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Abstract. We analyze a heat engine based on a hot cavity connected via
quantum wells to electronic reservoirs. We discuss the output power as well as
the efficiency both in the linear and nonlinear regime. We find that the device
delivers a large power of about 0.18 W cm−2 for a temperature difference of 1 K,
nearly doubling the power that can be extracted from a similar heat engine based
on quantum dots. At the same time, the heat engine also has good efficiency
albeit reduced from the quantum dot case. Due to the large level spacings that
can be achieved in quantum wells, our proposal opens a route toward room-
temperature applications of nanoscale heat engines.
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1. Introduction

Energy harvesters collect energy from the environment and use it to power small electronic
devices or sensors [1]. A wide variety of energy harvesters have now been proposed that
convert ambient energy to electrical or mechanical power, e.g. from vibrations, electromagnetic
radiation or by relying on thermoelectric effects. The latter systems turn out to be particularly
useful for converting heat on a computer chip back into electrical power, thereby reducing both
the power consumption of the chip as well as the need to actively cool it.

The main challenge of current research on thermoelectric energy harvesters is to find setups
that are both powerful and efficient at the same time. Artificially fabricated nanoscale structures
are promising candidates for highly efficient thermoelectrics. Twenty years ago, Hicks and
Dresselhaus [2, 3] demonstrated that mesoscopic one-dimensional wires as well as quantum
wells have thermoelectric figures of merit that are greatly enhanced compared to the bulk values.
Mahan and Sofo [4] later showed that the best thermoelectric properties occur in materials that
are good energy filters, i.e. have sharp spectral features.

A paradigmatic realization of such spectral features is given by quantum dots with
sharp, discrete energy levels. The thermopower of quantum dots in the Coulomb-blockade
regime coupled to two electronic reservoirs at different temperatures has been studied both
theoretically [5] and experimentally [6–11]. Later, the thermopower of open quantum dots [12]
and carbon nanotube quantum dots [13, 14] was investigated. Thermoelectric effects have also
been studied for resonant tunneling through a single quantum dot [15]. Compared to a weakly
coupled quantum dot in the Coulomb-blockade regime [16], the power is enhanced while at
the same time the efficiency is reduced due to the finite level width of the resonant state. More
complicated resonant tunneling configurations have been proposed to optimize the efficiency at
finite power output [17, 18].

Recently, there has been a growing interest in thermoelectrics with three-terminal
structures [19–29]. Four-terminal configurations (two Coulomb-coupled conductors subject
to currents) have been of interest in the discussion of nonequilibrium fluctuations [30–34].
In addition, reciprocity relations for multi-terminal thermoelectric transport have been
analyzed [35–39]. Compared to conventional two-terminal setups, they offer the advantage
of separating the heat and charge current flow. Furthermore, they naturally operate in a
conventional thermocouple-like fashion. While a system of two Coulomb-coupled quantum dots
in the Coulomb-blockade regime was shown to work as an optimal heat-to-current converter
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that can reach Carnot efficiency, the resulting currents and output powers are limited by the
fact that transport only proceeds via tunneling of single electrons [19]. A related setup where
the Coulomb-blockade dots are replaced by chaotic cavities connected via quantum point
contacts with a large number of open transport channels to the electronic reservoirs turns
out to deliver much larger currents. Nevertheless, the resulting output power is similar to
the Coulomb-blockade setup since the thermoelectric performance is determined by the weak
energy dependence of a single partially open transport channel [20]. This problem can be
overcome by a heat engine based on resonant-tunneling quantum dots. Such a system yields
a large output power of 0.1 pW for a temperature difference of 1 K between the hot and the cold
reservoir while at the same time it reaches an efficiency at maximum power of about 20% of
the Carnot efficiency at maximum power. In addition, the device can be scaled to macroscopic
dimensions by parallelization based on the use of self-assembled quantum dots [21]. Similar
setups have also been investigated both theoretically [40, 41] and experimentally [42] in their
dual role as refrigerators.

Here, we analyze the performance of a three-terminal energy harvester based on resonant
quantum wells. Our work is motivated by a number of advantages that we expect a quantum-
well structure to have over a quantum-dot setup. Firstly, quantum wells should be able
to deliver larger currents and, therefore, larger output powers because of the transverse
degrees of freedom. The available phase space for electrons that can traverse the well is
large. Secondly, a quantum-well structure might be easier to fabricate than a system of self-
assembled quantum dots that should all have similar properties in order to yield a decent device
performance, although there is good tolerance to fluctuations in dot properties [21]. Finally,
due to the large level spacing of narrow quantum wells, they are ideally suited for room-
temperature applications. Apart from these advantages, we also aim to investigate how the less
optimal energy-filtering properties of quantum wells compared to quantum dots deteriorate the
efficiency of heat-to-current conversion (quantum wells transmit any electron with an energy
larger than the level position whereas quantum dots transmit only electrons with an energy
exactly equal to the level energy).

Our paper is organized as follows. In section 2, we introduce the model of the quantum-well
harvester. We then present our results for the power and efficiency in section 3 analyzing both
the linear and the nonlinear transport regime. Finally, we give some conclusions in section 4.

2. Setup

The system we consider is schematically shown in figure 1. It consists of a central cavity
connected via quantum wells to two electronic reservoirs. In the following, we assume the
quantum wells to be noninteracting such that charging effects can be neglected in a simplified
model. We will revisit the effects of interactions relevant in the nonlinear regime with a more
realistic treatment in the future.

The electronic reservoirs, r = L, R, are characterized by a Fermi function fr(E) =

{exp[(E − µr)/(kBTc)] + 1}
−1 with temperature Tc and chemical potentials µr . The cavity is

assumed to be in thermal equilibrium with a heat bath of temperature Th. The nature of this
heat bath is not relevant for our discussion and depends on the source from which we want
to harvest energy. Strong electron–phonon and electron–electron interactions within the cavity
relax the energy of the electrons entering and leaving the cavity toward a Fermi distribution

New Journal of Physics 15 (2013) 095021 (http://www.njp.org/)

http://www.njp.org/


4

EL

ER

ΓL1 ΓL2 ΓR2 ΓR1

Tc Th Tc

µL = −eV/2
µC

µR = +eV/2

Figure 1. Schematic representation of the quantum-well based energy harvester.
A central cavity (red) kept at temperature Th by a hot thermal reservoir (not
shown) is connected via quantum wells to two electron reservoirs at temperature
Tc (blue). Chemical potentials are measured relative to the equilibrium chemical
potential.

fC(E) = {exp[(E − µC)/(kBTh)] + 1}
−1 characterized by the cavity temperature Th and the

cavity’s chemical potential µC.
The cavity potential µC, as well as its temperature Th (or, equivalently, the heat current

J injected from the heat bath into the cavity to keep it at a given temperature Th), have to be
determined from the conservation of charge and energy, IL + IR = 0 and J E

L + J E
R + J = 0. Here,

Ir denotes the current flowing from reservoir r into the cavity. Similarly, J E
r denotes the energy

current flowing from reservoir r into the cavity.
The charge and energy currents can be evaluated within a scattering matrix approach

as [43]

Ir =
eν2A
2π h̄

∫
dE⊥dEzTr(Ez)

[
fr(Ez + E⊥) − fC(Ez + E⊥)

]
(1)

and

J E
r =

ν2A
2π h̄

∫
dE⊥dEz(Ez + E⊥)Tr(Ez)

[
fr(Ez + E⊥) − fC(Ez + E⊥)

]
. (2)

Here, ν2 = m∗/(π h̄2) is the density of states of the two-dimensional electron gas inside the
quantum well with the effective electron mass m∗. A denotes the surface area of the well.
Ez and E⊥ are the energy associated with motion in the well’s plane and perpendicular to it,
respectively. The transmission of quantum well r is given by [44]

Tr(E) =
0r1(E)0r2(E)

(E − Enr)2 + [0r1(E) + 0r2(E)]2/4
. (3)

Here, 0r1(E) and 0r2(E) denote the (energy-dependent [43]) coupling strength of the quantum
well to the electronic reservoir r and the cavity, respectively. The energies of the resonant levels
(more precisely the subband thresholds) within the quantum well are given by Enr . For a parallel
geometry with well width L , the resonant levels are simply given by the discrete eigenenergies

New Journal of Physics 15 (2013) 095021 (http://www.njp.org/)

http://www.njp.org/


5

of a particle in a box, Enr = (π h̄n)2/(2m∗L2). In the following, we always restrict ourselves
to the situation of weak couplings, 0r1, 0r2 � kBTc, kBTh, whose energy dependence can be
neglected. Furthermore, we assume that the level spacing inside the quantum wells is large
such that only the lowest energy state is relevant for transport. In this case, the transmission
function reduces to a single delta peak, Tr(E) = 2π01r02r/(01r + 02r)δ(Ez − E1r). This allows
us to analytically solve the integrals in the expressions (1) and (2) for the currents and yields

Ir =
eν2A

h̄

0r10r2

0r1 + 0r2

[
kBTcK1

(
µr − Er

kBTc

)
− kBThK1

(
µC − Er

kBTh

)]
, (4)

as well as

J E
r =

Er

e
Ir +

ν2A
h̄

0r10r2

0r1 + 0r2

[
(kBTc)

2K2

(
µr − Er

kBTc

)
− (kBTh)

2K2

(
µC − Er

kBTh

)]
, (5)

where for simplicity we denote the energy of the single resonant level in the quantum wells
as Er . We furthermore introduced the integrals K1(x) =

∫
∞

0 dt (1 + et−x)−1
= log(1 + ex) and

K2(x) =
∫

∞

0 dt t (1 + et−x)−1
= −Li2(−ex) with the dilogarithm Li2(z) =

∑
∞

k=1
zk

k2 . The heat
current is made up from two different contributions. While the first one is simply proportional
to the charge current, the second term breaks this proportionality. We remark that in the case of
quantum dots with sharp levels, the latter term is absent [21].

3. Results

In the following, we first analyze the system in the linear-response regime and then turn
to the nonlinear situation. We assume that both quantum wells are intrinsically symmetric,
i.e. 0L1 = 0L2 ≡ (1 + a)0, 0R1 = 0R2 ≡ (1 − a)0. Here, 0 denotes the total coupling strength
whereas −16 a 6 1 characterizes the asymmetry between the coupling of the left and the right
well.

3.1. Linear response

We start our analysis by a discussion of the linear-response regime. To simplify notation,
we introduce the average temperature T = (Th + Tc)/2 and the temperature difference 1T =

Th − Tc. To linear order in the temperature difference 1T and the bias voltage eV = µR − µL

applied between the two electronic reservoirs, the charge current through the system is given by

IL = −IR =
eν2A0

2h̄
g1

(
EL

kBT
,

ER

kBT

) [
−eV − kB1T g2

(
EL

kBT
,

ER

kBT

)]
, (6)

with the auxiliary functions

g1(x, y) =
1 − a2

2 + (1 − a)ex + (1 + a)ey
(7)

and

g2(x, y) = x − y + (1 + ex) log(1 + e−x) − (1 + ey) log(1 + e−y). (8)

At V = 0, a finite current driven by 1T 6= 0 flows in a direction that depends on the position of
the resonant levels. If, e.g., ER > EL, electrons will be transferred from the left to the right lead.
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The power delivered by the heat-driven current against the externally applied bias voltage
eV is simply given by P = ILV . It vanishes at zero applied voltage. Furthermore, it also vanishes
at the so-called stopping voltage Vstop where the heat-driven current is exactly compensated by
the bias-driven current flowing in the opposite direction. In between these two extreme cases,
the output power depends quadratically on the bias voltage and takes its maximal value at
half the stopping voltage. Here, the maximal output power is given by

Pmax =
ν2A0

2h̄

(
kB1T

2

)2

g1

(
EL

kBT
,

ER

kBT

)
g2

2

(
EL

kBT
,

ER

kBT

)
. (9)

The effiency η of the quantum-well heat engine is defined as the ratio between the output power
and the input heat. The latter is given by the heat current J injected from the heat bath, i.e. we
have η = P/J . For a bias voltage V = Vstop/2 that delivers the maximal output power, the heat
current is given by

J =
ν2A0

2h̄
(kBT )2 1T

T
g3

(
EL

kBT
,

ER

kBT

)
, (10)

where the function g3(x, y) that satisfies 0 < g3(x, y) < 2π2/3 is given in the appendix for
completeness. Hence, the efficiency at maximum power is simply given by

ηmaxP =
ηC

4

g1

(
EL

kBT , ER

kBT

)
g2

2

(
EL

kBT , ER

kBT

)
g3

(
EL

kBT , ER

kBT

) (11)

with the Carnot efficiency ηC = 1 −
Tc

Th
≈

1T
T .

We now discuss the output power and the efficiency in more detail, first focusing on a
symmetric system, a = 0. In figure 2, we show the power as a function of the level positions
EL and ER. It is symmetric with respect to an exchange of EL and ER. The maximal output
power of approximately Pmax ≈

ν2A0

2h̄

(
kB1T

2

)2
arises when one of the two levels is deep below

the equilibrium chemical potential, −EL/R � kBT while the other level is located at about
ER/L ≈ 1.5kBT . An explanation for this will be given below.

Similarly to the power, the efficiency is also symmetric under an exchange of the level
positions. It takes its maximal value of η ≈ 0.1ηC in the region EL, ER > 0 where the output
power is strongly suppressed. For these parameters, energy filtering is efficient but the number
of electrons that can pass through the filter is exponentially suppressed. For level positions that
maximize the output power, the efficiency is slighty reduced to ηmaxP ≈ 0.07ηC. This efficiency
is much smaller than the efficiency at maximum power of a quantum-dot heat engine with
couplings small compared to temperature. The latter lets only electrons of a specific energy
pass through the quantum dot. Hence, charge and heat currents are proportional to each other.
In this tight-coupling limit, the efficiency at maximum power in the linear-response regime is
given by ηC/2 [45]. In contrast, the quantum wells transmit electrons of any energy larger than
the level position, because any energy larger than the ground state energy can be expressed as
E⊥ + Ez, where Ez is the z-component and E⊥ the perpendicular component of the electron’s
kinetic energy. Consequently, even high-energy electrons can traverse the barrier, provided most
of the energy is in the perpendicular degrees of freedom, and Ez matches the resonant energy.
Therefore, they are much less efficient energy filters.

We now aim to understand why the efficiency at maximum power of the quantum-well
heat engine is still only about a factor of three less than the efficiency at maximum power of a
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Figure 2. (a) Maximum power in units of ν2A0

2h̄

(
kB1T

2

)2
within linear response as

a function of the level positions inside the two quantum wells for a symmetric
setup a = 0. (b) Efficiency at maximum power in units of the Carnot efficiency
ηC within linear response as a function of the two level positions for a symmetric
configuration. Panels (c) and (d) show the same as (a) and (b) but for a system
with asymmetry a = 0.5.

quantum-dot heat engine with level width of the order of kBT [15, 21]. The latter configuration
has been shown to yield the maximal output power [21]. To this end, we analyze the situation
depicted in figure 1. The right quantum well acts as an efficient energy filter because the number
of electrons larger than ER is exponentially small. The energy filtering at the left quantum well
relies on a different mechanism. In order for an electron of energy E to enter the cavity, we need
to have fL(E) > 0 such that the reservoir state is occupied. At the same time, we also require
fC(E) < 1 such that a free state is available in the cavity. These conditions define an energy
window of the order kBT which explains why the quantum-well heat engine has an efficiency
comparable to that of a quantum-dot heat engine with level width kBT .

We now turn to the discussion of an asymmetric system, a 6= 0. In this case, both the output
power and the efficiency are no longer invariant under an exchange of the two level positions.
Instead, we now find that power and efficiency are strongly reduced for EL < 0 and ER > 0
if a > 0 (for a < 0, the roles of EL and ER are interchanged). In contrast, for EL > 0 and
ER < 0, power and efficiency are even slightly enhanced compared to the symmetric system.
This naturally leads to the question of which combination of level positions and coupling
asymmetry yields the largest output power. To this end, in figure 3 we plot the power as a
function of the asymmetry a and the level position EL. We find that the maximal power occurs
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Figure 3. Left panel: maximum power in units of ν2A0

2h̄

(
kB1T

2

)2
within linear

response as a function of one level position and the asymmetry of couplings.
Right panel: efficiency at maximum power in units of the Carnot efficiency ηC

within linear response as a function of one level position and the asymmetry of
couplings. For both plots, ER = −10kBT .

for a ≈ 0.46 and EL ≈ 2kBT while −ER � kBT . The resulting power is about 20% larger than
for the symmetric setup. At the same time, the efficiency at maximum power is also increased
compared to the symmetric system to η ≈ 0.12ηC, i.e. it is nearly doubled. We remark that
the maximal efficiency that can be obtained for the asymmetric system is given by η ≈ 0.3ηC.
However, similar to the symmetric setup, this occurs in a regime where the output power is
highly suppressed.

We now estimate the output power for realistic device parameters. Using meff = 0.067me,
T = 300 K, 0 = kBT and a = 0.5, we obtain Pmax = 0.18 W cm−2 for a temperature difference
1T = 1 K. Hence, the quantum-well heat engine is nearly twice as powerful as a heat engine
based on resonant-tunneling quantum dots [21]. We remark that materials with higher effective
mass yield correspondingly larger output powers. In addition, the quantum-well heat engine
offers the advantages of being potentially easier to fabricate. As typical level splittings in
quantum wells are in the range of 200–500 meV [46, 47], narrow quantum wells might also be
promising candidates for room-temperature applications though leakage phonon heat currents
become of relevance then. Finally, we remark on the robustness with respect to fluctuations in
the device properties. For the optimal configuration discussed above, fluctuations of ER do not
have any effect as long as −ER � kBT . Fluctuations of EL by as much as kBT reduce the output
power by about 20% as can be seen in figure 3. Hence, our device turns out to be rather robust
with respect to fluctuations, similarly to the quantum-dot based setup in [21].

3.2. Nonlinear regime

We now turn to the performance of the heat engine in the nonlinear regime. Nonlinear
thermoelectrics has recently received increasing interest [48–50]. We numerically optimized
the bias voltage V , the asymmetry of couplings a as well as the level positions EL,R in order
to maximize the output power. The resulting optimized parameters are shown in figure 4 as
a function of the temperature difference 1T . While the optimal asymmetry a ≈ −0.46 is
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Figure 4. Left panel: maximal output power (red) and efficiency at maximum
power (blue) as a function of temperature difference 1T . Right panel: level
position, bias voltage and asymmetry of couplings that maximize the output
power as a function of 1T .

independent of 1T , the optimal bias voltage grows linearly in 1T . The right level position
ER decreases only slightly upon increasing 1T . The left level position should be chosen as
−EL � kBT , independent of 1T . It is not shown in figure 4 as our numerical optimization
procedure results in large negative values for EL that vary randomly from data point to data
point because the dependence of the power on EL is only very weak in this parameter regime.

The resulting maximal power grows quadratically in the temperature difference, cf figure 4.
It is approximately given by Pmax = 0.3 ν2A0

2h̄ (kB1T )2, independent of T . Interestingly, for a
given value of 1T , we obtain the same output power both in the linear and in the nonlinear
regime. However, as the efficiency at maximum power grows linearly with the temperature
difference, it is preferrable to operate the device as much in the nonlinear regime as possible.
In the extreme limit 1T/T = 2, the quantum-well heat engine reaches ηmaxP = 0.22ηC, i.e.
it is as efficient as a heat engine based on resonant-tunneling quantum dots while delivering
more power [21]. We remark that the efficiency at maximum power is below the upper bound
ηC/(2 − ηC) given in [51].

4. Conclusions

We investigated a heat engine based on two resonant quantum wells coupled to a hot cavity. In
the linear-response regime we found that our device can yield a power that is nearly twice as
large as that of a similar heat engine based on resonant tunneling through quantum dots. At the
same time, the efficiency of the quantum-well heat engine is only slightly lower than that of
the quantum-dot heat engine. In addition, a device based on quantum wells offers the advantage
of being easy to fabricate and the perspective of room-temperature operation. Finally, we also
analyzed the performance in the nonlinear regime. There, we found that for a given temperature
difference the system yields the same output power as in the linear regime but with an increased
efficiency.

In this paper, we focused on the discussion of a setup with noninteracting quantum wells.
An interesting question for future research is: how does the inclusion of charging effects in the
wells relevant in particular in the nonlinear regime affect the performance of quantum-well heat
engines?
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Appendix

In this appendix, we give the explicit expression for the function g3(x, y) that enters the
expression (10) for the heat current. It is given by

g3(x, y) =
2π2

3
−

1

2
(x − y)g1(x, y) [x − y − 2g2(x, y)] − 2(1 + a)Li2

(
1

1 + e−x

)
−2(1 − a)Li2

(
1

1 + e−y

)
− 2(1 + a) log(1 + ex) log(1 + e−x)

−2(1 − a) log(1 + ey) log(1 + e−y) − g1(x, y)(1 + ex)(1 + ey) log(1 + e−x)

× log(1 + e−y) − g1(x, y) log2(1 + e−x)

[
ex sinh x +

1 + a

1 − a
ex(1 + ey)

]
−g1(x, y) log2(1 + e−y)

[
ey sinh y +

1 − a

1 + a
ey(1 + ex)

]
, (A.1)

and satisfies the bounds 0 < g3(x, y) < 2π 2/3.
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[19] Sánchez R and Büttiker M 2011 Phys. Rev. B 83 085428
[20] Sothmann B, Sánchez R, Jordan A N and Büttiker M 2012 Phys. Rev. B 85 205301
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