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Abstract—This paper discusses the physical meaning and prop-

erties of the waves defined by

v%+ z%Ib ~ = V. – Z,*Ii
a%= ,,

2u/Re Z,] 2<1 ReZtl

where V, and 1, are the voltage at and the current flowing into the

ith port of a junction and Z, is the impedance of the circuit connected
to the ith port. The square of the magnitude of these waves is di-
rectly related to the exchangeable power of a source and the re-
flected power. For this reason, in this paper, they are called the
power waves. For certain applications where the power relations are
of main concern, the power waves are more suitable quantities than
the conventional traveling waves. The lossless and reciprocal condi-

tions as well as the frequency characteristics of the scattering matrix

are presented.
Then, the formula is given for a new scattering matrix when the

2,’s are changed. As an application, the condition under which an
amplifier can be matched simultaneously at both input and output
ports as well as the condition for the network to be unconditionally
stable are given in terms of the scattering matrix components. Also a
brief comparison is made between the traveling waves and the power
waves.

1. INTRODUCTION

T

HE CONCEPT of traveling waves along a trans-

mission line and the scattering matrix of a j unc-

tion of transmission lines are well known and

they play important roles in the theory of microwave

circuits. However, the traveling wave concept is more

closely related to the voltage or current along the line

than to the power in a stationary state. If a circuit

which terminates a line at the far end is not matched

to the characteristic imped ante of the line, even if the

circuit has no source at all, we have to consider two

waves traveling in opposite directions along the line.

This makes the calculation of power twice as compli-

cated. For this reason, when the main interest is in the

power relation between various circuits in which the

sources are uncorrelated, the traveling waves are not

considered as the best independent variables to use for

the anal~-sis. A different concept of waves is introduced.

The incident and reflected power waves a, and b%are

defined by

v, + ZLI, vi – zi*IL
ai = —1 b, = (1)

2<~Re Z, I 2<1 ReZ,l

where V, and Ii are the voltage and the current flowing

into the ith port of a junction and Z; is the impedance

looking out from the z’th port. The positive real value

is chosen for the square root in the denominators. These
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power waves were first introduced by Penfield [I] 1 for

the discussion of noise performance of negative re-

sistance amplifiers and later they were used for the

discussion of actual noise measure of linear amplifiers

by Kurokawa [2]. However, since it was not their main

objective, the meaning of these waves and the proper-

ties of the corresponding scattering matrix were only

briefly discussed. At about the same time, Youla [3]

studied the same waves; however, his Z,’s were limited

to have positive real part only. More recently, Youla

and l?aterno used these waves to study the attenuation

error in mismatched systems [4].

The purpose of this paper is to present the physical

meaning of the waves defined by (1) as well as the

properties of the scattering matrix based on this new

wave concept. Some of the properties such as the loss-

less condition for the matrix have been discussed in the

previous papers. However, for the sake of complete-

ness, they are included in this paper also.

II. PHYSICAL fifEANING

Since the waves defined by (1) are closely related

with the exchangeable power [5] of a generator, we

have to discuss briefly what it is. For this purpose, let

us consider the equivalent circuit of a linear generator,

as shown in Fig. 1, in which Z, is the internal impedance

and Eo is the open circuit voltage of the generator. The

power PL into a load ZL is given by Re ZL I I,\ 2, where

Ii is the current into the load. Since the magnitude of

the current is equal to I Eo/(ZL+Z,) I , PL is given by

EO 2 RLI E012
pL=RezL ‘— =

ZL + Zi
(2)

(RL + ~,)’ + (XL + .Y,)2

I EO\2
—

AR + (R. – R,)’ + (XL+ .~,)’
(3)

8
RL RL

where RL and Ri are the real parts of ZL and 2{, respec-

tively, and XL and X ~ are the imaginary parts. With

Ri> O, we can easily see from (3), that the denominator

becomes minimum when

RL = R,, k“L = – X, (4]

The corresponding maximum power PL is

(5)

1 In the original definition, Re Z, is taken instead of I Re Z1 [ in
the square root of the denominator of (1) (cf Section 17111).
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Fig. 1. Equivalent circuit of a linear generator,

This maximum power is called the available power of

the generator. When the real part of Z, is negative, FL

becomes infinite as R~ ancl XL approach – R%and –X%,

respectively as we can see from (2 j. In this case, (5) no

longer represents the maximum power that can be

drawn from the generator. However, the expression

given in (5) remains finite and the power represented

by it is called the exchangeable power P. of the gen-

erator, for any nonzero Ri. That is,

(6)

Thus, for Ri> O, the exchangeable power is the maxi-

mum power that the generator can supply. With

Ri <0, the exchangeable power is no longer equal to

the maximum possible power flow into the load, which

is infinite. However, regardless of the sign of Ri itcan

be considered as the stationary value of the expression

PL with respect to a small change of the load im-

pedance Z~. This can be easily seen from (3), in which

RL and XL appear only in the second-order terms of the

difference between RL and R, and of the difference

between XL and – X{.

hTow, we are in a position to discuss the waves de-

fined by (l). In the discussion of electric circuits, the

voltage and current at the terminals are generally

chosen as the independent variables. However, one nlay

equally well choose any linear transformation of them as

long as the transformation is not singular, i.e., as long

as the inverse transformation exists. The waves de-

fined by (1) are the result of just one of an infinite

number of such linear transformations.

With a fixed Z,, if V, and 1, are given, a, and bi are

readily calculated from (l). On the other hand, if a;

and bi are given, Vi and Ic are obtained from the in-

verse transformation

Ii ==—JL= (a; - b) (7)
w“l ReZ,]

where pi is defined by

{

when Re Zi > 0
pi= _:

when Re Z, < 0
(8)

Thus, any result in terms of one set of variables can

easily be converted to that in terms of the other set of

variables. This justifies the use of the waves a ~ and b ~

defined by (1) in place of the terminal

rent for any analysis. Referring to Fig.

the generator terminal is given by

Vi = E. – ZJi

voltage ancl cur-

1, the voltage at

Inserting this into the first expression in (1), and taking

the square of the magnitude, we have

,al, =~EO]2
,

41R,I

which is equivalent to

P,=p,la,12 (9)

It is worth noting that, when EO is equall to zero, a~

becomes zero also.

Next, let us consider ] a,l 2– I b;] 2. Direct substitution

of (1) into this expression gives

la,12- lb,]2

(v, + 2,1,) (v?+ Z,*IL*) – (VL – 2,”1,) (V.* – Z,I,*)— — ..—
41RZI

from which we have

Re [V,I,*} = p,(] ail’ - ] bi12) (10)

The left-hand side of (10) expresses the power which is

actually transferred from the generator to the load.

Therefore, this is called the actual power from the

generator (or to the load). Equation (10) shows that the

actual power is equal to P,(1 a,l 2 — I b,l 2). !Since --- I b;] 2

is always negative whether the load contains some

source or not, the magnitude of the exchangeable power

of a generator I a,]’ can be identified as the maximum

power that the generator can supply when Ri >0, and

as the maximum power that the generator can absorb

when R,<O.

For a moment, let us confine ourselves to the case

where the real part of the internal impedance of the

generator is positive, i.e., p; is equal to 1. Then,

(9) and (10) can be interpreted as follows. The generator

is sending the power I a, 12 toward a load, regardless of

the load impedance. However, when the load is not

matched, i.e., if (4) is not satisfied, a part of the inl:ident

power is reflected back to the generator. This reflected

power is given by I b,] 2 so that the net power absorbed

in the load is equal to I ai 12– I b;[ 2. Associated with

these incident and reflectecJ p~wers, there are waves ai

and b,, respe?~ively.
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To help understand the meaning of the incident and

reflected powers, let us consider a new equivalent circuit

of the generator in which we see these powers sepa-

rately. Suppose that a new generator and load are con-

nected to two arms of a three-port circulator and they

are matched to the circulator impedance and that a

Iossless circuit which transforms the circulator imped-

ance into Z, is connected, as shown in Fig. 2. The

maximum power we can obtain from the third arm of

the circulator is equal to the power the new generator

supplies toward the circulator. Because the Iossless

circuit does not consume any power, this maximum

power must be equal to the maximum power which the

outside load ZL can absorb. Since the change of the load

impedance ZL does not affect the load condition of the

generator at arm 1, the available power I a,] 2 must be

equal to the power which the generator is sending to the

circulator. Further, since the net power to the load ZL

is equal to I a, 12— I b~l z and as no power comes back to

the generator at arm 1, the balance I b,] 2 must be ab-

sorbed in the load connected to arm 2 of the circulator.

Thus we see that the incident power from the original

generator is the power which the internal generator in

this equivalent circuit is producing and the reflected

power is the power which the internal load is absorbing.

Since one may well argue that, using an arbitrary

constant C, I a, 12+ C is the incident power from a gener-

ator while I b,l 2+ C is the reflected power, the above in-

terpretation of incident and reflected powers is some-

what arbitrary. However, we set C equal to zero so that

the maximum power a load can absorb is equal to the

incident power which the generator sends to the load.

This situation is very similar to that of the Poynting

vector E X H. Using an arbitrary vector function X,

E X H+ V X X can be considered as the transmission

power density; whenever it is integrated over a closed

surface the contribution from the last term V XX disap-

pears. Nevertheless, we generally consider that the

power density is expressed by E XH, so that there is no

energy flow where there is no electric or magnetic field.

Extending our discussion to the case where the real

part of the internal impedance of the generator may be

negative, we say that the generator is sending the power

p, I a, 12 toward the load regardless of the load impedance

and, when the load is not matched, pil b,l 2 is reflected

back so that the net power absorbed in the load is given

by P,( I a, 12– I b,l ‘). Associated with these incident and

reflected powers, there are the incident and reflected

waves a, and bi. Since the incident power to a load is

equal to the exchangeable power of the generator con-

nected to the load, p, I a, 12 may also be called the ex-

changeable power to the load. The reason why, for the

discussion of powers, we do not consider the incident

and reflected powers directly but through the waves a;

and b~ lies in the fact that there is a linear relation be-

tween a~’s and b,’s and this can be used advantageously

as we shall see in the following sections, There is no such

relaticm between powers.

March
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Fig. 2. New equivalent circuit of a generator.

III. REFLECTION COEFFICIENTS .4ND

SCATTERING MATRIX

When we consider two quantities such as voltage and

current, we take the ratio, an impedance. Similarly,

since we have two quantities a, and bi, let us define the

ratio s

b.
s=—

a%
(11)

and call it the power wave reflection coefficient.2

Further, let us call the square of its magnitude, i.e.,

Is] 2, the power reflection coefficient. Using (1) and the

relation Vi = ZLI,, s can be expressed in terms of im-

pedances.

ZL – Z,*
s=——

ZL + Z,
(12)

Substituting Z,= R, +jXi, ZL = R~ +jX~ into (12), s

can be rewritten in the form

RL + j(XL + x,) – R,
~= (13)

RL + j(xL + xi) + R,

Comparing this expression with that of the conventional

voltage reflection coefficient, we see that s corresponds

to the vector drawn from the center of the Smith

chart to the point where the normalized impedance is

given by [RL+j(XL +X,) ]/Ri. In other words, if the

reactance part of 2, is added to ZL and normalized with

respect to the real part of Z,, then the corresponding

point on the Smith chart gives the magnitude and the

phase of the power wave reflection coefficient. From

this, the following important property of s is derived:

When R, and RL have the same sign, I s I <1 and when

they have opposite signs, Is I >1.

The power reflection coefficient is given by

(14)

When the matching condition (4) is satisfied, the power

reflection coefficient becomes zero, as is expected.

2 When 2; is real and positive, this is a voltage reflection co.
efficient.
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s and I s I z are the reflection coefficients looking into

the load from the generator side. The corresponding re-

flection coefficients s’ and \s’12 looking into the genera-

tor from the load must be given by

Zi – ZL*
Sr =

,,,,2= g-zL*’

Zt+zr,’ z%+ ZL

where the subscripts z’ and L are interchanged. Sr is not

necessarily equal to s. However, since IZ,-ZL*I

=IZ,*-ZI,I =IZI, -Z,*I, [s’1’ is always equal to ]s12.

Thus the power reflection coefficient remains the same

when roles of generator and load are interchanged.3

1 – Is I z is called the power transmissicm coefficient and

this also remains constant when we interchange the

role of generator and load. It is worth noting that the

power transmission coefficient times t:he exchangeable

power is equal to the actual power, or that the actual

power divided by the power transmission coefficient is

the exchangeable power.

Next, to define the scattering mat.ri x, let us consider

a linear n-port network and let a, b, v and i be vectors

whose ith components are u,, b,, V,, and, 1, at the ith port

of the network respectively. Then, a and b can be

written in terms of v and i as follows:

a = F(v + Gi), b = F(z -– G+i) (15)

where F and G are the diagonal matrices whose ith

diagonal components are given by 1/2 i I ReZ, I and Z,,

respectively, and + indicates, in general, the complex

conjugate transposed matrix. Since there is a linear rela-

tion between v and i given by

~1= z~ (16)

where Z is the impedance matrix, and since a and b are

the result of a linear transformation of v and i, there

must be a linear relation between a and b. Let us write

it in the form

b=Sa (17)

and call this S the power wave scatterin~ matrix. Elimi-

nation of a,

from which

tained.

Similarly,

where I is a

consider the

b, and v from (15), (16), and (17) gives

F(Z – G+); = SF(Z + G)i

the following expression of S can be ob-

S = F(Z – G+) (Z + G)–lF–l (18)

Z can be expressed in terms of S

z = F-1(1 – S)-’(SG + G+)F (19)

unit matrix. In Sections IV and V, we shall

conditions which S has to satisfy in order to

represent a reciprocal network and a lossless network,

respectively.

s In this interchange, only the place of the (zero-impcclmce)
~-oltage source and the (zero-impedance) load (current meter are re-
versed, leaving the generator and load impedance stationary.

IV. RECIPROCAL CONDITION

It is a well-known fact that the impedance matrii: Z

representing a reciprocal network has to satisfy the rela-

tion

Z=zt (2(.))

where the subscript t indicates the transposed matrix.

The corresponding relation for S is given by

s, = PSP (:21)

where P is a diagonal matrix with its ith diagonal com-

ponent being P,. The proof of (21) will be given in

Appendix 1. Equation (21) is equivalent to

S] ~ = PLPjSLj (22)

which implies that, if the signs of Re Zi and Re ZJ are

the same, S,7 is equal to SJ; and, if they are opposite,

S$j is equal to – S,;. For either case

\stj\’ = ]s,tl’ (:23)

Now, suppose that all the circuits except the one

connected to the ith port of the network have no source.

Since the power from the jth circuit to the network is

generally given by P,( I a, 12– \ b,] 2, and aj(j # i) is equal

to zero, the power to the jth circuit from the network

is given by PI] bj 12. Further, in this case, bj is equal to

SJ,a~ and hence, the ratio of the actual power j, \ b, \ 2 into

I I ~ from thethe load j to the exchangeable power P, a,

source i is equal to P,pf I S7i ]Z. However, because of (~!3),

the value of this ratio does not change when the sub-

scripts i and j are interchanged. Thus, we conclude that

the relation between the actual power into a load and

the exchangeable power from the source stays constant

when the roles of source and load are interchanged in a

reciprocal network, This is a power reciprocal relation.

It is interesting to note that there is no such reciprc}cal

theorem in general between the exchangeable power to

a load and the exchangeable power from the source, nor

between the actual power to a load and the actual

power from the source. The actual power into the jth

circuit is given by Pj I bj [ 2 and the power tra.nsmissi on

coefficient at this point by 1 – I Sf, I‘. Therefore, the

exchangeable power to the jth circuit is equal to

p, I b, I ‘/(1 – I Sjjl ‘). The ratio of the exchangeable

power into the jth circuit to that from the ith circuit is

given by P,p,l Sj,l ‘/(1 – { S,, I ‘). However, since I S,, I is

not necessarily equal to I S,, 1, the value of this ratio

does not necessarily stay constant when the roles, of

source and load are interchanged. Similarly, since the

actual power from the ith circuit is given by

P,] a, I ‘(l – I S,, I ‘), the ratio of the actual power into

the jth circuit to that from the ith circuit is equall to

P,Pjl S,,1 2/(1 – I S,i\ ‘). This again does not remain con-

stant when the subscripts i and j are interchanged.

However, the ratio of the exchangeable power to the

load j to the actual power from the source i is given by
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P@iI S,, 12/(1 – I S;jl’) (1 – I S;;] 2, and remains constant

when the subscripts are interchanged.

The foregoing discussion is readily applicable to a pair

of antennas. It is a well-known fact that there exists a

power reciprocal relation between the transmitting and

receiving antennas. However, it seems to be less well

understood that it is between the exchangeable power

from the source and the actual power to the load that

the reciprocal theorem generally holds. Unless the

matching conditions for both antennas are satisfied, the

reciprocal theorem does not necessarily hold between

the actual powers nor between the exchangeable

powers.

V. LOSSLESS CONDITION

In this section, let us consider the condition which a

scattering matrix has to satisfy in order to represent a

Iossless network. The actual power into the network

from the ith circuit is given by P,( I ail 2– I b,l ‘). Thei-e-

fore, the total power into the network is

When the network is lossless, this total power must be

zero, hence we have

which we can rewrite in a matrix form as follows

~+pa _ b+pb = O

Substitution of (17) gives

a+(P – S+PS) a = O

Since a is arbitrary, this means

S+ps = p. (24)

Equation (24) is the condition that the scattering matrix

representing a lossless network has to satisfy.

For a simple example, let us consider a two-port junc-

tion. Equation (24) gives three independent conditions

i71[sll \’+152]s211’ =151

P1S11S12* + P2S2S22* = o

p1\s12]’ +p2]s2212=j2 (25)

From the second condition, we have

IS11121S121’ = ]s21[2[s2212

Combining the first and last conditions in (25) with

this equation, we obtain

:(1– IS2212)IS1112=; (1– ]s11191s221’

which is equivalent to

IS,I12 = 1s221’ (26)

Equation (26) shows that, for a Iossless two-port junc-

tion, the power reflection coefficient at one port is equal

to that at the other port. From this conclusion, we see

that the power reflection coefficient as well as the

power transmission coefficient remain constant regard-

less of the position of the reference plane we take along

a lossless transmission system. This means that we can

choose any convenient plane as the reference plane for

power discussion in a Iossless transmission system.

The fact that the exchangeable power is preserved

during a nonsingular Iossless transformation can also be

easily shown using the above result. Let az be zero for a

moment. The exchangeable power from the output port

2 is given by

where we have used the first condition in (25). The

right-hand side of this equation is just the exchangeable

power to the lossless junction. Thus, we have shown

that the exchangeable powers are the same at the input

and output of a Iossless two-port junction provided

that lSl112=ISzz12#l. If IS1112=ISZZ12=1, the input

and output ports are effectively disconnected inside the

junction, which is of no practical interest.

Inserting (26) back into the first and last expressions

in (25), and comparing the result, we have

{s,,1’ = ]s2,12 (27)

This is a kind of power reciprocal theorem. However, it

is only the lossless condition that we have used for the

derivation. Therefore, even a nonreciprocal twoport

junction has to satisfy the power reciprocal theorem if

it is lossless.

Coming back to (24), and multiplying both sides by

(PS)-’ = S-lP-’ from the right and SP-’ from the left,

we have

SPS = P (28)

Equations (24) and (28) are equivalent to each other.

However, sometimes one may find (28) being more con-

venient than (24). The example is found in the discus-

sion of the actual noise measure of linear amplifiers.

When the network is 10SSJ,, the total power into the

network must be positive and hence

a+(P — S+PS)a ~ O

Thus, for a passive network, (P – S+PS)

tive definite or positive semidefinite.

VI. FREQIJENCY CHARACTERISTIC OF

RECIPROCAL NETWORK

When a junction under consideration

must be posi-

LOSSLESS

is Iossless as

well as reciprocal, (21) and (24) must be satisfied simul-

taneously. Further in this case, corresponding to the

well-known relation for dZ/dco,
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si+~i = j (PH*II + 6E’’l3)dv (29)

we can derive a relation for dS/dw as we shall do in

Appendix II. It is given by

S= (WH* . H-} ,E* E)du (30)

where K is a diagonal matrix with the ith diagonal

component being

{
: (2,” – z,)

}/
Izp+zil,

and E and H are the electric and magnetic field respec-

tively. The integral in the right-hancl side of (30) ex-

tends all over the junction region and represents twice

the stored energy in the network, hence it is positive.

Thus, we see that

( ‘as
j K+ + .SK+S + 2,SP —

a!W )

has to be positive definite. The first and second terms

represent the effect of the possible change of the termi-

nal impedance 2,’s. It is interesting to note that both

terms disappear when all the imaginary parts of 2;’s

remain constant. When this is the case, (30) reduces to

a+(,2S+P~)a=~(pH* H+-eE*E)dv (31)

For a lossless oneport network, I S11I = 1 and Sll can

be written in the form e–’$. Therefore, in this case the

above relation reduces to

(%+ 1
— J(PH* . H + eE” . E)dv

du – 2P, I all’

However, since bI = e–~$al and d@/du give the time delay

between bl and al of the wave envelope, which can be

interpreted as the energy delay, the interpretation of

(31), when applied to a one-port network, is as follows.

The time required for an incident energy to enter the

network and leave again is the total stored energy

divided by the exchangeable power of the source. When

the real part of the source impedance is negative, the

required time becomes negative. This is what we expect

if no oscillation takes place. In most cases where we

connect a negative resistance to a oneport network of

which the losses are negligible, oscillations occur and

therefore it is impossible to observe the above phe-

nomenon directly. For multiport networks, even if some

of the impedances have negative real parts, a stable

operation becomes possible and (30) with the corre-

sponding p ,’s being negative gives a more realistic con-

dition for tlS/dw,

One might think that the imaginary parts of the ,cir-

cuit impedances Z, could be considered to lbe part of

the junction and that K could therefore always be set

equal to zero without loss of generality. This is not

necessarily the case, for the imaginary parts of the

circuit impedances Zi may not have the frequency de-

pendence of ordinary passive networks. Exa~mples are

–Land –C.

VII. CH~NG~ OF CIRCUIT lMPEDANCFZ

Suppose that the impedances of the circuits con-

nected to the junction under consideration are changed

from Z, to Z~(i= 1, 2, . . ., n). Then the incident and

reflected waves have to be redefined accordingly. ‘Irhe
scattering matrix S’ connecting these new power wave

vectors is, of course, different from the original one.

However, it is expressible in terms of the orig,inal S and

the power wave reflection coefficient r~ of Z;’ with

respect to Z,*, i.e.,

S’ = A-’(S – I’+)(1 – rS)-lA+ !(32)

where r’ and A are the diagonal matrices with their ith

diagonal components being vi and (1 –Y;*) vi I 1 –r,ri’ I
—.—

/I 1 –vzl , respectively. An outline of the derivation is

given in Appendix III. Essentially the same formula

(for Re Z,> O) is also derived by l’oula and ~atern~l [4]

using a different approach.

There are a number of applications of this formula.

Consider, for example, a twoport amplifier whose source

and load impedances, 21 and Zz, respectively, have

positive real parts and let us obtain the condition under

which both input and output ports can be matched

simultaneously without changing the signs of the lreal

parts of the source and/or load impedances. The

matching conditions for input and output ports are

given by S11’ = O and Sz,’ = O, respectively. Using (.32),

the condition S11’ = O provides

sn + ?’,(s12s21 – S11S22)

?’1* = (33)
1 – Y,S22

Similarly, S.Z2’ = O provides

S22 + t’l(sl!szl – S11S22)
~9* = (34)

1 – ?’1s11

For simultaneous matching, (33) and (34) have to be

satisfied at the same time. Thus, the problem is reduced

to that of finding the solutions of the simultaneous

equations and checking whether or not they satisfy the

appropriate conditions which ensure that the real F]arts

of the source and load impedances remain positive. As

explained in connection with (13), the latter conditions

are given by I rll <1 and I r2. [ <1, respectively. For the

check of these conditions, a straightforward but lengthy

calculation is necessary. From it, we see that when

I S12S2 I #O the necessary and sufficient condition for
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simultaneous matching to be possible is given by

2 I S12S21 I < 1 + ] S1J21 – 5’11s22 1~

- ]sl,l’ - Is,,l’ (35)

When I S12SZII = O, the same condition is given by

ISU] <1 and [S,,l <1 (36)

The transducer gain under the simultaneously matched

condition is

where

1 + I S12S21 – S11S22

k=
]’- 1s11]2- 1s22[’

— (38)
2 I S12.SL?l \

The upper sign applies when

B = ls22]~ – Islllz – 1 + lsl!s21–sll.S221~ (39)

is positive, and the lower sign when B <O. When I SIN’SZ1\

= O, the same gain is

An amplifier is said to be unconditionally stable if the

real parts of its input and output impedances remain

positive when the load and source impedances, respec-

tively, are changed arbitrarily, but keeping their real

parts positive. Let us next consider the condition for an

amplifier to be unconditionally stable. For the input

impedance, we require I S11’ I to be less than 1 when YZ

is changed arbitrarily, but keeping I Y21 <1. Similarly,

for the output impedance, I Szz’ I <1 is required when

I VII <1. Using (32), a little manipulation shows that

the necessary and sufficient conditions are given by

lsMs2,\ <1- \slll’

1s,2s2,1 <1- ]s221’

2 I S12S21 I < 1 + [ 5’12s21 – S11S22 12

- ]s11[’- IS2212 (41)

The last condition is identical with that under which

simultaneous matching is possible when I S12SZ1 I #O. It

is interesting to note that simultaneous matching is pos-

sible for any amplifier which is unconditionally stable,

but the reverse is not necessarily true.

From the first two conditions in (41), it can be shown

that B, as given by (39), is negative when the amplifier

is unconditionally stable. Therefore, the lower sign

applies in this case on the right-hand side of (37). Fur-

thermore, since I Slzl / I SZI I is invariant to changes in

source and load impedances, as can be shown from (32),

and I S21’12 in (37) is similarly invariant (from physical

reasoning), k is also invariant to changes in source and

load impedances.

VIII. CHOICE OF PHASE

The phase of the incident wave a ~ is equal to that of

the open circuit voltage E of the ith circuit and the

phase of the reflected wave 6, is that of E – 2 { Re Z, } 1,.

When the ith circuit has no source, b, has the phase of

the voltage across the resistance in the series representa-

tion of the circuit. However, since it is only the square

of the magnitude of the waves that we have used for the

power discussion in Section II, an arbitrary phase could

be assigned to each wave without changing the power

relation. Thus, in place of (1), we could define the waves

a, and b; by

respectively, where ~i and y, are arbitrary angles. The

scattering matrix S in this case is defined through the

relation

b=Sa

where a and b are the vectors with their ith components

being a, and b, given by (42). The reciprocal condition

(21) is replaced by

s, = (M.V)-’PSPM.V

where AI and N are the diagonal matrices whose ith

diagonal components are e~~’ and e’~’, respectively. The

lossless condition (24) remains the same. However, the

equation corresponding to (30) has two additional terms

2,S+PS EM-1 + 2S+PN=S,
(3U A)

in the bracket of the left-hand side of (30). The original

form used by Penfield [3] is just a special case of the

above definition. The phases were chosen so that, for

Re Zi>O, e’~~=e’$%=1 and for Re Z~<O, e’~’=e’$’= –j.

In this case MN is equal to P and the reciprocal relation

takes a simple form: St= S.

Another interesting choice of the phases is given by

where

The significance of this choice lies in the following fact.

When we replace every quantity appearing in the

definition of the waves (42) by the corresponding dual

quantity, the waves stay the same. Thus
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The traveling waves defined by (43) in Section 1.X have

this property. However, the power vvaves defined by

(1) have not.

IX. COMPARISON WITH TRAVDL;ING Mr.kvm

The traveling waves along a transmission line can be

defined by

v(z) + 201(2) r(z) – 2,1(Z)
a(z) = b(z) = –– _

24Z ‘ 2dzll
(43)

where V(z) and 1(z) are the voltage and current at a

point z along the line and 20 is the characteristic im-

pedance. If we consider 20 with a positive real value,

the expression for the power waves becomes identical

with that for the traveling waves. Therefore, all the

conditions which the scattering matrix for traveling

waves must satisfy in order to represent certain net-

works can be obtained if we set P equal to a unit matrix

I in the corresponding conditions for the power wave

scattering matrix. Thus, the Iossless condition becomes

S+S = 1, the reciprocal condition S,= .S and (35), (36),

and (41 ) stay the same. However, the interpretation of

these results is different. For example, let us consider

the condition I S,, I z = I Sj~ 12 for a reciprocal network.

Assuming that all the characteristic impedances of the

lines are real and positive, the direct interpretation of

this condition is as follows. The power coming out from

the jth port when the incoming power into the ith port

is unity is equal to the power coming out from the ith

port when the incoming power into thejth port is unity,

provided that all the circuits connected to the far ends

of the lines are matched to the line characteristic inl-

pedances. However, the last restriction is generally too

stringent for practical applications. And it is only after

a little manipulation that we discover the power recipro-

cal relation given in Section IV. Thus, according to the

particular problem we have, a choice must be made be-

tween the traveling wave and power wave representa-

tion. For instance, if we want to discuss the properties

of a junction irrespective of the impedances connected

to the terminals, the traveling waves may be more con-

venient. On the other hand, for the power relation be-

tween circuits connected through a junction, the power

wave representation is more suitable. One may ask then

what is the relation between the traveling waves and

the power waves. When 20 is real and positive, there is

no difference in the expressions of the power waves and

the traveling waves. Therefore, in this case, the net

power in the z direction is given by I a(z) 12– 16(z) I‘.

However, when 20 is complex, the situation is different.

la(z)]’- I b(z)]’ is calculated to be R.e [ZOV*l]/l ZOl ,

which is not equal to the power Re [ VI* ] . Thus, each

traveling wave cannot be considered to bring the power

expressed by the square of the magnitude. Further,

since the traveling wave reflection coefficient is given by

(Z. – ZO)/ (Z~+ZO) and the maximum power transfer

takes place when ZL = ZO*, where ZL is the load im-

pedance, it is only when there is a certain reflection in

terms of traveling waves that the maximum power is

transferred from the line to the load. Thus, we have

seen that, in general, the traveling wave concept is not

so closely related with the power.

~X. CONU(ISION

The physical meaning of power waves and the prolFJer-

ties of the scattering matrix are presented. Although the

power waves are the result of j ust one of an infinite num-

ber of possible linear transformations of vo ~tage and cur-

rent, it has been shown that, for certain applications,

they give a clearer and more straightforward under-

standing of the power relations between circuit elements

connected through a multiport network.

.~PPENDIX 1

Let us prove the reciprocal condition (21). Using

(18), (20), and the obvious relations F,= F, (G,= G, the

left-hand side of (21) can be rewritten in the form

S, = F,-’(Z + G),-’(Z – G+),F,

= F,–l(Z, + G,)–’(Z, – G,+)F,

= F-I(z + G)-’(Z – G+)F

N’e wish to prove that this last expression is

to the right-hand side of (2 1), which is given by

PSP = PF(Z – G+) (Z + G)-’F-’P

eclual

To do so, since P =P-1, we have only to prove the fol-

lowing equation.

(.Z – G’)FPF(Z + G) = (Z+ G) FpF(Z – G+).

Performing the matrix product, the above eq~uation be-

comes

ZFPFZ + ZFPFG – G~FPFZ – G~FPFG

= ZFPFZ – ZFPFG~ + GFPFZ –- GFPFG+,

of which the first terms in both sides are the same and

the last terms are equal to each other. Thus, all that we

have to prove is

ZFPFG – G~FPFZ = – ZFPFG~ + GFPPZ

or

ZFPF(G + G+) = (G+ + G)FPFZ (M)

Since

FPF(G + G+) = ;1

(G+ + G)FPF = ~1,

the validity of (44) is obvious. This completes the

proof of (21).

APPENDIX II

The derivation of (30) will be given briefly. From

LIaxwell’s equations and an appropriate definition of

voltage and current at the reference planes, after a
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little manipulation, we have APPENDIX II

i+~+V+~= jJ(iJH*H+e E*” E)dV

An outline of the derivation of (32) will be given in

(45) this appendix. From (18),

from which (29) is derived. The expressions for v and i
s’ = F’(Z – G’+) (Z + G’)–1~’–l (47)

in terms of a and b are where Ft and G’ represent F and G, respectively, when

v = 2PF(G~a + Gb), i = 2FP(a – b) Z~ is replaced by 2,’ everywhere. Substituting (19) into

(47) and using I’, defined bv
Substituting these expressions, the left-hand side of (45) ‘ ‘ -

becomes
I’ = (G’ – G) (G’ + G+)-l, (48)

Since

the right-hand side of (46) reduces to

LTsing b = Sa, this can be rewritten in the form

S can be rewritten in the form

F’F-’(I – S)-’(S – r+)(I – 1’+)(1 – r)

. (1 – Sr)-l(l – S) FF’-’

Since

(1 – s)-’(s – r+)(~ – r+)-’

= (I – r+)-l(s – r+) (1 – S)-’

(46) (~ – r)(~ – Sr)-’(l – $

= (1 – s)(~ – rs)-’(~ – r)

S’ becomes

S’ = A-’(S – r+)(~ – rs)-1~+

where A is a diagonal matrix defined by

A = F’-’F(I – l?+).

Calculation of the ith diagonal component A ~ shows

that

1 – ri*
.4i=

11-r,l
<I I–7,7,*[

where r, is the ith diagonal component of 17 and (re-

ferring (48)) is given by

2( – z,
yi =

z; + zi* “

From this, r; is interpreted as the power9 “\
— a+s+ps z

)

coefficient of Z;’ with respect to Zi*.
au

Because of (24), the first and last terms in the bracket

cancel each other. Therefore, (45) becomes [1]

( as )a+ A- + S+h”s — 2,SP g a

which is equivalent to (30).

[2]

[3]

s=j (/JH*. H + e17*. E)dv

[4]

[5]

wave reflection
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