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POWER VARIATION FOR A CLASS OF STATIONARY
INCREMENTS LÉVY DRIVEN MOVING AVERAGES

BY ANDREAS BASSE-O’CONNOR∗,1, RAPHAËL LACHIÈZE-REY†

AND MARK PODOLSKIJ∗,2

Aarhus University∗ and University Paris Decartes†

In this paper, we present some new limit theorems for power variation of
kth order increments of stationary increments Lévy driven moving averages.
In the infill asymptotic setting, where the sampling frequency converges to
zero while the time span remains fixed, the asymptotic theory gives novel
results, which (partially) have no counterpart in the theory of discrete mov-
ing averages. More specifically, we show that the first-order limit theory and
the mode of convergence strongly depend on the interplay between the given
order of the increments k ≥ 1, the considered power p > 0, the Blumenthal–
Getoor index β ∈ [0,2) of the driving pure jump Lévy process L and the be-
haviour of the kernel function g at 0 determined by the power α. First-order
asymptotic theory essentially comprises three cases: stable convergence to-
wards a certain infinitely divisible distribution, an ergodic type limit theorem
and convergence in probability towards an integrated random process. We
also prove a second-order limit theorem connected to the ergodic type result.
When the driving Lévy process L is a symmetric β-stable process, we obtain
two different limits: a central limit theorem and convergence in distribution
towards a (k − α)β-stable totally right skewed random variable.
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1. Introduction and main results. In the recent years, there has been an in-
creasing interest in limit theory for power variations of stochastic processes. Power
variation functionals and related statistics play a major role in analyzing the fine
properties of the underlying model, in stochastic integration concepts and statisti-
cal inference. In the last decade, asymptotic theory for power variations of various
classes of stochastic processes has been intensively investigated in the literature.
We refer, for example, to [5, 24, 25, 31] for limit theory for power variations of
Itô semimartingales, to [3, 4, 17, 21, 30] for the asymptotic results in the frame-
work of fractional Brownian motion and related processes, and to [15, 16, 38] for
investigations of power variation of the Rosenblatt process.

In this paper, we study the power variation of a class of stationary increments
Lévy driven moving averages. More specifically, we consider an infinitely divis-
ible process with stationary increments (Xt)t≥0, defined on a probability space
(�,F,P), given as

Xt =
∫ t

−∞
{
g(t − s) − g0(−s)

}
dLs.(1.1)

Here, L = (Lt )t∈R is a symmetric Lévy process on R with L0 = 0 and without
Gaussian component. Furthermore, g,g0 : R → R are deterministic measurable
functions vanishing on (−∞,0). In the further discussion, we will need the notion
of Blumenthal–Getoor index of L, which is defined via

β := inf
{
r ≥ 0 :

∫ 1

−1
|x|rν(dx) < ∞

}
∈ [0,2],

where ν denotes the Lévy measure of L. When g0 = 0, the process X is a moving
average, and in this case X is a stationary process. If g(s) = g0(s) = sα+, X is a
so-called fractional Lévy process. In particular, when L is a β-stable Lévy process
with β ∈ (0,2), X is called a linear fractional stable motion and it is self-similar
with index H = α + 1/β; see, for example, [34] (since in this case the stability
index and the Blumenthal–Getoor index coincide, they are both denoted by β).

Probabilistic analysis of stationary increments Lévy driven moving averages
such as semimartingale property, fine scale structure and integration concepts, have
been investigated in several papers. We refer to the work of [6, 8–10, 27] among
many others. However, only few results on the power variations of such processes
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are presently available. Exceptions to this are [8], Theorem 5.1, and [19], Theo-
rem 2; see Remark 2.1 for a closer discussion of a result from [8], Theorem 5.1.
These two results are concerned with certain power variations of a fractional Lévy
process and have some overlap with our Theorem 1.1(ii) for the linear fractional
stable motion, but we apply different proofs. The aim of this paper is to derive a
rather complete picture of the first-order asymptotic theory for power variation of
the process X, and, in some cases, the associated second-order limit theory.

To describe our main results, we need to introduce some notation and a set
of assumptions. In this work, we consider the kth order increments �n

i,kX of X,
k ∈N, that are defined by

�n
i,kX :=

k∑
j=0

(−1)j

(
k

j

)
X(i−j)/n, i ≥ k.

For instance, we have that �n
i,1X = X i

n
−Xi−1

n
and �n

i,2X = X i
n
− 2Xi−1

n
+Xi−2

n
.

Our main functional is the power variation computed on the basis of kth order
filters:

V (p;k)n :=
n∑

i=k

∣∣�n
i,kX

∣∣p, p > 0.(1.2)

Now, we introduce the following set of assumptions on g and ν:

Assumption (A): The function g :R →R satisfies g ∈ Ck((0,∞)) and

g(t) ∼ c0t
α as t ↓ 0 for some α > 0 and c0 	= 0,(1.3)

where g(t) ∼ f (t) as t ↓ 0 means that limt↓0 g(t)/f (t) = 1. For some θ ∈ (0,2],
lim supt→∞ ν(x : |x| ≥ t)tθ < ∞ and g − g0 is a bounded function in Lθ(R+).
Finally, there exists a δ > 0 such that |g(k)(t)| ≤ Ktα−k for all t ∈ (0, δ), |g′| and
|g(k)| are in Lθ((δ,∞)) and are decreasing on (δ,∞).

Assumption (A-log): In addition to (A), suppose that
∫ ∞
δ |g(k)(s)|θ log(1/

|g(k)(s)|) ds < ∞.

Assumption (A) ensures in particular that the process X is well defined; cf.
Section 3. When L is a β-stable Lévy process, we always choose θ = β in as-
sumption (A). Before we introduce the main results, we need some more notation.
Let hk :R →R be given by

hk(x) =
k∑

j=0

(−1)j

(
k

j

)
(x − j)α+, x ∈ R,(1.4)

where y+ = max{y,0} for all y ∈ R. Let F = (Ft )t≥0 be the filtration gener-
ated by (Lt )t≥0, (Tm)m≥1 be a sequence of F-stopping times that exhausts the
jumps of (Lt )t≥0. That is, {Tm(ω) : m ≥ 1} ∩ R+ = {t ≥ 0 : �Lt(ω) 	= 0} and
Tm(ω) 	= Tn(ω) for all m 	= n with Tm(ω) < ∞, where �Lt := Lt − Lt− and
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Lt− := lims↑t,s<t Ls for all t ≥ 0. Let (Um)m≥1 be independent and uniform [0,1]-
distributed random variables, defined on an extension (�′,F ′,P′) of the original
probability space, which are independent of the σ -algebra F .

The following two theorems summarized our first- and second-order limit the-
orems for the power variation V (p;k)n. We would like to emphasize part (i) of
Theorem 1.1 and part (i) of Theorem 1.2, which both have a very different struc-
ture than the corresponding results in the context of, for example, semimartingales
or Gaussian processes. We refer to [1, 33] and to Section 3 for the definition of

F -stable convergence in law which will be denoted
L−s−→.

THEOREM 1.1 (First-order asymptotics). Suppose (A) is satisfied and assume
that the Blumenthal–Getoor index satisfies β < 2. We obtain the following three
cases:

(i) Suppose that (A-log) holds if θ = 1. If α < k − 1/p and p > β , we obtain
the F -stable convergence

nαpV (p;k)n
L−s−→ |c0|p

∑
m:Tm∈[0,1]

|�LTm |pVm,

(1.5)

Vm :=
∞∑
l=0

∣∣hk(l + Um)
∣∣p.

(ii) Suppose that L is a symmetric β-stable Lévy process with scale parameter
σ > 0, that is, E[exp(iuL1)] = exp(−σβ |u|β) for all u ∈ R. If α < k − 1/β and
p < β , then it holds that

n−1+p(α+1/β)V (p;k)n
P−→ mp,

where mp = |c0|pσp(
∫
R

|hk(x)|β dx)p/β
E[|Z|p] and Z is a symmetric β-stable

random variable with scale parameter 1.
(iii) Suppose that p ≥ 1. If p = θ suppose in addition that (A-log) holds. For

all α > k − 1/(β ∨ p), we deduce that

(1.6) n−1+pkV (p;k)n
P−→

∫ 1

0
|Fu|p du,

where (Fu)u∈R is a measurable process satisfying

Fu =
∫ u

−∞
g(k)(u − s) dLs, u ∈ R, and

∫ 1

0
|Fu|p du < ∞ a.s.

We remark that, except the critical cases where p = β , α = k − 1/p and
α = k − 1/β , Theorem 1.1 covers all possible choices of α > 0, β ∈ [0,2) and
p ≥ 1. We also note that the limiting random variable in (1.5) is infinitely divisi-
ble; see Section 2 for more details. In addition, we note that there is no convergence
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in probability in (1.5) due to the fact that the random variables Vm, m ≥ 1, are inde-
pendent of L and the properties of stable convergence. Moreover, under assump-
tion α ∈ (0, k − 1/2) the case p = 2, which corresponds to quadratic variation,
always falls under the scope of Theorem 1.1(i). To be used in the next theorem,
we recall that a totally right skewed ρ-stable random variable S with ρ > 1, mean
zero and scale parameter σ > 0 has characteristic function given by

E
[
eiθS] = exp

(−σρ |θ |ρ(
1 − isign(θ) tan(πρ/2)

))
, θ ∈R.

For part (ii) of Theorem 1.1, we also show the second-order asymptotic results
under the additional condition p < β/2. We remark that for k = 1 we are automat-
ically in the regime of Theorem 1.2(i).

THEOREM 1.2 (Second-order assymptotics). Suppose that assumption (A)
is satisfied and L is a symmetric β-stable Lévy process with scale parameter
σ > 0. Let f : [0,∞) �→ R be given by f (t) = g(t)t−α for t > 0. Suppose that
limt↓0 f (j)(t) exists in R for all j = 1, . . . , k and that |g(k)(t)| ≤ Ktα−k for all
t > 0. For all p < β/2, we have the following two cases:

(i) Suppose that α ∈ (k − 2/β, k − 1/β). Then it holds that

n
1− 1

(k−α)β
(
n−1+p(α+1/β)V (p;k)n − mp

) d−→ S,

where S is a totally right skewed (k − α)β-stable random variable with mean zero
and scale parameter σ̃ ∈ (0,∞), which is defined in Remark 2.3.

(ii) For α ∈ (0, k − 2/β), we deduce that
√

n
(
n−1+p(α+1/β)V (p;k)n − mp

) d−→ N
(
0, η2)

,

where η2 is the finite positive constant defined in Remark 2.3.

This paper is structured as follows. The methodology of the proofs, related re-
sults and some potential statistical applications are discussed in Section 2. Sec-
tion 3 introduces some preliminaries. We state the proof of Theorem 1.1 in Sec-
tion 4, while the proof of Theorem 1.2 is demonstrated in Section 5.

2. Methodology, related literature and statistical applications. In this sec-
tion, we highlight the basic ideas behind the proofs of Theorems 1.1 and 1.2, dis-
cuss some related results and present some potential statistical applications. In
case of Theorem 1.1, we assume for the ease of exposition that k = 1 and set
�n

i X := �n
i,1X and V (p)n := V (p;1)n.

We start with the intuition behind Theorem 1.1(iii). First, we will show that
the process X is differentiable almost everywhere and X′ = F ∈ Lp([0,1]) almost
surely, where the F has been introduced at (1.6); see Lemma 4.3 for a detailed
exposition. By using this, Theorem 1.1(iii) is deduced by a Riemann integrability
type argument.
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The result of Theorem 1.1(ii) is shown via a tangent process technique. Let us
consider the process

(2.1) X̃t := c0

∫ t

−∞
{
(t − s)α+ − (−s)α+

}
dLs,

which is a linear fractional β-stable motion under assumptions of Theorem 1.1(ii).
We recall that (X̃t )t≥0 has stationary increments, symmetric β-stable marginals

and it is self-similar with index H = α + 1/β ∈ (1/2,1), that is, (X̃at )t≥0
d=

aH (X̃t )t≥0 for any a ∈ R+. We will prove that �n
i X are close to �n

i X̃ in prob-
ability as n → ∞. From this, we prove the statement of Theorem 1.1(ii) by using
the self-similarity of X̃ and the mixing property of the increments (X̃t − X̃t−1)t≥1.

REMARK 2.1. Theorem 5.1 of [8] studies the first-order asymptotic of the
power variation of some fractional fields (Xt)t∈Rd . In the case d = 1, they consider
fractional Lévy processes (Xt)t∈R of the form

(2.2) Xt =
∫
R

{|t − s|H−1/2 − |s|H−1/2}
dLs,

where L is a truncated β-stable Lévy process. This setting is close to fit into the
framework of the present paper (1.1) with α = H − 1/2 except for the fact that
the stochastic integral (2.2) is over the whole real line. However, the proof of The-
orem 1.1(i) still holds for X in (2.2) with the obvious modifications of hk and
Vm in (1.4) and (1.5), respectively. For p < β , Theorem 5.1 of [8] claims that
2nαpV (p;2)2n → C almost surely, where C is a positive constant. However, this
obviously contradicts Theorem 1.1(i). It seems that the last three lines of the proof
of [8], Theorem 5.1, are erroneous, since the derived estimates are not uniform
in the parameters which are required for the stated conclusion to hold; see [8],
page 372.

We describe the intuition behind the statement of Theorem 1.1(i) in the follow-
ing simple setting: We consider the driving motion Lt = 1[T ,∞)(t)�LT , where T

has a density on the interval (0,1) (note that L is not a Lévy process). We also
assume for simplicity that g(x) = g0(x) = c0x

α+. Let in be the random index satis-
fying T ∈ [(in − 1)/n, in/n). Then �n

jX = 0 for j < in and

�n
in+lX = c0�LT

((
in + l

n
− T

)α

+
−

(
in + l − 1

n
− T

)α

+

)
, l ≥ 0.

Now, we use the following result, which is essentially due to Tukey [39] (see
also [18] and Lemma 4.1 below): Let Z be a random variable with an abso-
lutely continuous distribution and let {x} := x − �x� ∈ [0,1) denote the fractional

part of x ∈ R. Then {nZ} L−s−→ U ∼ U([0,1]) and U is independent of Z. Since
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in − nT = 1 − {nT } and 1 − U ∼ U([0,1]), we conclude the stable convergence
in law

nαpV (p)n
L−s−→ |c0�LT |p

∞∑
l=0

∣∣(l + U)α+ − (l − 1 + U)α+
∣∣p.

A formal proof of Theorem 1.1(i) for a general Lévy process L requires a decom-
position of the jump measure associated with L into big and small jumps, and
a certain time separation between the big jumps.

REMARK 2.2. We remark that the distribution of the limiting variable in (1.5)
does not depend on the chosen sequence (Tm)m≥1 of stopping times, which ex-
hausts the jump times of L. Furthermore, the limiting random variable in (1.5) is
infinitely divisible with Lévy measure (ν ⊗ η) ◦ ((y, v) �→ |c0y|pv)−1, where η

denotes the law of V1. In fact, if W denotes the limiting random variable in (1.5),
then W has characteristic function given by

E
[
exp(iθW)

] = exp
(∫

R0×R

(
eiθ |c0y|pv − 1

)
ν(dy)η(dv)

)
.

To show this, let � be the Poisson random measure on [0,1] × R0 given by
� = ∑∞

m=1 δ(Tm,�LTm) which has mean measure λ ⊗ ν. Here, R0 := R \ {0} and
λ denotes the Lebesgue measure on [0,1]. Set � = ∑∞

m=1 δ(Tm,�LTm,Vm). Then �

is a Poisson random measure with mean measure λ ⊗ ν ⊗ η, due to [35], Theo-
rem 36. Thus, the above claim follows from the stochastic integral representation
W = ∫

[0,1]×R0×R
(|c0y|pv)�(ds, dy, dv).

The results of Theorem 1.2 are related to the weak limit theory for statistics of
discrete moving averages. In a discrete framework, a variety of different limit pro-
cesses may appear. They include Brownian motion, mth order Hermite processes,
stable Lévy processes with various stability indexes and fractional Brownian mo-
tion. We refer to the papers [2, 22, 23, 28, 36, 37] for an overview. First, we present
some of the main steps in the proof of Theorem 1.2(i). By means of several pro-
jection techniques, which are described in Section 5.1 [cf. (5.7)], we show that the
rescaled version of V (p;k)n is asymptotically equivalent to a sum of i.i.d. ran-
dom variables. Then the statement of Theorem 1.2(i) is shown using a standard
result [34], Theorem 1.8.1, by identifying the tail behaviour of the summands.
This proof strategy is similar to the one investigated in [37] in the discrete time
setting. However, strong modifications are required due to unboundedness of the
function H : x �→ |x|p − mp , infinite second moments of L, triangular nature of
summands in (1.2) and different set of conditions. To prove Theorem 1.2(ii), we
show that the increments (�n

i,kX)i≥k are well approximated by an m-dependent
process (�n

i,kX(m))i≥k , which is obtained by a truncation of the integration re-
gion. This part is also carried out by using projection techniques. We conclude the
proof of Theorem 1.2(ii) by showing a central limit theorem for power variation of
(�n

i,kX(m))i≥k and then let m converge to infinity.
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REMARK 2.3 (The constants in Theorem 1.2). In order to introduce the con-
stant σ̃ appearing in Theorem 1.2(i), we set

κ = k1/(k−α)
α (k − α)−1

∫ ∞
0

�(y)y−1−1/(k−α) dy,

where

�(y) := E
[∣∣�1

k,kX̃ + y
∣∣p − ∣∣�1

k,kX̃
∣∣p]

, y ∈ R,

kα = α(α − 1)(α − 2) · · · (α − k + 1), and (X̃t ) is a linear fractional stable motion
defined in (2.1) with c0 = 1 and L being a standard symmetric β-stable Lévy
process. In addition, set τρ = (ρ − 1)/�(2 − ρ)| cos(πρ/2)| for ρ ∈ (0,2) \ {1}
and τ1 = 2/π , where � denotes the gamma function. Then the scale parameter σ̃

is defined via

σ̃ = |c0|pσp

(
τβ

τ(1−α)β

) 1
(1−α)β

κ.

The function �(y) can be computed explicitly; see (5.12). This representation
shows that �(y) > 0 for all y > 0, and hence the limiting variable S in Theo-
rem 1.2(i) is not degenerate, because σ̃ > 0. The constant η2 in Theorem (1.2)(ii)
is given by η2 = limm→∞ η2

m, where for all m ≥ 1, η2
m is defined in (5.54).

At the present stage, nonparametric estimation of the model (1.1) seems to be
out of reach in terms of estimating the Lévy measure ν and kernel function g. For
instance, when g has compact support we may only recover finitely many jumps
of L, which exceed any given positive threshold. Thus, it becomes impossible
to estimate the Lévy measure ν from (Xi/n)

n
i=1, n ∈ N (we refer to [7] for the

estimation of ν for a class of short-range dependence processes and low frequency
observations (Xt)t=1,...,T with T → ∞). Despite this fact, we will in the following
briefly mention two simple consequences of the results of Section 1. Motivated by
the linear fractional β-stable motion, we investigate estimation procedures for the
parameters α and β in the framework of the underlying process (Xt)t≥0 with α > 0
and H = α + 1/β < 1. We note that in this setting it must hold that β ∈ (1,2) and
α < 1 − 1/(p ∨ β).

We start with a direct inference procedure that is based on a log scale estimator.
Let k = 1 and define Sα,β(n,p) := − logV (p)n/ logn for any p > 0. Then The-

orem 1.1(i) and (ii) implies the convergence Sα,β(n,p)
P−→ Sα,β(p) for p 	= β ,

where Sα,β(p) = αp for p > β and Sα,β(p) = pH − 1 for p ≤ β . Next, we define
the set J := {(α,β) ∈ R

2 : β ∈ [1,2], α ∈ [0,1 − 1/β]} and let (α0, β0) denote
the true parameter of the model (1.1), where it is assumed that (α0, β0) is an inner
point of J . Now, a random vector (α̂n, β̂n) defined via

(α̂n, β̂n) ∈ argmin
(α,β)∈J

∥∥Sα0,β0(n) − Sα,β

∥∥
L2([p,p])
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for some p ∈ (0,1), p > 2 and with Sα0,β0(n) := Sα0,β0(n, ·), is a consistent esti-
mator of the parameter (α0, β0). However, obtaining second-order limit theorems
for (α̂n, β̂n) seem to be a very nontrivial issue. The above mentioned approach is
somewhat similar to the estimation method proposed in [20].

We conjecture that the above log scale estimator has a slow rate of convergence,
for example, logarithmic rate. On the other hand, the parameter H = α + 1/β ∈
(1/2,1) might be estimated with a faster rate of convergence by applying the fol-
lowing ratio statistic approach. Recalling that β ∈ (1,2), we deduce under con-

ditions of Theorem 1.1(ii) that R(n,p) := V (p)n/V (p)2n
P−→ 21−pH for any

p ∈ (0,1]. Thus, we can immediately conclude the consistency result

Ĥn := 1

p

(
1 − logR(n,p)

log 2

)
P−→ H.

This type of idea is rather standard in the framework of a fractional Brownian mo-
tion with Hurst parameter H . Using Theorem 1.2(i), we deduce that Ĥn − H is
of order OP(n

1/(1−α)β−1) when p ∈ (0,1/2]. Furthermore, Theorem 1.2(ii) shows
that the order OP(n

1/(1−α)β−1) can be improved to OP(n
−1/2) when the first-order

increments are replaced by kth order increments, k ≥ 2, in the definition of the
statistic R(n,p). However, obtaining confidence regions for H is a much more
delicate issue, which will not be considered in this paper. In particular, the param-
eters of the limiting distribution need to be estimated.

3. Preliminaries. Throughout the following, sections all positive constants
will be denoted by K , although they may change from line to line. Moreover, we
will assume, without loss of generality, that c0 = δ = σ = 1. Recall that g(t) =
g0(t) = 0 for all t < 0 by assumption.

For a sequences of random variables (Yn)n∈N defined on the probability space

(�,F,P), we write Yn
L−s−→ Y if Yn converges F -stably in law to Y . That is, Y

is a random variable defined on an extension of (�,F,P) such that for all F -

measurable random variables U we have the joint convergence in law (Yn,U)
d−→

(Y,U). For A ∈ F , we will say that Yn
L−s−→ Y on A, if Yn

L−s−→ Y under P|A, where
P|A denotes the conditionally probability measure B �→ P(B ∩ A)/P(A), when
P(A) > 0. We refer to the work [1, 33] for a detailed exposition of stable con-

vergence. In addition,
P−→ will denote convergence in probability. We will write

V (Y,p;k)n = ∑n
i=k |�n

i,kY |p when we want to stress that the power variation is
built from a process Y . On the other hand, when k and p are fixed we will some-
times write V (Y )n = V (Y,p;k)n to simplify the notation.

First of all, it follows from [32], Theorem 7, that the process X introduced in
(1.1) is well defined if and only if, for all t ≥ 0,

(3.1)
∫ ∞
−t

∫
R

(∣∣ft (s)x
∣∣2 ∧ 1

)
ν(dx) ds < ∞,
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where ft (s) = g(t + s) − g0(s). By assumption (A) ft is a bounded function in
Lθ(R+). For all ε > 0, assumption (A) implies that∫

R

(|yx|2 ∧ 1
)
ν(dx) ≤ K

(
1{|y|≤1}|y|θ + 1{|y|>1}|y|β+ε),

which shows (3.1) since ft is a bounded function in Lθ(R+). Now, for all n, i ∈ N,
we set for x ∈ R

gi,n(x) =
k∑

j=0

(−1)j

(
k

j

)
g
(
(i − j)/n − x

)
,(3.2)

hi,n(x) =
k∑

j=0

(−1)j

(
k

j

)(
(i − j)/n − x

)α
+, gn(x) = nαg(x/n).(3.3)

In addition, for each function φ : R→R define Dkφ :R →R by

Dkφ(x) =
k∑

j=0

(−1)j

(
k

j

)
φ(x − j).(3.4)

In this notation, the function hk , defined in (1.4), is given by hk = Dkφ with φ :
x �→ xα+.

LEMMA 3.1. Assume that g satisfies condition (A). Then there exists a finite
constant K > 0 such that, for all n ≥ 1 and i = k, . . . , n,∣∣gi,n(x)

∣∣ ≤ K(i/n − x)α, x ∈ [
(i − k)/n, i/n

]
,(3.5) ∣∣gi,n(x)

∣∣ ≤ Kn−k((i − k)/n − x
)α−k

, x ∈ (
i/n − 1, (i − k)/n

)
,(3.6) ∣∣gi,n(x)

∣∣ ≤ Kn−k(1[(i−k)/n−1,i/n−1](x)

+ g(k)((i − k)/n − x
)

(3.7)

× 1(−∞,(i−k)/n−1)(x)
)
, x ∈ (−∞, i/n − 1].

The same estimates trivially hold for the function hi,n.

PROOF. Inequality (3.5) follows directly from condition (1.3) of (A). The sec-
ond inequality (3.6) is a straightforward consequence of Taylor’s expansion of
order k and the condition |g(k)(t)| ≤ Ktα−k for t ∈ (0,1). The third inequality
(3.7) follows again through Taylor’s expansion and the fact that the function g(k)

is decreasing on (1,∞). �

4. Proof of Theorem 1.1. In this section, we will prove the assertions of The-
orem 1.1.
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4.1. Proof of Theorem 1.1(i). The proof of Theorem 1.1(i) is divided into the
following three steps. In Step (i), we show Theorem 1.1(i) for the compound Pois-
son case, which stands for the treatment of big jumps of L. Step (ii) consists of an
approximating lemma, which proves that the small jumps of L are asymptotically
negligible. Step (iii) combines the previous results to obtain the general theorem.

Before proceeding with the proof, we will need the following preliminary
lemma. Let {x} := x −�x� ∈ [0,1) denote the fractional part of x ∈R. The lemma
below follows along the lines of [18, 39].

LEMMA 4.1. For d ≥ 1, let V = (V1, . . . , Vd) be an absolutely continuous
random vector in R

d with a density v : Rd → R+. Suppose that there exists an
open convex set A ⊆ R

d such that v is continuous differentiable on A and vanish
outside A. Then, as n → ∞,({nV1}, . . . , {nVd}) L−s−→ U = (U1, . . . ,Ud),

where U1, . . . ,Ud are independent U([0,1])-distributed random variables which
are independent of F .

STEP (i): THE COMPOUND POISSON CASE. Let L = (Lt )t∈R be a compound
Poisson process and let 0 ≤ T1 < T2 < · · · denote the jump times of the Lévy
process (Lt )t≥0 chosen in increasing order. Consider a fixed ε > 0 and let n ∈ N

satisfy εn > 4k. We define

�ε := {
ω ∈ � : for all j ≥ 1 with Tj (ω) ∈ [0,1] we have

∣∣Tj+1(ω) − Tj (ω)
∣∣ > ε

and �Ls(ω) = 0 for all s ∈ [−ε, ε] ∪ [1 − ε,1]}.
Notice that P(�ε) ↑ 1 as ε ↓ 0. Now, we decompose �n

i,kX = Mi,n,ε + Ri,n,ε with

Mi,n,ε =
∫ i

n

i
n
−ε

gi,n(s) dLs, Ri,n,ε =
∫ i

n
−ε

−∞
gi,n(s) dLs,

and the function gi,n is introduced in (3.2). The term Mi,n,ε represents the domi-
nating quantity, while Ri,n,ε turns out to be negligible.

The dominating term: We claim that on �ε and as n → ∞,

(4.1) nαp
n∑

i=k

|Mi,n,ε|p L−s−→ Z where Z = ∑
m:Tm∈(0,1]

|�LTm |pVm,

where Vm, m ≥ 1, are defined in (1.5). To show (4.1), let im = im(ω,n) denote
the random index such that Tm ∈ ((im − 1)/n, im/n]. The following representation
will be crucial: On �ε , we have that

Vn,ε := nαp
n∑

i=k

|Mi,n,ε|p = nαp
∑

m:Tm∈(0,1]
|�LTm |p

([εn]+vm∑
l=0

∣∣gim+l,n(Tm)
∣∣p)

(4.2)
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for some random indexes vm = vm(ω,n, ε) ∈ {−2,−1,0} which are measurable
with respect to Tm. Indeed, on �ε and for each i = k, . . . , n, L has at most one
jump in (i/n − ε/2, i/n]. For each m ∈ N with Tm ∈ (0,1], we have Tm ∈ (i/n −
ε, i/n] if and only if im ≤ i < n(Tm + ε) (recall that εn > 4k). Thus,

(4.3)
∑

i∈{k,...,n}:Tm∈(i/n−ε,i/n]
|Mi,n,ε|p = |�LTm |p

([εn]+vm∑
l=0

∣∣gim+l,n(Tm)
∣∣p)

for some Tm-measurable random variable vm ∈ {−2,−1,0}. Thus, by summing
(4.3) over all m ∈N with Tm ∈ (0,1], (4.2) follows. In the following, we will show
that

Vn,ε
L−s−→ Z as n → ∞.

For d ≥ 1, it is well known that the random vector (T1, . . . , Td) is absolutely con-
tinuous with a C1-density on the open convex set A := {(x1, . . . , xd) ∈ R

d : 0 <

x1 < x2 < · · · < xd}, which is vanishing outside A. Thus, by Lemma 4.1 we have

(4.4)
({nTm})m≤d

L−s−→ (Um)m≤d as n → ∞,

where (Ui)i∈N are i.i.d. U([0,1])-distributed random variables. By (1.3), we may
write g(x) = xα+f (x) where f :R→R satisfies f (x) → 1 as x ↓ 0. By definition
of im, we have that {nTm} = nTm − (im − 1) and, therefore, for all l = 0,1,2, . . .

and j = 0, . . . , k,

nαg

(
l + im − j

n
− Tm

)
= (

l − j + 1 − {nTm})α+f

(
l − j

n
+ n−1(

1 − {nTm})).

By (4.4), (Um)m≤d
d= (1 − Um)m≤d and f (x) → 1 as x ↓ 0 we obtain that

(4.5)
{
nαg

(
l + im − j

n
−Tm

)}
l,m≤d

L−s−→ {
(l−j +Um)α+

}
l,m≤d as n → ∞.

Equation (4.5) implies that{
nαgim+l,n(Tm)

}
l,m≤d

L−s−→ {
hk(l + Um)

}
l,m≤d,(4.6)

with hk being defined at (1.4). Due to the F -stable convergence in (4.6), we obtain
by the continuous mapping theorem that for each fixed d ≥ 1 and as n → ∞,

Vn,ε,d := nαp
∑

m:m≤d,Tm∈[0,1]
|�LTm |p

([εd]+vm∑
l=0

∣∣gim+l,n(Tm)
∣∣p)

L−s−→ Zd = ∑
m:m≤d,Tm∈[0,1]

|�LTm |p
([εd]+vm∑

l=0

∣∣hk(l + Um)
∣∣p)

.

Moreover, for ω ∈ � we have Zd(ω) ↑ Z(ω) as d → ∞. Recall that |hk(x)| ≤
K(x − k)α−k for x > k + 1, which implies that Z < ∞ a.s. since p(α − k) < −1.
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For all l ∈ N with k ≤ l ≤ n, we have nαp|gim+l,n(Tm)|p ≤ K|l − k|(α−k)p due to
(3.6) of Lemma 3.1. For all d ≥ 0, set Cd = ∑

m>d:Tm∈[0,1] |�LTm |p and note that
Cd → 0 a.s. as d → ∞ since L is a compound Poisson process. Hence, we deduce

|Vn,ε − Vn,ε,d | ≤ K

(
Cd + C0

∞∑
l=[εd]−1

|l − k|p(α−k)

)
→ 0 as d → ∞

since p(α − k) < −1. Due to the fact that nαp ∑n
i=k |Mi,n,ε|p = Vn,ε a.s. on �ε

and Vn,ε
L−s−→ Z, it follows that nαp ∑n

i=k |Mi,n,ε|p L−s−→ Z on �ε , since �ε ∈ F .
This proves (4.1).

The rest term: In the following, we will show that

(4.7) nαp
n∑

i=k

|Ri,n,ε|p P−→ 0 as n → ∞.

The fact that the random variables in (4.7) are usually not integrable makes the
proof of (4.7) considerably more complicated. Similar to (3.7) of Lemma 3.1, we
have that

nk
∣∣gi,n(s)

∣∣1{s≤i/n−ε} ≤ K
(
1{s∈[−1,1]} + 1{s<−1}

∣∣g(k)(−s)
∣∣) =: ψ(s),

where K = Kε . We will use the function ψ several times in the proof of (4.7),
which will be divided into the two special cases θ ∈ (0,1] and θ ∈ (1,2]. Suppose
first that θ ∈ (0,1]. To show (4.7), it suffices to prove that

(4.8) sup
n∈N,i∈{k,...,n}

nk|Ri,n,ε| < ∞ a.s.

since α < k − 1/p. To show (4.8), we will first prove that

(4.9)
∫
R

∫
R

(∣∣ψ(s)x
∣∣ ∧ 1

)
ν(dx) ds < ∞.

Choose K̃ such that ψ(x) ≤ K̃ for all x ∈ R. For u ∈ [−K̃, K̃], we have that∫
R

(|ux| ∧ 1
)
ν(dx) ≤ K

∫ ∞
1

(|xu| ∧ 1
)
x−1−θ dx

(4.10)

≤
{
K|u|θ , θ ∈ (0,1),

K|u|θ log(1/u), θ = 1,

where we have used that θ ≤ 1. By (4.10) applied to u = ψ(s) and assump-
tion (A), it follows that (4.9) is satisfied. Since L is a symmetric compound
Poisson process, we can find a Poisson random measure μ with mean measure
λ ⊗ ν such that for all −∞ < u < t < ∞, Lt − Lu = ∫

(u,t]×R
xμ(ds, dx). Due

to [26], Theorem 10.15, (4.9) ensures the existence of the stochastic integral
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∫
R×R

|ψ(s)x|μ(ds, dx). Moreover,
∫
R×R

|ψ(s)x|μ(ds, dx) can be regarded as an
ω by ω integral with respect to the measure μω. Now, we have that

∣∣nkRi,n,ε

∣∣ ≤
∫
(−∞,i/n−ε]×R

∣∣nkgi,n(s)x
∣∣μ(ds, dx)

(4.11)
≤

∫
R×R

∣∣ψ(s)x
∣∣μ(ds, dx) < ∞,

which shows (4.8), since the right-hand side of (4.11) does not depend on i and n.
Suppose that θ ∈ (1,2]. Similar as before, it suffices to show that

(4.12) sup
n∈N,i∈{k,...,n}

nk|Ri,n,ε|
(logn)1/q

< ∞ a.s.,

where q > 1 denotes the conjugated number to θ > 1 determined by 1/θ +
1/q = 1. In the following, we will show (4.12) using the majorizing measure
techniques developed in [29]. In fact, our arguments are closely related to their
Section 4.2. Set T = {(i, n) : n ≥ k, i = k, . . . , n}. For (i, n) ∈ T , we have

nk|Ri,n,ε|
(logn)1/q

=
∣∣∣∣
∫
R

ζi,n(s) dLs

∣∣∣∣, ζi,n(s) := nk

(logn)1/q
gi,n(s)1{s≤i/n−ε}.

For t = (i, n) ∈ T , we will sometimes write ζt (s) for ζi,n(s). Let τ : T × T → R+
denote the metric given by

τ
(
(i, n), (j,m)

)
=

{
log(n − k + 1)−1/q + log(m − k + 1)−1/q, (i, n) 	= (j, l),

0, (i, n) = (j, l).

Moreover, let m be the probability measure on T given by m({(i, n)}) = Kn−3 for
a suitable constant K > 0. Set Bτ (t, r) = {s ∈ T : τ(s, t) ≤ r} for t ∈ T , r > 0,
D = sup{τ(s, t) : s, t ∈ T } and

Iq(m, τ ;D) = sup
t∈T

∫ D

0

(
log

1

m(Bτ (t, r))

)1/q

dr.

In the following, we will show that m is a so-called majorizing measure,
which means that Iq(m, τ,D) < ∞. For r < (log(n − k + 1))−1/q , we have
Bτ ((i, n), r) = {(i, n)}. Therefore, m(Bτ ((i, n), r)) = Kn−3 and

∫ (log(n−k+1))−1/q

0

(
log

1

m(Bτ ((i, n), r))

)1/q

dr

(4.13)

=
∫ (log(n−k+1))−1/q

0
(3 logn + logK)1/q dr.
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For all r ≥ (log(n − k + 1))−1/q , (k, k) ∈ Bτ ((i, n), r), and hence m(Bτ ((i, n),

r)) ≥ m({(k, k)}) = K(k + 1)−3. Therefore,
∫ D

(log(n−k+1))−1/q

(
log

1

m(Bτ ((i, n), r))

)1/q

dr

(4.14)

≤
∫ D

(log(n−k+1))−1/q

(
3 log(k + 1) + logK

)1/q
dr.

By (4.13) and (4.14), it follows that Iq(m, τ,D) < ∞. For (i, n) 	= (j, l), we have
that

|ζi,n(s) − ζj,l(s)|
τ((i, n), (j, l))

≤ nk
∣∣gi,n(s)

∣∣1{s≤i/n−ε} + lk
∣∣gj,l(s)

∣∣1{s≤j/l−ε}
(4.15)

≤ Kψ(s).

For fixed t0 ∈ T , we let ‖ζ‖τ (s) = D−1|ζt0(s)| + supt1,t2∈T :τ(t1,t2) 	=0 |ζt1(s) −
ζt2(s)|/τ(t1, t2) be a Lipschitz type norm on T . By (4.15), it follows that ‖ζ‖τ (s) ≤
Kψ(s), and hence

(4.16)
∫
R

‖ζ‖θ
τ (s) ds ≤ K

(
2 +

∫ ∞
1

∣∣g(k)(s)
∣∣θds

)
< ∞.

By [29], Theorem 3.1, Equation (3.11), together with Iq(m, τ,D) < ∞ and (4.16)
we deduce (4.12), which completes the proof of (4.7).

End of the proof : Recall the decomposition �n
i,nX = Mi,n,ε + Ri,n,ε . Equa-

tion (4.1), (4.7) and an application of Minkowski inequality yield that

(4.17) nαpV (p;k)n
L−s−→ Z on �ε as n → ∞.

Since P(�ε) ↑ 1 as ε ↓ 0, (4.17) implies that nαpV (p;k)n
L−s−→ Z. We have now

completed the proof for a particular choice of stopping times (Tm)m≥1. However,
the result remains valid for any choice of F-stopping times, since the distribution
of Z is invariant with respect to reordering of stopping times. �

Step (ii): An approximation. To prove Theorem 1.1(i) in the general case, we
need the following approximation result. Consider a general symmetric Lévy pro-
cess L = (Lt )t∈R as in Theorem 1.1(i) and let N be the corresponding Poisson ran-
dom measure N(A) := �{t : (t,�Lt) ∈ A} for all measurable A ⊆ R × (R \ {0}).
By our assumptions (in particular, by symmetry), the process X(j) given by

(4.18) Xt(j) =
∫
(−∞,t]×[− 1

j
, 1
j
]
{(

g(t − s) − g0(−s)
)
x
}
N(ds, dx)

is well defined. The following estimate on the processes X(j) will be crucial.
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LEMMA 4.2. Suppose that α < k − 1/p and β < p. Then

lim
j→∞ lim sup

n→∞
P

(
nαpV

(
X(j)

)
n > ε

) = 0 for all ε > 0.

PROOF. By Markov’s inequality and the stationary increments of X(j), we
have that

P
(
nαpV

(
X(j)

)
n > ε

)
≤ ε−1nαp

n∑
i=k

E
[∣∣�n

i,kX(j)
∣∣p] ≤ ε−1nαp+1

E
[∣∣�n

k,kX(j)
∣∣p]

.

Hence, it is enough to show that

(4.19) lim
j→∞ lim sup

n→∞
E

[|Yn,j |p] = 0 with Yn,j := nα+1/p�n
k,kX(j).

To show (4.19), it suffices to prove that

lim
j→∞ lim sup

n→∞
ξn,j = 0 where ξn,j =

∫
|x|≤1/j

χn(x)ν(dx) and

χn(x) =
∫ k/n

−∞
(∣∣nα+1/pgk,n(s)x

∣∣p1{|nα+1/pgk,n(s)x|≥1}

+ ∣∣nα+1/pgk,n(s)x
∣∣21{|nα+1/pgk,n(s)x|≤1}

)
ds,

which follows from the representation

Yn,j =
∫
(−∞,k/n]×[−1/j,1/j ]

(
nα+1/pgk,n(s)x

)
N(ds, dx)

and by [32], Theorem 3.3 and the remarks above it. Suppose for the moment that
there exists a finite constant K > 0 such that

(4.20) χn(x) ≤ K
(|x|p + x2)

for all x ∈ [−1,1].
Then

lim sup
j→∞

{
lim sup
n→∞

ξn,j

}
≤ K lim sup

j→∞

∫
|x|≤1/j

(|x|p + x2)
ν(dx) = 0

since p > β . Hence, it suffices to show the estimate (4.20), which we will do in
the following.

Let �p : R → R+ denote the function �p(y) = |y|21{|y|≤1} + |y|p1{|y|>1}. We
split χn into the following three terms which need different treatments:

χn(x) =
∫ k/n

−k/n
�p

(
nα+1/pgk,n(s)x

)
ds +

∫ −k/n

−1
�p

(
nα+1/pgk,n(s)x

)
ds

+
∫ −1

−∞
�p

(
nα+1/pgk,n(s)x

)
ds =: I1,n(x) + I2,n(x) + I3,n(x).
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Estimation of I1,n: By (3.5) of Lemma 3.1, we have that

(4.21)
∣∣gk,n(s)

∣∣ ≤ K(k/n − s)α, s ∈ [−k/n, k/n].
Since �p is increasing on R+, (4.21) implies that

I1,n(x) ≤ K

∫ 2k/n

0
�p

(
xnα+1/psα)

ds.(4.22)

By basic calculus, it follows that∫ 2k/n

0

∣∣xnα+1/psα
∣∣21{|xnα+1/psα |≤1} ds

≤ K
(
1{|x|≤(2k)−αn−1/p}x2n2/p−1 + 1{|x|>(2k)−αn−1/p}|x|−1/αn−1−1/(αp))(4.23)

≤ K
(|x|p + x2)

.

Moreover, ∫ 2k/n

0

∣∣xnα+1/psα
∣∣p1{|xnα+1/psα |>1} ds

(4.24)

≤
∫ 2k/n

0

∣∣xnα+1/psα
∣∣p ds ≤ K|x|p.

By combining (4.22), (4.23) and (4.24), we obtain the estimate I1,n(x) ≤ K(|x|p +
x2).

Estimation of I2,n: By (3.6) of Lemma 3.1, it holds that∣∣gk,n(s)
∣∣ ≤ Kn−k|s|α−k, s ∈ (−1,−k/n).(4.25)

Again, due to the fact that �p is increasing on R+, (4.25) implies that

I2,n(x) ≤ K

∫ 1

k/n
�p

(
xnα+1/p−ksα−k)ds.(4.26)

For α 	= k − 1/2, we have∫ 1

k/n

∣∣xnα+1/p−ksα−k
∣∣21{|xnα+1/p−ksα−k |≤1} ds

≤ K
(
x2n2(α+1/p−k) + 1{|x|≤n−1/pk−(α−k)}|x|2n2/p−1

(4.27)
+ 1{|x|>n−1/pk−(α−k)}|x|1/(k−α)n1/(p(k−α))−1)

≤ K
(
x2 + |x|p)

,

where we have used that α < k − 1/p. For α = k − 1/2, we have∫ 1

k
n

∣∣xnα+1/p−ksα−k
∣∣21{|xnα+1/p−ksα−k |≤1} ds

(4.28)

≤ x2n2(α+1/p−k)
∫ 1

k
n

s−1 ds ≤ Kx2,
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where we again have used α < k − 1/p in the last inequality. Moreover,∫ 1

k/n

∣∣xnα+1/p−ksα−k
∣∣p1{|xnα+1/p−ksα−k |>1} ds ≤ K|x|p.(4.29)

By (4.26), (4.27), (4.28) and (4.29), we obtain the estimate I2,n(x) ≤ K(|x|p +x2).
Estimation of I3,n: For s < −1, we have that |gk,n(s)| ≤ Kn−k|g(k)(−k/n−s)|,

by (3.7) of Lemma 3.1, and hence

I3,n(x) ≤ K

∫ ∞
1

�p

(
nα+1/p−kg(k)(s)

)
ds.(4.30)

We have that ∫ ∞
1

∣∣xnα+1/p−kg(k)(s)
∣∣21{|xnα+1/p−kg(k)(s)|≤1} ds

(4.31)
≤ x2n2(α+1/p−k)

∫ ∞
1

∣∣g(k)(s)
∣∣2 ds.

Since |g(k)| is decreasing on (1,∞) and g(k) ∈ Lθ((1,∞)) for some θ ≤ 2, the
integral on the right-hand side of (4.31) is finite. For x ∈ [−1,1], we have∫ ∞

1

∣∣xnα+1/p−kg(k)(s)
∣∣p1{|xnα+1/p−kg(k)(s)|>1} ds

(4.32)
≤ |x|pnp(α+1/p−k)

∫ ∞
1

∣∣g(k)(s)
∣∣p1{|g(k)(s)|>1} ds.

From our assumptions, it follows that the integral in (4.32) is finite. By (4.30),
(4.31) and (4.32), we have that I3,n(x) ≤ K(|x|p + x2) for all x ∈ [−1,1], which
completes the proof of (4.20) and, therefore, also the proof of the lemma. �

Step (iii): The general case. In the following, we will prove Theorem 1.1(i) in
the general case by combining the above Steps (i) and (ii).

PROOF OF THEOREM 1.1(i). Let (Tm)m≥1 be a sequence of F-stopping times
that exhausts the jumps of (Lt )t≥0. For each j ∈ N, let L̂(j) be the Lévy process
given by

L̂t (j) − L̂s(j) = ∑
u∈(s,t]

�Lu1{|�Lu|> 1
j
}, s < t,

and set

X̂t (j) =
∫ t

−∞
(
g(t − s) − g0(−s)

)
dL̂s(j).

Moreover, set Tm,j = Tm when |�LTm | > 1/j and Tm,j = ∞ else. Note that
(Tm,j )m≥1 is a sequence of F-stopping times that exhausts the jumps of (L̂t (j))t≥0.
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Since L̂(j) is a compound Poisson process, Step (i) shows that

nαpV
(
X̂(j)

)
n

L−s−→ Zj := ∑
m:Tm,j∈[0,1]

∣∣�L̂Tm,j
(j)

∣∣pVm as n → ∞,(4.33)

where Vm, m ≥ 1, are defined in (1.5). By definition of Tm,j and monotone con-
vergence we have, as j → ∞,

(4.34) Zj = ∑
m:Tm∈[0,1]

|�LTm |pVm1{|�LTm |> 1
j
|}

a.s.−→ ∑
m:Tm∈[0,1]

|�LTm |pVm =: Z.

Suppose first that p ≥ 1 and decompose(
nαpV (X)n

)1/p = (
nαpV

(
X̂(j)

)
n

)1/p + ((
nαpV (X)n

)1/p − (
nαpV

(
X̂(j)

)
n

)1/p)
=: Yn,j + Un,j .

Equations (4.33) and (4.34) show

(4.35) Yn,j
L−s−−−→

n→∞ Z
1/p
j and Z

1/p
j

P−−−→
j→∞ Z1/p.

Note that X − X̂(j) = X(j), where X(j) is defined in (4.18). For all ε > 0, we
have by Minkowski’s inequality

lim sup
j→∞

lim sup
n→∞

P
(|Un,j | > ε

)
(4.36)

≤ lim sup
j→∞

lim sup
n→∞

P
(
nαpV

(
X(j)

)
n > εp) = 0,

where the last equality follows by Lemma 4.2. By a standard argument (see, e.g.,

[12], Theorem 3.2), (4.35) and (4.36) implies that (nαpV (X)n)
1/p L−s−→ Z1/p which

completes the proof of Theorem 1.1(i) when p ≥ 1. For p < 1, Theorem 1.1(i)
follows by (4.33), (4.34), the inequality |V (X)n − V (X̂(j))n| ≤ V (X(j))n and
[12], Theorem 3.2. �

4.2. Proof of Theorem 1.1(ii). Suppose that α < k − 1/β , p < β and L is a
symmetric β-stable Lévy process. In the proof of Theorem 1.1(ii), we will use the
following notation: For all n ≥ 1, r ≥ 0 set

(4.37) φn
r (s) = Dkgn(r − s), φ∞

r (s) = hk(r − s),

where gn and Dk are defined at (3.3) and (3.4), and the function hk is defined in
(1.4). For all n ∈ N∪ {∞} and t ≥ 0, set

(4.38) Yn
t =

∫ t

−∞
φn

t (s) dLs.

By self-similarity of L of index 1/β , we have for all n ∈ N,

(4.39)
{
nα+1/β�n

i,kX : i = k, . . . , n
} d= {

Yn
i : i = k, . . . , n

}
,
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where d= means equality in distribution. For α < 1 − 1/β , Y∞ is the k-order incre-
ments of a linear fractional stable motion. For α ≥ 1 − 1/β , the linear fractional
stable motion is not well defined, but Y∞ is well defined since the function hk

is locally bounded and satisfies |hk(x)| ≤ Kxα−k for all x ≥ k + 1, which implies
that hk ∈ Lβ(R). In the following, we will prove Theorem 1.1(ii) by approximating
Yn

t by Y∞
t and applying the ergodic properties of Y∞

t .
To show that Yn

k → Y∞
k in Lp as n → ∞, we will use the fact that for any de-

terministic function ϕ : R → R satisfying ϕ ∈ Lβ(R),
∫
R

ϕ(s) dLs is a symmetric
β-stable random variable with scale parameter ‖ϕ‖Lβ(R), that is, for all u ∈ R,

E

[
exp

(
iu

∫
R

ϕ(s) dLs

)]
= exp

(
−|u|β

∫
R

∣∣ϕ(s)
∣∣β ds

)
.(4.40)

We recall that for φ : s �→ sα+ we have Dkφ = hk ∈ Lβ(R) and c0 = 1 by assump-
tion. For all s ∈ R, we let ψn(s) = gn(s)−sα+. By the scaling properties of β-stable
random variables, we have for all p < β that

E
[∣∣Yn

k − Y∞
k

∣∣p] = K

(∫ ∞
0

∣∣Dkψn(s)
∣∣β ds

)p/β

.(4.41)

To show that the right-hand side of (4.41) converges to zero we note that∫ ∞
n+k

∣∣Dkgn(s)
∣∣β ds ≤ Knβ(α−k)

∫ ∞
n+k

∣∣g(k)((s − k)/n
)∣∣β ds

= Knβ(α−k)+1
∫ ∞

1

∣∣g(k)(s)
∣∣β ds → 0 as n → ∞.

This implies that∫ ∞
n+k

∣∣Dkψn(s)
∣∣β ds

(4.42)

≤ K

(∫ ∞
n+k

∣∣Dkgn(s)
∣∣β ds +

∫ ∞
n+k

∣∣Dkφ(s)
∣∣β ds

)
−−−→
n→∞ 0.

By (3.6) of Lemma 3.1, it holds that |Dkgn(s)| ≤ K(s − k)α−k for s ∈ (k + 1, n).
Therefore, for s ∈ (0, n] we have

(4.43)
∣∣Dkψn(s)

∣∣ ≤ K
(
1{s≤k+1} + 1{s>k+1}(s − k)α−k),

where the function on the right-hand side of (4.43) is in Lβ(R+). For fixed
s ≥ 0, ψn(s) → 0 as n → ∞ by assumption (1.3), and hence Dkψn(s) → 0
as n → ∞. By (4.43) and the dominated convergence theorem, this shows that∫ n

0 |Dkψn(s)|β ds → 0. Hence, by (4.41) and (4.42) we have

(4.44) E
[∣∣Yn

k − Y∞
k

∣∣p] → 0 as n → ∞,
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which implies that

(4.45) E

[
1

n

n∑
i=k

∣∣Yn
i − Y∞

i

∣∣p]
= 1

n

n∑
i=k

E
[∣∣Yn

i − Y∞
i

∣∣p] ≤ E
[∣∣Yn

k − Y∞
k

∣∣p] → 0

as n → ∞. Moreover, (Y∞
t )t∈R is mixing since it is a symmetric stable moving

average; see, for example, [14]. This implies, in particular, that the discrete time
stationary sequence {Yj }j∈Z is mixing, and hence ergodic. According to Birkhoff’s
ergodic theorem (cf. [26], Theorem 10.6),

(4.46)
1

n

n∑
i=k

∣∣Y∞
i

∣∣p a.s.−→ E
[∣∣Y∞

k

∣∣p] ∈ (0,∞) as n → ∞.

We note that the expectation E[|Y∞
k |p] at (4.46) coincides with the definition of

mp in Theorem 1.1(ii); cf. [34], Property 1.2.17 and 3.2.2. By (4.45), Minkowski’s

inequality and (4.46), we deduce n−1 ∑n
i=k |Yn

i |p P−→ mp as n → ∞. By (4.39),
it follows that

n−1+p(α+1/β)V (X)n = 1

n

n∑
i=k

∣∣nα+1/β�n
i,kX

∣∣p d= 1

n

n∑
i=k

∣∣Yn
i

∣∣p P−→ mp

as n → ∞. This completes the proof of Theorem 1.1(ii).

4.3. Proof of Theorem 1.1(iii). We will derive Theorem 1.1(iii) from the two
lemmas below. For k ∈ N and p ∈ [1,∞), let Wk,p denote the Wiener space
of functions ζ : [0,1] → R which are k-times absolutely continuous with ζ (k) ∈
Lp([0,1]) where ζ (k)(t) = ∂kζ(t)/∂tk for Lebesgue a.e. t ∈ [0,1]. We recall that
a function ζ : [0,1] → R is absolutely continuous if there exists an integrable func-
tion κ such that for all t ∈ [0,1] we have

(4.47) ζ(t) = ζ(0) +
∫ t

0
κ(s) ds,

and in this case, ζ is differentiable Lebesgue a.e. with ζ ′ = κ a.e. A function ζ

is said to be two times absolutely continuous if ζ is absolutely continuous and κ

in (4.47) can be chosen absolutely continuous. Similarly, we define k-times abso-
lutely continuity. First we will show that, under the conditions of Theorem 1.1(iii),
X ∈ Wk,p almost surely.

LEMMA 4.3. Suppose that p 	= θ , p ≥ 1 and (A) holds. If α > k − 1/(p ∨β),
then

(4.48) X ∈ Wk,p a.s. and
∂k

∂tk
Xt =

∫ t

−∞
g(k)(t − s) dLs λ ⊗ P-a.s.

Equation (4.48) remains valid for p = θ if, in addition, (A-log) holds.
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PROOF. We will not need the assumption (1.3) on g in the proof. For notation
simplicity, we only consider the case k = 1, since the general case follows by sim-
ilar arguments. To prove (4.48), it is sufficient to show that the three conditions
(5.3), (5.4) and (5.6) from [13], Theorem 5.1, are satisfied (this result uses the con-
dition p ≥ 1). In fact, the representation (4.48) of (∂/∂t)Xt follows by the equation
below (5.10) in [13]. In our setting, the function σ̇ defined in [13], Equation (5.5),
is constant, and hence (5.3), (5.4) and (5.6) in [13] simplify to∫

R

ν

((
1

‖g′‖Lp([s,1+s])
,∞

))
ds < ∞,(4.49)

∫ ∞
0

∫
R

(∣∣xg′(s)
∣∣2 ∧ 1

)
ν(dx) ds < ∞,(4.50)

∫ 1

0

∫
R

∣∣g′(t + s)
∣∣p(∫ 1/‖g′‖Lp([s,1+s])

r/|g′(t+s)|
xpν(dx)

)
ds dt < ∞(4.51)

for all r > 0. When the lower bound in the inner integral in (4.51) exceeds the
upper bound the integral is set to zero. Since α > 1 − 1/β , we may choose
ε > 0 such that (α − 1)(β + ε) > −1. To show (4.49), we use the estimates
‖g′‖Lp([s,1+s]) ≤ K(1{s∈[−1,1]} + 1{s>1}|g′(s)|) for s ∈ R and

ν
(
(u,∞)

) ≤
{
Ku−θ , u ≥ 1,

Ku−β−ε, u ∈ (0,1],
which both follow from assumption (A). Hence, we deduce that∫

R

ν

((
1

‖g′‖Lp([s,1+s])
,∞

))
ds

≤
∫ 1

−1
ν

((
1

K
,∞

))
ds +

∫ ∞
1

ν

((
1

K|g′(s)| ,∞
))

ds

≤ 2ν

((
1

K
,∞

))

+ K

∫ ∞
1

(∣∣g′(s)
∣∣θ1{K|g′(s)|≤1} + ∣∣g′(s)

∣∣β+ε1{K|g′(s)|>1}
)
ds

which is finite and thereby shows (4.49) [recall that |g′| is decreasing on (1,∞)].
To show (4.50), we will use the following two estimates:∫ 1

0

(∣∣sα−1x
∣∣2 ∧ 1

)
ds

(4.52)

≤

⎧⎪⎪⎨
⎪⎪⎩

K
(
1{|x|≤1}|x|1/(1−α) + 1{|x|>1}

)
, α < 1/2,

K
(
1{|x|≤1}x2 log(1/x) + 1{|x|>1}

)
, α = 1/2,

K
(
1{|x|≤1}x2 + 1{|x|>1}

)
, α > 1/2,
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and ∫
{|x|>1}

(∣∣xg′(s)
∣∣2 ∧ 1

)
ν(dx)

(4.53)
≤ K

∫ ∞
1

(∣∣xg′(s)
∣∣2 ∧ 1

)
x−1−θ dx ≤ K

∣∣g′(s)
∣∣θ .

For α < 1/2, we have∫ ∞
0

∫
R

(∣∣xg′(s)
∣∣2 ∧ 1

)
ν(dx) ds

≤ K

{∫
R

∫ 1

0

(∣∣xsα−1∣∣2 ∧ 1
)
dsν(dx)

+
∫ ∞

1

∫
{|x|≤1}

(∣∣xg′(s)
∣∣2 ∧ 1

)
ν(dx) ds

+
∫ ∞

1

∫
{|x|>1}

(∣∣xg′(s)
∣∣2 ∧ 1

)
ν(dx) ds

}

≤ K

{∫
R

(
1{|x|≤1}|x|1/(1−α) + 1{|x|>1}

)
ν(dx)

+
(∫ ∞

1

∣∣g′(s)
∣∣2 ds

)(∫
{|x|≤1}

x2ν(dx)

)
+

∫ ∞
1

∣∣g′(s)
∣∣θ ds

}
< ∞,

where the first inequality follows by assumption (A), the second inequality follows
by (4.52) and (4.53), and the last inequality is due to the fact that 1/(1 − α) > β

and g′ ∈ Lθ((1,∞)) ∩ L2((1,∞)). This shows (4.50). The two remaining cases
α = 1/2 and α > 1/2 follow similarly.

Now, we will prove that (4.51) holds. Since |g′| is decreasing on (1,∞), we
have for all t ∈ [0,1] that

∫ ∞
1

∣∣g′(t + s)
∣∣p(∫ 1/‖g′‖Lp([s,1+s])

r/|g′(t+s)|
xpν(dx)

)
ds

≤
∫ ∞

1

∣∣g′(s)
∣∣p(∫ 1/|g′(s)|

r/|g′(1+s)|
xpν(dx)

)
ds

(4.54)

≤ K

p − θ

∫ ∞
1

∣∣g′(s)
∣∣p(∣∣g′(s)

∣∣θ−p

− ∣∣g′(s + 1)/r
∣∣θ−p)

1{r/|g′(1+s)|≤1/|g′(s)|} ds.

For p > θ , (4.54) is less than or equal to

K

p − θ

∫ ∞
1

∣∣g′(s)
∣∣θ ds < ∞.
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For p < θ , (4.54) is less than or equal to

Krp−θ

θ − p

∫ ∞
1

∣∣g′(s)
∣∣p∣∣g′(s + 1)

∣∣θ−p
ds ≤ Krp−θ

θ − p

∫ ∞
1

∣∣g′(s)
∣∣θ ds < ∞,

where the first inequality is due to the fact that |g′| is decreasing on (1,∞). Hence,
we have shown that

(4.55)
∫ 1

0

∫ ∞
1

∣∣g′(t + s)
∣∣p(∫ 1/‖g′‖Lp([s,1+s])

r/|g′(t+s)|
xpν(dx)

)
ds dt < ∞

for p 	= θ . Suppose that p > β . For t ∈ [0,1] and s ∈ [−1,1], we have

∫ 1/‖g′‖Lp([s,1+s])

r/|g′(t+s)|
xpν(dx) ≤

∫ 1/‖g′‖Lp([s,1+s])

1
xpν(dx) +

∫ 1

r/|g′(t+s)|
xpν(dx)

≤ K
(∥∥g′∥∥θ−p

Lp([s,1+s]) + 1
)

and hence∫ 1

0

∫ 1

−1

∣∣g′(t + s)
∣∣p(∫ 1/‖g′‖Lp([s,1+s])

r/|g′(t+s)|
xpν(dx)

)
ds dt(4.56)

≤ K

(∫ 1

−1

∥∥g′∥∥θ
Lp([s,s+1]) ds +

∫ 1

−1

∥∥g′∥∥p
Lp([s,1+s]) ds

)
< ∞.(4.57)

Suppose that p ≤ β . For t ∈ [0,1] and s ∈ [−1,1], we have

∫ 1/‖g′‖Lp([s,1+s])

r/|g′(t+s)|
xpν(dx) ≤ K

(∥∥g′∥∥θ−p
Lp([s,1+s]) + ∣∣g′(t + s)

∣∣β+ε−p)
and hence∫ 1

0

∫ 1

−1

∣∣g′(t + s)
∣∣p(∫ 1/‖g′‖Lp([s,1+s])

r/|g′(t+s)|
xpν(dx)

)
ds dt(4.58)

≤ K

(∫ 1

−1

∥∥g′∥∥θ
Lp([s,s+1]) ds +

∫ 1

−1

∥∥g′∥∥β+ε

Lβ+ε([s,1+s]) ds

)
< ∞(4.59)

since (α − 1)(β + ε) > −1. Thus, (4.51) follows by (4.55), (4.56)–(4.57) and
(4.58)–(4.59).

For p = θ , the above argument remains valid except for (4.55), where we need
the additional assumption (A-log). This completes the proof. �

LEMMA 4.4. For all ζ ∈ Wk,p we have, as n → ∞,

(4.60) n−1+pkV (ζ,p;k)n →
∫ 1

0

∣∣ζ (k)(s)
∣∣p ds.
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PROOF. First, we will assume that ζ ∈ Ck+1(R) and afterwards we will prove
the lemma by an approximation argument. An application of Taylor’s expansion
gives �n

i,kζ = n−kζ (k)((i −k)/n)+ai,n, where ai,n ∈ R satisfies |ai,n| ≤ Kn−k−1.
By Minkowski’s inequality,∣∣∣∣∣(nkp−1V (ζ )n

)1/p −
(
nkp−1

n∑
j=k

∣∣∣∣ζ (k)

(
i − k

n

)
1

nk

∣∣∣∣p
)1/p∣∣∣∣∣

≤
(
npk−1

n∑
j=k

|ai,n|p
)1/p

→ 0.

By continuity of ζ (k), we have

nkp−1
n∑

i=k

∣∣∣∣ζ (k)

(
i − k

n

)
1

nk

∣∣∣∣p →
∫ 1

0

∣∣ζ (k)(s)
∣∣p ds

as n → ∞, which shows (4.60). The statement of the lemma for a general ζ ∈
Wk,p follows by approximating ζ through a sequence of Ck+1(R)-functions and
Minkowski’s inequality. This completes the proof. �

Lemmas 4.3 and 4.4 yield the statement of Theorem 1.1(iii).

5. Proof of Theorem 1.2. Throughout this section, we suppose that the as-
sumptions stated in Theorem 1.2 hold. Without loss of generality, we will assume
that the symmetric β-stable Lévy process L has scale parameter σ = 1 and (A)
holds with δ = c0 = 1.

5.1. Notation and outline of the proof. In addition to the notation introduced
in Section 4.2, we define the following truncated version of Yn

r in (4.38) by

Yn,m
r =

∫ r

r−m
φn

r (s) dLs, n ∈ N∪ {∞},m, r ≥ 0,

where the function φn
r has been introduced in (4.37). For n,m ∈ N, we set

Sn =
n∑

r=k

(∣∣Yn
r

∣∣p −E
[∣∣Yn

r

∣∣p])
and Sn,m =

n∑
r=k

(∣∣Yn,m
r

∣∣p −E
[∣∣Yn,m

r

∣∣p])
.

By (4.39), we have that

(5.1) np(α+1/β)V (p;k)n
d= Sn + (n − k + 1)E

[∣∣Yn
1

∣∣p]
,

and hence when proving Theorem 1.2 we may instead analyse the right-hand side
of (5.1). For all n ∈ N∪ {∞}, j ≥ 1 and m ≥ 0, we also set

ρn
j = ∥∥φn

j

∥∥
Lβ(R\[0,1]), ρ

n,m
j = ∥∥φn

j

∥∥
Lβ([j−m,j ]\[0,1]),

(5.2)

Un
j,r =

∫ r+1

r
φn

j (u) dLu.
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For all r ∈ R, we consider the following σ -algebras:

Gr = σ(Ls − Lu : s, u ≤ r) and G1
r = σ(Ls − Lu : r ≤ s, u ≤ r + 1).

We note that (G1
r )r≥0 is not a filtration. Let W denote a symmetric β-stable random

variable with scale parameter ρ ∈ (0,∞) and �ρ :R →R be defined by

(5.3) �ρ(x) = E
[|W + x|p] −E

[|W |p]
, x ∈ R.

For all n ≥ 1,m, r ≥ 0 let

V n,m
r = ∣∣Yn

r

∣∣p − ∣∣Yn,m
r

∣∣p −E
[∣∣Yn

r

∣∣p − ∣∣Yn,m
r

∣∣p]
,

ζ
n,m
r,j = E

[
V n,m

r |Gr−j+1
] −E

[
V n,m

r |Gr−j

] −E
[
V n,m

r |G1
r−j

]
,(5.4)

Rn,m
r =

∞∑
j=1

ζ
n,m
r,j and Qn,m

r =
∞∑

j=1

E
[
V n,m

r |G1
r−j

]
.(5.5)

According to Remark 5.1 below, the two series Rn,m
r and Qn,m

r converge with prob-
ability one, and the following decomposition of Sn − Sn,m holds with probability
one:

(5.6) Sn − Sn,m =
n∑

r=k

Rn,m
r +

n∑
r=k

Qn,m
r .

Decompositions of the type (5.6) have been successfully used in the theory of
discrete time moving averages (see, e.g., Ho and Hsing [22]), and will also play a
crucial role in the proof of Theorem 1.2. Indeed, for the proof of Theorem 1.2(i) we
will choose m = 0 in (5.6) and since Sn,0 = 0 we have the following decomposition
of Sn:

(5.7) Sn =
n∑

r=k

Rn,0
r +

n∑
r=k

(
Qn,0

r − Zr

) +
n∑

r=k

Zr,

where

(5.8) Zr =
∞∑

j=1

{
�ρ∞

j

(
U∞

j+r,r

) −E
[
�ρ∞

j

(
U∞

j+r,r

)]}
.

After suitable scaling we show that the first two sums on the right-hand side of
(5.7) are negligible; see (5.30). To analyse the third sum, we note that the random
variables {Zr : r ≥ k} are independent and identically distributed, which follows
from their definition. Hence, to complete the proof of Theorem 1.2(i), it is enough
to show that the common law of {Zr : r ≥ k} belong to the domain of attraction of
a (k − α)β-stable random variable, which is done in (5.33).

The main part of the proof of Theorem 1.2(ii) consists in showing that

(5.9) lim
m→∞ lim sup

n→∞
(
n−1

E
[
(Sn − Sn,m)2]) = 0;
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see (5.47). We prove (5.9) by estimating each of the two sums on the right-hand
side of (5.6) separately. We note that for each fixed m ≥ 1 the sequences {Sn,m :
n ≥ 1} are partial sums of m-dependent random variables, since for all j ≥ 1 the
random variables {Yn,m

1 , . . . , Y
n,m
j } are independent of {Yn,m

r : r ≥ j + 1 + m}.
Hence, using a standard result for m-dependent sequences one can deduce a central
limit theorem for the sequences {Sn,m : n ≥ 1} and by using (5.9) transfer this result
to Sn, which will prove Theorem 1.2(ii). In the next subsection, we present some
estimates which play a key role in the proof of Theorem 1.2.

5.2. Preliminary estimates. The assumption |g(k)(x)| ≤ Kxα−k for all x > 0
implies that

(5.10)
∥∥φn

j

∥∥
Lβ([0,1]) ≤ Kjα−k

for some finite constant K , which does not depend on j ∈ N and n ∈ N ∪ {∞}. In
the following, we will collect some estimates on the functions �ρ defined in (5.3),
which will be used various places in the proofs. We observe the identity, for x ∈ R,

(5.11) |x|p = a−1
p

∫
R

(
1 − exp(iux)

)|u|−1−p du for p ∈ (0,1),

with ap = ∫
R
(1 − exp(iu))|u|−1−p du ∈ R+, which can be shown by substitution

y = ux. Applying the identities (5.11) and (4.40), we obtain the representation

(5.12) �ρ(x) = a−1
p

∫
R

(
1 − cos(ux)

)
e−ρβ |u|β |u|−1−p du.

From (5.12), we deduce that �ρ ∈ C3(R) and it holds that

�′
ρ(x) = a−1

p

∫
R

sin(ux)|u|−pe−ρβ |u|β du,

�′′
ρ(x) = a−1

p

∫
R

cos(ux)|u|1−pe−ρβ |u|β du,

�′′′
ρ (x) = −a−1

p

∫
R

sin(ux)|u|2−pe−ρβ |u|β du.(5.13)

In the following, we let ε > 0 be a fixed number. The identities at (5.13) imply that
for v = 1,2,3 there exists a finite constant Kε such that for all ρ ≥ ε and all x ∈ R

(5.14)
∣∣�(v)

ρ (x)
∣∣ ≤ Kε.

By (5.12), we also deduce the following estimate by several applications of the
mean value theorem∣∣�ρ(x) − �ρ(y)

∣∣
(5.15)

≤ Kε

((|x| ∧ 1 + |y| ∧ 1
)|x − y|1{|x−y|≤1} + |x − y|p1{|x−y|>1}

)
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which holds for all ρ ≥ ε and all x, y ∈ R. Equation (5.15) used on y = 0 yields
that

(5.16)
∣∣�ρ(x)

∣∣ ≤ Kε

(|x|p ∧ |x|2)
.

In particular, it implies that

(5.17)
∣∣�ρ(x)

∣∣ ≤ Kε|x|l for all l ∈ (p,β).

Moreover, for all r ∈ [p,2] and ρ1, ρ2 ≥ ε we deduce by (5.12) that

(5.18)
∣∣�ρ1(x) − �ρ2(x)

∣∣ ≤ Kε

∣∣ρβ
1 − ρ

β
2

∣∣ · |x|r for all x ∈ R.

REMARK 5.1. In the following, we will show that the three series Rn,m
r ,Qn,m

r

and Zr defined in (5.5) and (5.8) converge almost surely, and the identity (5.6)
holds almost surely. To show the above claim, we will first prove that for all n ≥ 1
and m ≥ 0 the two series
(5.19)

(a):
∞∑

j=1

E
[
V n,m

r |G1
r−j

]
, (b):

∞∑
j=1

(
�ρ∞

j

(
U∞

j+r,r

) −E
[
�ρ∞

j

(
U∞

j+r,r

)])

converge absolutely with probability one. The definitions of V n,m
r ,G1

r−j and �ρ

yields the following representation:

E
[
V n,m

r |G1
r−j

] = �ρn
j

(
Un

r,r−j

) − �ρ
n,m
j

(
Un

r,r−j

)
1{j≤m}

(5.20)
−E

[(
�ρn

j

(
Un

r,r−j

) − �ρ
n,m
j

(
Un

r,r−j

)
1{j≤m}

)]
.

We have that ρn
j → ‖φn

1 ‖Lβ(R) > 0 as j → ∞, and hence {ρn
j : j ≥ N} is bounded

away from zero for N large enough. For all j > N and all γ ∈ (p,β), we have

E
[∣∣E[

V n,m
r |G1

r−j

]∣∣] ≤ 2E
[∣∣�ρn

j

(
Un

r,r−j

)∣∣] ≤ KE
[∣∣Un

r,r−j

∣∣γ ]
≤ K

∥∥φn
j

∥∥γ

Lβ([0,1]) ≤ Kj(α−k)γ ,

where the first inequality follows by (5.20), the second inequality follows by (5.17)
and the last inequality follows by (5.10). By choosing γ close enough to β and us-
ing the assumption (α −k)β < −1, it follows that the series (a) in (5.19) converges
absolutely almost surely. A similar application of (5.17) and (5.10) shows that the
series (b) in (5.19) converges absolutely almost surely.

Next, we note that V n,m
r = E[V n,m

r |Gr ] and E[V n,m
r |G−j ] → E[V n,m

r ] = 0 al-
most surely as j → ∞. The latter claim follows from Kolmogorov’s 0–1 law and
the backward martingale convergence theorem. From these two properties, we de-
duce that V n,m

r has the following telescoping sum representation:

(5.21) V n,m
r =

∞∑
j=1

(
E

[
V n,m

r |Gr−j+1
] −E

[
V n,m

r |Gr−j

])
,
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where the sum converges almost surely. Due to (5.21) and (5.19)(a), the series
Rn,m

r converges a.s. By (5.19)(a), it also follows that Qn,m
r converges a.s., and Zr

converges a.s. due to (5.19)(b). By the decomposition Sn −Sn,m = ∑n
r=k V n,m

r and
(5.21) the two identities (5.6) and (5.7) follow by adding and subtracting.

The following estimates will play a key role in the proof of Theorem 1.2.

PROPOSITION 5.2. Suppose that the conditions of Theorem 1.2 hold, and
hence in particular p < β/2 and α < k − 1/β . For all ε > 0, there exists a fi-
nite constant K such that for all n ≥ 1 and m ≥ 0 we have the following estimates:

E

[(
n∑

r=k

Rn,m
r

)2]

≤ K
(
n
[
(m + 1)(α−k)β+1 log2(m + 1) + (m + 1)2(α−k)β+3]

(5.22)

+ n2(α−k)β+4+ε + log(n)
)
.

If in addition α < k − 2/β , then the estimate (5.23) holds:

E

[(
n∑

r=k

Qn,m
r

)2]
≤ K

(
n(α−k)β+3+ε + n(m + 1)(α−k)β+2+ε + 1

)
.(5.23)

On the other hand, if α > k − 2/β then there exists ξ > 0 such that

E

[∣∣∣∣∣
n∑

r=k

(
Qn,0

r − Zr

)∣∣∣∣∣
]

≤ K
(
n(α−k)β+2+ε + n1/((k−α)β)−ξ )

.(5.24)

The proof of Proposition 5.2 is carried out in Sections 5.5 and 5.6. We will also
need the following inequality.

LEMMA 5.3. Assume that the conditions of Theorem 1.2 hold. Then there
exists a finite constant K such that for all j, n ≥ 1 we have

∫
R

∣∣∣∣φn
j (x)

∣∣β − ∣∣φ∞
j (x)

∣∣β ∣∣dx ≤ K

{
n−1, when α ∈ (0, k − 2/β),

n(α−k)β+1, when α ∈ (k − 2/β, k − 1/β),

where the functions φn
j and φ∞

j have been introduced at (4.37).

The proof of Lemma 5.3 is postponed to Section 5.7. We are now ready to show
Theorem 1.2(i).
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5.3. Proof of Theorem 1.2(i). To prove Theorem 1.2(i), we will first state and
prove the following lemma.

LEMMA 5.4. For any q ≥ 1, there exists δ > 0 and a finite K > 0 such that for
all ε ∈ (0, δ), ρ > δ, κ, τ ∈ Lβ([0,1]) with ‖κ‖Lβ([0,1]),‖τ‖Lβ([0,1]) ≤ 1 we have∥∥∥∥�ρ

(∫ 1

0
κ(s) dLs

)
− �ρ

(∫ 1

0
τ(s) dLs

)∥∥∥∥
Lq

≤ K

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖κ − τ‖β/q

Lβ([0,1]), β < q < β/p,(‖κ‖(β−q)/q−ε

Lβ([0,1]) + ‖τ‖(β−q)/q−ε

Lβ([0,1])
)‖κ − τ‖1−ε

Lβ([0,1])
+ ‖κ − τ‖β/q

Lβ([0,1]), β > q.

To prove Lemma 5.4, we will among others use the following simple estimates.

LEMMA 5.5. There exists a finite constant K such that for all symmetric β-
stable random variables W with scale parameter ρ ∈ (0,1] we have the estimates

E
[|W |γ 1{|W |≥1}

] ≤ Kρβ for γ < β,

E
[(|W | ∧ 1

)γ ] ≤ Kρβ for γ > β.

PROOF. Let η be the density of a standard symmetric β-stable random vari-
able. According to [41], Theorem 1.1, we have that η(x) ≤ K(1+|x|)−1−β , x ∈ R.
To prove the first inequality, we use substitution to get

E
[|W |γ 1{|W |≥1}

] =
∫
R

|ρx|γ 1{|ρx|≥1}η(x) dx

≤ Kρ−1
∫
R

|x|γ 1{|x|≥1}
∣∣ρ−1x

∣∣−1−β
dx ≤ Kρβ,

where we use that γ < β in the last inequality. To show the second inequality, we
note that the assumption γ > β implies that

E
[|W |γ 1{|W |≤1}

] =
∫
R

|ρx|γ 1{|ρx|≤1}η(x) dx

(5.25)
≤ Kρ−1

∫
R

|x|γ 1{|x|≤1}
∣∣ρ−1x

∣∣−1−β
dx ≤ Kρβ.

Moreover, if W0 denotes symmetric β-stable random variable with scale parame-
ter 1 then

E[1{|W |≥1}] = P
(|W0| ≥ ρ−1) ≤ Kρβ,

which together with (5.25) completes the proof of Lemma 5.5. �
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PROOF OF LEMMA 5.4. For notation simplicity, set U = ∫ 1
0 κ(s) dLs and V =∫ 1

0 τ(s) dLs . To prove the lemma, we apply (5.15) to get∥∥�ρ(U) − �ρ(V )
∥∥
Lq

≤ K
(∥∥(|U | ∧ 1 + |V | ∧ 1

)|U − V |1{|U−V |<1}
∥∥
Lq(5.26)

+ ∥∥|U − V |p1{|U−V |≥1}
∥∥
Lq

)
.

For all q < β/p, we have∥∥|U − V |p1{|U−V |≥1}
∥∥
Lq = E

[|U − V |pq1{|U−V |≥1}
]1/q ≤ K‖κ − τ‖β/q

Lβ([0,1])
according to Lemma 5.5(i). To estimate the first term in (5.26), suppose first that
q > β . Then ∥∥(|U | ∧ 1 + |V | ∧ 1

)|U − V |1{|U−V |<1}
∥∥
Lq

≤ 2E
[|U − V |q1{|U−V |<1}

]1/q ≤ ‖κ − τ‖β/q

Lβ([0,1])
according to Lemma 5.5. On the other hand, suppose that q < β . Let β̃ ∈ (0, β)

be any positive number such that γ := β̃/q is strictly greater than one, and let
γ ′ = β̃/(β̃ − q) denote the conjugated number to γ . From Hölder’s inequality
used for γ and γ ′, we obtain that∥∥(|U | ∧ 1 + |V | ∧ 1

)|U − V |1{|U−V |<1}
∥∥
Lq

≤ 2γ ′(
E

[|U |qγ ′ ∧ 1
]1/(qγ ′) +E

[|V |qγ ′ ∧ 1
]1/(qγ ′))(5.27)

×E
[|U − V |qγ 1{|U−V |<1}

]1/(qγ )
.

We note that qγ = β̃ < β . Furthermore, since γ < 2 it follows that γ ′ > 2, and
hence γ ′q > β . Therefore, by (5.27) and Lemma 5.5(i)–(ii) we have that∥∥(|U | ∧ 1 + |V | ∧ 1

)|U − V |1{|U−V |<1}
∥∥
Lq

≤ K
(‖κ‖β/(qγ ′)

Lβ([0,1]) + ‖τ‖β/(qγ ′)
Lβ([0,1])

)‖κ − τ‖β/(qγ )

Lβ([0,1])
and choosing β̃ close enough to β yields the lemma. �

To prove Theorem 1.2(i), we use (5.1) to obtain the decomposition

n
1− 1

(k−α)β
(
n−1+p(α+1/β)V (p;k)n − mp

)
(5.28)

d= n
1

(α−k)β Sn + n
1− 1

(k−α)β

(
n − k + 1

n
E

[∣∣Yn
1

∣∣p] − mp

)
.

First, we will prove that

(5.29) n
1

(α−k)β Sn
d−→ S as n → ∞,
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where the random variable S is defined in Theorem 1.2(i). Afterwards, we show
that the second term on the right-hand side of (5.28) converges to zero. To show
(5.29), we will use the decomposition (5.7), which shows that it suffices to prove
that

n
1

(α−k)β

n∑
r=k

Rn,0
r

P−→ 0, n
1

(α−k)β

n∑
r=k

(
Qn,0

r − Zr

) P−→ 0,(5.30)

n
1

(α−k)β

n∑
r=k

Zr
d−→ S(5.31)

as n → ∞. For all ε > 0, we have according to (5.22) of Proposition 5.2 that

E

[(
n

1
(α−k)β

n∑
r=k

Rn,0
r

)2]

≤ K
(
n

2
(α−k)β

+1 + n
2( 1

(α−k)β
+(α−k)β+2)+ε + n

2
(α−k)β log(n)

) → 0

as n → ∞ for ε small enough, where we have used the inequality 2 < x + 1/x for
all x > 1 and the fact that (k − α)β > 1 by assumption. Furthermore, for all ε > 0
we have, according to (5.24) of Proposition 5.2 and the assumption α > k − 2/β ,
that as n → ∞
(5.32) E

[∣∣∣∣∣n
1

(α−k)β

n∑
r=k

(
Qn,0

r − Zr

)∣∣∣∣∣
]

≤ K
(
n

1
(α−k)β

+(α−k)β+2+ε + n−ξ ) → 0,

where the first term on the right-hand side of (5.32) converges to zero for all ε > 0
small enough by the inequality 2 < x + 1/x for all x > 1 and the assumption
(k − α)β > 1.

In the following, we will show (5.31). Since (Zr)r≥k are i.i.d. with mean zero,
it is enough to show that

(5.33) lim
x→∞x(k−α)β

P(Z > x) = γ and lim
x→∞x(k−α)β

P(Z < −x) = 0

with Z := Zk ; cf. [34], Theorem 1.8.1. The constant γ is defined in (5.37) below.
To show (5.33), let us define the function � :R →R+ via

�(x) :=
∞∑

j=1

�ρ∞
j

(
φ∞

j (0)x
)
.

Note that (5.12) implies that �ρ∞
j

(x) ≥ 0 and hence � is positive. Note that as
j → ∞, ρ∞

j → ρ∞∞ := ‖hk‖Lβ(R) > 0 which implies that (ρ∞
j )j≥1 is bounded

away from 0, and hence by (5.17) and for l ∈ (p,β) with (α − k)l < −1 we have

(5.34)
∣∣�(x)

∣∣ ≤ K|x|l
∞∑

j=1

φ∞
j (0)l ≤ K|x|l

∞∑
j=1

j l(α−k) < ∞,
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which shows that � is well defined. Equation (5.34) shows moreover that
E[�(Lk+1 − Lk)] < ∞, and hence we can define a random variable Q via

Q = �(Lk+1 − Lk) −E
[
�(Lk+1 − Lk)

]
=

∞∑
j=1

(
�ρ∞

j

(
φ∞

j (0)(Lk+1 − Lk)
) −E

[
�ρ∞

j

(
φ∞

j (0)(Lk+1 − Lk)
)])

,

where the last sum converges absolutely almost surely. Due to the lower bound
Q ≥ −E[�(Lk+1 − Lk)], we have that

(5.35) lim
x→∞x(k−α)β

P(Q < −x) = 0.

By the substitution t = (x/u)1/(k−α), we have that

x1/(α−k)�(x)

= x1/(α−k)
∫ ∞

0
�ρ∞

1+[t]
(
φ∞

1+[t](0)x
)
dt

(5.36)
= (k − α)−1

∫ ∞
0

�ρ∞
1+[(x/u)1/(k−α)]

(
φ∞

1+[(x/u)1/(k−α)](0)x
)
u−1+1/(α−k) du

→ (k − α)−1
∫ ∞

0
�ρ∞∞ (kαu)u−1+1/(α−k) du =: κ as x → ∞,

where kα = α(α − 1)(α − 2) · · · (α − k + 1). Here, we have used that (ρ∞
j )j≥1 are

bounded away from zero together with the estimate (5.16) on �ρ∞
j

and Lebesgue’s
dominated convergence theorem. Note that the constant κ defined in (5.36) coin-
cides with the κ defined in Remark 2.3. The connection between the tail behaviour
of a symmetric ρ-stable random variable Sρ , ρ ∈ (0,2), and its scale parameter σ̄

is given via

P(Sρ > x) ∼ τρσ̄ ρx−ρ/2 as x → ∞,

where the function τρ has been defined in Remark 2.3 (see [34], Equation (1.2.10)).
Hence, P(|Lk+1 − Lk| > x) ∼ τβx−β as x → ∞, and by (5.36) we readily deduce
that as x → ∞
(5.37) P(Q > x) ∼ γ x−(k−α)β with γ = τβκ(k−α)β.

Next, we will show that for some r > (k − α)β we have

(5.38) P
(|Z − Q| > x

) ≤ Kx−r for all x ≥ 1,

which implies (5.33); cf. (5.35) and (5.37). To show (5.38), it is sufficient to find
r > (k − α)β such that E[|Z − Q|r ] < ∞ by Markov’s inequality. Furthermore,
by Minkowski inequality and the definitions of Q and Z it suffices to show that

(5.39)
∞∑

j=1

∥∥�ρ∞
j

(
U∞

j+k,k

) − �ρ∞
j

(
φ∞

j (0)(Lk+1 − Lk)
)∥∥

Lr < ∞
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[recall that (k −α)β > 1]. To show (5.39), we note that for all x ∈ [0,1] and j ∈N

there exists θj,x ∈ [j − x, j ] such that

(5.40)
∣∣φ∞

j (x) − φ∞
j (0)

∣∣ = ∣∣hk(j − x) − hk(j)
∣∣ ≤ ∣∣h′

k(θj,x)
∣∣ ≤ Kjα−k−1.

Choose δ > 0 according to Lemma 5.4 and let rε = (k − α)β + ε for all ε ∈ (0, δ).
By Lemma 5.4 and (5.40), we have that∥∥�ρ∞

j

(
U∞

j+k,k

) − �ρ∞
j

(
φ∞

j (0)(Lk+1 − Lk)
)∥∥

Lrε

≤ K
(∥∥φ∞

j − φ∞
j (0)

∥∥
Lβ([0,1]) + ∥∥φ∞

j − φ∞
j (0)

∥∥ 1
k−α+ε/β

Lβ([0,1])
)

(5.41)

≤ K
(
jα−k−1 + j

α−k−1
k−α+ε/β

)
.

Our assumption α < k − 1/β implies that α − k < 0. Furthermore, since

α − k − 1

k − α + ε/β
→ −1 − 1/(k − α) < −1 as ε → 0,

we may, according to (5.41), choose ε > 0 such that (5.39) holds for r = rε which
satisfies the condition r > (k −α)β . This completes the proof of (5.38), and hence
also of (5.30).

To complete the proof of Theorem 1.2(i), we show that the second term in (5.28)
converges to zero. For this purpose, it is enough to show that

(5.42) n
1− 1

(k−α)β
(
E

[∣∣Yn
1

∣∣p] − mp

) → 0 as n → ∞,

since 1 − 1
(k−α)β

< 1. Recall that mp = ‖hk‖p

Lβ(R)
E[|Z|p], where Z is a standard

symmetric β-stable random variable and ‖hk‖Lβ(R) = ‖φ∞
1 ‖Lβ(R). By Lemma 5.3,

we have that

(5.43)
∣∣∥∥φn

j

∥∥β

Lβ(R)
− ∥∥φ∞

j

∥∥β

Lβ(R)

∣∣ ≤ Kn(α−k)β+1 → 0,

where the convergence to zero is due to the fact that (k − α)β > 1 under our
assumptions. Since the function x �→ xp/β is continuously differentiable on (0,∞)

and ‖hk‖β

Lβ(R)
> 0, it follows by the mean value theorem that

∣∣∥∥φn
1

∥∥p

Lβ(R)
− ‖hk‖p

Lβ(R)

∣∣ ≤ K
∣∣∥∥φn

1

∥∥β

Lβ(R)
− ‖hk‖β

Lβ(R)

∣∣,
which together with (5.43) and the definition of Yn

1 in (4.37) shows that

n
1− 1

(k−α)β
∣∣E[|Yn

1

∣∣p] − mp

∣∣
= n

1− 1
(k−α)β E

[|Z|p]∣∣∥∥φn
1

∥∥p

Lβ(R)
− ‖hk‖p

Lβ(R)

∣∣(5.44)

≤ Kn
1− 1

(k−α)β
∣∣∥∥φn

1

∥∥β

Lβ(R)
− ‖hk‖β

Lβ(R)

∣∣ ≤ Kn
2− 1

(k−α)β
−(k−α)β

.

By (5.44) and the assumption (k − α)β > 1, we obtain (5.42), and the proof of
Theorem 1.2(i) is complete.
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5.4. Proof of Theorem 1.2(ii). To prove Theorem 1.2(ii), we start by noticing
that

√
n
(
n−1+p(α+1/β)V (p;k)n − mp

)
(5.45)

d= 1√
n
Sn + √

n

(
n − k + 1

n
E

[∣∣Yn
1

∣∣p] − mp

)

due to (5.1). First, we will show that

(5.46)
1√
n
Sn

d−→ N
(
0, η2)

as n → ∞,

for some η2 ∈ [0,∞). Afterwards, we will show that the second term on the right-
hand side of (5.45) converges to zero, which will complete the proof of Theo-
rem 1.2(ii). To prove (5.46), it is according to a standard result (see, e.g., [12],
Theorem 3.2) enough to show the following statements:

lim
m→∞ lim sup

n→∞
(
n−1

E
[
(Sn − Sn,m)2]) = 0,(5.47)

1√
n
Sn,m

d−→ N
(
0, η2

m

)
as n → ∞ for some η2

m ∈ [0,∞),(5.48)

η2
m → η2 as m → ∞.(5.49)

To prove (5.47), we use Proposition 5.2 and the assumption α < k − 2/β to obtain
that

1

n
E

[(
n∑

r=k

Rn,m
r

)2]

(5.50)
≤ K

(
(m + 1)(α−k)β/4+1/2 + n2(α−k)β+3+ε + n−1 logn

)
,

1

n
E

[(
n∑

r=k

Qn,m
r

)2]
≤ K

(
n(α−k)β+2+ε + (m + 1)(α−k)β+2+ε + n−1)

,(5.51)

for all ε > 0. Thus, by the decomposition (5.7) of Sn − Sn,m, (5.50), (5.51) and the
assumption α < k − 2/β we deduce (5.46), which completes the proof of (5.47).

To prove (5.48), we note that for fixed n,m ≥ 1, {|Yn,m
i |p : i = k, . . . , n} is a

stationary m-dependent sequence, and hence

n−1 var(Sn,m) = n−1(n − k)θ
n,m
0 + 2n−1

m∑
i=1

(n − k − i)θ
n,m
i ,(5.52)

where we set θ
n,m
i = cov(|Yn,m

k |p, |Yn,m
k+i |p) for all n ∈ N ∪ {∞}, m, i ≥ 1. By the

symmetrisation inequality, we have that P(|Yn,m
i −Y

∞,m
i | > u) ≤ 2P(|Yn

i −Y∞
i | >

u) for all u > 0, where the quantities Yn
i and Y∞

i have been introduced in (4.38).



4512 A. BASSE-O’CONNOR, R. LACHIÈZE-REY AND M. PODOLSKIJ

By the equivalence of moments of stable random variables, we have for all q < β

that

E
[∣∣Yn,m

i − Y
∞,m
i

∣∣q] ≤ KqE
[∣∣Yn,m

i − Y
∞,m
i

∣∣p]q/p

(5.53)
≤ Kq2q/p

E
[∣∣Yn

k − Y∞
k

∣∣p]q/p → 0

as n → ∞, where the convergence to zero follows by (4.44). Since p < β/2, (5.53)
implies that θ

n,m
i → θ

∞,m
i as n → ∞, and by (5.52) we deduce that

(5.54) n−1 var(Sn,m) → θ
∞,m
0 + 2

m∑
i=1

θ
∞,m
i =: η2

m as n → ∞.

By (5.53), (5.54) and since for all n ≥ 1, the sequences {|Yn,m
i |p : i = k, . . . , n} are

m-dependent, the convergence (5.48) follows by the main theorem of [11], and the
proof of (5.48) is complete.

The proof of (5.49) uses a Cauchy sequence argument. For all m,j ≥ 1, we have
by the triangle inequality that∣∣|ηm| − |ηj |

∣∣ = lim
n→∞

(
n−1/2∣∣‖Sn,m‖L2 − ‖Sn,j‖L2

∣∣)
≤ lim sup

n→∞
(
n−1/2‖Sn,m − Sn,j‖L2

)
≤ lim sup

n→∞
(
n−1/2‖Sn,m − Sn‖L2

) + lim sup
n→∞

(
n−1/2‖Sn − Sn,j‖L2

)
,

which according to (5.47) shows that (|ηm|)m≥1 is a Cauchy sequence in R+.
Hence, (η2

m)m≥1 is convergent.
To show that the second term on the right-hand side of (5.45) converges to zero

it suffices to prove that
√

n(E[|Yn
1 |p] − mp) → 0 as n → ∞. By Lemma 5.3, we

have that

(5.55)
∣∣∥∥φn

1

∥∥β

Lβ(R)
− ∥∥φ∞

1
∥∥β

Lβ(R)

∣∣ ≤ Kn−1 → 0.

Since the function x �→ xp/β is continuously differentiable on (0,∞) and
‖φ∞

1 ‖β

Lβ(R)
> 0, it follows by the mean value theorem that

∣∣∥∥φn
1

∥∥p

Lβ(R)
− ∥∥φ∞

1
∥∥p

Lβ(R)

∣∣ ≤ K
∣∣∥∥φn

1

∥∥β

Lβ(R)
− ‖hk‖β

Lβ(R)

∣∣.
Together with (5.55) and the definition of Yn

1 in (4.37), it shows that
√

n
∣∣E[∣∣Yn

1

∣∣p] − mp

∣∣ = √
nE

[|Z|p]∣∣∥∥φn
1

∥∥p

Lβ(R)
− ∥∥φ∞

1
∥∥p

Lβ(R)

∣∣
(5.56)

≤ K
√

n
∣∣∥∥φn

1

∥∥β

Lβ(R)
− ∥∥φ∞

1
∥∥β

Lβ(R)

∣∣ ≤ Kn−1/2 → 0

as n → ∞. Hence, (5.56) completes the proof of Theorem 1.2(ii).
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5.5. An estimate. This subsection is devoted to proving the following lemma,
which is used in the proof of (5.22) of Proposition 5.2.

LEMMA 5.6. Let ζ
n,m
r,j be defined in (5.4). Then there exists a finite constant

K such that for all n ≥ 1, r = k, . . . , n, m ≥ 0 and j ≥ 1 we have

E
[∣∣ζ n,m

r,j

∣∣2] ≤ K

{
(m + 1)(α−k)β+1j (α−k)β, j = 1, . . . ,m,

j2(α−k)β+1, j > m.

To show Lemma 5.6, we will use the following telescoping sum decomposition
of ζ

n,m
r,j :

ζ
n,m
r,j =

∞∑
l=j

ϑ
n,m
r,j,l,

(5.57)
ϑ

n,m
r,j,l := E

[
ζ

n,m
r,j |G1

r−j ∨ Gr−l

] −E
[
ζ

n,m
r,j |G1

r−j ∨ Gr−l−1
]
.

The series (5.57) converges almost surely and the representation follows from the
fact that liml→∞E[ζ n,m

r,j |G1
r−j ∨ Gr−l] = E[ζ n,m

r,j |G1
r−j ] = 0 almost surely, similar

to the argument used in Remark 5.1. The next lemma gives a moment estimate for
ϑ

n,m
r,j,l .

LEMMA 5.7. Let ϑ
n,m
r,j,l be defined in (5.57) and suppose that β < γ < β/p.

Then there exists N ≥ 1 such that for all n ≥ N , r = k, . . . , n, j ≥ 1 and m ≥ 0 we
have that

E
[∣∣ϑn,m

r,j,l

∣∣γ ] ≤ K

{
j (α−k)βl(α−k)β, l ≥ m,

(m + 1)(α−k)β+1j (α−k)βl(α−k)β, l = j, . . . ,m − 1.
(5.58)

To prove Lemma 5.7, we use the following estimate on �ρ defined in (5.3).

LEMMA 5.8. For all ε > 0, there exists a finite constant K such that for all
ρ ∈ [ε, ε−1], all x, y, z ≥ 0 and all a ∈ R we have that∫ z

0

∫ y

0

∫ x

0

∣∣�′′′
ρ (a + u1 + u2 + u3)

∣∣du1 du2 du3

≤ K
(
(x ∧ 1)(y ∧ 1)

(
z1{z≤1} + zp1{z>1}

))
,∫ y

0

∫ x

0

∣∣�′′
ρ(a + u1 + u2)

∣∣du1 du2 ≤ K
(
(x ∧ 1)

(
y1{y≤1} + yp1{y>1}

))
.

PROOF. First, we will show that for all v = 1,2,3, all a ∈ R and all z > 0 we
have that

(5.59)
∫ z

0

∣∣�(v)
ρ (a + u)

∣∣du ≤ K
(
1{z≤1}z + 1{z>1}zp)

,
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where �
(v)
ρ denotes the vth derivative of �ρ . To this aim, we first show that for

v = 1,2,3 we have that

(5.60)
∣∣�(v)

ρ (x)
∣∣ ≤ K

(
1 ∧ |x|p−v)

for all x ∈ R,

which, in particular, yields that

(5.61)
∣∣�(v)

ρ (x)
∣∣ ≤ K

(
1 ∧ |x|p−1)

for all x ∈ R.

For all u > 0, we define q(u) = uv−1−pe−ρβu and ψ(u) = uv−1−p(e−ρβuβ −
e−ρβu). By recalling (5.13), we have by the triangle inequality that

(5.62)
∣∣�(v)

ρ (x)
∣∣ ≤ 2a−1

p

(∣∣∣∣
∫ ∞

0
cos(xu)ψ(u)du

∣∣∣∣ +
∣∣∣∣
∫ ∞

0
cos(xu)q(u)du

∣∣∣∣
)
.

To estimate the second integral on the right-hand side of (5.62), we note that
u �→ q(u)ρβ(v−p)/�(v − p) is the density of a gamma distribution with shape
parameter v − p and rate parameter ρβ . Hence, using the expression for the char-
acteristic function for the gamma distribution we get for all x 	= 0 that∣∣∣∣

∫ ∞
0

cos(xu)q(u)du

∣∣∣∣ ≤
∣∣∣∣
∫ ∞

0
eixuq(u) du

∣∣∣∣
= �(v − p)

ρβ(v−p)

∣∣(1 − ixρ−β)p−v∣∣(5.63)

= �(v − p)

ρβ(v−p)

(
1 + x2ρ−2β)p−v

2 ≤ �(v − p)|x|p−v.

To estimate the first integral on the right-hand side of (5.62), we set ζ(u) =
e−ρβuβ − e−ρβu for u ≥ 0 such that ψ(u) = uv−1−pζ(u). For all j = 0,1,2,3,
we obtain the estimates

∣∣ζ (j)(u)
∣∣ ≤

{
Kuβ∧1−j , u ∈ (0,1),

Ku2e−εβuβ∧1
, u ≥ 1,

which imply that

(5.64)
∣∣ψ(j)(u)

∣∣ ≤
{
Kuβ∧1+v−1−p−j , u ∈ (0,1),

Ku3e−εβuβ∧1
, u ≥ 1.

Hence, by (5.64) and integration by parts, we have for all x > 0 that

∣∣∣∣
∫ ∞

0
cos(xu)ψ(u)du

∣∣∣∣ =

⎧⎪⎪⎨
⎪⎪⎩

x−v

∣∣∣∣
∫ ∞

0
cos(xu)ψ(v)(u) du

∣∣∣∣, v even,

x−v

∣∣∣∣
∫ ∞

0
sin(xu)ψ(v)(u) du

∣∣∣∣, v odd,

(5.65)
≤ x−v

∫ ∞
0

∣∣ψ(v)(u)
∣∣du ≤ Kx−v,
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where the last inequality follows from (5.64) used on j = v. The estimates (5.62),
(5.63) and (5.65) imply (5.60).

To show (5.59), it suffices [cf. (5.61)] to show that there exists a finite constant
K such that for all z > 0 and a ∈ R∫ z

0

(
1 ∧ |a + u|p−1)

du ≤ K
(
1{z≤1}z + 1{z>1}zp)

.(5.66)

To show (5.66), we may and do assume that z > 1 since the estimate (5.66) holds
for z ≤ 1 by dominating the integrand by 1. We split the integral in three parts:∫ z

0

(
1 ∧ |a + u|p−1)

du

=
∫
(−a−1,1−a)∩[0,z]

1du(5.67)

+
∫
(1−a,∞)∩[0,z]

(a + u)p−1 du +
∫
(−∞,−a−1)∩[0,z]

(−a − u)p−1 du.

Since p ∈ (0,1], we have by subadditivity that xp − yp ≤ (x − y)p for all 0 ≤
y ≤ x. Hence,

∫
(1−a,∞)∩[0,z]

(a + u)p−1 du = 1{z≥1−a}
1

p

{
(a + z)p − ap, a ≥ 1,

(a + z)p − 1, a < 1,

≤ 1{z≥1−a}
1

p
zp,

∫
(−∞,−a−1)∩[0,z]

(−a − u)p−1 du

= 1{−a−1≥0}
1

p

{
(−a)p − 1, −a − 1 ≤ z,

(−a)p − (−a − z)p, z ≤ −a − 1,
≤ 1{−a−1≥0}

1

p
zp.

Thus, by (5.67) we obtain for z ≥ 1 that∫ z

0

(
1 ∧ |a + u|p−1)

du ≤ 2 + 2

p
zp ≤ 2

(
1 + 1

p

)
zp,

which implies (5.66), and completes the proof of (5.59). We will now deduce the
first inequality of Lemma 5.8 from (5.59). For x ≥ 1 we have that, with ā = a + x,∫ z

0

∫ y

0

∫ x

0

∣∣�′′′
ρ (a + u1 + u2 + u3)

∣∣du1 du2 du3

≤
∫ z

0

∫ y

0

∣∣�′′
ρ(ā + u2 + u3)

∣∣du2 du3

+
∫ z

0

∫ y

0

∣∣�′′
ρ(a + u2 + u3)

∣∣du2 du3.
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For x ∈ (0,1), there exists an ã ∈ R such that∫ z

0

∫ y

0

∫ x

0

∣∣�′′′
ρ (a + u1 + u2 + u3)

∣∣du1 du2 du3

= x

∫ z

0

∫ y

0

∣∣�′′′
ρ (ã + u2 + u3)

∣∣du2 du3.

Repeating this argument shows that for any ã ∈ R and v = 2,3 we have for y ≥ 1
that with ā = ã + y∫ z

0

∫ y

0

∣∣�(v)
ρ (ã + u2 + u3)

∣∣du2 du3

≤
∫ z

0

∣∣�(v−1)
ρ (ā + u3)

∣∣du3 +
∫ z

0

∣∣�(v−1)
ρ (ã + u3)

∣∣du3,

and for y < 1 there exists ā ∈ R such that∫ z

0

∫ y

0

∣∣�(v)
ρ (ã + u2 + u3)

∣∣du2 du3 ≤ y

∫ z

0

∣∣�(v)
ρ (ā + u3)

∣∣du3.

By collecting all the terms and using (5.59), we obtain the first inequality of
Lemma 5.8. The second inequality of Lemma 5.8 follows by similar arguments.

�

We are now ready to prove Lemma 5.7.

PROOF OF LEMMA 5.7. For fixed n,m, j, l, {ϑn,m
r,j,l : r ≥ 1} is a stationary

sequence, and hence we may and do assume that r = 1. Furthermore, we may
assume that l ≥ j ∨ 2, since the case l = j = 1 can be covered by choosing a new
constant K . By definition of ϑ

n,m
1,j,l , we obtain the representation

ϑ
n,m
1,j,l = E

[
V n,m

r |G1
1−j ∨ G1−l

] −E
[
V n,m

r

∣∣G1−l

]
(5.68)

−E
[
V n,m

r

∣∣G1
1−j ∨ G−l

] +E
[
V n,m

r |G−l

]
.

Set ρn
j,l = ‖φn

1 ‖Lβ([1−l,1−j ]∪[2−j,1]). For large enough N ≥ 1, there exists ε > 0
such that ρn

j,l ≥ ε for all n ≥ N,j ≥ 1, l ≥ j ∨ 2 (we have ρn
j,l = 0 for l = 1).

Hence, by (5.14), there exists a finite constant K such that∣∣�′′
ρn

j,l
(x)

∣∣ ≤ K for all n ≥ N,j ≥ 1, l ≥ j ∨ 2, x ∈ R.

Let

An
l =

∫ −l

−∞
φn

1 (s) dLs and A
n,m
l =

∫ −l

1−m
φn

1 (s) dLs

and (Ũn
1,−l , Ũ

n
1,1−j ) denote a random vector, which is independent of L, and which

equals (Un
1,−l ,U

n
1,1−j ) in law [cf. definition (5.2)]. Let moreover Ẽ denote the
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expectation with respect to (Ũn
1,−l , Ũ

n
1,1−j ) only. For all j = 1, . . . ,m and l =

j, . . . ,m − 1, we deduce from (5.68) that

ϑ
n,m
1,j,l = Ẽ

[
�ρn

j,l

(
An

l + Un
1,−l + Un

1,1−j

) − �ρn
j,l

(
An

l + Ũn
1,−l + Un

1,1−j

)
− �ρn

j,l

(
An

l + Un
1,−l + Ũn

1,1−j

) + �ρn
j,l

(
An

l + Ũn
1,−l + Ũn

1,1−j

)
− (

�ρn
j,l

(
A

n,m
l + Un

1,−l + Un
1,1−j

) − �ρn
j,l

(
A

n,m
l + Ũn

1,−l + Un
1,1−j

)
(5.69)

− �ρn
j,l

(
A

n,m
l + Un

1,−l + Ũn
1,1−j

) + �ρn
j,l

(
A

n,m
l + Ũn

1,−l + Ũn
1,1−j

))]

= Ẽ

[∫ An
l

A
n,m
l

∫ Un
1,1−j

Ũn
1,1−j

∫ Un
1,−l

Ũ n
1,−l

�′′′
ρn

j,l
(u1 + u2 + u3) du1 du2 du3

]
,

where
∫ x
y denotes − ∫ y

x if x < y. For l ≥ m, we have that

ϑ
n,m
1,j,l = Ẽ

[
�ρn

j,l

(
An

l + Un
1,−l + Un

1,1−j

) − �ρn
j,l

(
An

l + Ũn
1,−l + Un

1,1−j

)
− �ρn

j,l

(
An

l + Un
1,−l + Ũn

1,1−j

) + �ρn
j,l

(
An

l + Ũn
1,−l + Ũn

1,1−j

)]

= Ẽ

[∫ Un
1,1−j

Ũn
1,1−j

∫ Un
1,−l

Ũ n
1,−l

�′′
ρn

j,l

(
An

l + u1 + u2
)
du1 du2

]
.

Let l = j, . . . ,m − 1. By (5.69), substitution and the first inequality of Lemma 5.8
we have that

E
[∣∣ϑn,m

1,j,l

∣∣γ ]
≤ K

(
E

[∣∣An
l − A

n,m
l

∣∣pγ 1{|An
l −A

n,m
l |≥1}

] +E
[∣∣An

l − A
n,m
l

∣∣γ 1{|An
l −A

n,m
l |≤1}

])
×E

[
Ẽ

[(∣∣Ũn
1,1−j − Un

1,1−j

∣∣ ∧ 1
)γ ]]

E
[
Ẽ

[(∣∣Ũn
1,−l − Un

1,−l

∣∣ ∧ 1
)γ ]]

≤ K
∥∥φn

1

∥∥β

Lβ((−∞,1−m])
∥∥φn

1

∥∥β

Lβ([1−j,2−j ])
∥∥φn

1

∥∥β

Lβ([−l,1−l])
≤ Km(α−k)β+1j (α−k)βl(α−k)β.

We use Lemma 5.5(i) and (ii), pγ < β < γ and |x − y| ∧ 1 ≤ |x| ∧ 1 + |y| ∧ 1.
For l ≥ m, we have by the second inequality of Lemma 5.8 that

E
[∣∣ϑn,m

1,j,l

∣∣γ ] ≤ KE
[
Ẽ

[(∣∣Un
1,1−j − Ũn

1,1−j

∣∣ ∧ 1
)γ ]]

× (
E

[
Ẽ

[∣∣Un
1,1−j − Ũn

1,1−j

∣∣pγ 1{|Un
1,1−j−Ũn

1,1−j |≥1}
]]

+E
[
Ẽ

[∣∣Un
1,1−j − Ũn

1,1−j

∣∣γ 1{|Un
1,1−j−Ũn

1,1−j |≤1}
]])

≤ K
∥∥φn

1

∥∥β

Lβ([1−j,2−j ])
∥∥φn

1

∥∥β

Lβ([1−j,2−j ]) ≤ Kj(α−k)βl(α−k)β

again using Lemma 5.5(i) and (ii), pγ < β < γ and |x −y|∧1 ≤ |x|∧1+|y|∧1.
This completes the proof of (5.58). �
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We are now ready to prove Lemma 5.6.

PROOF OF LEMMA 5.6. We will use Lemma 5.7 for γ = 2, which satis-
fies β < γ < β/p. Suppose that j = 1, . . . ,m. By orthogonality of {ϑn,m

r,j,l : l =
1,2, . . . } in L2, we have that

E
[∣∣ζ n,m

r,j

∣∣2] =
∞∑
l=j

E
[∣∣ϑn,m

r,j,l

∣∣2]

≤ K

(
m−1∑
l=j

m(α−k)β+1l(α−k)βj (α−k)β +
∞∑

l=m

l(α−k)βj (α−k)β

)

≤ K
(
(m + 1)(α−k)β+1j2(α−k)β+1 + j (α−k)β(m + 1)(α−k)β+1)

≤ K(m + 1)(α−k)β+1j (α−k)β

since 2(α − k)β + 1 < (α − k)β < −1. Similarly, for j > m we have that

E
[∣∣ζ n,m

r,j

∣∣2] =
∞∑
l=j

E
[∣∣ζ n,m

r,j

∣∣2] ≤ Kj(α−k)β
∞∑
l=j

l(α−k)β ≤ Kj2(α−k)β+1,

which completes the proof. �

5.6. Proof of Proposition 5.2. We start by proving (5.22). By rearranging the
terms using the substitution s = r − j , we have

n∑
r=k

Rn,m
r =

n−1∑
s=−∞

Mn,m
s with Mn,m

s :=
n∑

r=1∨(s+1)

ζ
n,m
r,r−s .

Recalling the definition of ζ
n,m
r,j in (5.4), we note that E[ζ n,m

r,r−s |Gs] = 0 for all s

and r , showing that {Mn,m
s : s ∈ (−∞, n) ∩ Z} are martingale differences. By or-

thogonality we have that

E

[(
n∑

r=k

Rn,m
r

)2]
=

n−1∑
s=−∞

E
[∣∣Mn,m

s

∣∣2]
(5.70)

≤
n−1∑

s=−∞

(
n∑

r=1∨(s+1)

E
[∣∣ζ n,m

r,r−s

∣∣2]1/2

)2

=: An,m.

We split An,m = ∑n−1
s=1 +∑0

s=−n +∑−n
s=−∞ = A′

n,m + A′′
n,m + A′′′

n,m. By the sub-
stitution s̃ = n − s and r̃ = r − s, we obtain

A′
n,m =

n−1∑
s=1

(
s∑

r=1

E
[∣∣ζ n,m

r+n−s,r

∣∣2]1/2

)2

.
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For s = 1, . . . , n, we have (cf. Lemma 5.6)
s∑

r=k

E
[∣∣ζ n,m

r+n−s,r

∣∣2]1/2

≤ K

(
(m + 1)((α−k)β+1)/2

m∑
r=k

r(α−k)β/2 +
s∑

r=m

r2(α−k)β+1

)
(5.71)

≤ K
(
m((α−k)β+1)/2 log(m + 1) + (m + 1)(α−k)β+3/2)

,

where we have used the assumption (α−k)β < −1 in the second inequality. Equa-
tion (5.71) shows that

A′
n,m ≤ Kn

(
(m + 1)(α−k)β+1(

log(m + 1)
)2 + (m + 1)2(α−k)β+3)

.(5.72)

The substitution s̃ = −s and r̃ = r − s together with Lemma 5.6 yields that

A′′
n,m =

n∑
s=0

(
n+s∑

r=s+1

E
[∣∣ζ n,m

r−s,r

∣∣2]1/2

)2

≤ K

n∑
s=0

(
n+s∑

r=s+1

r(α−k)β+1/2

)2

.(5.73)

Let ε > 0. For α < k − 3
2β

, the inner sum on the right-hand side of (5.73) is
summable. Thus, we deduce

A′′
n,m ≤ K

n∑
s=0

s2(α−k)β+3 ≤ K
(
n2(α−k)β+4 + log(n)

)
.(5.74)

On the other hand, for α ≥ k − 3
2β

we have by Jensen’s inequality that

A′′
n,m ≤ Kn

n∑
s=0

(
n+s∑

r=s+1

r2(α−k)β+1

)

(5.75)

≤ Kn

n∑
s=0

s2(α−k)β+2 ≤ Kn2(α−k)β+4+ε,

where we have used the assumption (α − k)β < −1 in the second inequality and
the fact that α ≥ k − 3

2β
in the third inequality. Again by the substitution s̃ = −s

and r̃ = r − s and Lemma 5.6, we have

A′′′
n,m =

∞∑
s=n

(
n+s∑

r=s+1

E
[∣∣ζ n,m

r+s,r

∣∣2]1/2

)2

≤ K

∞∑
s=n

(
n+s∑

r=s+1

r(α−k)β+1/2

)2

(5.76)

≤ K

∞∑
s=n

(
ns(α−k)β+1/2)2 ≤ Kn2(α−k)β+4,

where we have used the assumption (α − k)β < −1 in the last inequality. Combin-
ing the estimates (5.70)–(5.76) yields (5.22).
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In the proof of (5.23) and (5.24), we will use the following decomposition:

(5.77)
n∑

r=k

Qn,m
r =

n−1∑
s=−∞

n−s∑
j=(k−s)∨1

E
[
V

n,m
s+j |G1

s

]

which follows by the substitution s = r − j . To prove (5.23), we assume that α <

k − 2/β and let ε > 0. By (5.18), we have for all p ≤ γ < β/2 that

E
[∣∣�ρn

j

(
Un

s+j,s

) − �ρ
n,m
j

(
Un

s+j,s

)∣∣2] ≤ ∣∣∣∣ρn
j

∣∣β − ∣∣ρn,m
j

∣∣β ∣∣2E[∣∣Un
s+j,s

∣∣2γ ]
≤ K

∣∣∣∣ρn
j

∣∣β − ∣∣ρn,m
j

∣∣β ∣∣2j (α−k)2γ(5.78)

≤ K
∣∣∣∣ρn

j

∣∣β − ∣∣ρn,m
j

∣∣β ∣∣2j (α−k)β+2ε,

where the last inequality holds for γ close enough to β/2. We have that∣∣∣∣ρn
j

∣∣β − ∣∣ρn,m
j

∣∣β ∣∣
=

∣∣∣∣
∫
(−∞,s+j ]\[s,s+1]

∣∣φn
s+j (u)

∣∣β du −
∫
(−s+j−m,s+j ]\[s,s+1]

∣∣φn
s+j (u)

∣∣β du

∣∣∣∣(5.79)

≤
∫ −m

−∞
∣∣φn

0 (u)
∣∣β du ≤ m(α−k)β+1.

By recalling the identity (5.20), we have∥∥E[
V

n,m
s+j |G1

s

]∥∥
L2 ≤ 2

∥∥�ρn
j

(
Un

s+j,s

) − �ρ
n,m
j

(
Un

s+j,s

)∥∥
L2

(5.80)

≤ K

{
m(α−k)β+1j (α−k)β/2+ε, j = 1, . . . ,m,

j (α−k)β/2+ε, j > m,

where the last inequality follows from (5.78) and (5.79). By orthogonality in L2 of
the inner sums on the right-hand side of (5.77), we have that

E

[(
n∑

r=k

Qn,m
r

)2]

=
n−1∑

s=−∞
E

[(
n−s∑

j=(k−s)∨1

E
[
V

n,m
s+j |G1

s

])2]

≤
n−1∑

s=−∞

(
n−s∑

j=(k−s)∨1

∥∥E[
V

n,m
s+j |G1

s

]∥∥
L2

)2

(5.81)

= K

[
k−1∑

s=−∞

(
n−s∑

j=k−s

∥∥E[
V

n,m
s+j |G1

s

]∥∥
L2

)2

+
n−1∑
s=k

(
n−s∑
j=1

∥∥E[
V

n,m
s+j |G1

s

]∥∥
L2

)2]

=: K[
A′

n,m + A′′
n,m

]
.
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By (5.80), we obtain the following estimate on A′
n,m:

A′
n,m ≤ K

k−1∑
s=−∞

(
n−s∑

j=k−s

j (α−k)β/2+ε

)2

= K

(
n∑

s=−k+1

(
n+s∑

j=k+s

j (α−k)β/2+ε

)2

+
∞∑

s=n+1

(
n+s∑

j=k+s

j (α−k)β/2+ε

)2)
(5.82)

=: K(Bn + Cn).

Since (α − k)β < −2, we obtain the estimate

Bn ≤ K

n∑
s=−k+1

s(α−k)β+2+2ε ≤ K
(
n(α−k)β+3+2ε + 1

)
.(5.83)

By using (α − k)β < −1, we get

Cn ≤ K

∞∑
s=n+1

n2s(α−k)β+2ε ≤ Kn(α−k)β+3+2ε.(5.84)

Moreover, the substitution s̃ = n − s and (5.80) show that

A′′
n,m =

n−k−1∑
s=1

(
s∑

j=1

∥∥E[
V

n,m
n+s+j |G1

n+s

]∥∥
L2

)2

≤
n−1∑
s=1

(
m(α−k)β+1

m∑
j=1

j (α−k)β/2+ε +
s∑

j=m+1

j (α−k)β/2+ε

)2

(5.85)

≤ n
(
m2((α−k)β+1) + m(α−k)β+2+2ε) ≤ nm(α−k)β+2+2ε,

where the last inequality follows by the assumption (α − k)β < −2. The above
estimates (5.81)–(5.85) yield (5.23).

To prove (5.24), we suppose that α > k − 2/β . We will again use the decompo-
sition (5.86), which by the decomposition

∑n−1
s=−∞ = ∑k−1

s=−∞ +∑n−1
s=k gives

(5.86)
n∑

r=k

(
Qn,0

r − Zr

) = H(1)
n − H(2)

n + H(3)
n ,

where

H(1)
n =

k−1∑
s=−∞

n−s∑
j=k−s

E
[
V

n,0
s+j |G1

s

]
,

H (2)
n =

n∑
s=k

∞∑
j=n−s+1

{
�ρ∞

j

(
U∞

j+s,s

) −E
[
�ρ∞

j

(
U∞

j+s,s

)]}
,(5.87)

H(3)
n =

n−1∑
s=k

n−s∑
j=1

(
E

[
V

n,0
s+j |G1

s

] − {
�ρ∞

j

(
U∞

j+s,s

) −E
[
�ρ∞

j

(
U∞

j+s,s

)]})
.
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In the following, we will estimate the sequences H
(i)
n for i = 1,2,3 separately. To

estimate H
(1)
n , we recall that according to (5.20) we have

(5.88) E
[
V

n,0
s+j |G1

s

] = �ρn
j

(
Un

s+j,s

) −E
[
�ρn

j

(
Un

s+j,s

)]
.

For all γ ∈ (p,β), such that −2 < (α − k)γ < −1 we have by (5.88) that

E
[∣∣H(1)

n

∣∣] ≤ 2
k−1∑

s=−∞

n−s∑
j=k−s

E
[∣∣�ρn

j

(
Un

s+j,s

)∣∣] ≤ K

k−1∑
s=−∞

n−s∑
j=k−s

E
[∣∣Un

s+j,s

∣∣γ ]

≤ K

∞∑
s=−k+1

n+s∑
j=k+s

j (α−k)γ

(5.89)

= K

(
n∑

s=−k+1

n+s∑
j=k+s

j (α−k)γ +
∞∑

s=n+1

n+s∑
j=k+s

j (α−k)γ

)

≤ K

(
n∑

s=−k+1

s(α−k)γ+1 +
∞∑

s=n+1

ns(α−k)γ

)
≤ Kn(α−k)γ+2,

where the second inequality follows by (5.17), the third inequality follows by
(5.10), the fourth inequality follows by (α − k)γ < −1 and the last inequal-
ity follows by (α − k)γ + 1 > −1. Similarly, we have for all γ ∈ (p,β) with
−2 < (α − k)γ < −1 that

E
[∣∣H(2)

n

∣∣] ≤ 2
n∑

s=k

∞∑
j=n−s+1

E
[∣∣�ρ∞

j

(
U∞

j+s,s

)∣∣] ≤ K

n−k∑
s=0

∞∑
j=s+1

E
[∣∣U∞

j+n−s,n−s

∣∣γ ]
(5.90)

≤ K

n−k∑
s=0

∞∑
j=s+1

j (α−k)γ ≤ K

n−1∑
s=1

s(α−k)γ+1 ≤ Kn(α−k)γ+2.

We will need more involved estimates on H
(3)
n . We note that H

(3)
n is of the form

H
(3)
n = ∑n−1

s=k Z
(n)
s , where for each fixed n ≥ 1, {Z(n)

s : s = k, . . . , n − 1} are mar-
tingale differences; see (5.87). By the von Bahr–Esseen inequality, [40], Theo-
rem 1, we have for any q ∈ [1,2]

E
[∣∣H(3)

n

∣∣q]
≤ K

n−1∑
s=k

E
[∣∣Z(n)

s

∣∣q]
(5.91)

≤ K

n−1∑
s=k

(
n−s∑
j=1

∥∥E[
V

n,0
s+j |G1

s

] − {
�ρ∞

j

(
U∞

j+s,s

) −E
[
�ρ∞

j

(
U∞

j+s,s

)]}∥∥
Lq

)q

≤ Kn

(
n∑

j=1

∥∥�ρn
j

(
Un

j,0
) − �ρ∞

j

(
U∞

j,0
)∥∥

Lq

)q

,
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where we have used the representation (5.20) in the last inequality. By adding
and subtracting �ρn

j
(U∞

j,0), we get the decomposition �ρn
j
(Un

j,0) − �ρ∞
j

(U∞
j,0) =

Cn
j + Dn

j , where

Cn
j = �ρn

j

(
Un

j,0
) − �ρn

j

(
U∞

j,0
)

and Dn
j = �ρn

j

(
U∞

j,0
) − �ρ∞

j

(
U∞

j,0
)
.

To estimate the Cn
j -term, we will use the following inequality:

(5.92)
∥∥φn

j − φ∞
j

∥∥
Lβ([0,1]) ≤ Kn−1jα−k+1, j = 1, . . . , n,

which will be proved in the following. For all s ≥ 0, we have that gn(s) =
nαg(s/n) and g(s) = sαf (s). Thus, ηn(s) := gn(s) − sα = nαψ1(s/n)ψ2(s/n),
where ψ1(s) = sα and ψ2(s) = f (s) − f (0) for s ≥ 0. For all s > k, there exists,
as a consequence of the mean value theorem, a ξn

s ∈ [s − k, s] such that

(5.93)
(
Dkηn

)
(s) = η(k)

n

(
ξn
s

) = nα−k
k∑

l=0

(
k

l

)
ψ

(l)
1

(
ξn
s /n

)
ψ

(k−l)
2

(
ξn
s /n

)
.

Equation (5.93) implies that

(5.94)
∣∣(Dkηn

)
(s)

∣∣ ≤ K

[(
k−1∑
l=0

nl−k
∣∣ξn

s

∣∣α−l

)
+ ∣∣ξn

s

∣∣α−k+1
n−1

]
,

where we have used that ψ
(l)
1 (t) = α(α − 1) · · · (α − l + 1)tα−l for t > 0, ψ

(l)
2

is bounded on (0,∞) for l = 1, . . . , k, and that |ψ2(t)| ≤ Kt for all t > 0. Since
φn

j (s) − φ∞
j (s) = Dkηn(j − s), we obtain by (5.94) the estimate

∥∥φn
j − φ∞

j

∥∥
Lβ([0,1]) ≤ K

k∑
l=0

al,j,n,(5.95)

where al,j,n = nl−kjα−l for l = 0, . . . , k − 1, and ak,j,n = n−1jα−k+1. We note
that ak−1,j,n = ak,j,n, and for all l = 0, . . . , k−1 and j = 1, . . . , n we have al,j,n =
(n/j)ln−kjα ≤ (n/j)k−1n−kjα = n−1jα−k+1, which by (5.95) shows (5.92).
Choose q ∈ [1,2] \ {β} such that q > (k −α − 1)β . Set r0 = max{2(k −α),1}. We
recall that (k − α)β ∈ (1,2) by our assumptions. Lemma 5.4 yields for all ε > 0
small enough

n∑
j=1

∥∥Cn
j

∥∥
Lq

≤ K

n∑
j=1

{(∥∥φn
j

∥∥(β−q)/q−ε

Lβ([0,1]) + ∥∥φ∞
j

∥∥(β−q)/q−ε

Lβ([0,1])
)∥∥φn

j − φ∞
j

∥∥1−ε
Lβ([0,1])1{β>q}

+ ∥∥φn
j − φ∞

j

∥∥β/q

Lβ([0,1])
}

≤ K

n∑
j=1

{
(j (α−k)((β−q)/q−ε)(n−1jα−k+1)1−ε1{β>q} + (

n−1jα−k+1)β/q}
(5.96)
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≤ K

(
n−1+ε

n∑
j=1

j (α−k)β/q+1+r0ε1{β>q} + n−β/q
n∑

j=1

j (α−k+1)β/q

)

≤ Kn(α−k)β/q+1+ε(r0+1),

where we have used (5.10) and (5.92) in the second inequality, and (α − k)β/q +
1 > −1 and (α − k + 1)β/q > −1 in the last inequality. To treat the Dn

j -term, we
first apply Lemma 5.3 to obtain

(5.97)
∣∣∣∣ρn

j

∣∣β − ∣∣ρ∞
j

∣∣β ∣∣ ≤
∫
R

∣∣∣∣φn
j (s)

∣∣β − ∣∣φ∞
j (s)

∣∣β ∣∣ds ≤ Kn(α−k)β+1.

For any γ ∈ (p,β/q), we have∥∥Dn
j

∥∥
Lq = E

[∣∣�ρn
j

(
Un

j,0
) − �ρ∞

j

(
Un

j,0
)∣∣q]1/q

≤ K
∣∣∣∣ρn

j

∣∣β − ∣∣ρ∞
j

∣∣β ∣∣E[∣∣Un
j,0

∣∣qγ ]1/q(5.98)

≤ K
∣∣∣∣ρn

j

∣∣β − ∣∣ρ∞
j

∣∣β ∣∣∥∥φn
j

∥∥γ

Lβ([0,1]) ≤ Kn(α−k)β+1j (α−k)γ ,

where the first inequality follows by (5.18) and the third inequality follows by
(5.10) and (5.97). Hence, for any q < (k − α)β , (5.98) yields that

(5.99)
n∑

j=1

∥∥Dn
j

∥∥
Lq ≤ Kn(α−k)β+1

since (α − k)γ < −1 for γ chosen close enough to β/q . Combining the above
estimates (5.91), (5.96) and (5.99) shows that, for any q ∈ [1,2] \ {β} with (k −
α − 1)β < q < (k − α)β , we have

E
[∣∣H(3)

n

∣∣] ≤ E
[∣∣H(3)

n

∣∣q]1/q ≤ K
(
n
(
n(α−k)β/q+1)q)1/q

= Kn1/q+1+(α−k)β/q+ε(r0+1).

We note that 1/q + 1 + x/q + 1/x < 0 for all x < −q . Applying this observation
for x = (α − k)β , which satisfies x < −q by the assumption q < (k − α)β above,
it follows that 1/q + 1 + (α − k)β/q < 1/((k − α)β). Hence, by choosing ε small
enough, we find ξ > 0 such that

(5.100) E
[∣∣H(3)

n

∣∣] ≤ n1/((k−α)β)−ξ .

The three estimates (5.89), (5.90) and (5.100) complete the proof of the proposi-
tion.

5.7. Proof of Lemma 5.3. We have that f (x) = g(x)x−α for x > 0. By our
assumptions, we may and do extend f to a k-times continuous differentiable func-
tion from R which also will be denoted f . We recall the notation from (4.37). By
substitution, we have that∫

R

∣∣∣∣φn
j (x)

∣∣β − ∣∣φ∞
j (x)

∣∣β ∣∣dx =
∫ ∞

0

∣∣∣∣Dkgn(x)
∣∣β − ∣∣hk(x)

∣∣β ∣∣dx
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From Lemma 3.1 and condition α < k − 1/β , we obtain for all n ≥ 1 that

An :=
∫ ∞
n

∣∣hk(x)
∣∣β dx ≤ K

∫ ∞
n

x(α−k)β dx ≤ Kn(α−k)β+1.(5.101)

The same estimate holds for the quantity
∫ ∞
n |Dkgn(x)|β dx. On the other hand,

we have that

Bn :=
∣∣∣∣
∫ k

0

∣∣Dkgn(x)
∣∣β dx −

∫ k

0

∣∣hk(x)
∣∣β dx

∣∣∣∣ ≤ Kn−1.(5.102)

This follows by the estimate ||x|β − |y|β | ≤ K max{|x|β−1, |y|β−1}|x − y| for all
x, y > 0, and that for all x ∈ [0, k] we have by differentiability of f at zero that
|Dkgn(x)−hk(x)| ≤ Kn−1xα . Recalling that g(x) = xα+f (x) and using kth-order
Taylor expansion of f at x, we deduce the following identity:

Dkgn(x) = nα
k∑

j=0

(−1)j

(
k

j

)
g
(
(x − j)/n

)

=
k−1∑
l=0

f (l)(x/n)

l!
(

k∑
j=0

(−1)j

(
k

j

)
(−j/n)l(x − j)α+

)

+
(

k∑
j=0

f (k)(ξj,x)

k! (−1)j

(
k

j

)
(−j/n)k(x − j)α+

)
,

where ξj,x is a certain intermediate point. Now, by rearranging terms we can find
coefficients λn

0, . . . , λ
n
k : [k,n] → R and λ̃n

0, . . . , λ̃
n
k : [k,n] → R (which are in fact

bounded functions in x uniformly in n) such that

Dkgn(x) =
k∑

l=0

λn
l (x)n−l

(
k∑

j=l

(−1)j

(
k

j

)
j (j − 1) · · · (j − l + 1)(x − j)α+

)

=
k∑

l=0

λ̃n
l (x)n−l

(
k∑

j=l

(−1)j

(
k − l

j − l

)
(x − j)α+

)

=:
k∑

l=0

rl,n(x).

At this stage, we remark that the term rl,n(x) involves (k − l)th order differences
of the function xα+ and λn

0(x) = λ̃n
0(x) = f (x/n). Now, observe that

Cn :=
∫ n

k

∣∣∣∣Dkgn(x)
∣∣β − ∣∣hk(x)

∣∣β ∣∣dx

≤ K

∫ n

k
max

{∣∣Dkgn(x)
∣∣β−1

,
∣∣hk(x)

∣∣β−1}∣∣Dkgn(x) − hk(x)
∣∣dx.
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Since r0,n(x) = f (x/n)hk(x) and f (0) = 1, it holds that |r0,n(x) − hk(x)| ≤
K(x/n)|hk(x)|. We deduce that∫ n

k
max

{∣∣Dkgn(x)
∣∣β−1

,
∣∣hk(x)

∣∣β−1}∣∣r0,n(x) − hk(x)
∣∣dx

≤ Kn−1
∫ n

k
x(α−k)β+1 dx(5.103)

≤ K

{
n−1, when α ∈ (0, k − 2/β),

n(α−k)β+1, when α ∈ (k − 2/β, k − 1/β).

For 1 ≤ l ≤ k, we readily obtain the approximation∫ n

k
max

{∣∣Dkgn(x)
∣∣β−1

,
∣∣hk(x)

∣∣β−1}∣∣rl,n(x)
∣∣dx ≤ Kn−l

∫ n

k
x(α−k)β+l dx.

If α ∈ (k − 2/β, k − 1/β), then (α − k)β + l > −1 and we have∫ n

k
x(α−k)β+l dx ≤ Kn(α−k)β+l+1.(5.104)

When α ∈ (0, k − 2/β), it holds that

∫ n

k
x(α−k)β+l dx ≤

{
K, (α − k)β + l < −1,

K log(n)n(α−k)β+l+1, (α − k)β + l ≥ −1.
(5.105)

By (5.103), (5.104) and (5.105), we conclude that

Cn ≤ K

{
n−1, when α ∈ (0, k − 2/β),

n(α−k)β+1, when α ∈ (k − 2/β, k − 1/β).

Since (α − k)β + 1 < −1 if and only if α < k − 2/β , the result readily follows
from (5.101) and (5.102).
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