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Abstract—This paper discusses the physical meaning and prop-
erties of the waves defined by

Vz + ZzIz

V., — Z*1I
aQ =—"—""> = T
2V |Re Z, | 2V |Re Z,|

where V, and I, are the voltage at and the current flowing into the
ith port of a junction and Z, is the impedance of the circuit connected
to the ith port. The square of the magnitude of these waves is di-
rectly related to the exchangeable power of a source and the re-
flected power. For this reason, in this paper, they are called the
power waves. For certain applications where the power relations are
of main concern, the power waves are more suitable quantities than
the conventional traveling waves. The lossless and reciprocal condi-
tions as well as the frequency characteristics of the scattering matrix
are presented.

Then, the formula is given for a new scattering matrix when the
Z's are changed. As an application, the condition under which an
amplifier can be matched simultaneously at both input and output
ports as well as the condition for the network to be unconditionally
stable are given in terms of the scattering matrix components. Also a
brief comparison is made between the traveling waves and the power
waves.

I. INTRODUCTION

HE CONCEPT of traveling waves along a trans-
Tmission line and the scattering matrix of a junc-

tion of transmission lines are well known and
they play important roles in the theory of microwave
circuits. However, the traveling wave concept is more
closely related to the voltage or current along the line
than to the power in a stationary state. If a circuit
which terminates a line at the far end is not matched
to the characteristic impedance of the line, even if the
circuit has no source at all, we have to consider two
waves traveling in opposite directions along the line.
This makes the calculation of power twice as compli-
cated. For this reason, when the main interest is in the
power relation between various circuits in which the
sources are uncorrelated, the traveling waves are not
considered as the best independent variables to use for
the analysis. A different concept of waves is introduced.

The incident and reflected power waves a, and b, are
defined by

I”L_*_ZL]’I: Vi_Zi*IL
Q; = ——————— bi=_; (1)
2v/| Re Z, 2v/| Re Z,

where V, and I; are the voltage and the current flowing
into the ¢th port of a junction and Z; is the impedance
looking out from the 7th port. The positive real value
is chosen for the square root in the denominators. These
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power waves were first introduced by Penfield [1]* for
the discussion of noise performance of negative re-
sistance amplifiers and later they were used for the
discussion of actual noise measure of linear amplifiers
by Kurokawa [2]. However, since it was not their main
objective, the meaning of these waves and the proper-
ties of the corresponding scattering matrix were only
briefly discussed. At about the same time, Youla [3]
studied the same waves; however, his Z,’s were limited
to have positive real part only. More recently, Youla
and Paterno used these waves to study the attenuation
error in mismatched systems [4].

The purpose of this paper is to present the physical
meaning of the waves defined by (1) as well as the
properties of the scattering matrix based on this new
wave concept. Some of the properties such as the loss-
less condition for the matrix have been discussed in the
previous papers. However, for the sake of complete-
ness, they are included in this paper also.

II. PavsicaL MEANING

Since the waves defined by (1) are closely related
with the exchangeable power [5] of a generator, we
have to discuss briefly what it is. For this purpose, let
us consider the equivalent circuit of a linear generator,
as shown in Fig. 1, in which Z, is the internal impedance
and E, is the open circuit voltage of the generator. The
power Py into a load Z is given by Re ZLl I,|2, where
I; is the current into the load. Since the magnitude of
the current is equal to |E,,/(ZL—1—Z2) ! , Pr is given by

Ea 2 RLi E0l2
PL = ReZL ] = (2)
ZL+Zi (RL+R1)2+(XL+AY1)2
| Bl
B (RL - Rz>2 (XL+*YL)2 (3)
4R, 4~ T

R R;,

where R, and R;are the real parts of Z; and Z;, respec-
tively, and X and X; are the imaginary parts. With
R;>0, we can easily see from (3), that the denominator
becomes minimum when

RL=RL, XL=

The corresponding maximum power P, is

9

| £,

= —

4R;

(R: > 0) ©®)

a

! In the original definition, Re Z, is taken instead of |Re Z;| in
the square root of the denominator of (1) (cf Section VIIT).
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Fig. 1. Equivalent circuit of a linear generator.

This maximum power is called the available power of
the generator. When the real part of Z, is negative, Py,
becomes infinite as Ry and X approach —R,and —X,,
respectively as we can see from (2). In this case, (5) no
longer represents the maximum power that can be
drawn from the generator. However, the expression
given in (5) remains finite and the power represented
by it is called the exchangeable power P, of the gen-
erator, for any nonzero R;. That is,

1=
© 4R,

2

(R, s 0) (6)

Thus, for R;>0, the exchangeable power is the maxi-
mum power that the generator can supply. With
R;<0, the exchangeable power is no longer equal to
the maximum possible power flow into the load, which
is infinite. However, regardless of the sign of R; it can
be considered as the stationary value of the expression
P with respect to a small change of the load im-
pedance Z ;. This can be easily seen from (3), in which
Rz and X appear only in the second-order terms of the
difference between R; and R, and of the difference
between X and —X..

Now, we are in a position to discuss the waves de-
fined by (1). In the discussion of electric circuits, the
voltage and current at the terminals are generally
chosen as the independent variables. However, one may
equally well choose any linear transformation of them as
long as the transformation is not singular, i.e., as long
as the inverse transformation exists. The waves de-
fined by (1) are the result of just one of an infinite
number of such linear transformations.

With a fixed Z,, if V, and I, are given, a, and b; are
readily calculated from (1). On the other hand, il a;
and b; are given, V; and I, are obtained from the in-
verse transformation

V23
V. :ﬁ(zb*ab+zlbl)7
V| Rez,|
p.
I;= “r—«k:( [ bl) (7)
V| ReZ,| ’

{ 1 when Re Z; > 0 ©
—1 when Re Z, < 0
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Thus, any result in terms of one set of variables can
easily be converted to that in terms of the other set of
variables. This justifies the use of the waves a; and b;
defined by (1) in place of the terminal voltage and cur-
rent for any analysis. Referring to Fig. 1, the voltage at
the generator terminal is given by

Vi = Eu - Zin
Inserting this into the first expression in (1), and taking
the square of the magnitude, we have
5l
4| R,|

2

| e

which is equivalent to

P, =plal (9)
It is worth noting that, when E, is equal to zero, a;
becomes zero also.

Next, let us consider |az 2 ] bi| 2, Direct substitution
of (1) into this expression gives

|l = o]

(Vi + ZzlL) (VL* + ZL*IZ*) - (VL - Zz'*I'L) (V'L* - ‘le’b*)
B 4| R,

(2ot ZHVLF A+ VA

= p; Re [V I.*
4‘RL P €1 }

from which we have

Re {V.I*} = p(| @il — | b

%) (10)

The left-hand side of (10) expresses the power which is
actually transferred from the generator to the load.
Therefore, this is called the actual power from the
generator (or to the load). Equation (10) shows that the
actual power is equal to p,( aqlz-— 1 bz\“"). Since — ‘ bi|?
is always negative whether the load contains some
source or not, the magnitude of the exchangeable power
of a generator }al|2 can be identified as the maximum
power that the generator can supply when R;>0, and
as the maximum power that the generator can absorb
when R, <0.

For a moment, let us confine ourselves to the case
where the real part of the internal impedance of the
generator is positive, i.e., p; is equal to 1. Then,
(9) and (10) can be interpreted as follows. The generator
is sending the power !ar,b] z toward a load, regardless of
the load impedance. However, when the load is not
matched, i.e., if (4) is not satisfied, a part of the incident
power is reflected back to the generator. This reflected
power is given by I bL‘ 2 g0 that the net power absorbed
in the load is equal to |a,|?— b2 Associated with
these incident and reflected powers, there are waves a;
and b,, respectively.
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To help understand the meaning of the incident and
reflected powers, let us consider a new equivalent circuit
of the generator in which we see these powers sepa-
rately. Suppose that a new generator and load are con-
nected to two arms of a three-port circulator and they
are matched to the circulator impedance and that a
lossless circuit which transforms the circulator imped-
ance into Z, is connected, as shown in Fig. 2. The
maximum power we can obtain from the third arm of
the circulator is equal to the power the new generator
supplies toward the circulator. Because the lossless
circuit does not consume any power, this maximum
power must be equal to the maximum power which the
outside load Z; can absorb. Since the change of the load
impedance Z1 does not affect the load condition of the
generator at arm 1, the available power |a1 2 must be
equal to the power which the generator is sending to the
circulator. Further, since the net power to the load 7
is equal to |a,|2—]b;|? and as no power comes back to
the generator at arm 1, the balance |4,/2 must be ab-
sorbed in the load connected to arm 2 of the circulator.
Thus we see that the incident power from the original
generator is the power which the internal generator in
this equivalent circuit is producing and the reflected
power is the power which the internal load is absorbing.

Since one may well argue that, using an arbitrary
constant C, | a,|2+ Cis the incident power from a gener-
ator while | b, 24 C is the reflected power, the above in-
terpretation of incident and reflected powers is some-
what arbitrary. However, we set C equal to zero so that
the maximum power a load can absorb is equal to the
incident power which the generator sends to the load.
This situation is very similar to that of the Poynting
vector EXH. Using an arbitrary vector function X,
EXH+VXX can be considered as the transmission
power density; whenever it is integrated over a closed
surface the contribution from the last term VXX disap-
pears. Nevertheless, we generally consider that the
power density is expressed by EXH, so that there is no
energy flow where there is no electric or magnetic field.

Extending our discussion to the case where the real
part of the internal impedance of the generator may be
negative, we say that the generator is sending the power
p1| a,|? toward the load regardless of the load impedance
and, when the load is not matched, p.|,|? is reflected
back so that the net power absorbed in the load is given
by p.( a1|2— [ b.1?). Associated with these incident and
reflected powers, there are the incident and reflected
waves @, and b;. Since the incident power to a load is
equal to the exchangeable power of the generator con-
nected to the load, p.|a,|? may also be called the ex-
changeable power to the load. The reason why, for the
discussion of powers, we do not consider the incident
and reflected powers directly but through the waves a;
and b; lies in the fact that there is a linear relation be-
tween ¢;'s and b,’s and this can be used advantageously
as we shall see in the following sections, There is no such
relation between powers.
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Fig. 2.

New equivalent circuit of a generator.

III. REFLECTION COEFFICIENTS AND
SCATTERING MATRIX

When we consider two quantities such as voltage and
current, we take the ratio, an impedance. Similarly,
since we have two quantities @, and b&;, let us define the
ratio s

b,

S =—
@y

(1)

and call it the power wave reflection coefficient.?
Further, let us call the square of its magnitude, i.e.,
|sl 2, the power reflection coefficient. Using (1) and the
relation V;=Z.1,, s can be expressed in terms of im-
pedances.
ZL - Zz*
s = (12)
ZL + Zz

Substituting Z,=R,+jX;, Zr=R.+jX: into (12), s
can be rewritten in the form
R +;j X+ X)) — R,
S e
Ry +j(X+ X)) + R,

(13)

Comparing this expression with that of the conventional
voltage reflection coefficient, we see that s corresponds
to the vector drawn from the center of the Smith
chart to the point where the normalized impedance is
given by [R.+7(X:+X,)]/R: In other words, if the
reactance part of Z, is added to Z; and normalized with
respect to the real part of Z,, then the corresponding
point on the Smith chart gives the magnitude and the
phase of the power wave reflection coefficient. From
this, the following important property of s is derived:
When R, and R have the same sign, s[ <1 and when
they have opposite signs, ls| >1.
The power reflection coefficient is given by

Ty — Z*|2

—_— 14
ZL—"_ZL ( )

sl =

When the matching condition (4) is satisfied, the power
reflection coefficient becomes zero, as is expected.

* When Z; is real and positive, this is a voltage reflection co-
efficient.



1965

s and Isl2 are the reflection coefficients looking into
the load from the generator side. The corresponding re-
flection coefficients s’ and ]s’l2 looking into the genera-
tor from the load must be given by

L Zi— Z*
S =
Zz+ZL

2

Zi— Z1*
Zz + ZL

-

where the subscripts ; and L are interchanged. 5" is not
necessarily equal to s. However, since IZi_ZL*I
= IZ,*—ZLf = kZL——Z,,*f, ]s'|2 is always equal to fslz.
Thus the power reflection coefficient remains the same
when roles of generator and load are interchanged.?
1— [ s|? is called the power transmission coefficient and
this also remains constant when we interchange the
role of generator and load. It is worth noting that the
power transmission coefficient times the exchangeable
power is equal to the actual power, or that the actual
power divided by the power transmission coefficient is
the exchangeable power.

Next, to define the scattering matrix, let us consider
a linear n-port network and let a, b, v and 7 be vectors
whose 7th components are a,, b,, V,, and I, at the 7th port
of the network respectively. Then, ¢ and & can be
written in terms of v and ¢ as follows:

a=F@+Gi), b=F@—GH)

(15)

where F and G are the diagonal matrices whose ith
diagonal components are given by 1/2+/|ReZ,| and Z,,
respectively, and * indicates, in general, the complex
conjugate transposed matrix. Since there is a linear rela-
tion between v and ¢ given by

v =Zi (16)

where Z is the impedance matrix, and since ¢ and b are
the result of a linear transformation of v and z, there
must be a linear relation between ¢ and 4. Let us write

it in the form
b= Sa an

and call this .S the power wave scattering matrix. Elimi-
nation of @, &, and v from (15), (16), and (17) gives

F(Z — GY)i = SF(Z + G)i

from which the following expression of .S can be ob-
tained.

S=FZ—-GHNZ+ G 'F! (18)
Similarly, Z can be expressed in terms of .S
Z = FYI —8)"Y(SG + G")F (19)

where I is a unit matrix. In Sections IV and V, we shall
consider the conditions which .S has to satis{y in order to
represent a reciprocal network and a lossless network,
respectively.

3 In this interchange, only the place of the (zero-impedance)
voltage source and the (zero-impedance) load current meter are re-
versed, leaving the generator and load impedance stationary.
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IV. RecirrocaL. CONDITION

It is a well-known fact that the impedance matrix Z
representing a reciprocal network has to satisfy the rela-
tion

Z = Zt (20)

where the subscript ¢ indicates the transposed matrix.
The corresponding relation for .S is given by

S, = PSP (21)

where P is a diagonal matrix with its 7th diagonal com-
ponent being p,. The proof of (21) will be given in

Appendix I. Equation (21) is equivalent to
Sy = pupiSi (22)

which implies that, if the signs of Re Z; and Re Z, are
the same, S,, is equal to §,; and, if they are opposite,
S.;is equal to —.5,;. For either case

2 (23)

| S

2 ]S”

Now, suppose that all the circuits except the one
connected to the 7th port of the network have no source.
Since the power from the jth circuit to the network is
generally given by p,(| a,]2~ l b,‘ 2) and a,(j#1) is equal
to zero, the power to the jth circuit from the network
is given by p,\ bJIQ. Further, in this case, b, is equal to
S,.a;and hence, the ratio of the actual power p,] b,| *into
the load j to the exchangeable power pqlal ? from the
source 7 is equal to j)qp,l S,: 2. However, because of (23),
the value of this ratio does not change when the sub-
scripts < and j are interchanged. Thus, we conclude that
the relation between the actual power into a load and
the exchangeable power from the source stays constant
when the roles of source and load are interchanged in a
reciprocal network. This is a power reciprocal relation.

It is interesting to note that there is no such reciprocal
theorem in general between the exchangeable power to
a load and the exchangeable power from the source, nor
between the actual power to a load and the actual
power from the source. The actual power into the jth
circuit is given by p,| b,]2 and the power transmission
coefficient at this point by 1—|S,,|2% Therefore, the
exchangeable power to the jth circuit is equal to
j)Jf bJ\Z/(l — } S,;|%. The ratio of the exchangeable
power into the jth circuit to that from the ¢th circuit 1s
given by p,p.|S;. 2/(1—‘5” 2). However, since iSH| is
not necessarily equal to IS“|, the value of this ratio
does not necessarily stay constant when the roles of
source and load are interchanged. Similarly, since the
actual power from the 7th given by
pwlaqlg(l—‘S“ 2}, the ratio of the actual power into
the jth circuit to that from the ith circuit is equal to
P“bj‘ 5”1 2/(1— 1 S.:1?). This again does not remain con-
stant when the subscripts 7 and j are interchanged.
However, the ratio of the exchangeable power to the
load j to the actual power from the source ¢ is given by

circuit is
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Pq,?j‘ S, 12/(1 - [ Sjj! 91— | Sii[ ?) and remains constant
when the subscripts are interchanged.

The foregoing discussion is readily applicable to a pair
of antennas. It is a well-known fact that there exists a
power reciprocal relation between the transmitting and
receiving antennas. However, it seems to be less well
understood that it is between the exchangeable power
from the source and the actual power to the load that
the reciprocal theorem generally holds. Unless the
matching conditions for both antennas are satisfied, the
reciprocal theorem does not necessarily hold between
the actual powers nor between the exchangeable
powers.

V. LossLEss CONDITION

In this section, let us consider the condition which a
scattering matrix has to satisfy in order to represent a
lossless network. The actual power into the network
from the 4th circuit is given by pi(] a,»[ 2 I bz] 2}, There-
fore, the total power into the network is

2| @

2—|bi

2),

When the network is lossless, this total power must be
zero, hence we have

Lpdlal =101y =0

which we can rewrite in a matrix form as follows
atPa — bTPb =0
Substitution of (17) gives
at(P — StPS)a =0

Since a is arbitrary, this means

StPS = P. (24)

Equation (24) is the condition that the scattering matrix
representing a lossless network has to satisfy.

For a simple example, let us consider a two-port junc-
tion. Equation (24) gives three independent conditions

pil Sulz+ po| Sul = p

H1S11512* + p2521520* = 0

Pl Si2)® + po| Saa|? = p
From the second condition, we have

| Sul] Sial2 = [ .S [2] S ?

(25)

Combining the first and last conditions in (25) with
this equation, we obtain

2

&(1 — |S22 2)1511I2 = &(1 - ]Slllz){Sn
P1 ?

which is equivalent to

| Su|? = | Sa? (26)
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Equation (26) shows that, for a lossless two-port junc-
tion, the power reflection coefficient at one port is equal
to that at the other port. From this conclusion, we see
that the power reflection coefficient as well as the
power transmission coefficient remain constant regard-
less of the position of the reference plane we take along
a lossless transmission system. This means that we can
choose any convenient plane as the reference plane for
power discussion in a lossless transmission system.
The fact that the exchangeable power is preserved
during a nonsingular lossless transformation can also be
easily shown using the above result. Let a5 be zero for a
moment. The exchangeable power from the output port

2 is given by
s plsullal

Pzibz )
{— | Smlt 11— |Sul? = #if el

where we have used the first condition in (25). The
right-hand side of this equation is just the exchangeable
power to the lossless junction. Thus, we have shown
that the exchangeable powers are the same at the input
and output of a lossless two-port junction provided
that | Sp|2=]Sa|25#1. If | Su|2=Sw|2=1, the input
and output ports are effectively disconnected inside the
junction, which is of no practical interest.

Inserting (26) back into the first and last expressions
in (25), and comparing the result, we have

| 12

2= [ Sl 27)

This is a kind of power reciprocal theorem. However, it
is only the lossless condition that we have used for the
derivation. Therefore, even a nonreciprocal twoport
junction has to satisfy the power reciprocal theorem if
it is lossless.

Coming back to (24), and multiplying both sides by
(PS)~t=S"1P7! from the right and SP~! from the left,
we have

SPSt = P (28)

Equations (24) and (28) are equivalent to each other.
However, sometimes one may find (28) being more con-
venient than (24). The example is found in the discus-
sion of the actual noise measure of linear amplifiers.

When the network is lossy, the total power into the
network must be positive and hence

at(P — StPS)a > 0

Thus, for a passive network, (P —S+PS) must be posi-
tive definite or positive semidefinite.

VI. FREQUENCY CHARACTERISTIC OF LOSSLESS
RECIPROCAL NETWORK

When a junction under consideration is lossless as
well as reciprocal, (21) and (24) must be satisfied simul-
taneously. Further in this case, corresponding to the
well-known relation for 8Z/dw,
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9z
i =jf (WH* H + eF*- E)dv (29)
w
we can derive a relation for d5/0w as we shall do in
Appendix 11. It is given by

aS
aty <K+ 4+ STK*S 4 28tP —~>a

dw
= f (uH*-H*e*-E)dv  (30)

where K is a diagonal matrix with the ith diagonal
component being

{% zx — Zi)} / | 2+ zi],

and E and H are the electric and magnetic field respec-
tively. The integral in the right-hand side of (30) ex-
tends all over the junction region and represents twice
the stored energy in the network, hence it is positive.
Thus, we see that

A5’
j<K+ + STKHS + 25+P ~>

ow
has to be positive definite. The first and second terms
represent the effect of the possible change of the termi-
nal impedance Z,’s. It is interesting to note that both

terms disappear when all the imaginary parts of Z's
remain constant. When this is the case, (30) reduces to

aS
at <j25+P ;) a = f (uH*-H 4 eE*- E)dv  (31)
w

For a lossless oneport network, ‘SH| =1 and Sy can
be written in the form e—i¢. Therefore, in this case the
above relation reduces to

dp 1
— = ———f (uH*- I -+ eE*- E)dy
Jdw 2?1’ ay 2

However, since by =e¢ g and d¢/Jdw give the time delay
between &1 and a; of the wave envelope, which can be
interpreted as the energy delay, the interpretation of
(31), when applied to a one-port network, is as follows.
The time required for an incident energy to enter the
network and leave again is the total stored energy
divided by the exchangeable power of the source. When
the real part of the source impedance is negative, the
required time becomes negative. This is what we expect
if no oscillation takes place. In most cases where we
connect a negative resistance to a oneport network of
which the losses are negligible, oscillations occur and
therefore it is impossible to observe the above phe-
nomenon directly. For multiport networks, even if some
of the impedances have negative real parts, a stable
operation becomes possible and (30) with the corre-
sponding p,’s being negative gives a more realistic con-

dition for 85/0w.
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One might think that the imaginary parts of the cir-
cuit impedances Z, could be considered to be part of
the junction and that K could therefore always be set
equal to zero without loss of generality. This is not
necessarily the case, for the imaginary parts of the
circuit impedances Z; may not have the frequency de-

pendence of ordinary passive networks. Examples are
—Land —C.

VII. CaaNGe oF CIRCUIT IMPEDANCE

Suppose that the impedances of the circuits con-
nected to the junction under consideration are changed
from Z, to Z/(i=1, 2, - - -, n). Then the incident and
reflected waves have to be redefined accordingly. The
scattering matrix 8’ connecting these new power wave
vectors is, of course, different from the original one.
However, it is expressible in terms of the original .S and
the power wave reflection coefficient 7; of Z,/ with
respect to Z*, i.e.,

S = A-1(S — TH)(I — IS4+ (32)

where I" and A are the diagonal matrices with their 4th
diagonal components being 7; and (1 —7*)\/[1—rr|
/| 1—r,|, respectively. An outline of the derivation is
given in Appendix III. Essentially the same formula
(for Re Z;>0) is also derived by Youla and Paterna [4]
using a different approach.

There are a number of applications of this formula.
Consider, for example, a twoport amplifier whose source
and load impedances, Z; and Z,, respectively, have
positive real parts and let us obtain the condition under
which both input and output ports can be matched
simultaneously without changing the signs of the real
parts of the source and/or load impedances. The
matching conditions for input and output ports are
given by S’ =0 and S’ =0, respectively. Using (32),
the condition Si" =0 provides

_ Su -+ 72(512521 - 511522)

r* (33
' 1 — 72 33)

Similarly, Sz’ =0 provides
72* _ Soe + 7’1(512521 - 511522) (34)

1 —_ 7’1511

For simultaneous matching, (33) and (34) have to be
satisfied at the same time. Thus, the problem is reduced
to that of finding the solutions of the simultaneous
equations and checking whether or not they satisfy the
appropriate conditions which ensure that the real parts
of the source and load impedances remain positive. As
explained in connection with (13), the latter conditions
are given by [71[ <1 and |r2‘ <1, respectively. For the
check of these conditions, a straightforward but lengthy
calculation is necessary. From it, we see that when
| S12521 |0 the necessary and sufficient condition for
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simultaneous matching to be possible is given by

2

2 | 512521| <1+ iSI?.S21 — SuS2

= 1 Sulr = | Sal? (35)
When !512521 =(), the same condition is given by
[Su] <1 and |Ss| <1 (36)

The transducer gain under the simultaneously matched
condition is

S —_—
|521’|2 - %(k + +/k* — 1) for 1512521| =0 (37)
12
where
b= 1+ ISl?/SZI — SuSzz]z —_ ISHP _ |ng ’2 9

2] 1250

The upper sign applies when
B=|Sn]>— [Sul> =1+ [SuSu — SuSsn

*(39)

is positive, and the lower sign when B <0. When | 51552 |
=0, the same gain is

2

| S
(1—1Sul) — | S

l 521' \2 = (40)

%)

An amplifier is said to be unconditionally stable if the
real parts of its input and output impedances remain
positive when the load and source impedances, respec-
tively, are changed arbitrarily, but keeping their real
parts positive. Let us next consider the condition for an
amplifier to be unconditionally stable. For the input
impedance, we require | Si’| to be less than 1 when 7,
is changed arbitrarily, but keeping ‘72] <1. Similarly,
for the output impedance, ISzz/ <1 is required when
‘hi <1. Using (32), a little manipulation shows that
the necessary and sufficient conditions are given by

|51?S21{ <1-— 1511‘2
iSI?»gzl‘ <1- ’Szz2
2lS1§21l <1+ [512521—511522|2

— [Sulr =[S

(41)

The last condition is identical with that under which
simultaneous matching is possible when | S13S,:] 0. It
is interesting to note that simultaneous matching is pos-
sible for any amplifier which is unconditionally stable,
but the reverse is not necessarily true.

From the first two conditions in (41), it can be shown
that B, as given by (39), is negative when the amplifier
is unconditionally stable. Therefore, the lower sign
applies in this case on the right-hand side of (37). Fur-
thermore, since |Sis|/|S2| is invariant to changes in
source and load impedances, as can be shown from (32),
and | S21/[% in (37) is similarly invariant (from physical
reasoning), k is also invariant to changes in source and
load impedances.
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VIII. Cuoice or Puasg

The phase of the incident wave a; is equal to that of
the open circuit voltage E of the ith circuit and the
phase of the reflected wave b, is that of E—2{Re Z,}I..
When the 7th circuit has no source, 4, has the phase of
the voltage across the resistance in the series representa-
tion of the circuit. However, since it is only the square
of the magnitude of the waves that we have used for the
power discussion in Section I, an arbitrary phase could
be assigned to each wave without changing the power
relation. Thus, in place of (1), we could define the waves
a, and b; by

Vi + Zz]z
Qg = ——=—————=—=
2+/| Re Z]|

Vi — Z*I;
e}¢z’ b = ’ ‘ . ej\//i

e (42)
2v/| Re Z, |

respectively, where ¢; and ¢, are arbitrary angles. The
scattering matrix S in this case is defined through the
relation

b=3Sa

where ¢ and b are the vectors with their /th components
being a, and b, given by (42). The reciprocal condition
(21) is replaced by

S, = (MN)"'PSPMN

where M and N are the diagonal matrices whose 7th
diagonal components are e’ and e'¥:, respectively. The
lossless condition (24) remains the same. However, the
equation corresponding to (30) has two additional terms

V—1

1

oM
25TPS — M~! 4 28tPN

0w dw

S,

in the bracket of the left-hand side of (30). The original
form used by Penfield [3] is just a special case of the
above definition. The phases were chosen so that, for
Re Z;>0, e =¢* =1 and for Re Z,<0, e =ete= —7.
In this case MV is equal to P and the reciprocal relation
takes a simple form: .S,=S.

Another interesting choice of the phases is given by

4/\21 ‘ [z}
el = ; e = -
Z, - 7%
where

2 =T =y 2 T 7T

The significance of this choice lies in the following fact.
When we replace every quantity appearing in the
definition of the waves (42) by the corresponding dual
quantity, the waves stay the same. Thus

vtz |z n+vve /vl
- 2/ | Rez,| zZ. Zx/m/‘/ Vi
y Vo= 22 TZT: IL—-vxv, /v,

2v/| Re Z, ~ZF 2| ReV, —
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The traveling waves defined by (43) in Section IX have

this property. However, the power waves defined by
(1) have not.

IX. CoMPARISON WITH TRAVELING WAVES

The traveling waves along a transmission line can be

defined by

V(z) -+ ZoI(3) Viz) — Zu(3)
(1(2) = = —_—
2/ Z, 2/ Z,

where 17(z) and I(z) are the voltage and current at a
point z along the line and Z, is the characteristic im-
pedance. If we consider Z, with a positive real value,
the expression for the power waves becomes identical
with that for the traveling waves. Therefore, all the
conditions which the scattering matrix for traveling
waves must satisfy in order to represent certain net-
works can be obtained if we set P equal to a unit matrix
I in the corresponding conditions for the power wave
scattering matrix. Thus, the lossless condition becomes
S*tS=1, the reciprocal condition .S;=.S and (35), (36),
and (41) stay the same. However, the interpretation of
these results is different. For example, let us consider
the condition |S,,|?=|S}|? for a reciprocal network.
Assuming that all the characteristic impedances of the
lines are real and positive, the direct interpretation of
this condition is as follows. The power coming out from
the jth port when the incoming power into the ith port
is unity is equal to the power coming out from the ith
port when the incoming power into the jth port is unity,
provided that all the circuits connected to the far ends
of the lines are matched to the line characteristic im-
pedances. However, the last restriction is generally too
stringent for practical applications. And it is only after
a little manipulation that we discover the power recipro-
cal relation given in Section IV. Thus, according to the
particular problem we have, a choice must be made be-
tween the traveling wave and power wave representa-
tion. For instance, if we want to discuss the properties
of a junction irrespective of the impedances connected
to the terminals, the traveling waves may be more con-
venient. On the other hand, for the power relation be-
tween circuits connected through a junction, the power
wave representation is more suitable. One may ask then
what is the relation between the traveling waves and
the power waves. When Z, is real and positive, there is
no difference in the expressions of the power waves and
the traveling waves. Therefore, in this case, the net
power in the gz direction is given by ‘a(z)l2—|b(z)|2.
However, when Z, is complex, the situation is different.
|a(z) 2—]b(z)iz is calculated to be Re onV*I}/[Z()’,
which is not equal to the power Re { VI*}. Thus, each
traveling wave cannot be considered to bring the power
expressed by the square of the magnitude. Further,
since the traveling wave reflection coefficient is given by
(Zr—Zo0)/(Zr+Zy) and the maximum power transfer
takes place when Z;=Z*, where Z; is the load im-
pedance, it is only when there is a certain reflection in
terms of traveling waves that the maximum power is

b(z) = (43)
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transferred from the line to the load. Thus, we have
seen that, in general, the traveling wave concept is not
so closely related with the power.

X. CONCLUSION

‘The physical meaning of power waves and the proper-
ties of the scattering matrix are presented. Although the
power waves are the result of just one of an infinite num-
ber of possible linear transformations of voltage and cur-
rent, it has been shown that, for certain applications,
they give a clearer and more straightforward under-
standing of the power relations between circuit elements
connected through a multiport network.

APPENDIX [

Let us prove the reciprocal condition (21). Using
(18), (20), and the obvious relations F,=F, G,=G, the
left-hand side of (21) can be rewritten in the form

S = Ft—l(Z + @Y7 — G+)tFt
= Ft_1<Zt + Gz)A(Zt — Gt+) F,
=FYZ 4 Gy~ (Z — GHF

We wish to prove that this last expression is equal
to the right-hand side of (21), which is given by

PSP = PF(Z — GY)(Z + G)~'F-1P
To do so, since P =P, we have only to prove the fol-
lowing equation.
(Z — GY)FPF(Z + G) = (Z + G)FPF(Z — GV).

Performing the matrix product, the above equation be-
comes

ZFPFZ 4 ZFPFG — GtFPFZ — GYFPFG
= LFPFZ — ZFPFG" + GFPFZ — GFPFGH,
of which the first terms in both sides are the same and

the last terms are equal to each other. Thus, all that we
have to prove is

ZFPFG — GYFPFZ = — ZFPFG* + GFPFZ
or
ZFPF(G + G*) = (G* + G)FPFZ (44)
Since
FPF(G + G*) = 3
(G+ + G)FPF = i1,

the validity of (44) is obvious. This completes the
proof of (21).

ArpENDIX II

The derivation of (30) will be given briefly. From
Maxwell’s equations and an appropriate definition of
voltage and current at the reference planes, after a
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little manipulation, we have

] 97
i+l—|-7)+—~=jf(uH*'H+€E*‘E)dv (45)
dw dw

from which (29) is derived. The expressions for v and ¢
in terms of @ and b are

v = 2PF(Gta + Gb), i = 2FP(a — b)

Substituting these expressions, the left-hand side of (45)
becomes

dv 91 OFGt oF
i+~—+1'+—=4{a+<F+ + GFt—a

dw Jw ow Ow
da
+ ot (F+*FG*T 4+ GFTF) —
Jdw
AFG oF
- b+<F+ +G+F+M>b
dw dw
ab
— b (FtYFG + GTF+F) h} (46)
dw
Since
FtFG* + GFtF = P
FYFG 4+ GYFT*F = 3P
AFGt oF
Ft + GFt— = 1K
dw Jw
oFG oF
F+ + GTF+— = — 1K
Jw dw
the right-hand side of (46) reduces to
da ab
atKa + 6YKb + 2| atP— — btP ~>
Ow dw
Using b=Sa, this can be rewritten in the form
da LAY
atKa + atStKSa + 2 (a"‘P — — gtStP —a
Jdw dw
da
— atSTPS —~>
dw

Because of (24), the first and last terms in the bracket
cancel each other. Therefore, (45) becomes

as
at (K + STKS — 25tpP ~> a

dw
=jf(,uH*-H + eF¥ - E)dv

which is equivalent to (30).
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AppENDIX 11
An outline of the derivation of (32) will be given in
this appendix. From (18),

S = F'(Z — G'(Z + G)~'F'~ (47)

where F’ and G’ represent F and G, respectively, when
Z;is replaced by Z,” everywhere. Substituting (19) into
(47) and using T', defined by

I'= (¢ - GG + 6, (48)

S’ can be rewritten in the form
F'FY(I -8 S—-IHh{I—-T1"HI—1)
- (I = ST)~Y(I — S)FF'

Since
(I =85 —TH{U —TH!

= =TH) S —THI =97
I —-D)J—-ST)Y (7 —.9)

=T -8 -IS)'(7 -1
S’ becomes

S = A"Y(S — TN — 1.S)"14+
where 4 is a diagonal matrix defined by
A = FIF(I — T).

Calculation of the 7th diagonal component 4; shows
that

1_1’;‘*

A= ——
|1 —7.]

V1

— 1]

where 7, is the 7th diagonal component of T' and (re-
ferring (48)) is given by

Zi, - Zz
e

¥

From this, 7, is interpreted as the power wave reflection
coefficient of Z," with respect to Z;*.
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