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Summary

In modern genetic epidemiology studies, the association between the disease and a

genomic region, such as a candidate gene, is often investigated using multiple SNPs. We

propose a multi-locus test of genetic association that can account for genetic effects that

might be modified by variants in other genes or by environmental factors. We consider use of

the venerable and parsimonious Tukey’s “one degree-of-freedom” model for interaction which

is natural when individual SNPs within a gene are associated with disease through a common

biologic mechanism; in contrast, many standard regression models are designed as if each

SNP has unique functional significance. Based on Tukey’s model, we propose a novel, but

computationally simple, “generalized” test for association that can simultaneously capture

both the main effects of the variants within a genomic region and their interactions with the

variants in another region or with an environmental exposure. We compared performance of

our method to two standard tests for association, one ignoring gene-gene/gene-environment

interactions and the other based on a saturated model for interactions. We demonstrate

major power advantages for our method in analysis of data from a case-control study for the

association between colorectal adenoma and DNA variants in NAT2 genomic region, which

are well known to be related to a common biologic phenotype, and under different models

for gene-gene interactions using simulated data.

Keywords: case-control study, efficient score, epistasis, multi-locus test, locus heterogeneity,

omnibus test, Tukey’s 1 d.f model for interaction;
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Identification of large number of single nucleotide polymorphisms (SNP) across human

genome has given rise to great opportunity for fine mapping of disease susceptibility loci

(DSL) through population-based association studies1–5. An increasingly popular design for

association studies has been the “indirect” approach, where the association between the

disease and a genomic region, such as a candidate gene, is studied using a set of marker

SNPs that themselves may or may not have causal effects, but would likely to be in linkage

disequilibrium with the underlying causal variants, if any exists. The availability of linkage

disequilibrium information across human genome from the international HapMAP project6,7

and a number of other emerging databases8,9 is now enabling researchers to select informative

sets of “tagging” SNPs that could be used as markers for indirect association studies10–13.

A central statistical issue for indirect association studies is how to optimally analyze

the association of a disease phenotype with multiple tightly linked SNPs within a genomic

region. A locus-by-locus approach could be optimal if one of the genotyped SNPs itself is

causal. In contrast, multilocus tests, that assess the association of a disease with multiple

marker SNPs simultaneously, could be superior when several SNPs may be associated with

the disease, either due to their direct causal effects or due to their linkage disequilibrium

with the underlying causal variant(s) in the region. Two classes of multivariate tests, one

based on multi-locus genotype data12,14 and the other based on reconstructed haplotype

information15,16 , are now popularly used in practice.

Another important issue for identification of DSL for complex diseases is that the

etiologic effect of the underlying causal variants are likely to be complex due to a number

of factors, including, but not limited to, gene-gene and gene-environment interactions.

It has been long recognized that failing to account for these sources of heterogeneity

could dramatically reduce the power of detecting DSLs in both linkage and association

studies. Starting from the late 80’s, a variety of “multi-point” methods were developed

to account for gene-gene interaction in linkage analysis17–21. Methods for linkage scan

accounting for gene-environment interactions have also received some attention22,23. More

recently, a number of powerful methods also have been developed for incorporating gene-gene

interactions in association studies24,25. These methods, however, are mostly suitable for

“direct” association studies involving candidate SNPs and cannot exploit the structure
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of “indirect” association studies involving groups of tightly linked SNPs that could be

statistically correlated due to LD or functionally related due to underlying common biologic

mechanisms.

In this article, we propose a novel method for incorporating gene-gene and gene-environment

interactions into association studies. When several SNPs are involved within a gene, the

number of parameters required in standard statistical models for gene-gene and gene-environment

interactions could easily become very large, potentially causing loss of power, either due to

the use of increased degrees of freedom or due to the need of multiple testing adjustments. We

consider use of the Tukey’s 1 d.f model for interaction26,27. We show that this parsimonious

form of interaction can be motivated through a conceptual framework where the observed

SNPs within a gene affects the risk of the disease through an underlying common causal

mechanism. Modern association studies where tagging SNPs are selected as potential

surrogates for underlying causal variants fit into this framework. Other examples where

the framework is very natural are also discussed.

Based on Tukey’s model, we propose a novel multi-locus test of genetic association that

can efficiently exploit the LD pattern among SNPs within a gene and simultaneously can

account for their interactions with SNPs in another gene or with an environmental exposure.

We simulate case-control data mimicking modern association study designs to evaluate type-I

errors and powers of the proposed testing strategy. We also apply the proposed methodology

to a case-control study designed to investigate the association between colorectal adenoma

and DNA variants in N-Acetyltransferase 2 (NAT2 [MIM 243400]), a candidate gene that

plays important role in detoxification of aromatic amine carcinogens present in cigarette

smoke. Both the simulated and real data examples demonstrate major power advantages for

the proposed methodology over two alternative tests of association, one ignoring interactions

and the other incorporating a saturated model for interactions.
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1 Materials and Methods

1.1 A latent variable model and Tukey’s one-degree-of-freedom

form of interaction

Suppose G1 and G2 are two candidate genes of interest for which K1 and K2 marker

SNPs have been genotyped. Let S1 = (S11, S21, . . . , SK11) and S2 = (S12, S22, . . . , SK22)

denote the genotype data for the corresponding sets of markers. In this article, we assume

each marker genotype Sij is recorded as 0, 1, or 2 counting the number of copies of the

minor or variant allele. Figure 1, shows a schematic diagram for a hypothesized model

describing the relationship between the marker SNPs and the disease through an underlying

causal mechanism. The model assumes that for each gene Gi, the marker data Si act as

a “surrogate” for an underlying “biologic phenotype” Zi which is causally related to the

disease. The associations between the markers and the “biologic phenotypes” for the two

genes are described by two separate linear models (upper two boxes), where the error terms

ε1 and ε2 are assumed to be mean zero independent random variables. The risk of the disease

given the causal variables Z1 and Z2 is specified by a standard logistic model involving both

main- and interaction effects (lower box) . It is also implicitly assumed that given the true

biologic exposures Z1 and Z2, the risk of the disease does not depend on the markers S1 and

S2.
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Before proceeding further, it is useful to understand what the latent variables Z1 and

Z2 may be in practice. If the gene Gi contains a single causal locus Li, the variable Zi

could represent the genotype data for Li itself. If, for example, one of the selected markers

is the causal locus and Zi denotes the count for the corresponding variant allele, then the

assumed linear model describing the relationship between Zi and Si would fit perfectly, that

is the error term εi would vanish, by setting γik = 1 for the causal locus and γik = 0 for all

the other markers. If the causal locus is not selected as a marker, then the error term will

not generally disappear, but the magnitude of it could be expected to be small for modern

association studies which aim to select the markers to be a panel of “tagging SNPs” that

would have a very high degree of linkage disequilibrium, as measured by the R2 criterion, with

all of the genetic variations of the regions, including any possible causal ones. The validity

of the proposed framework, however, does not depend on the existence of a single causal

locus in each gene. The variable Zi could, for example, represent a quantitative biologic

phenotype that may be governed by several different variants within the same gene Gi. In

the study of colorectal adenoma (see Results), the underlying biologic phenotype for the

gene of interest NAT2 is N-acetyltransferase enzymatic activity level which has been shown

to be determined by several single based pair substitutions in the gene and the associated

haplotypes/diplotypes28,29.

The logistic model shown in Figure 1 (bottom box) cannot be used directly for association

testing because typically the variables Z1 and Z2 are not observable. However, in this model,

expressing Z1 and Z2 in terms of S1 and S2 using the corresponding linear regression models,

and assuming small variances for the error terms ε1 and ε2, a risk-model for the disease in

terms of the observable SNPs can be derived approximately in the form (see Appendix for

details)

logit {Pr(D = 1|S1,S2)} = α+

K1∑

k1=1

βk11Sk11 +

K1∑

k1=1

βk21Sk22 +θ

K1∑

k1=1

K2∑

k2=1

βk11βk21Sk11Sk22. (1)

We observe that (1) resembles a traditional logistic regression model except that the SNPs

across two genes have the parsimonious “Tukey’s 1 d.f” form of interaction26,27. Thus,

postulating the biologic effect of the observed SNPs to be determined by a smaller set of

casual variables leads to a very parsimonious model for gene-gene interactions.
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The motivation of Tukey’s 1 d.f model for interaction through the above latent variable

framework also allows extension of the model in a number of different ways. For example, if

some of the SNPs within a gene are known a priori to have functional significance, then it

may be desirable to capture possible interactions between these functional SNPs of the same

gene. Suppose S11 and S21 are two such SNPs for gene G1. Then the regression model for

Z1 could be extended to allow for interaction between S11 and S21 as

Z1 = µ1 +

K1∑

k=1

γk11Sk11 + γ(12)1S11S21 + ε1. (2)

Assuming the models for Z2 and Pr(D = 1|Z1, Z2) remain the same as before, the model for

the risk of the disease in terms of the SNP data S1 and S2 can be now derived in the form

logit {Pr(D = 1|S1,S2)}

= α +

K1∑

k1=1

βk11Sk11 +

K2∑

k2=1

βk22Sk22 + β(12)1S11S21 + θ

K1∑

k1=1

K2∑

k2=1

βk11βk22Sk11Sk22 +

τ

K2∑

k2=1

β(12)1βk22S11S21Sk22,

which includes both second- and third-order interactions. One could also account for

SNP-SNP interactions within a gene by specifying the disease-risk in terms of haplotypes,

instead of locus-specific genotypes.

The proposed modelling framework can be easily extended to incorporate gene-environment

interactions. Suppose the genomic region G1 (e.g NAT2) is believed to involve a biologic

pathway through which an environmental variable X (e.g smoking) may act on the risk of

a disease (e.g. colorectal adenoma). Again, based on the latent variable approach, a model

for the risk of the disease in terms of the marker-SNPs S1 and the environmental variable

X can be derived in the form

logit {Pr(D = 1|S1, X)} = α +

K1∑

k1=1

βk11Sk11 +
P∑

p=1

γpXp + θ

P∑
p=1

K1∑

k1=1

βk11γpSk11Xp,

where X1, X2,. . . , XP are a set of suitably chosen design variables, such as dummy variables

for categorical exposures, for representing the effects of the exposure X.
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1.2 Association Testing

In this section, we study methods for hypothesis testing based on the proposed model. When

data on multiple putative risk-factors, such as multiple candidate genes, are available, one

could test a number of different types of hypotheses regarding the role of these factors on

the risk of the disease. For association studies, the primary goal is to establish which of

the factors, if any, related to the risk of the disease. If multiple factors are found to be

related to the disease, then a secondary hypothesis of interest could be to test for specific

forms of interaction among the established risk factors. It is, however, important to realize

that although the test of interaction itself may only be of secondary interest, accounting for

heterogeneity of genetic effects due to interactions can be vital for enhancing the power of

the primary hypothesis of “association” testing.

In what follows, we develop an association testing framework involving two candidate

genes G1 and G2. The same framework can be also used to develop tests of associations

involving a candidate gene and an environmental exposure. We assume a population-based

case-control design of unrelated subjects. All of the methods, however, are easily extendable

to alternative study designs, including family-based case-control and case-parent-trio designs.

Possible strategies for utilizing the methodology in general association studies that may

involve numerous candidate genes are discussed later.

The General Principle

We focus on the test of association for G1; the methods for G2 are symmetric. In model (1),

the null of hypothesis of “no association of disease with G1”, can be statistically stated as

H
(1)
0 : βk11 = 0, for all k1 = 1, . . . K1,

which implies conditional independence of D and G1 given G2. The parameter βk11 not only

appears in the model as the “main effect” for the marker Sk11, but also it contributes to all

K2 “interaction terms” that could be defined involving Sk11 and the K2 SNPs in G2. Thus

it is best to describe βk11, k1 = 1, . . . , K1 as a set of “generalized association parameters”

instead of traditional “main” or “interaction” effects.

A complication of association testing in model (1) is that under the null hypothesis

of H
(1)
0 , the parameter θ disappears from the model and hence is not estimable from the
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data. Thus, standard statistical tests, such as score- or likelihood-ratio tests, which require

estimation of all “nuisance parameters” of the model under the null hypothesis are not

applicable. However, for each fixed value of θ, irrespective of whether it is the true value for

the population or not, model (1) gives a valid way of testing the null hypothesis H
(1)
0 . In

particular, for each fixed value of θ, the likelihood score-function for the parameter vector

β1 = (β11, . . . , βK11) can be shown to have zero expectation under the null hypothesis of

H
(1)
0 . Thus, for each fixed value of θ, an unbiased score-statistics could be formed for testing

H
(1)
0 . Varying the value of θ, one can get a family of score-statistics. We propose to use the

maximum value of such score-statistics over a suitable range of θ as the final test statistics

to be used.

Steps for deriving the test-statistics

We assume N1 cases and N0 controls have been sampled into the study and for each subject,

i, the SNP-genotype vectors Sli and S2i have been recorded. In the following, we describe

the four major steps for deriving the test statistics associated with G1. The test-statistics

for G2 could be derived by symmetry.

1. Obtain maximum-likelihood estimate α and β2 = (β12, . . . , βK22) under the local null

hypothesis H
(1)
0 . Under H

(1)
0 , the model (1) becomes equivalent to a standard logistic

regression model involving the main effects of the SNPs in G2. Thus, standard logistic

software package can be used to obtain ψ̂ = (α̂, β̂2). Let P̂
H

(1)
0

(S2) denote Pr(D =

1|S1,S2) = Pr(D = 1|S2) evaluated at β1 = 0, ψ = ψ̂.

2. For fixed value of θ, evaluate the score-functions for the parameters βk11, k1 = 1, . . . , K1

at β1 = 0 and ψ = ψ̂ using the formula

Sβk11
(θ) =

N0+N1∑
i=1

[
1 + θ

K2∑

k2=1

Sk22iβ̂k22

]
Sk11i

{
Di − P̂

H
(1)
0

(S1i,S2i)
}

, (3)

which in a vectorized form can be written as

Sβ1(θ) =

N0+N1∑
i=1

[
1 + θS2i

T β̂2

]
S1i

{
Di − P̂

H
(1)
0

(S1i,S2i)
}

.

Interestingly, the score-functions (3) resemble that obtained from a standard logistic

regression model, except that the “design vector” S1i has been replaced by
[
1 + θS2i

T β̂2

]
S1i,

9

This is an unedited preprint of an article accepted for publication in The American Journal of Human Genetics. The final,
published article is likely to differ from this preprint. Please cite this work as "in press." Copyright 2006 by The American
Society of Human Genetics.



a quantity incorporating design variables for both the main- and the interaction- effects

of S1.

3. Estimate the inverse of the variance-covariance matrix for Sβ1(θ) using the formula

Iβ1β1(θ) =
{
Iβ1β1(θ)− Iβ1ψ(θ)I−1

ψψIψβ1(θ)
}−1

, (4)

where the expressions for the component information matrices Iβ1β1 = ∂L/∂β1∂βT
1 ,Iβ1ψ(θ) =

∂L/∂β1∂ψT and Iψψ = ∂L/∂ψ∂ψT , evaluated at β1 = 0, and ψ = ψ̂, are given in the

formulae (7),(8) and (9) in the Appendix. All of these quantities can be conveniently

computed using standard logistic regression software by simply setting the “design

vector” for each subject to be X =
[
1,S2i,

{
1 + θS2i

T β̂2

}
S1i

]

4. For fixed value of θ, obtain the score-statistics

T1(θ) = Sβ1(θ)
T Iβ1β1(θ)Sβ1(θ)

Compute the final test statistics as T ∗
1 = maxL≤θ≤UT (θ), where U and L denote some

pre-specified values for lower- and upper-limits of θ.

Simulating the null distribution of the test statistics

In the appendix, we show an asymptotic equivalent representation of the score-statistics

T1(θ) as UT (θ)V −1(θ)U(θ), where U(θ) = 1√
N

∑N
i=1 Ui(θ) denotes the efficient-score function

for β1 for fixed θ (see formula 10) and V (θ) is the limit of 1/N
∑N

i=1 Ui(θ)U
T
i (θ). Further,

under β1 = 0, we show that U(θ), as a stochastic process in θ, converges to a K1-variate

Gaussian process Z(θ) with mean zero and variance-covariance function

V (θ1, θ2) = lim
N→∞

1/N
N∑

i=1

Ui(θ1)U
T
i (θ2)

. Following30, we propose to generate realization of the process Z(θ) as

U0(θ) =
N∑

i=1

Ui(θ)Wi,

where Wi, i = 1, . . . , N are independent standard normal random variables that are also

independent of the data. The null distribution of the test statistics T1 is then simulated by
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repeatedly generating data as T 0
1 = maxL≤θ≤UUT

0 (θ)Iβ1,β1(θ)UT
0 (θ), where in each replication

a new realization of UT
0 (θ) is obtained by re-generating the random numbers (W1, . . . , WN).

We also considered simulating the null distribution of T ∗
1 using a permutation-based

re-sampling method. We randomly permuted the value of the vector S1i over different

subjects i = 1, . . . , N0 + N1, while holding Di and S2i to be fixed at their observed values.

This yields a valid way of generating null data under the assumption that the genomic

regions G1 and G2 are unlinked in the underlying population, because, in this case, the null

hypothesis of β1 = 0 corresponds to independence of S1i and (Di,S2i). By permuting all the

components of S1i simultaneously and keeping (Di,S2i) to be fixed, the procedure allows

within-gene LD patterns and marginal association structure of Di and G2 to be the same as

the original data.

1.3 Design for simulation Study

We study performance of the proposed test of association using simulated case-control

studies. We assumed that the true risk model involves two potentially interacting causal

SNPs, S∗1 and S∗2 , residing on two separate candidate genes, G1 and G2. For each gene,

we assumed genotype data are available on six marker SNPs, none of which is the causal

SNP. To simulate realistic linkage disequilibrium pattern among the markers, we utilized

real haplotype data on glutathione peroxidase 3 (GPX3 [MIM 138321]) and glutathione

peroxidase 4 (GPX4 [MIM 138322]), two candidate genes for prostate cancer that have been

re-sequenced using a sample of 29 Caucasian subjects at the Core Genotyping Facility of

the National Cancer Institute. In our simulation, we chose the marker SNPs for G1 and

G2 to correspond to two sets of six “tagging SNPs” that have been respectively selected for

GPX3 and GPX4 using the original re-sequencing data. Table 1 shows the distribution of

the associated haplotypes.

To define haplotypes including the causal locus, for each gene, we allowed the major

mass of the causal SNP to lie mainly on one marker-haplotype: 001101 for G1 and 010100

or 101100 for G2 depending on a “common” vs “rare” variant scenario considered. We fixed

the marginal frequency for a causal SNP to be the same as that for the corresponding
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main haplotype: 12% for G1 and 12.7% or 4.1% for G2. To allow for imperfect LD

between the causal and the marker SNPs, we allowed for a small amount of recombination

between the causal SNP and a set of other marker haplotypes: {000001, 000010} for G1 and

{100000, 101100} or {000010, 010010} for G2 depending on the “common” vs “rare” variant

scenario considered. We varied the recombination fraction (δ) at three different values to

generate different degrees of LD between the causal and the marker SNPs. The values of

R2
Geno, defined as the squared multiple correlation between the genotypes at the causal loci

and those at the corresponding marker loci, were 90%, 75% and 60% in these three settings.

Given the set of haplotype frequencies, in each simulation, we first generated diplotype

(haplotype-pair) data for a random sample of subjects assuming random mating and no

linkage disequilibrium between genes. For each subject, we generated a binary disease end

point, D = 0 or D = 1, assuming a general logistic regression model of the form

Pr(D = 1) =
exp {α + θ1I(S∗1) + θ2I(S∗2) + θ12I(S∗1)I(S∗2)}

1 + exp {α + θ1I(S∗1) + θ2I(S∗2) + θ12I(S∗1)I(S∗2)}
(5)

where I(S∗1) and I(S∗2) are binary indicator variables for the presence of the variant allele at

the respective causal loci. For each given set of parameter value θ1, θ2 and θ12, the intercept

parameter α was chosen in such a way that the marginal probability of the disease in the

underlying population is fixed at 1%. In each replication, we first generated data for a large

random sample of subjects, which we then treated as the “study base” to further select

a case-control sample of given size. During analysis of each simulated data, we assumed

genotype data are variable for the marker SNPs, but not on the causal SNPs.

We computed the empirical significance level of the proposed testing procedure by

simulating data under two different settings, both of which corresponded to the null

hypothesis of no association of the disease with G1. In the first, we assumed all of the

association parameters θ1, θ2 and θ12 to be zero, which implied that both G1 and G2 were

not associated with the disease. In the second, we assumed θ1 and θ12 to be null, but allowed

non-zero value for θ2 so that G2 could be associated with the disease even if G1 is not.

The significance thresholds for the test-statistics T ∗
1 were obtained using two methods: (1)

Permutation-based re-sampling of the genotype data of SNPs in G1 and (2) Asymptotic-based

method, which requires generation of normal numbers.
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To evaluate power, we simulated data using five different models for the joint effect of

the two causal SNPs (see Table 2). Assuming rare disease, these settings correspond to: (1)

purely epistatic form that assumes the effect of one variant exists only in the presence of

the other and vice versa; (2) multiplicative form which assumes the joint effect of the two

variants is given by the product of the main effects† of the individual variants31; (3) Purely

additive form, an approximation to the genetic heterogeneity model18, which assumes that

the “joint effect” of the two variants is given by the sum of “main effects” of the individual

variants; (4) Cross-over model which assumes that the second variant has no effect by itself,

but it reverses the effect of the first variant. For each model, we varied the value of the free

risk-parameter(s) in a way that the marginal relative-risk (MRR)‡ associated with S∗1 ranges

in the set {1.2, 1.4, 1.6, 1.8, 2.0}. For the epistatic and multiplicative model, the MRR for

S∗2 also varied in the same range. For the additive model, we fixed the MRR for S∗2 to be

2.0 (low-penetrant) and 5.0 (high-penetrant) in the “common” and “rare” variant scenarios,

respectively. For the cross-over model, we assumed φ1 = 0.90(< 1), which implies a modest

protective effect of S∗1 in the absence of S∗2 .

We compared power for three different G1-specific tests of association: (1) LogMain: an

omnibus 6 d.f. chi-square test based on a logistic regression model that involves only the

main effects of the 6 marker SNPs in G1
12 (2) LogMain&Int: An omnibus 42 d.f chi-square

test based on a logistic regression model that involves main effects of all the SNPs in G1

and G2 and all pairwise interactions between SNPs across the two genes. The null model

in this test involves only the main effects of the SNPs in G2; (3) TukAssoc: The proposed

test of association based on Tukey’s model of interaction. In each method, the genotype

data for the marker SNPs were coded as continuous variables representing the count for the

respective minor alleles. Asymptotic-based significance thresholds were used for all of the

three test statistics. Both type-I errors and powers were obtained empirically based on 1000

simulated data sets.

†Relative-risk of the disease associated with one variant in the absence of the other
‡Relative risk of the disease associated with one variant ignoring the presence of the other
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2 Results

2.1 Simulation Study

Table 3 shows the empirical type-I error rates for the proposed testing procedure at a

significance level of α = 0.01. Both methods performed well in maintaining the nominal

significance level in all of the different settings considered.

Figures 2-5 shows the empirical power of different procedures for testing the association

of the disease with G1 at a significance level of 0.01, under different models for the joint

effects of the underlying causal variants. Similar figures at a significance level of 0.0001 are

provided in figures 6-9.

When the true effects of the causal SNPs were purely epistatic (Fig 2), the proposed

test of association (TukAssoc), which accounts for interactions, clearly outperformed the

standard main-effect-based test (LogMain) in detecting the association of the disease with

G1. Given the same “marginal effect size” for the causal SNP in G1, the gain in power was

larger when the causal SNP in the background gene, G2, was rarer because it corresponded

to larger magnitude of the interaction parameter θ12. In this “rare-variant” setting, the

test based on the saturated model of interaction (LogMain&Int) also performed better than

the main-effect-based test (LogMain), but lost major power compared to TukAssoc due to

the use of large degrees of freedom. As the correlation between the causal and marker

SNPs decreased, the absolute power of all of the different methods, as expected, decreased.

Interestingly, the power of both the interaction-based tests, LogMain&Int and TukAssoc,

relative to LogMain, also decreased as R2
Geno decreased.

When the true effects of the causal SNPs were multiplicative (Fig 3), LogMain, which

assumes no multiplicative interaction, as expected, had the highest power. The proposed test

TukAssoc, although was not the best, remained a close second. In contrast, LogMain&Int,

which used the saturated model for interaction, performed very poorly. When the true model

was additive (Figure 4), the power of TukAssoc remained very close to that of LogMain when

the causal SNP S∗2 in the background gene G2 was “common low penetrant”. In contrast,

under the same model, when S∗2 was “rare high penetrant”, TukAssoc gained major power
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over LogMain. Finally, under the cross-over model (Figure 5), where the causal variant in

G2 reversed the effect of that in G1, TukAssoc had much higher power than LogMain. Often,

LogMain&Int also performed better than LogMain, but it remained far inferior compared

to TukAssoc. As observed under the epistatic model, the power of both TukAssoc and

LogMain&Int relative to LogMain decreased for lower values of R2
Geno.

Under each setting described above, the power advantage of TukAssoc compared to the

other two procedures further increased when the significance level was chosen to be 0.0001

instead of 0.01 (see figures 6-9).

2.2 A study of NAT2 acetylation activity, smoking and risk of

colorectal adenoma

Cigarette smoking has been consistently associated with the risk of colorectal adenoma,

a recognized pre-cursor of colorectal cancer (MIM 114500). Thus, there is interest to

study the risk of adenoma associated with candidate genes encoding N-acetyltransferase

enzymes that are involved in the metabolism of aromatic amines derived from tobacco

smoke. N-acetyltransferase 2 (NAT2), located at 8p21.3, is a candidate gene that is known

to play important role in detoxification of certain aromatic carcinogens and, following

N-hydroxylation, the activation of other amine-proto carcinogens to their ultimate carcinogenic

form. We have recently completed a report32 studying the association between NAT2

genetic variants and colorectal adenoma in relationship to tobacco smoking using left-sided

prevalent advanced adenoma cases and gender and age-matched controls selected from

the screening arm of the large ongoing Prostate, Lung, Colorectal and Ovarian (PLCO)

Cancer Screening Trial33,34. The study selected six SNPs (C282T, T341C, C481T, G590A,

A803G, and G857A) for genotyping which are known to be informative for reconstructing

diplotypes that have been previously described and categorized in laboratory studies as

having “slow”, “intermediate”, or “rapid” N-acetyltransferase enzymatic activity. Based on

the genotype data, 685 cases and 693 controls in the study were assigned diplotype and

related phenotype status using an algorithm developed in University of Louisville28,29. The
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frequency distribution of these diplotypes and associated phenotypes are shown in Table 4.

Questionnaire data on smoking history of these subjects were also available. We categorized

each subject based on their smoking history as “current”, “former” or “never”.

Clearly, in the original study, availability of the prior data to group the numerous

diplotypes into smaller number of phenotypic categories provided us an opportunity to

investigate the association between NAT2 and adenoma in a very powerful way. In the

current study, we compared the power of alternative tests that relied on the original

diplotypes themselves, pretending as if the underlying phenotype variable was not observed.

It is to be noted that for most genomic regions the phenotypic significance of the variants

are not well understood and thus the opportunity of grouping the observed genetic variants

into smaller number of categories may not exist. Using the diplotype information shown in

Table 4, we performed three different tests of association between NAT2 and adenoma: (D1)

LogMain: an omnibus chi-square test based on a logistic regression model that involves a

main effect term for each of the 14 non-referent diplotypes (df=14) (D2) LogMain&Int: An

omnibus chi-square test based on a logistic regression model that involves the main effects

of the diplotypes and all of the interactions between the diplotypes and the two non-referent

categories of smoking. The null model in this test includes only the main effects of the

smoking categories(df=14+14*2=42); (D3) TukAssoc: An omnibus test of association for

NAT2 diplotypes based on the model:

logitPr(D = 1) = α+
14∑

j=1

βjI(H = hj)+
2∑

k=1

γkI(Smk = k)+θ

14∑
j=1

2∑

k=1

βjγkI(H = hj)I(Smk = k)

where I(H = hj), j = 1, . . . , 14 and I(Smk = k), k = 1, 2 denote the dummy variables for the

diplotypes and the smoking categories. In addition, we also performed two phenotype-based

tests: (P1) a 1-d.f test for the trend-effect of the phenotype variable by coding it as a

continuous variable: 0 for “slow”, 1 for “medium” and 2 for “fast” and (P2) an omnibus test

for the main-effect and interactions (with smoking categories) for the continuous phenotype

variable (d.f=1+2=3). All of the phenotype- and diplotype-based tests were adjusted for age

and sex by including appropriate main-effect terms in the corresponding logistic regression

model. For computation of p-values, we relied on permutation-based re-sampling, instead of

the asymptotic-based method, because of small number of subjects in some of the diplotype
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categories.

From the results shown in Table 5, it is clear that in this example the test that captures

both the main and the interaction effects of the phenotype variable was most sensitive in

detecting the association of adenoma with NAT2. Among the diplotype-based methods,

TukAssoc, although not significant at the traditional 5% level, provided more evidence for

the association than the other two methods considered. This example illustrates several

important points. First, it shows how incorporating interaction can improve the power to

discover genetic associations. Second, it shows that the most powerful test for a genetic

association could be obtained when the phenotypic significance of the underlying variants

are well understood a priori. If such prior data are not available, but the variants within a

genomic region are likely to be functionally related by a common biologic mechanism, such

as NAT2 acetylation activity, then the proposed test of association based on Tukey’s 1 d.f

model for interaction could be a promising approach.
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3 Discussion

In summary, we have proposed a powerful method for testing genetic association in

case-control studies by accounting for heterogeneity in disease-risk due to gene-gene and

gene-environment interactions. By considering a conceptual framework where multiple SNPs

within a gene are postulated to be related to a common causal mechanism, we motivate

the use of a low-dimensional 1 d.f model for gene-gene and gene-environment interactions.

Based on this model, we have developed an omnibus gene-specific test of association that

can simultaneously account for the main-effects of the variants within the region as well as

their interactions with the variants of another region or with an environmental exposure.

We used both simulated and real data to study the efficiency of the proposed method

relative to two standard logistic regression-based tests, one ignoring interactions and the

other incorporating a saturated model for interactions. These studies suggest that proposed

method can improve power of genetic association tests in the presence of non-multiplicative

effects of the underlying causal variants. When the true effects are close to multiplicative,

the proposed method, although it may not be the best, generally has robust power.

Gene-gene and gene-environment interactions can cause the effect-size of a genetic variant

to be heterogeneous for different sub-groups of the population. Tests of genetic association

that ignores such heterogeneity may lack power as the “marginal” effect of a variant, ignoring

sub-groups, can be quite small even though its effect can be quite large in specific subgroups.

Under an extreme form of interaction, where the effect of a variant may be in opposite

directions in different subgroups, there may be no marginal effects even if there are very

strong subgroup effects. Accounting for interaction in association testing allows one to exploit

the full variation in the effects of the causal variants at the risk of increasing the number

of parameters to be tested. Our applications involving the saturated model for interaction

suggest the power advantage of interaction-based tests may be negated if too many degrees

of freedoms are spent to model interaction. The proposed test based on Tukey’s 1 d.f model

for interaction provides a good compromise between detecting large genetic-effects vs testing

for many parameters.

When multiple SNPs are involved within a gene, one could attempt to reduce the degrees
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of freedom for related association tests based on a “derived variable” that can combine

information across multiple SNPs by utilizing prior knowledge about possible directionality

of the effects of the variants35. The acetylation phenotype for the gene NAT2, utilized in

our data analysis, is a “derived variable” defined based on prior data. The scope of such

analysis, however, is limited for contemporary association studies due to lack of such prior

data on the SNPs. The proposed method, which also utilizes “derived variables”, namely

the latent factors Z1 and Z2, does not require any explicit prior data on the directionality of

the effects of the SNPs under study. In particular, the “generalized association” parameters

(β) allow one to estimate the directionality as well as the strength of association from the

data. Thus, the proposed method can utilize a low degree-of-model for interaction without

requiring explicit prior knowledge about the potential effects of the SNPs.

An alternative approach to reduce the degree-of-freedoms for association tests could be

to follow a “two-stage” procedure where SNPs are first tested for their main effects and

then interaction-based tests are considered only involving those SNPs for which main effects

were found to be significant. In general, obtaining the correct type-I error rates for such

sequential procedures is quite complex. A recent report has suggested a conservative but

simple approach of finding critical values for SNP-based two-stage tests36. In a limited

simulation study, we found the power of such a procedure to be similar to the proposed

gene-based one-stage test TukAssoc when each candidate gene under study involved only a

single causal variant. In contrast, when the individual candidate genes involved multiple

causal variants, TukAssoc was clearly superior. Further work is needed to develop more

efficient two-stage tests of association.

Computationally, the proposed score-test statistics is remarkably simple and can be

implemented using standard logistic regression software. We have described a simple and fast

way of generating the asymptotic null distribution of the test-statistics. The methodology

can be easily generalized to alternative types of study designs and outcome traits by simply

replacing the logistic model with a suitable alternative regression model. Moreover, the

methods can be used to test for the collective effect of any group of functionally related

SNPs which need not be restricted to candidate genes.

The results from our simulation studies involving two candidate genes are quite intuitive.
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When the true effects of the causal loci across two genes were multiplicative, tests based on

the maker SNPs of individual genes, ignoring possible gene-gene interactions, were optimal.

This result can be explained mathematically by observing that under the multiplicative

model, the likelihood for case-control data can be factored into two pieces, each depending on

the marker data from a single gene20. When the true effects of the causal loci were additive,

a non-multiplicative model that is often considered to be the “default” for specifying the

joint effects of two exposures acting on non-overlapping pathways18,37, the proposed test

performed similarly to or substantially better than the main-effect based test depending on

the strength of the main effects of the causal variants. When the main effects for both the

causal variants were modest, the additive model corresponded to only small departure from

multiplicative effects and thus TukAssoc performed similar to LogMain. In contrast, when

the main effect of the causal variant in one gene was large, the additive model corresponded

to large departure from multiplicative effects and TukAssoc became superior. The largest

gains in power for TukAssoc over LogMain were seen for the epistatic and cross-over models,

both of which corresponded to large departure from multiplicative effects.

As expected, the absolute power of all the methods decreased as R2
Geno, the correlation

between the causal and the marker SNPs, decreased. Interestingly, the power of both the

interaction based tests, LogMain&Int and TukAssoc, relative to LogMain, also decreased as

R2
Geno decreased. When the markers have low correlation with the respective causal SNPs,

the joint risk of the disease in terms of the markers may appear close to the multiplicative

model (with non-null main effects) even if the true effects of the causal variants are highly

epistatic. Thus, for low values of R2, models involving only the main effects of the markers

may perform well even if the true effects of the causal loci are highly interactive. In the

context of association testing using single binary markers, a similar robustness property for

the multiplicative model has been noted before38

In this article, we focussed on tests of association for one candidate gene by exploiting

its interaction with another candidate gene or an environmental exposure. In practice,

however, an association study may involve a variety of candidate genes and environmental

exposures, each of which may potentially interact with all the others. Clearly, if all of

the possible interactions are to be accounted for, the number of potential tests could be
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very large. To examine the effect of the associated multiple testing problem, we carried

out a small simulation study. We used the same setting of Figure 2, but added eight null

genes to the analysis. Similar to the two genes that contained the causal loci, for each

of the null genes we assumed genotype data are available on six marker SNPs. We used

TukAssoc to assess the significance of a specific gene by pairing it with each of the other nine

genes and then taking the maximum of the corresponding nine different test-statistics. To

evaluate the critical value of the final test-statistic, we used permutation based re-sampling

that adjusts for multiple testing in an efficient way by taking into account the correlation

among the different test-statistics. Alternatively, we used the standard main-effect-based

test LogMain to test for each gene individually, ignoring interactions. For both TukAssoc

and LogMain, the test for each specific gene was carried out at the significance level of

0.01/10 = 0.001 to maintain an overall significance level of 0.01. Even with multiple testing

adjustment, TukAssoc remained substantially more powerful than LogMain in a number of

different settings. For example, in the setting of R2 = 90, f2 = 0.12, and MRR = 1.6, the

power for detecting the association of the disease with G1 was 54% using TukAssoc and 34%

using LogMain. With f2 = 0.04, R2 and MRR remaining the same, the power for TukAssoc

became 75% while that for LogMain remained at 34%. In the context of a much larger scale

study involving whole genome scan, a recent report has made a similar observation in that

tests that account for interactions among pairs of SNPs could substantially be more powerful

than those based only on the main-effects of the SNPs, even though the former class of tests

may require a much higher level of multiple testing adjustment36.

Nevertheless, we believe that the power advantage of interaction-based tests would be

best realized if the number of interactions to be considered can be reduced a priori, based on

biologic knowledge, previous data or/and some pre-screening methods. Biologic knowledge

of a pathway, for example, may help investigators to chose few “high-prior” candidate genes

which are likely to have central roles in mediating the biologic effects of various different

genetic and environmental exposures. In such setting, the power of association for the other

candidate genes in that pathway can be improved by accounting for their interactions with

the selected “high-prior” genes. Data from previous linkage and association studies could

also guide selection of such “high-prior” candidates.
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A pre-screening method could also reduce the number of interactions to be tested. For

case-control studies involving candidate SNPs, Millstein et al25 described a method that first

screens for potential interactions by testing for the significance of the correlations among pairs

of SNPs in the pooled case-control sample. If, for a pair of SNPs, no linkage disequilibrium

is expected in the population, but correlation is evident in the pooled case-control data,

it indicates non-multiplicative effects of the variants on the risk of the disease. Moreover,

because the screening is done only based on the genotype data of the subjects, without

regard to their case-control status, subsequent tests of association do not require adjustment.

Similar ideas can be adopted to reduce the number of gene-gene interactions in our setting.

For example, one may use a global test of independence between two sets of SNPs to

decide whether the corresponding gene-gene interaction should be included in the subsequent

association analysis.

In conclusion, the proposed method, given its efficiency, computational simplicity and

broad applicability, seems a promising approach for testing of genetic association in the

presence of gene-gene and gene-environment interactions. Future work is needed to develop

and evaluate practical strategies for the applications of the methodology for large scale

association studies, involving specific biologic pathways or the whole genome.
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4 APPENDICES

Heuristic Derivation of Tukey’s 1 d.f Model of Interaction

Let Xj = µj +
∑Kj

kj=1 γkjjSkjj, j = 1, 2. and define the function

f(x1, x2) =
exp {θ0 + x1 + x2}

1 + exp {θ0 + x1 + x2}

By substituting, the regression formula for Z1 and Z2 (top boxes in figure 1) into disease-risk

model (bottom box) and taking a Taylor’s series expansion with respect to ε1 and ε2, one

can write

Prε1,ε2(D = 1|S1,S2) = f(X1, X2) + ε1f1(X1, X2) + ε2f2(X1, X2) + O(ε2
1 + ε2

1),

where fj(x1, x2) = ∂f(x1, x2)/∂xj, j = 1, 2; and O(ε2
1 + ε2

1) denotes a term that can be

bounded above by K(ε2
1 + ε2

1) for a suitable positive constant K. Noting that ε1 and ε2 are

mean zero random variables (conditional on S1 and S2), we can write

Pr(D = 1|S1, S2) = Eε1,ε2Prε1,ε2(D = 1|S1, S2) = f(X1, X2) + O(σ2
ε1

+ σ2
ε2

)

where σ2
εj

denotes the variance of εj, j = 1, 2. Thus, if σ2
εj

, j = 1, 2 are small, then Pr(D =

1|S1, S2) ≈ f(X1, X2) which is precisely the model shown in (1), with α = θ0 + θ∗1µ1 +

θ∗2µ2 + θ12µ1µ2, βkjj = θ∗jγkjj, kj = 1, . . . , Kj; j = 1, 2; and θ = θ12/(θ
∗
1 × θ∗2), where θ∗j =

θj + θ12µ3−j, j = 1, 2.

Log-likelihood, Score-function and Information Matrices

Let Pα,β1,β2;θ(S1,S2) denote Pr(D = 1|S1,S2) as defined by the proposed model in equation (1).

The log-likelihood of the data under case-control design can be written as

L =

N1+N0∑
i=1

Di log Pα,β1,β2;θ(S1i,S2i) + (1−Di) log {1−Pα,β1,β2;θ(S1i,S2i)} (6)
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Under the null hypothesis that βk11 = 0 for all k1, the maximum-likelihood (ML)

estimates of the parameters ψ = (α, β2), for each fixed value of θ, can be obtained by

solving the score-equation Sψ(ψ; θ) = 0, where

Sψ(ψ; θ) =

N0+N1∑
i=1

Z2i {Di − Pα,β1=0,β2;θ(S1i,S2i)} ,

and Z2i = (1,ST
2i)

T . Note that, the quantity Pα,β1,β2;θ does not depend on θ when β1 = 0 and

Sψ(ψ; θ) ≡ Sψ(ψ) corresponds to standard logistic regression score-function that involves

only “main effect” terms for the marker SNPs in G2. Let the ML maximum likelihood

estimates of ψ under β1 = 0 be denoted by ψ̂ = (α̂, β̂2). Further, let P̂Null(S1,S2)

denote Pα̂,β1=0,β̂2;θ(S1,S2). Now, for fixed value of θ, the score-function for the association

parameters βk11, k1 = 1, . . . , K1, evaluated under the null hypothesis that βk11 = 0 for all

k1, can be written in the form of equation (3).

Define Z2 = (1,S2
T ) to be design matrix associated with the standard logistic regression

analysis of the data that allows for the constant intercept term α and a main effect term

for each of the markers in G2. Ignoring terms with expectation zero, the formulae for the

information matrices in equation (4), evaluated at β1 = 0 and ψ = ψ̂ can be written as

Iβ1β1(θ) =

N0+N1∑
i=1

[
1 + θβ̂T

2 S2i

]2

P̂NULL(S1i,S2i)
{
1− P̂NULL(S1i,S2i)

}
S1iS1i

T, (7)

Iβ1,ψ(θ) =

N0+N1∑
i=1

[
1 + θβ̂T

2 S2i

]
P̂NULL(S1i,S2i)

{
1− P̂NULL(S1i,S2i)

}
S1iZ

T
2i (8)

and

Iψ,ψ =

N0+N1∑
i=1

P̂NULL(S1i,S2i)
{
1− P̂NULL(S1i,S2i)

}
Z2iZ

T
2i (9)

Efficient Score-Function and Asymptotic Theory

Let Sβ1,i(θ) be the contribution of the i-th subject in the score-vector Sβ1(θ) defined in

equation (3). Similarly, let Sψ,i = Z2i

{
Di − P̂NULL(S1i,S2i)

}
be the contribution of the

i-th subject to the score-vector Sψ(ψ), evaluated at ψ = ψ̂. Define, iβ1,β1(θ), iβ1,ψ(θ) and

iψ,ψ be the asymptotic limits of the scaled information matrices N−1Iβ1β1(θ),N
−1Iβ1ψ(θ) and
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N−1Iψ,ψ. By using standard Taylor series argument, one can represent the score vector

Sβ1(θ) in its asymptotic form

N−1/2Sβ1(θ) = N−1/2

N∑
i=1

Ui(θ) + op(1).

where Ui(θ) denote the efficient influence function defined by

Ui(θ) = Sβ1,i(θ)− iβ1,ψ(θ)i−1
ψ,ψSψ,i (10)

and op(1) represents term that converges to zero in probability. Based on standard central

limit theorem, one can then show that for any fixed value of θ and under the null hypothesis

of β1 = 0, N−1/2Sβ1(θ) converges to K1-variate normal distribution with zero mean and

variance-covariance matrix given by iβ1,β1(θ) − iβ1,ψ(θ)i−1
ψ,ψiβ1,ψ(θ)T . Moreover, on any

given compact interval Θ for θ, the convergence of the score vector N−1/2Sβ1(θ) to the

corresponding normal distribution can be shown to be uniform over θ. Thus, it follows

N−1/2Sβ1(θ), as a K1-dimensional stochastic process in θ converges to a zero mean Gaussian

process for which the covariance function for the pair of value (θ1, θ2) is given by the

asymptotic limit of N−1
∑N

i=1 Ui(θ1)U
T
i (θ2).
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WEB RESOURCES

Web resources: Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim.
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Table 1: Haplotype frequencies used for simulating genotype data on marker SNPs for two

candidate genes

G1 G2

Haplotypes Freq Haplotypes Freq

000000 0.3211 100010 0.3506

001101 0.1204 010001 0.2819

010000 0.0909 010100 0.1274

000001 0.0785 100000 0.0678

111001 0.0722 000000 0.0407

110001 0.0708 101100 0.0401

000010 0.0610 000010 0.0307

011001 0.0523 010010 0.0237

110000 0.0468 010000 0.0226

100000 0.0353 100001 0.0144

001000 0.0279

010001 0.0228
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Table 2: Approximate relative-risk models used for simulating disease end points given the

genotypes for two causal loci in two candidate genes G1 and G2

Model (S∗1 = 0,S∗2 = 0) (S1 ≥ 1,S2 = 0) (S1 = 0,S2 ≥ 1) (S1 ≥ 1, S2 ≥ 1)

General Form 1 exp(θ1) exp(θ2) exp(θ1 + θ2 + θ12)

Purely Epistatic 1 1 1 φ

Multiplicative 1 φ φ φ2

Additive 1 φ1 φ2 φ1 + φ2 − 1

Cross-over 1 φ1(< 1) 1 φ12(> 1)

∗Number of copies of variant allele in the causal loci of G1 and G2
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Table 3: Empirical significance level for test of association with region G1

Relative-risk for causal SNP in G2

R2∗
geno f ∗∗2 Method 1.0 2.0

90% 0.04 Permutation 0.008 0.012

Asymptotic 0.008 0.011

0.13 Permutation 0.013 0.011

Asymptotic 0.012 0.009

75% 0.04 Permutation 0.010 0.009

Asymptotic 0.009 0.008

0.13 Permutation 0.009 0.004

Asymptotic 0.009 0.004

60% 0.04 Permutation 0.011 0.012

Asymptotic 0.012 0.012

0.13 Permutation 0.009 0.009

Asymptotic 0.009 0.008

∗Multilple R2 between genotypes at causal and marker loci

∗Allele frequency for causal SNP in G2
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Table 4: Distribution of cases and controls by NAT2 diplotypes and acetylation status in

the PLCO adenoma study

Diplotypes Acetylation Phenotype Cases Controls

*5B/*6A 0 (slow) 155 124

*5B/*5B 0 121 98

*6A/*6A 0 59 73

*5A/*5B 0 16 18

*5B/*7B 0 16 17

*5B/*5C 0 16 10

*6A/*7B 0 10 12

*5A/*6A 0 8 10

*5C/*6A 0 7 9

*4/*5B 1 (Medium) 109 138

*4/*6A 1 86 104

*4/*7B 1 17 8

*4/*5A 1 9 6

*4/*4 2 (Rapid) 37 41

Rare 19 25
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Table 5: Test of association for adenoma with NAT2 with and without accounting for

NAT2-smoking interaction

Test-stat d.f p-value

Acetylation-based∗

LogMain 3.30 1 0.069

LogMain&Int 14.23 3 0.003

Diplotype-based∗∗

LogMain 18.25 14 0.200

LogMain&Int 54.41 42 0.156

TukAssoc 26.45 - 0.071

∗Uses continuous phenotype variable codes as 0,1,2

∗∗Uses diplotypes shown in Table 4
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Figure legends

Figure 1: A conceptual framework for modelling gene-gene interactions in indirect association

studies.

Figure 2: Empirical power at α = 0.01 to detect the association of the disease with candidate

gene G1 as a function of the marginal relative-risk (MRR) of the underlying causal SNP S∗1 :

The joint effect of casual SNPs in G1 and G2 follows the purely epistatic model (See Table

2). In Figure 2-9, f1 and f2 denote minor allele frequencies for causal SNP in G1 and G2,

respectively, and R2
geno denotes the value of multiple R2 between the causal and marker loci

within a gene.

Figure 3: Empirical power at α = 0.01 to detect the association of the disease with candidate

gene G1 as a function of the marginal relative-risk (MRR) of the underlying causal SNP S∗1 :

The joint effect of casual SNPs in G1 and G2 follows the purely multiplicative model with

φ1 = φ2(See Table 2).

Figure 4: Empirical power at α = 0.01 to detect the association of the disease with candidate

gene G1 as a function of the marginal relative-risk (MRR) of the underlying causal SNP S∗1 :

The joint effect of casual SNPs in G1 and G2 follows the additive model with φ2 chosen so

that MRR2=2.0 when f2 = 0.12 and MRR2=5.0 when f2 = 0.04 (See Table 2).

Figure 5: Empirical power at α = 0.01 to detect the association of the disease with candidate

gene G1 as a function of the marginal relative-risk (MRR) of the underlying causal SNP S∗1 :

The joint effect of casual SNPs in G1 and G2 follows the cross-over model with φ1 = 0.90

(See Table 2).

Figure 6: Empirical power at α = 0.0001 to detect the association of the disease with

candidate gene G1 as a function of the marginal relative-risk (MRR) of the underlying causal

SNP S∗1 : The joint effect of casual SNPs in G1 and G2 follows the purely epistatic model
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(See Table 2).

Figure 7: Empirical power at α = 0.0001 to detect the association of the disease with

candidate gene G1 as a function of the marginal relative-risk (MRR) of the underlying causal

SNP S∗1 : The joint effect of casual SNPs in G1 and G2 follows the purely multiplicative model

with φ1 = φ2 (See Table 2).

Figure 8: Empirical power at α = 0.0001 to detect the association of the disease with

candidate gene G1 as a function of the marginal relative-risk (MRR) of the underlying causal

SNP S∗1 : The joint effect of casual SNPs in G1 and G2 follows the additive model with φ2

chosen so that MRR2=2.0 when f2 = 0.12 and MRR2=5.0 when f2 = 0.04 (See Table 2).

Figure 9: Empirical power at α = 0.0001 to detect the association of the disease with

candidate gene G1 as a function of the marginal relative-risk (MRR) of the underlying causal

SNP S∗1 when the joint effect of casual SNPs in G1 and G2 follows the cross-over model with

φ1 = 0.90 (See Table 2).
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