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Abstract

A large number of genome-wide association studies have been performed during the past five years to identify associations
between SNPs and human complex diseases and traits. The assignment of a functional role for the identified disease-
associated SNP is not straight-forward. Genome-wide expression quantitative trait locus (eQTL) analysis is frequently used as
the initial step to define a function while allele-specific gene expression (ASE) analysis has not yet gained a wide-spread use
in disease mapping studies. We compared the power to identify cis-acting regulatory SNPs (cis-rSNPs) by genome-wide
allele-specific gene expression (ASE) analysis with that of traditional expression quantitative trait locus (eQTL) mapping. Our
study included 395 healthy blood donors for whom global gene expression profiles in circulating monocytes were
determined by Illumina BeadArrays. ASE was assessed in a subset of these monocytes from 188 donors by quantitative
genotyping of mRNA using a genome-wide panel of SNP markers. The performance of the two methods for detecting cis-
rSNPs was evaluated by comparing associations between SNP genotypes and gene expression levels in sample sets of
varying size. We found that up to 8-fold more samples are required for eQTL mapping to reach the same statistical power as
that obtained by ASE analysis for the same rSNPs. The performance of ASE is insensitive to SNPs with low minor allele
frequencies and detects a larger number of significantly associated rSNPs using the same sample size as eQTL mapping. An
unequivocal conclusion from our comparison is that ASE analysis is more sensitive for detecting cis-rSNPs than standard
eQTL mapping. Our study shows the potential of ASE mapping in tissue samples and primary cells which are difficult to
obtain in large numbers.
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Introduction

Owing to the rapid advances in genotyping technology a large

number of genome-wide association studies have been performed

during the past five years to identify associations between SNPs

and human complex diseases and traits [1]. These studies have

detected genome-wide significant association signals for about

2200 loci with at least 240 diseases or traits [2,3]. As the majority

of the associated SNPs are located outside protein-coding genes,

the assignment of a functional role for the identified disease-

associated SNP is not straight-forward. Genome-wide expression

quantitative trait locus (eQTL) analysis of tissues or cell types that

are relevant for a disease or trait of interest is frequently used as

the initial step to define a function for disease-associated SNP

alleles [4,5,6]. An association between a SNP and the expression

level of a gene indicates that this SNP, or a variant in strong

linkage disequilibrium (LD), may be involved in the regulation of

the expression of the gene. Genome-wide eQTL analysis will

identify cis-acting rSNPs located on the same chromosome nearby

the target gene and trans-acting rSNPs that are usually located on a

different chromosome or distant from the target gene. The cis-

regulatory SNPs normally have stronger effects and are therefore

easier to identify by eQTL mapping than trans-acting SNPs.

Consequently, cis-regulatory SNPs identified in a relevant tissue

are functional candidates for further investigation of disease-

causing genetic variants.

Although quantitative, genome-wide allele-specific gene expres-

sion (ASE) analysis has previously been introduced as an

alternative to eQTL mapping of cis-regulatory SNPs associated

with human diseases and traits [7,8], it has not yet gained a wide-

spread use in disease mapping studies. One reason might be that

the power of ASE has not been systematically demonstrated in

comparison with that of the widely used approach of eQTL

mapping using gene expression data from hybridization micro-

arrays. The power and precision of ASE analysis stems from the

fact that allelic variations in gene expression levels are determined

within each sample, instead of variations in total gene expression

levels between samples of different genotype as in eQTL analysis.

In ASE analysis, using a genome-wide panel of SNP markers,

heterozygous SNPs are genotyped both at the RNA and genomic

DNA levels, the later being used as reference for the quantification

of allelic expression. The aim of the study presented here is to

compare the statistical power of identifying cis-regulatory SNPs by

ASE analysis with that of traditional eQTL mapping. As our study

focuses exclusively on the analysis of cis-rSNPs, we refer here to

eQTL mapping of cis-rSNPs as genotypic expression (GTE)

mapping. We performed an experimental comparison of ASE and

GTE by analyzing gene expression in primary monocytes purified

from human peripheral blood samples. Monocytes were analyzed

because they are a relevant cellular model for many complex

diseases.

By computing Bonferroni-corrected p-values, false discovery

rate p-values and by determining the overlap between the SNPs

with the strongest association signals identified by both methods in

addition to an analysis of the effect of minor allele frequencies

upon the power of the methods, we show unequivocally that ASE

analysis is more powerful than GTE mapping for identifying cis-

regulatory SNPs.

Results

In this study we compared two approaches for genome-wide

association analysis of SNPs against gene expression levels. Using

GTE mapping, the SNP genotypes are tested for an association

with the total gene expression levels, and using ASE analysis, the

relative expression levels between the two alleles of a transcript are

used as the quantitative phenotype against which the SNP

genotypes are analyzed. The results presented here are based on

GTE mapping of RNA extracted from 395 monocyte samples and

ASE analysis of a subset of 188 monocyte samples from the same

donors. The donors are healthy adult blood donors of European

origin recruited from the United Kingdom National Blood Service

Centre in Cambridge, UK as part of the Cardiogenics Tran-

scriptomic Study. The power of GTE mapping and ASE analysis

to detect association signals from SNPs that affect gene expression

in the monocytes was explored by comparing the number of SNPs

with significant association signals obtained using different p-value

thresholds in sample sets of different sizes. To enable comparison

of the statistical power between the two approaches the ASE

dataset was down-sampled to 95 and 50 samples, and the GTE

dataset was down-sampled to 188, 95 and 50 samples. The

principles of the two methods are illustrated in Supplementary

Figure S1.

Association analysis to detect cis-acting regulatory SNPs
The comparative set of 517K SNP markers for which genotype

data was available for all samples were used for association analysis

against the total gene expression levels and the ASE levels. After

filtering, 12145 probes representing 10059 Refseq transcripts

remained for the GTE analysis and 13146 Refseq transcripts

remained for the ASE analysis. Thus 544531 and 638845

association tests were performed for GTE mapping and ASE

mapping, respectively. By filtering out association tests that were

based on too few data values, for ASE we retain 620 k to 438 k

tests depending on the sample size and for GTE 428 k to 343 k

tests depending on the sample size, see further below. For

significance according to Bonferroni at pcorr = 0.05 these numbers

imply that an observed p-value of 7.8e-8 is required for the

complete ASE analysis and for pcorr = 0.01 a p-value of 1.6e-8 is

required. Similarly, for the complete GTE analysis, an observed p-

value of 1.2e-7 for pcorr = 0.05 and 2.3e-8 for pcorr = 0.01 are

required. To avoid inflated false positive rates, both Bonferroni

and FDR adjustments require that random sampling or permu-

tation of the data should yield uniformly distributed p-values

under the null hypothesis. To verify that the p-values were

uniformly distributed, the GTE and ASE data was permuted 500

times by shuffling the sample identifiers once for each iteration. In

this way, the connection between genotypes and ASE values are

broken while the structure of the data is retained so that phasing

and the calculation of the median ASE levels is not affected.

According to the permutation tests, the number of p-values in the

very low range was inflated in both the GTE and the ASE data.

However, filtering out association tests that were based on linear

regression analysis of less than four ASE values per genotype

group in the ASE analysis and less than three expression values per

genotype group in the GTE analysis, abolished the inflation, see

QQ-plots in Figure S2.

Table 1 shows the number of significant association signals

obtained by GTE mapping and ASE analysis at different p-value

thresholds. The association signals are not filtered by linkage

disequilibrium for either of the methods. For all sample sizes the

ASE method yielded a larger number of significant SNP-transcript

associations than the GTE analysis (top panel of Table 1). As the

same SNP could be associated with several transcripts, we also

examined the number of observed SNP-transcript associations

when only the strongest association for each SNP was considered.

As before, the ASE method identified a larger number of these

SNPs than the GTE analysis at all sample sizes (middle panel of

Table 1), and also a larger number of transcripts to which at least

Power of Allele-Specific Gene Expression Analysis
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one SNP was significantly associated (bottom panel of Table 1).

The difference in number of putative cis-rSNPs detected with

significant association signals between the ASE and GTE methods

is most pronounced in the smaller sample sets, where up to 31

times more cis-rSNPs and up to nine times more transcripts were

detected by ASE analysis using the same sample size and a 5%

FDR threshold. As can be seen in Table 1 the advantage of the

ASE approach is less pronounced at the larger sample sizes. A

larger number of significant associations were also detected by

ASE than by GTE when using the stricter Bonferroni cut-off,

where only the strongest association signals are detected.

The number of significantly associated rSNPs based on the

FDR p-values indicates that up to eight times fewer samples are

required for ASE analysis to achieve the same statistical power as

GTE mapping, at least for the sample sizes analyzed in this study.

From the bottom panel of Table 1 it can also be seen that in the

ASE analysis almost all transcripts show significant ASE when

using the 5% FDR threshold, and that over half of them have

significant ASE when using the stricter Bonferroni pcorr = 0.05 cut-

off. Most of the 13146 Refseq transcripts that were analyzed for

ASE association show some degree of allele-specific expression,

but it was unexpected that the ASE method would detect

significant associations with transcripts showing only marginal

effect sizes. However, formal statistical significance does not

necessary imply that the effect is large enough to be biologically

relevant. In a biological application one needs to consider having a

cutoff for the minimal ASE-level as well as the p-value.

Location of cis-regulatory SNPs in gene regions
The fraction of significantly associated rSNPs compared to all

SNPs is plotted in Figure S3 according to their relative distance to

the transcription start and termination sites. In both the ASE and

GTE data there is a peak in the abundance of putative rSNPs close

to the transcription start site and immediately after the transcrip-

tion termination site. There is also an over-representation of

rSNPs in the regions before the start site and after the termination

site compared to the transcribed regions. The enrichment is more

evident at the lower p-value thresholds obtained by the Bonferroni

correction, indicating that the strongest effect occurs by SNPs

located closest to the transcription start and termination sites.

Effect of increased transcript flanking regions and less
stringent filtering

When including SNPs within 500 kb regions flanking the

transcripts instead of 100 kb for GTE mapping, to facilitate

Table 1. Comparison of the power to detect cis-acting
regulatory SNPs using allele-specific expression (ASE) and
genotype expression (GTE) analysis.

Type of p-
value
threshold Method Number of samplesa

395 188 95 50

Total number of significant SNP-transcript associations

FDR 5% ASE NA 203893 127990 65258

GTE 31963 16757 6879 2077

ASE/GTE NA 12.2 18.6 31.4

FDR 1% ASE NA 155205 87523 38685

GTE 22651 11101 4242 1151

ASE/GTE NA 14.0 20.6 33.6

Bonferroni
correction
pcorr = 0.05

ASE NA 58078 23213 6781

GTE 9424 4277 1439 390

ASE/GTE NA 13.6 16.1 17.4

Bonferroni
correction
pcorr = 0.01

ASE NA 51383 19357 5191

GTE 8337 3677 1189 300

ASE/GTE NA 14.0 16.3 17.3

Total number of significantly associated SNPs

FDR 5% ASE NA 111978 76161 42100

GTE 24379 13479 5887 1863

ASE/GTE NA 8.3 12.9 22.6

FDR 1% ASE NA 88837 54758 26284

GTE 17975 9281 3739 1064

ASE/GTE NA 9.6 14.6 24.7

Bonferroni
correction
pcorr = 0.05

ASE NA 37995 16467 5037

GTE 8148 3855 1349 370

ASE/GTE NA 9.9 12.2 13.6

Bonferroni
correction
pcorr = 0.01

ASE NA 34131 13876 3881

GTE 7266 3335 1119 284

ASE/GTE NA 10.2 12.4 13.7

Total number of transcripts with significant SNP associations

FDR 5% ASE NA 12389 7111 6447

GTE 5051 3364 1850 740

ASE/GTE NA 3.7 3.8 8.7

FDR 1% ASE NA 11914 6788 5472

GTE 3620 2256 1158 423

ASE/GTE NA 5.3 5.9 12.9

Bonferroni
correction
pcorr = 0.05

ASE NA 8723 4395 1984

GTE 1867 1064 476 165

ASE/GTE NA 8.2 9.2 12.0

Bonferroni
correction
pcorr = 0.01

ASE NA 8223 3994 1607

Table 1. Cont.

Type of p-
value
threshold Method Number of samplesa

395 188 95 50

GTE 1712 948 407 133

ASE/GTE NA 8.7 9.8 12.1

aMedian values of 10 runs for the random sample subsets. The top panel show
the number of significant SNP-transcript associations, the middle panel show
the number of significantly associated SNPs when counting only the best SNP-
transcript association for each SNP, and the bottom panel show the number of
transcripts that have at least one significantly associated SNP. Both the
Bonferroni and FDR p-value thresholds are used. ASE/GTE = Ratio between
number of significant ASE and GTE associations.
doi:10.1371/journal.pone.0052260.t001
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identification of SNPs located more distantly from the transcripts,

the number of significant association signals decreased by one

third using 5% FDR and all the samples. However, the number of

significantly associated transcripts is similar with 805 associated

transcripts lost in the 100 kb region and 913 new associated

transcripts found in the extended region. When the same

expanded 500 kb flanking regions were included in the ASE

analysis a similar amount of significant association signals as for

100 kb flanking regions were observed, although the p-values were

corrected for almost four times as many tests. Here, 127 transcripts

associations were lost in the 100 kb region and 169 new transcripts

were found in the extended region. For both methods it is worth

investigating different sizes of flanking regions to define the

optimal balance between the number of association tests and the

number of false negative rSNPs. Additionally, the ASE levels were

determined using the less stringent requirement of three informa-

tive SNPs instead of five for calculating the ASE level which

yielded 1343 additional transcripts for analysis. In this case a small

decrease in number of significant association signals was observed

due to slightly larger number of tests and a lower signal to noise

ratio.

Overlap in SNPs detected by ASE and GTE analysis
To further compare the power of GTE and ASE mapping, we

determined the overlap in cis-rSNPs detected by the two methods

at different sample sizes. The overlap in transcripts targeted by the

GTE arrays and the requirement of heterozygous SNPs in ASE

transcript windows sets an upper limit to the number of

overlapping rSNPs that are detectable by both methods. In our

data between 150 k and 200 k SNPs were eligible for assessing

overlapping results between the two methods, depending on which

sample sizes were compared. The SNPs were sorted according to

p-value and the top 9536 SNPs from the GTE analysis were

compared with the top 38203 SNPs from the ASE analysis,

corresponding to a Bonferroni pcorr = 0.05 threshold for GTE

sample size 395 and ASE sample size 188. The overlap was

calculated for both methods and all sample sizes, see Figure 1. The

p-value cut-offs were adapted so that the same SNP top-list sizes

were obtained at all sample sizes for both GTE and ASE.

Using this approach it can be assessed if an increase in sample

size would yield more overlapping rSNPs or if most of the rSNPs

have already been identified. In Figure 1A the rSNP overlap

increases only marginally as the ASE sample size increases, while a

relatively large gain of additional rSNPs is obtained by increasing

the GTE sample size. Figure 1B is another representation of the

same data showing the comparison in the opposite way. Figure 1

show that the gain in overlapping low p-value SNPs is larger when

increasing the GTE sample size than when increasing the ASE

sample size. This observation indicates that ASE is a more

powerful technique as it has found most of the overlapping SNP

already at low sample sizes. Moreover, Figure 1 show that high-

ranking rSNPs detected by one of the two methods are to a high

degree also detected at high rank by the other method and that the

two methods are in good agreement with each other for low p-

value rSNPs.

Effect of minor allele frequency of SNPs
Finally, to examine how the minor allele frequency (MAF) of the

SNPs affects the power of the two methods to detect putative cis-

rSNPs, the genotype data was divided into bins, with all SNPs

within a MAF window of 1% unit between 0% and 50% in each

bin. The fraction of significantly associated rSNPs within each 1%

MAF window was determined based on Bonferroni-corrected p-

values at a pcorr = 0.05 threshold. Figure 2 shows the fraction of

rSNPs detected by GTE and ASE at different sample sizes plotted

Figure 1. Overlap of significantly associated rSNPs identified
by ASE and GTE. The percentage of overlapping rSNPs detected by
allele-specific expression (ASE) and genotype expression (GTE) analysis
is plotted for varying numbers of samples. The top 9536 SNPs from the
GTE analysis are compared with the top 38203 SNPs from the ASE
analysis, which corresponds to a Bonferroni threshold of p = 0.05 for a
GTE sample size of 395 and an ASE sample size of 188. The p-value cut-
offs were adapted so that the same SNP top-list sizes were obtained at
all sample sizes for both GTE (p-value of 1.17E-7, 1.06E-4, 1.93E-3, 6.12E-
3 for n = 395, n = 188, n = 95, and n = 50 respectively) and ASE (p-value
of 8.06E-8, 9.35E-5, 4.90E-3 for n = 188, n = 95, and n = 50 respectively).
The vertical axes show the percentage of SNPs in the top-lists detected
by both GTE and ASE analysis and the horizontal axes show the number
of samples analyzed using GTE and ASE, respectively. The percentage
overlap is calculated by dividing the number of overlaps with the
number of top SNPs in the GTE analysis. In (A), each line shows the
effect on the number of overlapping SNPs detected by ASE analysis of a
specific sample size when the sample size in GTE analysis was increased.
In (B), each line shows the effect on the number of overlapping rSNPs
detected by GTE analysis of a specific sample size when the samples
size in ASE analysis is increased.
doi:10.1371/journal.pone.0052260.g001

Figure 2. The ability of ASE and GTE analysis to detect
significantly associated rSNPs at different MAF. Fractions of
rSNPs are shown for different minor allele frequencies (MAF) with
significant association signals according to a Bonferroni-corrected p-
value of 0.05. Each data point underlying the curves represents the
fraction of significant associations within a 1% MAF bin. Sliding 5% MAF
window averages are plotted for different sample sizes analyzed by ASE
and GTE. Both methods detect a lower fraction of low frequency rSNPs,
compared to the fraction of all the SNPs at the same frequency (black
line). The ASE method detects a higher fraction of the SNPs (solid lines)
with a MAF ,15% than GTE (dashed lines) regardless of sample size
except for the largest GTE sample set.
doi:10.1371/journal.pone.0052260.g002
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as a function of the MAF. As can be seen in Figure 2, there is a

correlation between the allele frequency of the SNPs and the

detected fraction of rSNPs, with a lower fraction of detected rSNPs

with lower MAF, as would be expected. However, the sliding

widows of average MAF-values also show that the ASE analysis

(solid lines) detects a larger fraction of rSNPs with MAF ,15%

than GTE mapping (dashed lines) regardless of sample size, with

the exception of the largest GTE sample size. When absolute

numbers are compared the difference is much more profound.

Discussion

In our study we show by three approaches, i.e. using adjusted p-

value thresholds obtained by the Bonferroni and FDR approaches,

by analysis of top-list overlaps and MAF analysis to assess the

relative power of ASE analysis and eQTL mapping of cis-rSNPs

(GTE mapping), that ASE analysis is more powerful than GTE

analysis for mapping cis-regulatory SNPs. The high power of ASE

originates from the fact that using ASE, the relative expression

levels of the two alleles of a transcript are measured in the same

sample, and thus trans-acting regulatory factors and other

differences in gene expression between samples due to exposure

of the samples to different environmental conditions are controlled

for. A limitation of mapping rSNPs using ASE, compared to

traditional GTE mapping is that ASE would not be applicable to

the rare cases of transcripts lacking heterozygous SNPs and also

that transcripts without enough heterozygous SNP coverage on the

genotyping chip would be excluded. This limitation can be partly

circumvented by using the sum of the fluorescence signals from the

two alleles of each SNP as a quantitative measure for total gene

expression levels. Also, our ASE approach is only sensitive for

variants altering transcription and not those affecting splicing,

while it is possible to find these using eQTL approaches if the

microarray used have large enough resolution.

To perform a comparison that was as fair as possible, we

analyzed exactly the same SNPs using both methods. For these

SNPs linkage disequilibrium (LD) was not considered as it is not

unequivocal to distinguish between SNPs that are in LD and SNPs

that are not. For the purpose of comparing the relative power of

ASE and GTE, a comparison without consideration of LD is

adequate. The number of transcripts analyzed in the comparison

was also similar, although not identical. The 15% higher number

of transcripts that were eligible for ASE analysis has no impact on

the conclusion from our study, but instead reflects another

advantage of ASE, which is that the ASE approach does not

require annotated transcripts and probe design prior to perform-

ing an experiment. The flexibility of avoiding predesigned probes

and the high power of ASE using SNP genotyping is shared with

second generation transcriptome sequencing (RNA-seq), where

both total gene expression and allele-specific expression levels can

be determined in the same data set. Thus ASE will be an

informative approach for RNA-seq data, particularly for samples

with available genotype data. An additional advantage of RNA-

seq compared to ASE analysis using SNP genotyping is that

alternatively spliced transcripts and strand specific gene expression

can be detected, provided that the sequencing coverage is

sufficient.

In a previous study we have shown the low level of noise in ASE

data for 8000 genes using a closely related genotyping assay [9]. In

that study, the median correlation for allelic fractions in DNA

(Allele1/(Allele1+Allele2)) between replicas was 0.9969 (range

0.9934–0.9986) and for RNA 0.9956 (range 0.9779–0.9984) in

197 samples. In our data the SD for gDNA allele ratios (A1/

(A1+A2)) over a region is very small, with an average of 0.014

(range 0.002–0.071). For RNA the SD over a region can only be

calculated per sample as the allelic ratio in RNA is expected to

vary depending on differences between samples in allele specific

expression levels. The SD for the allelic ratio over a region per

sample is therefore higher (average 0.10, range 0.00–0.31).

Additionally, we have determined the standard deviations for the

ASE-levels between samples over the regions analyzed in the

current study. For 12% of the transcript regions over half of the

samples have an ASE-level with higher standard deviations than

the mean. These could be regions with either a considerable level

of alternative splicing, indications of phasing errors or a high error

rate in the genotyping fluorescence signal. Of these regions, 9%

persist even when considering only regions with an associated p-

value below the Bonferroni threshold. If there would be phasing

errors, the signals could be false positives, but the association signal

would be strengthened in most cases when the phasing is

corrected. A similar reasoning is true for splice variants, in which

a smaller region from which the splice has been excluded site

would probably strengthen the association signal. Functional

assessment of disease-associated variants by ASE analysis has been

applied to lymphoblastoid cell lines [10], osteoblasts [10],

fibroblasts [11], and T-cells [12]. By ASE analysis of a large set

of primary human monocytes, we show here that as little as 50

samples may be sufficient for robust mapping of many cis-

regulatory genetic variants. The high power of ASE is reassuring

for functional refinement of SNP identified by genome-wide

association studies of disease and traits in relevant tissue or cell

samples, which in many cases are difficult to obtain in large

numbers.

Materials and Methods

Ethics Statement
The study is approved by the Cambridgeshire 1 Research Ethics

Committee.

RNA and DNA samples
Circulating monocytes were collected from healthy adult blood

donors of European origin recruited from the United Kingdom

National Blood Service Centre in Cambridge, UK as part of the

Cardiogenics Transcriptomic Study. Samples from patients with a

recent or acute illness were excluded. DNA was extracted from

peripheral blood leukocytes using the guanidine hydrochloride -

chloroform method followed by quantification by PicoGreen

(Invitrogen, Paisley, UK). CD14+ magnetic microbeads (auto-

MACS Pro, Miltenyi Biotec, Bergisch Gladbach, Germany) were

used to isolate monocytes from whole blood. RNA was extracted

from cell pellets of freshly isolated monocytes by homogenization

with Trizol-reagent (Invitrogen, Paisley, UK), chloroform-ethanol

extraction and purification using Qiagen RNAeasy columns and

reagents, followed by on-column DNase treatment. cDNA was

synthesized using reagents from the Illumina TotalPrep RNA

Amplification Kit. Synthesis of cDNA was performed according to

the protocol provided by the supplier, except that the poly-dT

primers were substituted by random decamers (Applied Biosys-

tems, Carlsbad, California, US).

Genotype expression (GTE) analysis
Human-Ref 8 v3.0 arrays (Illumina Inc) containing 24526

probes were used to generate the gene expression data for GTE

mapping essentially as described previously in [13]. A total of

31535 transcripts were extracted from Refseq hg18 after removing

all non-unique transcripts, including both genes and some

lncRNAs. These Refseq transcripts were used to map the

Power of Allele-Specific Gene Expression Analysis
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expression probes from the Human-Ref v3.0 arrays to their

corresponding transcripts. Probes that did not generate expression

signals above the detection score threshold, corresponding to a p-

value of 0.05 were filtered out, leaving data from 12145 probes for

the GTE analysis. Of the corresponding transcripts there was 22%

that had overlaps with other transcripts. The raw GTE expression

data was transformed using variance stabilization transformation

(VST) and subjected to quantile normalization using the R

packages Lumi and Beadarray.

Of the monocyte samples, 247 were subjected to genome-wide

genotyping for GTE mapping with Human 660 Quad BeadChips

(Illumina Inc, San Diego, California, US) and 188 samples were

genotyped for the ASE analysis by the Infinium II assay with

Human 1.2 M Duo custom BeadChips v1 (Illumina Inc). To apply

a comparative set of markers for the comparison of GTE and ASE,

only those 517 K markers that were present on both chips were

used for GTE and ASE mapping. Genotypes from the 660 Quad

BeadChips were called in Illuminus [14] using default parameters,

excluding genotypes with a posterior probability ,0.9 of being

correct.

Allele-specific expression (ASE) analysis
Genotyping of the 188 RNA samples for ASE analysis was

performed using 1.2 M Duo custom BeadChips v1 (Illumina Inc).

The cDNA and genomic DNA (gDNA) from each sample were

genotyped on the same BeadChip to minimize experimental

variation. Genotypes were called in gDNA using Genome Studio

version 2009.2 (Illumina Inc.). A call rate of 0.99 was set as the

threshold for genotype calls. A quadratic function was employed to

normalize the raw two-colour fluorescence signals from the assay

with respect to the dependency between signal intensity and the

relative signal intensities of the two fluorophores corresponding to

the two SNP-alleles. Phasing of the SNP data was performed by

Impute2 [10] on the complete SNP data set, including both

heterozygote and homozygote genotypes from the 1.2 M Bead-

Chips to determine the haplotypes in gDNA for each individual

sample. Using phased samples the ASE levels can be assigned in

bidirectionally to indicate which of the two alleles of each SNP is

over-expressed according to the highest haplotype probability

obtained from the phasing. ASE levels were calculated for each

heterozygote SNP as the difference in allele fractions between

cDNA and gDNA according to the equation: Allele1cDNA/

(Allele1cDNA+Allele2cDNA) – Allele1gDNA/(Allele1gDNA+Alle-

le2gDNA). The same 31535 transcripts as in GTE analysis were

extracted from Refseq genes [15] release 47 for hg18. After

filtering out transcripts with fewer than five informative SNPs,

13146 Refseq transcripts remained for the ASE analysis, out of

which 28% had overlaps with other transcripts. A SNP is

informative for detecting ASE if at least one sample is

heterozygous for that SNP. The average number of informative

SNPs per transcript was 22.9 (median 13). The ASE levels of the

phased SNPs where then averaged over the corresponding

transcript window to obtain the ASE level for the expressed

haplotype in each sample. The ASE levels were then used in the

association tests to detect significantly associated rSNPs as detailed

in the section Statistical Analyses below.

Because the genotype calling from the 660 Quad and the 1.2 M

Duo BeadChips differed slightly, the result from the genotype calls

were compared for the overlapping 517 K SNPs in the 188

samples that where genotyped on both chip types. The genotypes

in these data sets were found to differ at as little as 0.0056% of the

bases and only 0.19% of the SNPs were in any way affected by this

minor difference in genotype calls.

The allelic genotyping data and expression in this paper are in

the process of being deposited in the EGA with accession number

EGAS00000000119 (https://www.ebi.ac.uk/ega).

Statistical analyses
The set of 517 K genotyped SNPs that were shared between the

GTE and ASE analysis was used to identify rSNPs. GTE mapping

and ASE analysis was performed using the genotypes of all SNPs

located in a region of 100 kb upstream and downstream of the

transcript as well as within the region of the transcript itself. For

ASE these SNPs were tested by linear regression for associations

between SNPs and ASE levels essentially as described by Pastinen

et al [7]. In brief, the heterozygous samples are treated as two

separate groups depending on by the phasing, and the homozy-

gous samples are included as one group in the linear regression to

represent the baseline ASE level. This analysis differs from that for

GTE where the heterozygous samples form one group and the

homozygous samples form two different groups. For GTE,

association of expression levels with genotypes was calculated

using linear regression with age and sex of the monocyte donors as

confounding factors. The statistical analysis was performed using

R. The Bonferroni [16] and the Benjamini-Hochberg [17] false

discovery rate adjustments were applied to correct for multiple

testing. The Bonferroni correction can be expressed as: pcorr = p*n,

where pcorr is the corrected p-value and n is the number of tests.

The FDR adjusted p-values were calculated by a linear step-up

adjustment [18] in the following fashion: pcorr = (m/i)*p, where m

is the number of tests and i is the ranking of p-values among all

observed p-values when they are sorted in increasing order. FDR

p-values that do not monotonically increase were finally replaced

with the smallest observed FDR value for any higher ranked

probe.

Supporting Information

Figure S1 Schematic picture of the principles of GTE
and ASE analysis. In GTE the total expression level is

measured by a specifically designed expression probe usually

located in a transcript. The effect of different genotypes (shown in

yellow) can then be tested against the total expression level of each

sample to find regulatory SNPs using a linear regression

association test. In ASE the allele-specific expression level is

measured by the difference in fluorophore signal intensity between

the two alleles in the same sample. The average level is calculated

for all heterozygous SNPs in the region. This value is then used

when testing whether there is a significant effect of the tested

genotype (shown in yellow) in a similar association test as in GTE.

(TIF)

Figure S2 QQ-plots for the permuted p-value distribu-
tion compared with a uniform distribution. In Panel A–C,

QQ-plots are shown for ASE and in panel D–G QQ-plots are

shown for GTE using filtering that removes SNPs with few data

points in each genotype group. The permuted data are expected to

yield uniformly distributed p-values under the null hypothesis and

should therefore follow the red line representing the uniform

distribution, which is also the case. However, without filtering, the

distribution is starting to skew towards inflated p-values prior to

the Bonferroni correction threshold is reached, data not shown.

(TIF)

Figure S3 Fraction of rSNPs in relation to the position of
TSS and TTS. The fraction of significant association signals

compared to the total number of SNPs in 1 kb bins at different

distances to the transcription start site (A, B, F, E) and
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transcription termination site (C, D, G, H) is shown for ASE using

188 samples and for GTE using 395 samples. In A–D the FDR

5% threshold is used and in E–H the Bonferroni 0.05 threshold.

All figures show peaks around the start and termination sites.

(TIF)
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