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In the fight against the worldwide pandemic coronavirus disease 2019 (COVID-19), simple,
rapid, and sensitive tools for nucleic acid detection are in urgent need. PCR has been a
classic method for nucleic acid detection with high sensitivity and specificity. However, this
method still has essential limitations due to the dependence on thermal cycling, which
requires costly equipment, professional technicians, and long turnover times. Currently,
clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensors
have been developed as powerful tools for nucleic acid detection. Moreover, the CRISPR
method can be performed at physiological temperature, meaning that it is easy to
assemble into point-of-care devices. Microfluidic chips hold promises to integrate
sample processing and analysis on a chip, reducing the consumption of sample and
reagent and increasing the detection throughput. This review provides an overview of
recent advances in the development of CRISPR-based biosensing techniques and their
perfect combination with microfluidic platforms. New opportunities and challenges for the
improvement of specificity and efficiency signal amplification are outlined. Furthermore,
their various applications in healthcare, animal husbandry, agriculture, and forestry are
discussed.

Keywords: CRISPR/Cas systems, biosensor, microfluidic techniques, isothermal amplification, nucleic acid
detection

INTRODUCTION

Coronavirus disease 2019 (COVID-19), which was caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has resulted in more than five million global deaths to now (WHO
Coronavirus Disease (COVID-19) Dashboard https://covid19.who.int (2021). In the fight against
this worldwide pandemic disease, the great demands of simple, rapid, and sensitive tools for virus
diagnosis promoted the rise of nucleic acid detection platforms. Quantitative PCR with reverse
transcription (RT-qPCR), as a classic method for nucleic acid detection with high sensitivity and
specificity, is still the gold standard (Ravi et al., 2020; Vandenberg et al., 2021). However, this method
still has essential limitations due to the dependence on the accomplishment of amplification and
reverse transcript processes including ~30 cycles of denaturation, annealing, and extension steps,
which could be accompanied by amplification bias and cross-contamination. Moreover, costly
equipment, professional technicians, and essential turnover times are required for the thermal cycles.

Currently, clustered regularly interspaced short palindromic repeats (CRISPR) based biosensors
have been developed as powerful tools for nucleic acid sensing and widely applied to the rapid
diagnosis of infectious pathogens (Kellner et al., 2019; Qin et al., 2019; Broughton et al., 2020; Ding R.
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et al., 2021; Song F. et al., 2021; Chen et al., 2021c; Escalona-
Noguero et al., 2021; Ge et al., 2021) and the detection of DNA or
miRNAs associated with diseases such as cancer (Li B. et al., 2021;
Wang et al., 2021c; Chen Y. et al., 2021). These biosensors rely on
the CRISPR systems containing CRISPR-associated proteins
(Cas) with nonspecific endonuclease activity to efficiently
cleave specific targets via guide RNAs (gRNAs) (Cong et al.,
2013; Mali et al., 2013; van der Oost, 2013). CRISPR systems are
highly sensitive and specific; for example, Cas13 orthologs showed
a ~50-fM detection sensitivity of target RNA input (about 600,000
molecules) (Gootenberg et al., 2017). However, common CRISPR
systems cannot reach clinical diagnostic demand as single-
molecule sensing. The CRISPR-based biosensors are usually
integrated with pre-amplification steps to boost the detection.
Considering the device limitation of PCR methods, portable and
isothermal amplification methods are preferred adoptions for pre-
amplification and showed great potential with the capabilities to
perform under easily controlled conditions, even at physiological
temperature (Vincent et al., 2004; Piepenburg et al., 2006; Tomita
et al., 2008). Moreover, with the advances of aptamers used in the
CRISPR systems, ultrasensitive protein detection and protein/small
molecular interaction identification can also be facilitated (Wang
et al., 2020; Zhang K. et al., 2021; Wang et al., 2021d; White et al.,
2021) (e.g., alkaline phosphatase, polynucleotide kinase/
phosphatase, and chemokine).

Microfluidic platform, also known as the micro total analysis
system (μTAS), has the ability to integrate sample processing and
analysis on a single chip, reducing the consumption of sample and
reagent and increasing the detection throughput (Manz et al., 1990;
Dong et al., 2019). These features make it feasible to assemble
CRISPR-based biosensors into streamlines with operational
procedures and without the requirement of professional
personnel, especially developed for point-of-care (POC) devices
(Yin et al., 2019; Li Z. et al., 2021). This review provides an overview
of recent advances in the development of CRISPR-based
biosensing techniques and their perfect combination with
microfluidic platforms. Furthermore, their various applications
including medical diagnostics, disease screening, food-safety
monitoring, and crop genotyping are outlined.

CRISPR-BASED BIOSENSING
TECHNIQUES

CRISPR-Cas system was found to be associated with immune
response in bacteria or archaea, and the genomic element,
CRISPR sequence, was first discovered in Escherichia coli
(Ishino et al., 1987). CRISPR-Cas system functioned in the
adaptive immunity of microorganisms via targeting and
degradation of foreign nucleic acid, so as to destroy virus
invaders (Lander, 2016). There are three main stages in the
CRISPR-Cas immune response: adaptation, when Cas protein
recognizes and binds to the target DNA; expression, when the
CRISPR array is transcribed into CRISPR RNAs (crRNAs); and
interference, when crRNA guided Cas nuclease to cleave and
inactivate the invading virus or plasmid genome (Makarova et al.,
2020) evolutionary. In 2013, Cong et al. and Mali et al. identified

that the bacterial CRISPR system can be applied in mammalian
genomes engineering (Cong et al., 2013; Mali et al., 2013). They
reported a type II Cas nuclease, Cas9, which can break specific
double-strand DNA (dsDNA) targets via RNA-guided process
and be used for directed mammalian genome editing. After that,
the CRISPR system was booming in the next decade with the
rapid development and improvement of efficiency, specificity,
and fidelity and provided powerful tools for sophisticated genetic
engineering in fundamental research and practical applications,
especially in medical and agricultural fields. Moreover,
components in the CRISPR system cost very low; for example,
the gRNA sequence is cheap to synthesize, the quencher has a
fixed sequence without the need to be redesigned and ordered for
each new target, and the Cas proteins can be produced in bulk
(Kellner et al., 2019). With these natural advantages, CRISPR
systems were widely harnessed for biosensing approaches,
blossomed in the nucleic acid detection for disease diagnoses,
such as Specific High-Sensitivity Enzymatic Reporter Unlocking
(SHERLOCK) (Gootenberg et al., 2017; Gootenberg et al., 2018;
Kellner et al., 2019), one-HOur Low-cost Multipurpose highly
Efficient System (HOLMES) (Li et al., 2018; Li L. et al., 2019), and
DNA endonuclease-targeted CRISPR trans reporter (DETECTR)
(Chen et al., 2018; Broughton et al., 2020).

Available CRISPR Systems for Biosensing
Since the Cas proteins showed remarkable diversity, CRISPR
systems were divided into two classes according to the effector
modules composed of multiple Cas proteins (class 1, involving
types I, III, and IV) or single multidomain protein (class 2,
involving types II, V, and VI) (Makarova et al., 2020).
Although class 1 systems extensively exist in microorganisms,
their applications were limited by the need for multi-subunit
effectors (Liu et al., 2021a). Thanks to the efforts on the discovery
of novel systems, highly efficient and simplified CRISPR-based
biosensing methods were designed. Commonly used natural Cas
nucleases and their variants were described as follows.

Cas9
Cas9, belonging to type II systems, can induce specific double-
strand breaks (DSBs) in target DNA through a dual-RNA-guided
process, in which a fusion of crRNA and its base-paired trans-
activating crRNA (tracrRNA) directs Cas9 to the complementary
sequence (Gasiunas et al., 2012; Jinek et al., 2012). In biosensing
assay, the dual-tracrRNA:crRNA can be designed as a functional
artificial chimera with demand. Except for the tracrRNA:crRNA
gRNAs, a proto-spacer-adjacent motif (PAM) sequence NGG (N
= A, T, C, or G) was needed. When Cas9-gRNA complex
recognizes PAM, the spacer of gRNA pairs with the target
DNA strand to form an “R-loop” structure, after which the
cleavage of DNA strands is accomplished with a blunt-end
DSB 3 bp upstream of the PAM into the protospacer (Jinek
et al., 2012; Cong et al., 2013; Mali et al., 2013). Cas9 has HNH
and RuvC nuclease domains, which cleave the complementary
strand and noncomplementary strand, respectively. When either
HNH or RuvC domain was inactivated, called Cas9 nickase
(nCas), only one DNA strand can be cleaved without DSBs
(Anzalone et al., 2019). When both domains were inactivated,
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dead Cas9 (dCas9) was created, which is still able to bind to
specific DNA targets but defective in nuclease activity (Qi et al.,
2013). Although dCas9 cannot cleave target DNA like wild-type
Cas9, it provides a scaffold for recruiting effectors to specific sites.

A major barrier to the applications of CRISPR is the “off-
target” effects, referring to the cleavage at unintended sites
because of the nuclease tolerating mismatches between gRNA
and off-target DNA (Liu et al., 2021a). To deal with this issue,
marked improvements were made in gRNAmodification, protein
and guide engineering, and novel enzymes screening (Tycko et al.,
2016). For example, truncated gRNAs (Tru-gRNAs) with shorter
regions of target complementarity <20 nucleotides in length (Fu
et al., 2014), hp-sgRNAs designed with a hairpin onto the spacer
region (Kocak et al., 2019), and CRISPR hybrid RNA-DNA
(chRDNA) guides (Donohoue et al., 2021) have been reported
to effectively optimize Cas9 specificity and preserve on-target
activity. Nuclease engineering, such as using paired nCas9
nickases or fusing dCas9 with the FokI nuclease domain, can
also improve specificity (Guilinger et al., 2014; Shen et al., 2014;
Tsai et al., 2014). Another strategy is to screen novel high-fidelity
Cas9 variants that are developed by rational design or directed
evolution (Kim et al., 2020; Schmid-Burgk et al., 2020), providing
useful instructions to their application in different situations.

Despite the robust activity, the specific requirement of PAM in
DNA targeting limits the flexibility and applications of Cas9
(Anzalone et al., 2019). Ongoing efforts were made to realize
PAM-free nucleases through natural ortholog mining and protein
engineering (Collias and Beisel, 2021).

Cas12
Cas12, a kind of typeV nuclease, contains a RuvC-like domain only
and cleaves both target and non-target strands, introducing a
staggered DNA DSB (Zetsche et al., 2015). Cas12a (first
reported as Cpf1) processes pre-crRNA into mature crRNA and
cleave target DNA independent of additional RNA species, greatly
simplifying the editing design (Zetsche et al., 2015; Zetsche et al.,
2017). Cas12a has short T-rich PAM recognition sites, rather than
the G-rich PAM following the target DNA for Cas9, expanding the
targeting range (Zetsche et al., 2015). Cas12b (formerly known as
C2c1) contains RuvC-like endonuclease domains distantly related
to Cas12a but depends on both crRNA and tracrRNA for DNA
cleavage (Strecker et al., 2019; Ming et al., 2020). Although Cas12a
offers unprecedented flexibility, more compact versions are
explored and engineered to extend the application. For example,
Cas12c, Cas12h, and Cas12i have been identified with RNA-guided
dsDNA interference activity (Yan et al., 2019). Cas12g was
characterized by RNA-guided collateral ribonuclease and single-
strand deoxyribonuclease activities (Yan et al., 2019). Cas12f (also
known as Cas14) nucleases cleave single- and dsDNA targets
triggered by a 5′ T- or C-rich PAM sequence (Harrington et al.,
2018; Karvelis et al., 2020; Bigelyte et al., 2021; Xu X. et al., 2021;
Takeda et al., 2021).

Cas13
Cas13 belongs to type VI CRISPR-Cas systems and contains two
Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN)
domains (Shmakov et al., 2015). Cas13a, which was initially

named C2c2, exhibits a collateral cleavage effect and only
requires single-guide crRNA (Abudayyeh et al., 2016). After
target binding, the HEPN catalytic site of Cas13a protein is
activated, which subsequently cleaves both single-stranded
target and collateral RNAs in a non-specific manner (Liu
et al., 2017). Due to the “collateral effect,” Cas13a can be
promisingly used for nucleic acid detection, not only RNA but
also dsDNA (Abudayyeh et al., 2017; Gootenberg et al., 2017;
Wang et al., 2019). Currently, various Cas13 orthologs and
variants were identified and characterized, including Cas13b
(Smargon et al., 2017), Cas13d (Yan et al., 2018), Cas13X and
Cas13Y (Xu C. et al., 2021), and Cas13bt (Kannan et al., 2021). In
addition, the development of unrelated CRISPR nucleases, such
as Csm6 combined with Cas13, showed a robust detection of
RNA targets (Liu T. Y. et al., 2021).

Already, these Cas nucleases have been used for biosensing
purposes, and different effectors show different nucleotide
cleavage preferences (as shown in Figure 1), which can be
selected according to specific applications. Major features of
these most used Class II Cas nucleases are listed in Table1.
Moreover, continued exploration is ongoing to uncover new
functional orthologs and thoroughly investigate the targeting
rules of Cas nucleases, leading to a substantial increase in the
efficiency of target cleavage and high-target specificity.

Consideration for Pre-Amplification
Strategies
Generally, pre-amplification steps were needed for samples with
very low target concentration, which are difficult to distinguish
from the background. Traditional PCR methods are highly
sensitive and specific but demand costly equipment and

FIGURE 1 | Diagrams of Cas9, Cas12, and Cas13 nucleases.
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professional technicians, as well as the cost of essential turnover
times for the thermal cycles. Thus, portable and isothermal
amplification methods have been developed, including
helicase-dependent amplification (HDA) (Vincent et al., 2004),
recombinase polymerase amplification (RPA) (Piepenburg et al.,
2006), and loop-mediated isothermal amplification (LAMP)
(Tomita et al., 2008). HDA uses a DNA helicase to separate
dsDNA and generate single-stranded templates for primer
hybridization by single-stranded DNA (ssDNA)-binding
proteins (SSBs), which was subsequently extended by DNA
polymerases. In the whole process, the initial heat
denaturation and subsequent thermocycling steps required by
PCR can all be omitted, which provides a simple DNA
amplification using low temperature from the beginning to the
end of the reaction (Vincent et al., 2004). Despite its simplicity,
the specificity of HAD cannot be comparable to PCR, which
hampered the utilities. RPA mainly relies on three core enzymes:
a recombinase, which is capable to pair oligonucleotide primers;
an SSB, which binds to displaced strands of DNA to prevent the
primers from being displaced; and strand-displacing polymerase
(Piepenburg et al., 2006; Ortiz et al., 2022). Once the
recombinase-driven primer targeting of homologous sequence
in dsDNA is completed, DNA synthesis begins with the strand
displacing polymerase, achieving exponential amplification.
Similar to HAD, RPA steps can all be performed at a constant
optimal temperature of 37°C, which can also hold the activities at
room temperature. A key obstacle for the use of RPA is the design
for amplification primers and probes, which are usually longer
than general PCR primers and need to be optimized by customers
on their own conditions. LAMP uses a polymerase with high
strand displacement activity and a replication activity and adopts
two or three sets of primers to increase specificity and an
additional pair of “loop primers” to accelerate the reaction
(Tomita et al., 2008). In LAMP, the target sequence is
amplified at a constant temperature of 60°C–65°C, which can
be easily obtained through a water bath.

Recently, novel isothermal amplification methods have been
developed and proposed for sensitive detection. Rolling circle
amplification (RCA) is initiated with circular template ligation,
forming a long ssDNA or RNA, followed by primer-induced
ssDNA elongation (Nosek et al., 2005; Ali et al., 2014). At
constant temperature (room temperature to 65°C), a large
number of repeats complementary to the circular template can
be produced. Additionally, RCA can be conducted in both free
solutions and on top of immobilized targets (solid-phase
amplification). With these advantages, CRISPR/Cas12a- or
CRISPR/Cas13a-triggered RCA is developed as a highly
sensitive and specific biosensor, for example, for the detection

of microRNAs (Li D. et al., 2020; Tian et al., 2020; Qing et al.,
2021; Zhou et al., 2021). Alternative isothermal amplification
approaches, such as exponential amplification reaction (EXPAR)
(Song J. et al., 2021; Wang et al., 2021b), hybridization chain
reaction (HCR) (Xing et al., 2020; Kachwala et al., 2021; Liu et al.,
2022), and strand displacement amplification (SDA) (Chen et al.,
2021b; Deng et al., 2021; Gong et al., 2021) were combined with
CRISPR systems for sensing pathogenic bacteria and viruses, gene
mutation, and even proteins. Different characteristics of this
isothermal amplification method were compared as listed in
Table 2.

Additionally, different kinds of improvements have been tried
to develop amplification-free CRISPR-based biosensors with the
assistance of Au nanoparticles (Choi et al., 2021), gold
nanoclusters (Liu P.-F. et al., 2021), nanopores (Nouri et al.,
2020), and graphene field-effect transistor (Hajian et al., 2019).
Another sensitive strategy without target amplification was
reported by making use of both Cas13a and Cas14a (Sha
et al., 2021). Alternatively, microfluidics techniques provided
tremendous potentials for amplification-free platforms,
including droplet manipulation and on-chip integration
(Bruch et al., 2019a; Bruch et al., 2021; Yue et al., 2021b; Tian
et al., 2021), which will be highlighted in the next section.

POWERFUL SUPPORT BY
MICROFLUIDICS PLATFORMS

An ideal biosensor for molecular detection should be accurate,
sensitive, and capable to give results rapidly (Goode et al., 2015).
In this regard, minimal sample extraction and optimized
preparation procedures will help to improve the detection
sensitivity without increasing the cost of overall assay time.
Microfluidics means precisely controlling and manipulating
the behavior of fluids on a geometrically constrained small
scale (Dong et al., 2019). The introduction of microfluidic
technology can get rid of the demand for bulky
instrumentation and offers ingenious storage for the required
reagents, which attracts more and more interest for the
development of biosensors with promising potential to
transform into POC devices.

Optimized Sample Preparation andReadout
Most biosensors typically require a “two-step” assay with target
amplification reactions and detection steps separately, which
brings some drawbacks with the risk of carryover
contamination (Yue et al., 2021a). To solve this problem,
sophisticated assemblies were introduced, for example, pre-

TABLE 1 | Main features of most used Class II Cas nucleases.

Nucleases Type Nuclease domain Guide type Target trans-Cleavage PAM sequence

Cas9 Type II RuvC and HNH crRNA and tracrRNA dsDNA - G-rich
Cas12 Type V RuvC-like crRNA only/crRNA and tracrRNA Mostly dsDNA dsDNA/ssDNA T-richa

Cas13 Type VI HEPN crRNA only RNA ssRNA -

aT- or C-rich for Cas12f, also known as Cas14.
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embedding CRISPR-Cas12a reagents on the inner wall of the tube
cap and then mixing with amplicon solution by hand shaking
(Chen et al., 2020c). Another group carried out RPA reaction and
CRISPR-Cas12a detection in spatially separated but connected
phases in one pot (Yin et al., 2020). Similarly, Wu et al. used an
oil-sealed polypropylene (PP) bag with three chambers for
washing and amplification/detection (Wu et al., 2021a).

Microfluidic chips hold promises to streamline analysis steps
and integrate them in closed microchannels separately, with the
capability of reducing reagent consumption and increasing
detection throughput (Ahmadi et al., 2020). For example,
droplet microfluidics enables to confine the Cas catalysis in
cell-like-sized reactors via an ultralocalized droplet, enhancing
the local concentrations of target and reporter simultaneously to
obtain excellent specificity and sensitivity (Yue et al., 2021b; Tian
et al., 2021). Lab-on-a-chip can also be introduced, which
implements a miniaturized system, spatially separating
multiple immobilization areas within a single channel (Bruch
et al., 2019a; Bruch et al., 2021). Taken together, sealing up
spatially separately helps to increase the stability for long-term
storage, and the automated process makes it more convenient to
extend the applications with a reduced cost of operation time.

Development for Automated POC Devices
According to the WHO guidelines, POC testing needs to be
affordable, sensitive, specific, user-friendly, robust and rapid,
equipment-free, and deliverable to all people who need the test
(ASSURED) (van Dongen et al., 2020). Taking these into account,
microfluidics techniques promisingly offer simplified approaches
(sample-in result-out) for biosensing automatedly with high
throughput. Chen et al. integrated the CRISPR/Cas12a system
and recombinase-aided amplification in a centrifugal
microfluidic device, avoiding the catalysis of Cas12a to the
template DNA. This Cas12a-assisted straightforward
microfluidic equipment for analysis of nucleic acid, termed
CASMEAN, was reported to enable nucleic acid detection
within 1.5 h (Chen et al., 2020b). Wu et al. developed a
reversible valve-assisted chip to integrate CRISPR/Cas12a
system and LAMP into a single chip, which has three
reversible rotary valves and can be rotated relying on the
direction-dependent Coriolis pseudo force. Their POC device
achieves a limit of detection (LoD) of 30 copies/reaction for the
detection of Vibrio parahaemolyticus (Wu et al., 2021b). Chen
et al. proposed a POC biochip with preloaded CRISPR/Cas12a

reagents for processing automatedly, capable to detect the
genotypes within 20 min (Chen Y. et al., 2021). Taken
together, microfluidics strategies facilitate biosensors
developing to POC device development.

APPLICATIONS OF CRISPR-BASED
BIOSENSING TECHNIQUES

Nowadays, CRISPR systems have been established as powerful
biosensing tools for detecting various targets (Li et al., 2019b; Bao
et al., 2021; Kaminski et al., 2021). Several developed CRISPR-
based biosensors were characterized in Table 3. Their main
application in the sensing of a wide range of molecular targets
was highlighted as follows.

Diagnosis of Pathogen Infections
SARS-CoV-2
The main focus of CRISPR-based biosensing techniques has been
the diagnostics of pathogen infection benefits from their DNA-
and RNA-targeting nucleases (Escalona-Noguero et al., 2021).
Amid the ongoing pandemic of COVID-19, enormous efforts
have been paid for the detection of SARS-CoV-2 (Nouri et al.,
2021). SHERLOCK was first developed using Cas13a with RPA
amplification to detect Zika and Dengue virus and to identify
human DNA, exhibiting similar levels of sensitivity to RT-qPCR
(capable of single-molecular detection) (Gootenberg et al., 2017).
Subsequently, it was advanced to SHERLOCK version 2
(SHERLOCKv2) integrated with multiplexed orthogonal
CRISPR enzymes to increase signal sensitivity and portable
lateral-flow readout (Gootenberg et al., 2018). SHERLOCK
was further advanced with HUDSON (heating unextracted
diagnostic samples to obliterate nucleases) for viral detection
directly from bodily fluids, enabling instrument-free virus
detection directly from patient samples within less than 2 h
(Myhrvold et al., 2018). The step-by-step instructions for
SHERLOCK assays were then published, demonstrating the
use of Cas13 or Cas12, combination with isothermal pre-
amplification, and the detection through fluorescence and
colorimetric readouts (Kellner et al., 2019). As the outbreak of
SARS-CoV-2, it was streamlined into SHERLOCK testing in one
pot (STOP) combined with simplified extraction of viral RNA,
which can be performed for the detection of SARS-CoV-2 at a
single temperature in less than 1 h and with minimal equipment

TABLE 2 | Comparison of isothermal amplification methods.

Methods Temperature (°C) Time Involved proteins Primers

HDA ~37 ～2 h DNA helicase, SSB, DNA polymerase 2
RPA 25–42 (optimal 37) 20 min~1 h Recombinase, SSB, strand-displacing polymerase 2
LAMP 60–65 20 min~2 h Strand-displacing DNA polymerase 6–8
RCA Room temperature to 65 ~2 h DNA polymerase 4
EXPAR ~37 2~3 h DNA polymerase 2
HCR ~37 ~1 h - -
SDA 37–60 0.5~1 h Strand-displacing DNA polymerase, nicking endonuclease 4

Note. HDA, helicase-dependent amplification; RPA, recombinase polymerase amplification; LAMP, loop-mediated isothermal amplification; RCA, rolling circle amplification; EXPAR,
exponential amplification reaction; HCR, hybridization chain reaction; SDA, strand displacement amplification; SSB, single-stranded DNA-binding protein.
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(Joung et al., 2020a; Joung et al., 2020b). SHERLOCK-based assay
for SARS-CoV-2 detection has been tested in a validated clinical
cohort including 154 nasopharyngeal and throat swab samples
and 380 SARS-CoV-2-negative preoperative samples (Patchsung
et al., 2020). Results showed that it reached a detection limit of 42
RNA copies per reaction, with 100% sensitivity for fluorescence
readout, 97% sensitivity for lateral-flow readout, and both 100%
specificity. DETECTR provided an attomolar sensitivity for DNA
detection using Cas12a and was optimized to detect SARS-CoV-2
via its N (nucleoprotein) and E (envelop small membrane
protein) genes (Chen et al., 2018; Broughton et al., 2020).
DETECTR can be performed in less than 40 min from
respiratory swab RNA extracts using lateral flow readout and
be validated by 36 patients with COVID-19 infection and 42
patients with other viral respiratory infections with 95% positive
predictive agreement and 100% negative predictive agreement
with RT-qPCR assay from the US Centers for Disease Control
and Prevention (Broughton et al., 2020). Another Cas13a-based
assay, Streamlined Highlighting of Infections to Navigate
Epidemics (SHINE), was developed to detect SARS-CoV-2
RNA from unextracted samples by optimizing RPA-based pre-
amplification and Cas13-based detection into a single step and
improve HUDSON to accelerate viral extraction in
nasopharyngeal swabs and saliva samples (Arizti-Sanz et al.,
2020). The validation from 50 nasopharyngeal patient samples
demonstrated that SHINE has 90% sensitivity and 100%
specificity against RT-qPCR with a sample-to-answer time of
50 min.

To balance the sensitivity, specificity, and test availability, a
variety of strategies have been tried to improve the detection of
SARS-CoV-2. For example, DNA-modified gold nanoparticles
(AuNPs) were utilized for a universal colorimetric readout
according to the change in the surface plasmon resonance,
which can be monitored by UV-vis absorbance spectroscopy
facially and observed by the naked eye (Zhang W. S. et al., 2021).
An alternative is assisted with magnetic AuNP probe colorimetric
assay, which is not dependent on sophisticated instruments and
can be potentially adopted under poor conditions (Jiang et al.,
2021). Different amplification strategies were also explored to
couple with CRISPR-based SARS-CoV-2 biosensing, such as

HCR amplification, which was reported in an evanescent wave
fluorescence biosensing platform providing an attomolar
detection level towards SARS-CoV-2 within 1 h (Yang et al.,
2021), and multiple cross displacement amplification (MCDA),
which conducts reverse transcription MCDA reaction when
CRISPR-Cas12a/CrRNA complex recognizes the predefined
target sequences and subsequently degrades a single-strand
DNA to confirm the target detection (Zhu et al., 2021). A
major direction of biosensing platforms is to develop POC
devices. Hence, portable approaches were taken into mind. An
attempt was made to adopt the available personal glucose meter
to readout for quantitative detection of SARS-CoV-2 via
converting the virus signal to a glucose-producing reaction
(Huang et al., 2021). Already benefitting from an elegant
detection mechanism, fast assay time, and low reaction
temperature, these assays can be further advanced via
integration with powerful, digital-based detection. A coined
digitization-enhanced CRISPR/Cas-assisted one-pot virus
detection (deCOViD) was reported to achieve qualitative
detection in <15 min and quantitative detection in 30 min
with down to 1 genome equivalent (GE) per µl of SARS-CoV-
2 RNA and 20 GE per µl of heat-inactivated SARS-CoV-2 (Park
et al., 2021). A digital warm-start CRISPR (dWS-CRISPR) assay
showed a detection down to five copies/μl SARS-CoV-2 RNA, as
well as the capability to directly detect SARS-CoV-2 in heat-
treated saliva samples without RNA extraction (Ding X. et al.,
2021). These digital methods facilitate accurate, sensitive, and
reliable CRISPR assays into POC devices, with a high signal-to-
background ratio and broad dynamic range. In addition,
preventing amplicon-formed aerosol contamination is also an
important process. One group pre-added reagent on the inner
wall of the tube lid, which were then hand-shaken to make them
flow into the tube and mix with amplicon solution, which could
be processed within 40 min and reach a sensitivity of 20 copies
RNA of SARS-CoV-2 (Chen et al., 2020c). A more portable
platform incorporated sample preparation with the facile
magnetic-based operation of nucleic acid concentration and
transport and streamlined into a compact palm-sized
thermoplastic cartridge functioning in a fully integrated and
autonomous way, which can detect 1 GE/μl SARS-CoV-2 RNA

TABLE 3 | Major characteristic of several developed CRISPR-based biosensors for nucleic acid detection.

Name Cas systems Target Amplification Readout Sensitivity Specificity Time Ref

SHERLOCK Cas13a DNA/
RNA

RPA Fluorescent aM 1 nt <2 h Gootenberg et al., 2017;
Kellner et al., 2019

SHERLOCKv2 PsmCas13b, LwaCas13a,
CcaCas13b, AsCas12a

DNA/
RNA

RPA Fluorescent/
colorimetric

zM 1 nt 0.5–3 h Gootenberg et al. (2018)

SHERLOCK +
HUDSON

Cas13a DNA/
RNA

RPA Fluorescent aM 1 nt <2 h Myhrvold et al. (2018)

DETECTR Cas12a DNA RPA Fluorescent aM 6 nt ~2 h Broughton et al. (2020);
Chen et al. (2018)

HOLMES Cas12a DNA/
RNA

PCR Fluorescent aM 1 nt ~1 h Li et al. (2018)

HOLMESv2 Cas12b DNA/
RNA

LAMP/PCR Fluorescent aM 1 nt ~1 h Li et al. (2019a)

SHINE Cas13 RNA RPA Colorimetric aM - 50 min Arizti-Sanz et al. (2020)

Note. RPA, recombinase polymerase amplification; LAMP, loop-mediated isothermal amplification.
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from 100 μl of sample in less than 30 min (Chen F.-E. et al., 2021).
This kind of integration of microfluidic platforms streamlined
sample preparation procedures fully into autonomous and
portable devices, opening a new avenue to facilitate POC
methods for SARS-CoV-2 detection (Mu et al., 2020;
Ramachandran et al., 2020; Basiri et al., 2021).

Other Infectious Bacteria and Viruses
CRISPR-based methods have been widely developed for the
detection of infectious pathogens. Detection of HIV-1 termed
as Solid-State CRISPR-Cas12a-Assisted Nanopores (SCAN) can
recognize target DNA concentrations at least to 10 nMwithin 1 h,
without the requirement of pre-amplification steps (Nouri et al.,
2020). A report detecting HBV based on DETECTR showed an
LoD of 1 copy/μl within 13 min using fluorescent readout;
however, the LoD of lateral flow test strip technique costing
20 min was not shown (Ding R. et al., 2021). Utilizing lateral flow,
a Cas12a-based biosensor was designed for the detection of
Epstein–Barr virus (EBV), achieving a sensitivity of 7.1 ×
10–14 mol/L (approximately 42,000 copies per μl) (Yuan et al.,
2020). Another Cas12a-based biosensor using a dynamic aqueous
multiphase reaction system was introduced to detect human
papillomavirus (HPV) with sensitivities of 10–100 copies in
less than 1 h (Yin et al., 2020). Supported by automated
microfluidic mixing, an approach for Ebola virus detection
was established using Cas13a and achieved an LoD of 20 pfu/
ml (5.45 × 107 copies/ml) of purified Ebola RNA within 5 min
(Qin et al., 2019).

Cas12a-based biosensing was also developed for the detection
of a variety of pathogenic microorganisms, such as Listeria
monocytogenes (Li F. et al., 2021), Cryptosporidium parvum
(Yu et al., 2021), Salmonella (Ma et al., 2021), Helicobacter
pylori (Qiu et al., 2021), Yersinia pestis (You et al., 2021),
E. coli, and Staphylococcus aureus (Bonini et al., 2021).
Coupling with a reversible valve-assisted chip, sample
preparation, Cas12a reactions, and LAMP was integrated and
controlled precisely to perform the detection of V.
parahaemolyticus, achieving an LoD of 30 copies/reaction
within 50 min (Wu et al., 2021b). Cas14a (also known as
Cas12f1) was exploited for the detection of pathogenic bacteria
combined with a universal nucleic acid magneto-DNA
nanoparticle system, which can achieve 1 cfu/ml or 1 aM
sensitivity (Song F. et al., 2021). The Cas14a1-mediated
platform was also reported for the detections of pathogens
benefitting from its small size and independence of PAM (Ge
et al., 2021). Further development by introducing novel aptamer,
a Cas13a assay enables mix-and-read detection of viable
pathogenic bacteria without the need of reverse transcription,
nucleic acid amplification, and chemical labeling, which obtained
an LoD of 10 CFU for Bacillus cereus (Zhang T. et al., 2021).

Detection of Non-Infectious Diseases
CRISPR-based biosensors also showed promising potential for
the detection of non-infectious human diseases, such as cancer,
based on the features with disease-related gene mutations, single-
nucleotide polymorphism, DNA methylation, and so on (Aman
et al., 2020; Li B. et al., 2021; Wang et al., 2021c; Chen Y. et al.,

2021; Sheng et al., 2021). For example, a Cas12a-based biosensor
showed sensitive detection of gene-PIK3CAH1047R mutation low
at 0.001%, which has great potential to predict early-stage breast
cancer (Deng et al., 2021). A Cas12a-based transcription factor
detection method showed an LoD of 0.2 pM for NF-kappaB p50
subunit from cancer cell samples, which can be further applied for
physical dysfunction monitoring and drug screening (Li B. et al.,
2021). Recent work introduced a hairpin probe to preserve the
analytical fidelity and developed a CRISPR/Cas9-triggered
hairpin probe-mediated biosensing method, termed the CHP
system, specifically initiating double isothermal amplifications
when Cas9-mediated cleavage occurs and the hairpin probe
recognizes the original sequences (Wang M. et al., 2021). This
system has an LoD at the attomole level to quantify DNA targets
and identify single-nucleotide variations with allelic fractions
down to 0.01%–0.1%.

In addition to the genome profile, other disease-related nucleic
acids were chosen as detection targets. MicroRNAs (miRNAs),
which have been reported to be related to many biological
processes, are regarded as disease biomarkers. Hence, Cas12a
or Cas13a systems have been widely used for the profiling of
microRNAs, with or without assisting pre-amplification, and can
highly reach an fM sensitivity and single-base specificity (Tian
et al., 2020; Cui et al., 2021; Sha et al., 2021; Zhou et al., 2021).
Circulating tumor DNA (ctDNA) represented another type of
credible biomarkers for clinical diagnosis and prognosis. In this
regard, a CRISPR/Cas9 biosensor based on a 3D graphene/
AuPtPd nanoflower was developed to trigger entropy-driven
strand displacement reaction for ctDNA detection (Chen et al.,
2020a).

Testing in Animal Husbandry, Agriculture,
and Forestry
In socioeconomic terms, CRISPR-based biosensing techniques
were also developed to satisfy the demand from animal
husbandry, agriculture, and forestry. For example, a Cas12a-
based lateral flow biosensor combined with PCR amplification
was used for the detection of the African swine fever virus
(ASFV), achieving a sensitivity of 2.5 × 10–15 M within 2 h
from swine blood (Wu et al., 2020). Another Cas12a-based
reversible valve-assisted chip was established for the rapid
detection of V. parahaemolyticus for the seafood test, with an
LoD of 30 copies/reaction by using 600 μl of samples (Wu et al.,
2021b). In the field of agriculture and forestry, the Cas9 system
combined with AuNPs has been developed to identify plant-
associated disease through the detection of Phytophthora
infestans (Chang et al., 2019). Cas12a-based biosensors were
developed for the detection of plant DNA virus (Mahas et al.,
2021) and the nopaline synthase terminator in genetically
modified crops (Huang et al., 2020).

Sensing for Non-Nucleic Acid Targets
As shown above, robust development of CRISPR-based
biosensors was applied to detect the nucleic acid targets.
Combined with a microfluidic chip, the CRISPR/Cas9 system
can be developed for rapid and efficient kinase screening
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and further to separate cells according to different deformability,
with flexible cells flowing out and stiff cells remaining trapped
(Han et al., 2016). Recently, immunoassays based on CRISPR/Cas
systems for the sensitive and rapid detection of protein targets
were also explored, which is akin to the traditional ELISA (Zhao
Q. et al., 2021; Li H. et al., 2021). Li et al. designed a series of
aptamer-flanked activator DNA strands to correlate non-nucleic
acid analytes with the CRISPR/Cas12a system, enabling an
ultrasensitive detection (Li H. et al., 2021). Zhao et al.
employed DNA-AuNPs to establish the signal transduction
between trans-cleavage of CRISPR/Cas12a and protein analytes
and showed a quantitative level of attomolar, 1,000-fold
more sensitive and 15-fold wider detection range than
traditional ELISA (Zhao Q. et al., 2021). CRISPR-based
electrochemiluminescence biosensors have been explored for
the detection of enzymes like polynucleotide kinase/
phosphatase (Wang et al., 2020) and alkaline phosphatase
(Wang et al., 2021d), and signal factors like endogenous
chemokine (White et al., 2021) and sialic acid-binding
immunoglobulin-like lectins (Zhang K. et al., 2021). Similar to
aptamers, DNAzymes or DNA ligations were also designed to
introduce CRISPR/Cas12a biosensor for non-nucleic acid
targets, for example, testing melamine (Qiao et al., 2021),
metal ion Na+ (Li C.-Y. et al., 2020), NAD+, and ATP (Zhao
J. et al., 2021; Niu et al., 2021). Additionally, with the adoption of
AuNP, the applications of CRISPR-driven biosensors were
potentially extended, such as the ultrasensitive detection of

mycotoxins including aflatoxin M1 (Abnous et al., 2021),
assessment for telomerase activity by analyzing telomeric
repeat DNA, and internal control products (Cheng et al.,
2021). Furthermore, CRISPR/Cas12a-based biosensors can
monitor protein/small molecule interactions, like streptavidin/
biotin and anti-digoxigenin/digoxigenin (Kim et al., 2021).

CONCLUSION AND PERSPECTIVES

The CRISPR-based biosensors provide low-cost and easily
scalable tools for the detection of various targets with high
sensitivity and specificity. The combinations with
microfluidic techniques powerfully integrate multiple steps
of sample preparation, Cas-mediated catalysis, target
amplification, and readout. Currently, these biosensors
have been applied in nucleic acid-based diagnostics, protein
tests, metal ion monitoring, and protein/small molecule
interactions screening, which are promising in the fields of
healthcare, animal husbandry, agriculture, and forestry
(Figure 2).

Additionally, these platforms still face challenges in the
multiplex detection, due to the limited signal reporting
strategies and possible cross-reactions, which would be
introduced with the interference between recognition
molecules and various analytes, and exacerbated by the
complexity of clinical samples (Bruch et al., 2019b; Li

FIGURE 2 | Illustration of the wide applications of CRISPR-based biosensors.
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et al., 2019c). Introducing various labels, including
fluorophore dyes, enzymes, or beads, and effectively
combining different strategies will be promising directions.
SHERLOCKv2 made four-channel single-reaction
multiplexing of Cas12a and Cas13, increasing the signal
sensitivity by introducing an auxiliary CRISPR-associated
enzyme Csm6 (Gootenberg et al., 2018). Another successful
attempt used an orthogonal DNA/RNA collateral cleavage by
Cas12a and Cas13a assay in a single tube simultaneously,
which specifically illuminated two spectral differentiated
DNA and RNA probes, respectively, exhibiting 100%
sensitivity and specificity for clinical samples analysis (32
swab specimens for SARS-CoV-2 and 35 ASFV-suspected
swine blood samples) (Tian et al., 2022). Furthermore,
thinking of machine learning approaches and the internet
for wireless signal transmission over the cloud supports
futuristic decision making (Ibrahim et al., 2020).
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