}t≥0 independent from that of X .
Therefore, via subsequent conditioning we have13

φĨ 2
t (∆)(l ) := E[e iuĨ 2

t (∆)]= E[E[e iuI 2
Tt

(∆)|σ((Ys)s∈[0,t ])
]]= E[φI 2

Tt
(∆)|0(l )

]
. (A.11)

Since the distribution of the time change is absolutely continuous, (A.11) can be written using
inverse Fourier transform as

φĨ 2
t (∆)(l ) = 1

π

∫ ∞

0
φI 2

s (∆)|0(l )
∫ ∞

0
Re[e−i`sφTt (`)]d`ds,

and this is exactly the same as (6.3). ä

Appendix B - A closed-form characteristic function

In this section we prove a closed-form formula for the conditional characteristic function of Ṽ ◦
t (∆)

given Ft0 for fixed 0 ≤ t0 < t ≤ T and ∆≥ 0 using the tempered-stable distribution and the type-III
kernel; note that Ṽ ◦

t (0) ≡ V ◦
t . The result will be useful for those who are interested in the pricing

and hedging of derivatives contracts on the instantaneous or the forward variance under short-
term dependence and volatility jumps, to which all the formulae presented in Section 4 apply. To
that end let us recall that the partial forward variance Ṽ ◦

t (∆) has the general representation

Ṽ ◦
t (∆) = Ṽ ◦

t0
(t − t0 +∆)−ξ1

∫ t

t0

h(t +∆, s)ds +
∫ t

t0

h(t +∆, s)dXs . (B.1)

13To compute (A.11) one can also simulate Y (η), using what has been discussed in Section 3.
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Corollary 4. Let h be the type-III kernel in its general form (2.2.11), with d ∈ (1/2,1), and let
X1 have the characteristic exponent (2.1.5). Then we have

φṼ ◦
t (∆)|t0

(l ) := E[e ilṼ ◦
t (∆)|Ft0

]= exp

(
il I 2

t0
(t − t0 +∆)

+
{
Ψ−(s)|t−t0+∆

s=∆ if τ> t − t0 +∆,

Ψ−(s)|max{τ,∆}
s=∆ +Ψ+(s)|t−t0+∆

s=max{τ,∆} if τ≤ t − t0 +∆

)
, l ∈R,

(B.2)

where for s ∈ [∆, t − t0 +∆]

Ψ+(s) := il aθΓ(1− c)e−κs

κb1−c +aΓ(−c)
(eκs(b − ilθe−κs)c+1

ilcκθ
2F1

(
1,1;1− c;

beκs

ilθ

)
−bc s

)
(B.3)

and

Ψ−(s) := il aΓ(1− c)s

b1−c

(dτd−1 − sd−1

Γ(d +1)
−θe−κτ

)
+aΓ(−c)s

((
b − ilθe−κτ+ ilτd−1

Γ(d)

)c

× 2F1

(
− c,

1

d −1
;

d

d −1
;

il sd−1

ilτd−1 + (b − ilθe−κτ)Γ(d)

)
−bc

)
. (B.4)

Proof. Following the proof of Proposition 2 it is readily established from (B.1) that

φṼt (∆)|t0
(l ) = exp

(
il

(
Ṽ ◦

t0
(t − t0 +∆)−ξ

∫ t

t0

h(t +∆, s)ds
)
+

∫ t

t0

logφX1 (l h(t +∆, s))ds
)
. (B.5)

Rewriting the type-III kernel as

h(t − s +∆) =
{

h−(t − s +∆), if t − s +∆< τ,

h+(t − s +∆), if t − s +∆≥ τ,

with

h−(t − s +∆) := (t − s +∆)d−1 −τd−1

Γ(d)
+θe−κτ and h+(t − s +∆) = θe−κ(t−s+∆),

straightforward integration over the interval [t0, t ] thus leads to∫ t

t0

h(t − s +∆)ds

=


∫ t

t0

h−(t − s +∆)ds if τ> t − t0 +∆,∫ t

min{t+∆−τ,t }
h−(t − s +∆)ds +

∫ min{t+∆−τ,t }

t0

h+(t − s +∆)ds if τ≤ t − t0 +∆

=


∫ t−t0+∆

∆
h−(s)ds if τ> t − t0 +∆,∫ max{τ,∆}

∆
h−(s)ds +

∫ t−t0+∆

max{τ,∆}
h+(s)ds if τ≤ t − t0 +∆
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=


s
( sd−1 −dτd−1

Γ(d +1)
+θe−κτ

)∣∣∣t−t0+∆

s=∆
if τ> t − t0 +∆,

s
( sd−1 −dτd−1

Γ(d +1)
+θe−κτ

)∣∣∣max{τ,∆}

s=∆
− θe−κs

κ

∣∣∣t−t0+∆

s=max{τ,∆}
if τ≤ t − t0 +∆,

where the second equality uses the substitution s 7→ t − s +∆ and
∫ max{τ,∆}
∆ ≡ 0 if ∆≥ τ.

Similarly, for the second Riemann integral in (B.5) we have with the characteristic exponent
(2.1.5) that ξ1 = aΓ(1− c)/b1−c and that∫ t

t0

logφX1 (lh(t − s +∆))ds

=


∫ t−t0+∆

∆
logφX1 (lh−(s))ds if τ> t − t0 +∆,∫ max{τ,∆}

∆
logφX1 (l h−(s))ds +

∫ t−t0+∆

max{τ,∆}
logφX1 (lh+(s))ds if τ≤ t − t0 +∆.

(B.6)

Since the integrands in (B.6) are obviously integrable over the designated domains, it only suffices
to consider the indefinite integrals, I+(s) := ∫

(b − ile−κs)c ds and I−(s) := ∫
(b − il sd−1)c ds. Note

that aΓ(−c) is just a scaling factor while the integration of bc is immediate. For I+, we observe by
using binomial expansion that

I+(s) = (−1)c+1(il )c
∞∑

k=0

(
c

k

)(
− b

il

)k e−κ(c−k)s

κ(c −k)

= (−1)c+1(il )c e−κcs

cκ

∞∑
k=0

(−c)2
k

(1− c)k

(beκks

il

)k

= (−1)c+1(il )c e−κcs

cκ
2F1

(
− c,−c;1− c;

beκks

il

)
,

where (·)· denotes the Pochhammer symbol, a.k.a. the rising factorial, and which after simplifica-
tion leads to (B.3). The case of I2 is slightly more involved but can be proved in a similar fashion,
and we obtain

I−(s) := s

((
b − ile−κτ+ ilτd−1

Γ(d)

)c

2F1

(
− c,

1

d −1
;

d

d −1
;

il sd−1

ilτd−1 + (b − ile−κτ)Γ(d)

))
,

which eventually yields (B.4). Putting things together we arrive at (B.2) as required. ä
We remark that, with X1 being tempered-stable distributed, if h is a kernel of either type I

or type II, no such explicit expression exists for the second Riemann integral in (B.5), the com-
putation of which has to resort to numerical methods such as the Gauss quadrature rule. The
reason behind this problem is clear: the type-I and type-II kernels are both formed by multiplying
power and exponential functions but no elementary substitution works for integrals of the form∫

(1−e−κs sd−1)c ds, for d > 1/2, κ> 0 and c ∈ (0,1).
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