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for gait rehabilitation post-stroke.

Powered robotic exoskeletons are a potential intervention for gait rehabilitation in stroke to enable repetitive
walking practice to maximize neural recovery. As this is a relatively new technology for stroke, a scoping review can
help guide current research and propose recommendations for advancing the research development. The aim of
this scoping review was to map the current literature surrounding the use of robotic exoskeletons for gait
rehabilitation in adults post-stroke. Five databases (Pubmed, OVID MEDLINE, CINAHL, Embase, Cochrane Central
Register of Clinical Trials) were searched for articles from inception to October 2015. Reference lists of included
articles were reviewed to identify additional studies. Articles were included if they utilized a robotic exoskeleton as
a gait training intervention for adult stroke survivors and reported walking outcome measures. Of 441 records
identified, 11 studies, all published within the last five years, involving 216 participants met the inclusion criteria.
The study designs ranged from pre-post clinical studies (n=7) to controlled trials (n = 4); five of the studies utilized
a robotic exoskeleton device unilaterally, while six used a bilateral design. Participants ranged from sub-acute

(<7 weeks) to chronic (>6 months) stroke. Training periods ranged from single-session to 8-week interventions.
Main walking outcome measures were gait speed, Timed Up and Go, 6-min Walk Test, and the Functional
Ambulation Category. Meaningful improvement with exoskeleton-based gait training was more apparent in
sub-acute stroke compared to chronic stroke. Two of the four controlled trials showed no greater improvement in
any walking outcomes compared to a control group in chronic stroke. In conclusion, clinical trials demonstrate that
powered robotic exoskeletons can be used safely as a gait training intervention for stroke. Preliminary findings
suggest that exoskeletal gait training is equivalent to traditional therapy for chronic stroke patients, while sub-acute
patients may experience added benefit from exoskeletal gait training. Efforts should be invested in designing
rigorous, appropriately powered controlled trials before powered exoskeletons can be translated into a clinical tool
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Background

Stroke is a leading cause of acquired disability in the
world, with increasing survival rates as medical care and
treatment techniques improve [1]. This equates to an in-
creasing population with stroke-related disability [1, 2],
who experience limitations in communication, activities
of daily living, and mobility [3]. A majority of this
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population ranks recovering the ability to walk or im-
proving walking ability among their top rehabilitation
goals [4, 5]; furthermore, the ability to walk is a deter-
mining factor as to whether an individual is able to re-
turn home after their stroke [6]. However, 30 — 40 % of
stroke survivors have limited or no walking ability even
after rehabilitation [7, 8] and so there is an ongoing need
to advance the efficacy of gait rehabilitation for stroke
survivors.

Powered robotic exoskeletons are a recently developed
technology that allows individuals with lower extremity
weakness to walk [9]. These wearable robots strap to the
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legs and have electrically actuated motors that control
joint motion to automate overground walking. Powered
exoskeletons were originally designed to be used as an
assistive device to allow individuals with complete spinal
cord injury to walk [10]. However, because they allow
for walking without overhead body weight support or a
treadmill, they have gained attention as an alternate
intervention for gait rehabilitation in other populations
such as stroke where repetitive gait training has been
shown to yield improvements in walking function [11,
12]. Several powered exoskeletons are already commer-
cially available, such as the Ekso (Ekso Bionics, USA),
Rewalk (Rewalk Robotics, Israel), and Indego (Parker
Hannifin, USA) exoskeletons, with more being
developed.

There have been many forms of gait retraining pro-
posed for stroke survivors. Conventional physical ther-
apy gait rehabilitation leads to improvements in speed
and endurance [13], particularly when conducted early
post-stroke [14]. However, conventional gait retraining
using hands-on assistance can be taxing on therapists;
the number of steps actually taken in a session reflects
this and has been shown to be low in sub-acute hospital
rehabilitation [15]. Many of the proposed technology-
based gait intervention strategies have focused on redu-
cing the physical strain to therapists while increasing the
amount of walking repetition that individuals undergo.
For example, body weight-supported treadmill training
(BWSTT) allows therapists to manually move the hemi-
paretic limb in a cyclical motion while the patient’s
trunk and weight are partially supported by an overhead
harness system; this has shown improvements in stroke
survivors’ gait speed and endurance compared to con-
ventional gait training [16], yet still places a high phys-
ical demand on therapists. Advances in technology have
led to treadmill-based robotics, such as the Lokomat
(Hocoma, Switzerland), LOPES (University of Twente,
Netherlands), and G-EO (Reha-Technology,
Switzerland), which have bracing that attaches to the pa-
tient’s legs to take them through a walking motion on
the treadmill. The appeal of this technology is that it can
provide substantially higher repetitions for walking prac-
tice than BWSTT without placing strain on therapists;
however, there is conflicting evidence regarding the effi-
cacy of treadmill-based robotics for gait training com-
pared to conventional therapy or BWSTT. Some studies
have shown that treadmill robotics improve walking in-
dependence in stroke [17, 18] but do not improve speed
or endurance [18, 19]. There has been some sentiment
that such technology has not lived up to the expecta-
tions originally predicted based on theory and practice
[20]. One argument is that these treadmill robotics with
a pre-set belt speed, combined with body weight sup-
port, create an environment where the patient has less

Page 2 of 10

control over the initiation of each step [21]; another ar-
gument against treadmill-based gait training is the lack
of variability in visuospatial flow, which is an essential
challenge of overground walking [20]. Powered robotic
exoskeletons, though similar in structure to treadmill-
based robotics, differ in that they require active partici-
pation from the user for both swing initiation and foot
placement; for example, some exoskeletons have control
strategies which will only assist the stepping motion
when it detects adequate lateral weight-shifting [9]. Fur-
thermore, because the powered exoskeletons are used
for overground walking, it requires the user to be re-
sponsible for maintaining trunk and balance control, as
well as navigating their path over varying surfaces.

While these powered exoskeletons hold promise, the
literature surrounding their use for gait training is only
just beginning to gather, with the majority focusing on
spinal cord injury [22-24]. Several [25-27] systematic
reviews have shown safe usage, positive effects as an as-
sistive device, and exercise benefits for individuals with
spinal cord injury. Only one systematic review [28] spe-
cifically focusing on powered exoskeletons has included
studies involving stroke participants, though studies in
spinal cord injury and other conditions were also in-
cluded. This review focused exclusively on the Hybrid
Assistive Limb (HAL) exoskeleton (Cyberdyne, Japan),
(which currently is not approved for clinical use outside
of Japan), and found beneficial effects on gait function
and walking independence; however, the results were
combined generally across all included patient popula-
tions and not specifically for stroke.

Given that this is a relatively new intervention for
stroke, the objective of this scoping review was to map
the current literature surrounding the use of powered
robotic exoskeletons for gait rehabilitation in post-stroke
individuals and to identify gaps in the research. The sec-
ond objective of this scoping review was to preliminarily
explore the efficacy of exoskeleton-based gait rehabilita-
tion in stroke. As this is a relatively new technology for
stroke, a scoping review can help guide current research
and propose recommendations for advancing the
technology.

Review

Methods

This scoping review was conducted in accordance with
the framework proposed by Arksey and O’Malley [29],
and guided by the refined process highlighted by Levac
et al. [30].

OVID MEDLINE, Embase, Cochrane Central Register
of Controlled Trials, PubMed, and CINAHL databases
were accessed and searched from inception on October
14, 2015. We combined the search terms (robot* OR
exoskeleton OR “powered gait orthosis” OR PGO OR
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HAL OR “hybrid assistive limb” OR ReWalk OR Ekso
OR Indego) AND (stroke OR CVA OR “cerebrovascular
accident” OR  “cerebral infarct” OR  “cerebral
hemorrhage” OR hemiplegia OR hemiparesis OR ABI
OR “acquired brain injury”) AND (gait OR walk OR
walking OR ambulation), with humans and English lan-
guage as limits.

Inclusion criteria were full-text, peer-reviewed articles
that used a powered robotic exoskeleton with adults
post-stroke as an intervention for gait rehabilitation. Ar-
ticles were included if they reported functional walking
outcomes (e.g., speed, distance, independence). We de-
fined a powered robotic exoskeleton as a wearable ro-
botic device which actuates movement of at least one
joint while walking, either unilaterally or bilaterally. We
further defined powered robotic exoskeletons as stand-
alone devices that can be used for overground walking,
with programmable control. Articles were excluded if
they: reported only technology development; reported
only electromyography, physiological cost, or joint kine-
matic data; combined other interventions (e.g., func-
tional electrical  stimulation); included healthy
participants or children; utilized a treadmill-based device
(i.e., the exoskeleton and treadmill are a single device,
where the exoskeleton cannot be used separately over-
ground); included mixed diagnosis participants (<50 %
stroke); or if only an abstract was available.

Titles and abstracts were screened for relevance by
two reviewers (DRL, CC) according to the inclusion and
exclusion criteria above. In the event of conflict, a third
reviewer (JJE) was consulted for resolution. Full-texts
were then screened and reference lists of all selected ar-
ticles were searched for additional studies. Included arti-
cles were then examined to extract data regarding study
design, exoskeleton device, participant characteristics,
intervention, training period, outcome measures, adverse
effects, and results. We examined the changes in func-
tional walking outcomes relative to clinically meaningful
change values published in the literature (Table 1).

Results

As seen in Fig. 1, our electronic database search
returned 440 unique titles. Only one additional article
was identified through reference list searching. After
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screening titles, abstracts, and full-texts for eligibility, 11
articles were included [31-41]. All 11 articles were pub-
lished in the last five years, with seven [31-33, 35-37,
39] published in the last two years. Five studies were
conducted in the United States, five in Japan, and one in
Sweden.

Study design

Of the included studies, three were randomized con-
trolled trials (RCTs) [31, 35, 36], and one was a non-
randomized controlled study [37]. The rest were a var-
iety of single-group pre-post clinical trials as seen in
Table 2. Of the three RCTs, two were smaller in size (n
=24 and n = 22) and considered pilot studies [31, 36].

Participants

Across the 11 studies, there was a total of 216
(male/female:136/80) participants with stroke en-
rolled (Table 2), with variability in the inclusion cri-
teria for participation. Seven studies [35-41]
included participants with chronic stroke (at least six
months post-stroke). Four studies [31-35] investi-
gated the exoskeleton with sub-acute participants
(less than six months post-stroke) during inpatient
rehabilitation. The majority of participants were in
the 50 — 70 age range. Six studies [35-37, 39-41]
specifically enrolled participants with the ability to
walk without physical assistance from a therapist,
permitting walking devices such as a cane or walker,
while three studies [31, 32, 34] specified a require-
ment of needing manual physical assistance to walk.
The former studies aimed to improve mobility for
ambulatory individuals with chronic stroke, whereas
the latter sought to restore independent ambulation
for sub-acute stroke participants. The other two
studies [33, 38] enrolled participants with a mix of
functional levels.

Exoskeletons

The included studies investigated a variety of exoskele-
tons, each having different set-ups and control mecha-
nisms. Five studies [31, 36, 37, 40, 41] used a robotic
exoskeleton unilaterally on the affected leg, while an-
other five studies [32, 34, 35, 38, 39] used a bilateral set-

Table 1 Meaningful change values for functional walking outcomes in stroke

Outcome measure

Sub-acute stroke

Chronic stroke

TUG Not available
6MWT
10MWT/gait speed

FAC Not available

MDC=61 m [43]
MCID =0.16 m/s [45]

MDC =29 s [44]
MCID =344 m [42]

MCID =0.06 m/s (small) [43]
MCID =0.14 m/s (substantial) [43]

Not available

6MWT six-minute walk test, TOMWT ten meter walk test, FAC functional ambulation category, MCID minimal clinically important difference, MDC minimal detect-

able change, TUG timed up and go
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Fig. 1 Study results: A flowchart of selection process based on inclusion/exclusion criteria

up for gait training. One study [33] progressed partici-
pants, as they were able, from a bilateral design to a uni-
lateral configuration. The most studied exoskeleton was
the HAL, used in six studies [31-34, 37, 38]; in these
studies, participants’ hip and knee joints were electrically
actuated in a walking motion. In one study [39] the H2
exoskeleton (Technaid SL, Spain), assisted the hip, knee,
and ankle joints. Four studies [35, 36, 40, 41] utilized an
exoskeleton powering only one joint of the lower ex-
tremity (either hip or knee, uni- or bilaterally); no stud-
ies were found in which only the ankle was actuated
during gait. Control of the exoskeletons ranged from
remote-control button activation [39] to active move-
ment control of stepping; the devices are able to detect
movement intention through monitoring joint angles
and limb torque [35, 36, 40, 41], or through bio-electric
signalling of muscle activity [31-34, 37, 38]. All exoskel-
etons except the HAL provided supplementary gait as-
sistance on an as-needed basis, in which the user
generates as much of the walking movements as possible
and the device provides extra torque or support to en-
sure step completion. The HAL has two modes, one that
provides complete stepping assistance and one that
adapts to user force generation. Table 3 further details
the exoskeletons, their control strategies, and the level
of assistance provided.

Training period

There was variability in the training period of the in-
cluded studies, ranging from a single session [34] to sev-
eral weeks [31-33, 39, 40] or months [35-38, 41] of
training. Training duration lasted from 20 — 90 min per
session, and frequency ranged from two to five sessions
per week. Table 2 details the different training periods
for each study.

Training protocol

The training protocol employed in each study differed,
and varied depending on the study design, length of the
training period, and exoskeleton used (Table 2). Gener-
ally, subjects were progressed as tolerated from weight-
bearing functional tasks (sit-to-stand, standing balance,
weight shifting) to walking practice while wearing the
exoskeleton device. Two studies [32, 33] had participants
train on a treadmill, which allowed therapists to adjust
the walking speed externally. The most detailed training
protocols were described in the controlled trials [31, 35—
37], wherein individuals were progressed according to
various intensity guidelines such as rate of perceived ex-
ertion (RPE) [35] and non-exoskeletal walking speed
[37]. For example, Yoshimoto et al. [37] advanced the
training speed to 1.5-1.7 times the maximal non-
exoskeletal 1I0MWT walking speed before each session.
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Table 2 Summary of studies included in the review
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Study & Participants Exoskeleton  Training Protocol Walking outcomes & Results
Design & Training
Period
Subacute Stroke
Watanabe Sub-acute stroke HAL - HAL group - gait training while wearing 1) TUG - No significant difference in
etal. (2014) 1 - 2 person assist Unilateral HAL, facilitating improvements in walking improvement between groups
[31] ambulation (HAL group 12 sessions  ability, partial BWS if needed; progress as 2) 6MWT — No significant difference in
Unblinded  n=11, mean 589 days post- over able from complete assistance by device to improvement between groups
RCT stroke 4 weeks assist-as-needed through bioelectric signal  3) Gait speed - No significant difference in
Conventional group 20 minute detection improvement between groups
n=11, mean 50.6 days post-  sessions Conventional group - facilitate 4) FAC — HAL group improved significantly
stroke) improvements in walking ability, (p =0.04) more than Conventional group
customized to functional level; speed and  (change of +1.1 for HAL group; change of
duration of walking gradually increased +0.6 for Conventional group)
Nilsson et al. Sub-acute stroke HAL - Progression from weight shift control to 1) TOMWT — median change of +0.24 m/s,
(2014) [32] 1 - 2 person assist Bilateral bioelectric signalling control, training with 4 previously non-ambulatory progressed to
Pre-post ambulation 5 sessions/  BWS on treadmill; progression of speed ambulatory
study (n=8, 6 — 46 days post- week, and BWS as tolerated 2) FAC - median change of +1.5 (from 0 to
stroke) median 17 1.5)
sessions
25 minutes
training
Fukuda Sub-acute stroke (1=53,12  HAL - Uni/  Walking on treadmill in exoskeleton, 1) TOMWT - change of +0.1 m/s for
et al. 2015) non-ambulatory, 41 bilateral progress from complete control to Brunnstrom stage Ill (greater severity with
[33] ambulatory) 2 sessions/  bioelectric signalling lower stage) (n = 12); no change for
Pre-post week, mean Brunnstrom stage IV (n =7); change of
study 3.9 sessions +0.1 m/s for Brunnstrom stage V (n=12);
change of +0.4 m/s for Brunnstrom stage
VI (N=10)
Maeshima Sub-acute stroke HAL - Walking and stair practice after standing 1) TOMWT - positive change for 14 of 16
etal. (2011) 1 -2 person assist Bilateral practice in exoskeleton patients (values not provided)
[34] ambulation (n=16, 27 - Single
Pre-post 116 days post-stroke) session
study
Chronic Stroke
Buesing Chronic stroke Limited SMA - SMA group - 30 minutes of high intensity 1) Gait speed - No significant difference in
et al. (2015) community ambulation (SMA  Bilateral overground walking with SMA (12-16 RPE  improvement between groups
[35] group — n=25, mean 18 sessions  or 75 % HR max) and 15 minutes of
Single-blind 7.1 years post-stroke over 6 — dynamic functional gait training with SMA
RCT Functional task specific 8 weeks (varied surfaces, multi-directional stepping,
training group — n =25, 45 minute  stair climbing, obstacles, community
mean 5.4 years post-stroke) sessions mobility)
Functional task specific training group —
15 minutes of high intensity overground
walking training and 30 minutes of
functional goal-based mobility training
Stein etal.  Chronic stroke AlterG — AlterG group - standardized overground 1) TUG - No significant difference between
(2014) [36] Independent ambulation Unilateral functional tasks including transfers, groups
Single-blind  (AlterG group n=12, mean 18 sessions  stepping, turning, reaching, gait training, 2) 6MWT — No significant difference in
RCT 49.1 months post-stroke over stairs and curbs while wearing exoskeleton — improvements between groups
Exercise group n=12, mean 6 weeks Exercise group — group exercises including  3) TOMWT - No significant difference in
88.5 months post-stroke) 60 minute relaxation, meditation, self-stretching, active improvement between groups
sessions range of motion of upper and lower limbs,
minimal gait training (5 min/session)
Yoshimoto  Chronic stroke HAL - HAL group — 20 minutes of HAL walking 1) TUG - HAL group improved significantly
et al. (2015) Independent ambulation Unilateral per session, with some BWS, walking at compared to Conventional PT group
[37] (HAL group n=9, mean 8 sessions  speed 1.5-1.7 times max walking speed (change of -11.5 s for HAL group; change
Non- 924 months post-stroke over without device of +0.1 s for Conventional PT group)
randomized Conventional PT group n=9, 8 weeks Conventional PT group — exercise to 2) TOMWT — HAL group improved
controlled mean 80.5 months post- 60 minute  improve walking ability including static and significantly compared to Conventional PT
trial stroke) sessions dynamic postural tasks, range of motion, group (change of +0.21 m/s for HAL

and 20 minutes of overground walking
training

group; change of -0.02 m/s for
Conventional PT group)

1) TUG - mean change of -1.1 s
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Table 2 Summary of studies included in the review (Continued)
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Overground walking with overhead harness

progression from sit-to-stand to walking
(gradually increased intensity by changing
speed, duration, BWS, and HAL control

Overground walking over a linear track

encouraged to walk as much as possible,

Walking practice, with sit-to-stand transfers,
squatting, and stepping activities; obstacle
clearance, uneven terrain, community am-

standardized weight-bearing functional
mobility activities, sit-to-stand transfers, bal-
ance exercises, gait practice at various
speeds on different surfaces, functional task

Kawamoto  Chronic stroke (n=16, 1 — HAL —
etal. (2013) 11 years post-stroke, 8 Bilateral for safety and partial BWS; gradual
[38] dependent ambulatory, 8 in- 16 sessions
Pre-post dependent ambulatory) over
study 8 weeks
20 - mechanism)
30 minutes
training
Bortole et al. Chronic stroke Independent  H2 -
(2015) [39]  ambulation Bilateral Participants in charge of speed and
Pre-post (n=3; 60, 6, 11 months post- 12 sessions
study stroke) over with breaks
4 weeks
30 minute
sessions
Byl et al. Chronic stroke Independent  AlterG —
(2012) [40] ambulation Unilateral
Pre-post (n=3;6,1.3, 10 years post- 2-4
study stroke) sessions/ bulation, stair climbing
week over
4 weeks
90 minute
sessions
Wong et al. ~ Chronic stroke AlterG - 45 minutes while wearing device,
(2011) [411  Independent ambulation Unilateral
Pre-post (n=3; 37, 26, 40 months 18 sessions
study post-stroke) over
6 weeks
60 minute practice
sessions

2) TOMWT — mean change of +0.04 m/s

1) TUG - change of +1.7 5,-2.5 s,
255

2) 6BMWT - change of -115 m, +16 m,
+103 m

1) TUG - change of -6.9 s, +195,-02 s
2) 6BMWT - change of +37 m, +47 m,
+29 m

3) TOMWT - change of +0.21 m/s,
+0.14 m/s, +0.20 m/s

1) TUG - change of

-11.7s,-235,-42 s

2) 6BMWT - change of +17 m, +14 m,
+15m

3) TOMWT - change of -0.01 m/s, +0.05 m/
s, +0.13 m/s

6MWT six-minute walk test, TOMWT ten meter walk test, BWS body weight support, FAC functional ambulation category, H2 H2 exoskeleton, HAL hybrid assistive
limb, HR heart rate, SMA stride management assist system, PT physical therapy, RCT randomized controlled trial, RPE rate of perceived exertion, TUG timed up

and go

Bold indicates value surpasses established meaningful change score detailed in Table 1

Several studies [31, 32, 37, 38] allowed some body
weight support using an overhead harness to improve
walking mechanics.

Walking measures

Ten of the 11 studies included a measure of gait
speed in their assessment of walking ability, either
measuring it directly or via the 10-m Walk Test
(10MWT). Five studies [31, 36, 39—-41] assessed walk-
ing endurance by means of a 6-min Walk Test

Table 3 Details of powered exoskeletons in this review

(6MWT), and seven studies [31, 36—41] assessed the
Timed Up and Go (TUG) test, which is a measure of
functional mobility as it includes sit-to-stand and
turning. Two studies [31, 32] also included level of
independence or assistance in their assessment of
walking ability, using the Functional Ambulation Cat-
egory (FAC). Participants were not wearing an exo-
skeleton device when assessed for the above measures
in all studies, but gait aids such as canes and walkers
were permitted.

Exoskeleton Joints actuated  Stepping initiation

Stepping assistance

Assist-as-needed for swing

Assist-as-needed for swing

Full-assistance for swing
Assist-as-needed for swing

H2 [39] Hip, knee, Initiated by hand buttons on walker
ankle Pre-set speed

SMA [35] Hip Initiated by movement

Internal sensors detect hip joint angle to regulate walking
HAL [31-34, 37, Hip, knee Initiated by movement (2 modes)
38] Internal sensors detect lateral weight shift

Surface electrodes detect muscle activation via bioelectric signals
AlterG [36, 40, 41]  Knee Initiated by movement

Internal sensors detect movement intention via variable force

threshold

Assist-as-needed for stance, free
swing

AlterG AlterG Bionic Leg, formerly Tibion Bionic Leg; H2 H2 exoskeleton; HAL Hybrid Assistive Limb; SMA Stride Management Assist system (Honda R&D

Corporation, Japan)
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Effectiveness of exoskeleton-based gait training

Ten studies reported varying degrees of improved walk-
ing ability after exoskeleton training (Table 2). Of the
four sub-acute stroke studies, only one [31] was a ran-
domized controlled trial (n = 22) which showed that par-
ticipants using the HAL experienced a significant
improvement in FAC scores compared to conventional
gait rehabilitation matched for training time, no longer
requiring manual assistance to walk after the training
period (medium effect size). However, they found no sig-
nificant difference between the HAL intervention and
conventional therapy for walking speed or endurance.
One small pre-post sub-acute study [32] (n=38) also
found an improvement in the median FAC score of their
sub-acute participants from 0 (2-person assist to walk)
to 1.5 (1-person assist to walk) after exoskeleton-based
gait training. Participants in the two other pre-post stud-
ies [33, 34] in sub-acute stroke demonstrated improve-
ments in walking speed with only a few sessions, though
not all of their participants demonstrated a change
greater than the established minimal clinically important
difference (MCID) (Table 1).

Across the seven chronic stroke studies, improvements
in walking ability were less apparent. In an RCT with 50
participants [35], there was no significant difference be-
tween the clinically meaningful improvements in gait
speed made by participants in either the exoskeleton or
functional training group matched for training time.
Similarly, participants using the AlterG Bionic Leg
(AlterG, USA) did not demonstrate significant improve-
ments compared to the control group or to baseline
after 18 training sessions in a small RCT with 24 partici-
pants [36]. In contrast, a nonrandomized controlled trial
[37] found significant and clinically meaningful improve-
ments in gait speed and TUG time after training using a
HAL compared to conventional physical therapy; how-
ever, the control group did not receive the same number
of exercise sessions. One larger pre-post study [38] (n =
16) did not find changes in gait speed that were beyond
the established MCID (Table 1) while three small pre-
post studies [39-41], each with three participants, found
varying results. Clinical improvements in endurance
were made by four participants in two of the pre-post
studies [39, 40], using a minimal clinically important dif-
ference of 34.4 m in the 6MWT. [42] Three participants
across the three smaller pre-post studies [39-41] made
meaningful improvements in TUG scores. Four partici-
pants in two of the pre-post studies [40, 41] demon-
strated a clinically meaningful improvement in walking
speed, using an MCID of 0.06-0.14 m/s [43].

Adverse effects
Eight studies confirmed that no adverse events occurred
during the course of the gait training intervention. One
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study [32] reported minor and temporary adverse effects
such as skin irritation and pain from cuffs and bioelec-
tric detection electrodes. Two studies [33, 34] did not
report on adverse events. No studies reported adverse ef-
fects on the therapists.

Discussion

This scoping review was conducted to map the literature
surrounding the use of powered robotic exoskeletons for
gait retraining for individuals after stroke and to identify
preliminary findings and areas where further research is
required. This is a relatively new application of powered
exoskeletons, as they have only recently become avail-
able for clinical use. As expected, there are only a small
number of studies published relevant to this topic.

There were four different powered exoskeletons uti-
lized amongst the included studies, ranging from unilat-
eral, single joint devices to bilateral, multi-joint robotics
with the capacity to detect volitional bioelectrical signals
to initiate powered movement. Other exoskeletons exist
on the commercial market for clinical application that
have not yet been investigated for stroke such as the
Ekso, Rewalk, and Indego (Parker Hannifin Corporation,
USA). Research with these other exoskeletons is re-
quired to determine their clinical usefulness and would
also strengthen the literature in general support of exo-
skeleton use for gait rehabilitation in stroke patients.
Studies comparing unilateral to bilateral designs may
also be another avenue for investigating the efficacy of
exoskeletal gait retraining.

The majority of the included studies investigated
exoskeleton-based gait training in chronic stroke partici-
pants. However, the greatest amount of functional and
neurological recovery after stroke occurs in the first six
weeks after stroke [3, 7]. In reflection of this, all four studies
in the sub-acute phase of stroke reported positive effects of
exoskeleton training. Two studies [31, 32] demonstrated
improved walking independence with repeated exoskeletal
gait training for more limited stroke participants, which is
in line with findings using treadmill-based robotics [17]. In
another study [33], there was significant improvement in
walking speed (0.4 m/s) for stroke participants who had
some voluntary motor control, but much less change
(0.1 m/s) for those without voluntary control. The magni-
tude and parameter (ability, speed) of walking improvement
may vary depending on the initial functional presentation
of the exoskeleton user; furthermore, the spontaneous re-
covery following stroke is a confounding factor for the im-
provements reported that has yet to be rigorously
controlled for in the current literature.

Study findings were not consistent for chronic stroke
participants. All chronic stroke participants included
were ambulatory, and so studies investigated changes in
gait parameters rather than functional ability. While
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there were modest, but not consistent changes in the pre-
post studies, the more rigorous RCTs [35, 36] did not show
a difference from their respective control groups when
groups were matched for exercise time and interaction with
a physical therapist. Even in studies with longer training
protocols [35, 36, 38, 41], there was not a trend for greater
improvements. Despite receiving the repetitious practice
that is required for motor learning [11, 12], chronic stroke
participants do not respond as positively to exoskeletal gait
training as sub-acute patients. This is consistent with find-
ings in a systematic review [18] of treadmill-based exoskel-
eton devices for gait training in chronic, ambulatory
individuals with stroke. A possible explanation for this is
that once an individual is able to walk, they benefit more
from unconstrained walking practice with greater variability
and unpredictable challenges [14]. While powered exoskel-
etons do not require the participant to use a treadmill, they
still constrain the user to a stereotyped movement pattern
and may thus under-challenge them.

The majority of included studies had small sample sizes,
which may have limited the power of their study findings
and analysis. In addition to this, the majority of these stud-
ies were pilot feasibility or pre-post clinical studies; recruit-
ment and lack of a control group may have introduced bias
to their findings. For example, one study [37] used a non-
randomized controlled design, where the control group was
formed of participants who were less able to attend the
study training protocol. These results inform the prelimin-
ary evidence in the field and more rigorous, appropriately
powered randomized controlled trials will continue to ad-
vance the clinical application of powered exoskeletons.

Future directions for research and suggestions for clinical
practice

From our data synthesis we have identified various con-
siderations when using an exoskeleton for gait retraining
and propose several questions for future research:

1. Do non-ambulatory chronic stroke participants ex-
perience the same improvement in walking ability as
sub-acute stroke participants when using an exoskel-
eton device for gait retraining?

2. How does initial functional presentation impact the
nature of improvement in walking ability when using
an exoskeleton device for gait rehabilitation?

3. What is the impact of different exoskeletons
(number of joints actuated, level of assistance and
control of stepping) on gait rehabilitation in stroke?

4. What is the impact of using a bilateral design
compared to a unilateral design for gait
rehabilitation in hemiparetic stroke?

5. What is the optimal dose of exoskeletal gait training
for stroke patients to regain the most walking
ability?
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6. How does overground exoskeletal gait training
compare to body weight-supported treadmill
training?

7. Can exoskeletons be used to safely ambulate 2-
person assist patients early after stroke with minimal
injury risk to therapists?

Additionally, larger sample sizes and rigorous method-
ology investigating the efficacy of powered exoskeletons
in stroke will further strengthen findings for or against
their utilization for gait rehabilitation.

At the moment there is insufficient evidence to advocate
in favour or against use of powered exoskeletons in clin-
ical practice. The patient’s acuity and functional presenta-
tion need to be considered and the extent of benefit has
yet remain to be determined through high quality re-
search. The devices, however, have been shown to be safe
and feasible for use with stroke patients. They can be used
to mobilize more impaired individuals without physically
straining therapists. It thus remains up to therapists to use
their own clinical judgement of whether to utilize powered
exoskeletons with their patients for gait rehabilitation,
considering its application for weight-bearing, standing,
and automated walking.

Limitations

There are a few limitations with the present review. This re-
view excluded non-English studies, which may have led to
an incomplete synthesis of data, given that some exoskele-
tons are developed in non-English countries such as Japan,
Germany, Iran, Israel, and Spain. There was heterogeneity
in the studies, especially with variability in the training pro-
tocols and exoskeletons utilized (control mechanism, uni-
lateral or bilateral application), which makes interpretation
of the results challenging. In addition, type, side, and sever-
ity of stroke and comorbid conditions were not considered
in this review because of the scarcity of studies in this area.
As more research trials in stroke rehabilitation using pow-
ered exoskeletons are conducted, a systematic review will
be able to address these additional considerations.

Conclusion

Currently, clinical trials demonstrate that powered ro-
botic exoskeletons can be used safely as a gait training
intervention for sub-acute and chronic stroke. Prelimin-
ary findings suggest that exoskeletal gait training is
equivalent to traditional therapy for chronic stroke pa-
tients, while sub-acute patients may experience added
benefit from exoskeletal gait training. Efforts should be
invested in designing rigorous, appropriately powered
controlled trials before it can be translated into a clinical
tool for gait rehabilitation post-stroke.
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