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Summary

We propose in this paper a powerful testing procedure for detecting a gene effect on a continuous
outcome in the presence of possible gene-gene interactions (epistasis) in a gene set, e.g. a genetic
pathway or network. Traditional tests for this purpose require a large number of degrees of
freedom by testing the main effect and all the corresponding interactions under a parametric
assumption, and hence suffer from low power. In this paper, we propose a powerful kernel
machine based test. Specifically, our test is based on a garrote kernel method and is constructed as
a score test. Here, the term garrote refers to an extra nonnegative parameter which is multiplied to
the covariate of interest so that our score test can be formulated in terms of this nonnegative
parameter. A key feature of the proposed test is that it is flexible and developed for both
parametric and nonparametric models within a unified framework, and is more powerful than the
standard test by accounting for the correlation among genes and hence often uses a much smaller
degrees of freedom. We investigate the theoretical properties of the proposed test. We evaluate its
finite sample performance using simulation studies, and apply the method to the Michigan prostate
cancer gene expression data.
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1. Introduction

In this paper, we consider the problem of testing for the effect of a gene on a continuous
response in the presence of possible gene-gene interactions in a gene set, such as a genetic
pathway. There is growing evidence that gene-gene interaction or epistasis ubiquitously
contributes to complex traits, partly because of the sophisticated regulatory mechanisms
encoded in the human genome. Epistasis is a phenomenon whereby the effects of a given
gene on a biological trait are masked or enhanced by one or more genes (Bateson, 1909). It
plays an important role in the mechanisms of complex diseases (Moore, 2005). Research has
shown that it is important to account for gene-gene interactions in the search for
susceptibility genes for complex diseases, and ignoring epistasis could explain difficulties in
replicating significant findings (De Miglio et al., 2004; Aston et al., 2005). Developing
powerful statistical methods for studying the effect of a gene by accounting for possible
gene-gene interactions in a gene set is of significant interest in genetic association studies.

The data example that motivated the current research is the Michigan prostate cancer study
data (Dhanasekaran et al., 2001). Recently there have been significant breakthroughs in the
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effort of finding candidate genes related to prostate cancer. Prostate Specific Antigen (PSA)
is commonly used as a biomarker for prostate cancer screening. The early results of
Dhanasekaran et al. (2001) indicate that certain functional genetic pathways seemed
dysregulated in prostate cancer relative to non-cancerous tissues. There is a considerable
literature to study the genetic pathway effects on PSA after adjusting for effects of clinical
and demographic covariates (Dhanasekaran et al., 2001), and statistical methods have been
developed to test for pathway effects (Liu, Lin and Ghosh, 2007; Liu, Ghosh and Lin, 2008).
However, little work has been done on identifying the genes associated with PSA
accounting for gene-gene interactions in a pathway.

Our goal in this paper is to develop a testing procedure for the effects of individual genes on
a continuous outcome while accounting for possible epistasis and other clinical covariates in
a regression model. An usual and popular approach to test for individual gene effects in such
a context is to fit a simple linear model with main and interaction terms, e.g., two-way
interactions, and conduct an ANOVA based multi-degrees-of-freedom F-test (see for
example, Howard et al, 2002; Li et al, 1997, among others). However, this approach has two
main disadvantages. First, testing for the effect of a particular gene in the presence of
possible gene-gene interactions requires testing for the corresponding interaction effects of
the gene under consideration with other genes, resulting in a test using high degrees of
freedom and a considerable loss of power, as we will see later. This phenomenon is more
pronounced when genes are correlated among each other. In fact, for small sample sizes,
such a test for all interaction terms may not be even computationally possible. Second, this
also requires a strong parametric assumption, resulting in a power loss if the parametric
model is misspecified. In fact, the true form of gene-gene interactions is typically unknown.
Modeling the interaction terms using a standard two-way cross-product model may be
overly simplistic and the resulting model could be misspecified.

In this paper, we address both issues by considering a general regression problem, where we
model the joint effect of genes in a gene set, e.g., pathway or network, using a flexible
parametric/nonparametric function. We then propose to test whether the function depends on
an individual gene of interest. Specifically, we propose to use the powerful kernel machine
framework to develop the test. The kernel machine framework, originally developed in the
field of machine learning as a powerful learning technique for multi-dimensional data
(Vapnik, 1998; Schglkopf and Smola, 2002), has become popular in genetic studies for
dealing with a large number of genes. Popular examples of kernel machine methods include
Support Vector Machine (SVM) (Vapnik, 1998), Relevance Vector Machine (RVM)
(Tipping, 2000), a probabilistic model whose functional form is equivalent to SVM and
Bayesian Gaussian process (Rasmussen and Williams, 2006). Kernel machine methods start
with a kernel function which implicitly determines the smoothness property of the unknown
function and hence greatly simplify specification of parametric and nonparametric models,
especially for multi-dimensional covariates. Liu, Lin and Ghosh (2007) and Liu, Ghosh and
Lin (2008) developed kernel machine regression theory for least squares and logistic
regression and demonstrated their connections with mixed models, and developed a testing
procedure for the whole pathway effect. In contrast, we address in this paper the problem of
testing for the effect of an individual gene of interest on a continuous outcome accounting
for plausible gene-gene interactions, instead of testing the effect of the entire pathway/
network.

To test for the gene effect in the presence of possible gene-gene interactions in a gene set,
we introduce the concept of ‘garrote kernel’ where we attach an extra garrote parameter
(Breiman, 1995) to the gene of interest in the kernel function and reparametrize our testing
problem in terms of the new garrote parameter. The key advantage of this approach is that it
allows us to reduce the dimensionality of the testing problem to a scalar parameter. We
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develop a score based testing procedure for the garrote parameter based on the mixed model
framework and investigate theoretical properties. Such a score test effectively reduces the
degrees of freedom by accounting for the correlation among genes, resulting in a more
powerful test compared to the traditional F-test for all the interaction terms. It also allows
for complex interactions.

The rest of the paper is organized as follows. Section 2 describes the joint semiparametric
kernel machine regression framework for a gene set. Section 3 proposes the garrote kernel
machine (GKM) score test for individual gene effects in the presence of possible gene-gene
interactions and studies its theoretical properties. Section 4 discusses a multiple testing
procedure in the GKM framework. Section 5 evaluates the performance of our test using
simulation studies. Section 6 applies the proposed test to the Michigan prostate cancer gene
expression data, followed by discussions in Section 7.

2. Semiparametric Model of Gene Effects in a Gene Set

Suppose we observe data from n subjects. For each subjecti = 1,..., n, let Z; = (Zi1,..., Zipp)*
be covariates associated with M genes within a gene set, e.g., a genetic pathway/network, Y;
be a continuous response and X; be a set of clinical covariates. It is important to note that X
and Z can contain both continuous and binary variables. We assume the following model to
relate the response to the clinical covariates and the genetic covariates:

Yi=X]B+h(Z, ..., Z,)+€i, (1)

where f is a set of unknown regression coefficients for the clinical covariate effects, A(:) is
an unknown function for the gene effects in a gene set, and ¢;’s are independent random
errors having Normal(0, 02) distribution.

Typically, one assumes a parametric form for 4(-) to model the gene effects in a gene set.

For example, h(Z,-):Z{.T;; corresponds to a model with only main genetic effects, whereas

M

Wz i):Z;\:lZ”\ "“Jrzjdzfizfﬂ Yik allows for the first order gene-gene interactions.
However, these classical specifications make strong parametric assumptions and are often
subject to considerable power loss for testing for individual gene effects in the presence of
gene-gene interactions as we will show later.

In this paper, we allow A(-) to be specified parametrically and nonparametrically in a unified
kernel machine framework, which is more convenient and powerful to work with for multi-
dimensional data. Specifically, rather than specifying the function A(-) using the basis
functions as above, we specify A(-) using a positive definite kernel function K(-, -). Mercer’s
theorem (Cristianini and Shawe-Taylor, 2000) guarantees that under some regularity
conditions, the kernel function K(-, -) implicitly specifies a unique function space, say ",
spanned by a particular set of orthogonal basis functions ¢;(z),j=1 ..., J. Here
orthogonality is defined with respect to the L, norm. Hence, the function space *« has the
property that any function A(-) € *« can be represented in two ways: using a set of basis

J
functions as (% ):Z =1 ©i(Z)1j known as the primal or basis representation; or equivalently

L N
using the kernel function as h(z):z 1o Kz, Zip)a for some integer L, some constants a1,

..., oy and some { 2, ..., z:_‘}. The later representation is called the dual representation.
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Two most commonly used kernels are the 4 polynomial kernel and the Gaussian kernel.

The d™ polynomial kernel K (21, z2)=(p+2] 22 ) corresponds to the models with dth-order
polynomials including the cross product terms. For example, the first order polynomial

kernel (d = 1) corresponds to the model with only main effects i(Z ,—):Z,.T n, and the second
order polynomial kernel (d = 2) corresponds to the model with linear and quadratic main

M M o_,
effects and two-way interactions h(zf)zzkzlZr'k’?lﬁzjdzszrﬂ’fk +Zk:]ka’?3k. The

M 2

Gaussian kernel is K(%1: zE):exp{_ZJ.:l(le —22j)"/P}, where p is a tuning parameter. The
Gaussian kernel generates the function space spanned by the radial basis functions
(Buhmann, 2003) and includes many nonlinear functions. Both dth polynomial kernel (d >
1) and Gaussian kernels allow for gene-gene interactions.

A few additional kernels are useful for modeling gene-gene interactions. For example, we

M

can define the product linear kernel K(21, 22)= l—[ k=1 14+21%22¢), which corresponds to the
model h(z) = By + Zg iz + Zj<k Pojuzizk + -+ + By 21 --- 2> Which includes all the
multiplicative interactions up to the order M. If one wishes to include only two-way
interactions in the model along with the main effects, i.e., the primal representation is 4(z) =
Bo + Zx Brizk + Zj<k Pojuzjzks then the corresponding kernel can be specified as

M

K(z1, 2)=1 +Zk=]:”~'53*‘+ZJ,-<A.3U33J'3”:3’*. We call this kernel the two-way interaction
kernel. Examples of other choices of kernel functions include the sigmoid and neural
network kernels, and the B-spline kernel (Scholkopf and Smola, 2002).

In theory, given any basis functions ¢(z) = {¢1(z),..., @7 (z)} in the primal representation,

7
one can construct the corresponding kernel Kz, z;):z jzlﬁpj('zl)w(zﬂ to facilitate the
dual representation, and vice versa. For high-dimensional data, it is more convenient to work
with the dual representation for A(-) using the kernel function K(-, -), as will be done in this
paper. The estimation and testing procedure will be described below.

3. Testing for a Gene Effect in the Presence of Gene-gene Interactions

In this section, we develop under model (1) a score based test for an individual gene effect
accounting for gene-gene interactions in a gene set. Without loss of generality, consider
testing for the effect of Z;. Then our hypothesis is

Hoh(z1, 22, ... 2)=h(z2, . ... 2y,

that is, the function A(-) does not depend on z;. Note that the above formulation is quite
general and covers a broad range of models, including the common parametric models for

M
gene-gene interactions. For example, under the main effects only model e i):Z_ j=1 ZU’?J',

H corresponds to the problem of testing for #1 = 0. Under the classical two-way interaction
model

M
WZ)=) Zuo+ Y ZiiZuy i
k=1 J<k (2)
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Hj corresponds to testing for #1 =y = ... = y13 = 0, which requires M degrees of freedom
and is subject to considerable loss of power.

The central idea of our approach is to use the dual representation of model (1) and introduce
a garrote parameter in the kernel function to develop a more powerful test by reducing the
degrees of freedom and borrowing information across genes within a gene set. To get the
idea across, consider the traditional two-way interaction model (2), which can be specified

M M—=1 M

using the two-way interaction kernel K(z1,z)=1 +Z;\.=151"~":3*‘+ZJ=| Zhﬁ (122 2k T2k
M M- M-1

and can be rewritten as K (%1, 22)=(1+2z11221)(1 +Zk=231k33k)+zj=3 e ja1 SLR2IRIRE2, To

test for the effect of Z;, we introduce a garrote parameter ¢ to the terms involving Z;, and

define the garrote two-way interaction kernel as

' . M M—1M
Kg(z1, z2:0)=(1+0z11221)(1 +Zk=2.’.|k:3u+2j=3 Z£:j+|5|_;'12_jllk12k. One can easily see that
setting the null hypothesis Hy: d = 0, we have

M M1~ M
K(z, z2:0=0)=1 +Z;\:2:1AZJ;\-+Z}:2 Z;\:}.HZUZEJ«'Z[KZR’ which corresponds the two-way
interaction model with only Z,,..., Zy;. This formulation allows us to test for the effect of Z;
using a single parameter instead of M parameters under the two-way interaction model,
suggesting that we could have considerable power gain.

More generally, to test for a gene effect in presence of gene-gene interactions, it is relatively
easy to construct a garrote version of any particular kernel that model interactions. For
example, the garrote polynomial kernel is given by

M d
Ky(z1, 22:0, p)=(p+021122) +Z_f=2:1f‘331j , and the garrote Gaussian kernel function is

5 M >

Ky(z1, 22:0. p)=expi=o6(z11 —221)"/p - Z_fzg(:U =2,)°/P} One can easily see that under
Hy: 0 =0, h(-) corresponds to the model without Z; under the dth polynomial kernel and the
Gaussian kernel respectively.

In general, given a kernel, the garrote kernel can be obtained by simply multiplying the
garrote 6!/2 to the first component of the covariate vector and constructing the usual kernel
using this modified covariates. In this formulation we now test for

Ho:0=0.

This formulation has two main advantages, as we will observe later. First, the testing
problem is reduced to a one dimensional problem from a possibly high or infinite
dimensional (in the case A(-) is modeled nonparametrically) problem. Second, in contrast to
the usual F-test that uses M degrees of freedom to test the effect of Z;, our method uses a

simple scaled chi-squared distribution ’”Xi with much smaller degrees of freedom that are
estimated from the data by accounting for correlation among genes, as we will discuss in
Section 3.2. As shown in the simulation studies, d is much smaller than M and hence our test
gains more power than the F-test.

3.1 Derivation of the score test statistic

As discussed before, we assume the function A(-) belongs to a functional space "« with a
kernel K(:, -). Under the full model, f and A(-) are estimated by maximizing the penalized
likelihood function, apart from a constant
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R

(Yi= XT3~z - 27|, /2.
g

ra | —

J(B.h)= -
@)

i=1

where A+ is a tuning parameter which controls the trade off between goodness of fit and
complexity of the model, and /"l denotes the functional norm in the functional space *x. In

7

particular, if we consider the primal representation h(z):z jzlwi(z]’?i', where g;, j=1,...,J
2 I,

are orthonormal basis functions, then ”hHw « 1S written as Z jzl’f j. However, we will use the

dual representation of A(-). Liu et al (2007) discussed the estimation procedure using this

penalized loglikelihood function via linear mixed models in detail. Specifically, using the

representer theorem (Kimeldorf and Wahba, 1970), the solution of (3) can be written as

h(’FZi:]ﬂfiK(‘e Zi), where a = (aj,..., a,)" is an unknown parameter vector. Instead of
using the original kernels, we propose to use the garrote kernels Kg(-, -) to express h(-). As
noted in Liu et al (2007), maximization of (3) is equivalent to maximizing

JB.Wy=—1¥ — X"B— K,6.p)a) (Y- X"B- K 6.p)a}/2— 17 " K6, p)a /2. @

where ¥ = (Yy...., ¥,)T, X = (X),..., X,,) and K,(6, p) is an nxn matrix with the (i, j)"
element given by Kg,,;i(é, p) = Kg(Zi, Zj, d, p). We reiterate that K(-, -) and Kg(-, -) denote the
kernel and the corresponding garrote kernel functions, and K(-) and Kg(~, -) denote nxn
matrices resulting from applying the kernel functions to the covariates Z.

It is important to note that the criterion function J(f, /) can be viewed as a penalized log-
likelihood function of a linear mixed model (Harville, 1977; Laird and Ware, 1982).
Specifically, Liu et al (2007) show that one can consider an equivalent linear mixed model
regression problem

Yi=X]B+hi+&;, (5)

with i = (hy,..., h,)T is a vector of random effects following a Normal{0, 2K,(9, p)}
distribution where A = 1«62 In this setup, the parameters A and p can be considered as
variance components. Using this formulation, the parameters can be estimated using the
standard mixed model theory, see Liu et al (2007) for details.

The main focus of this paper is to test for the main effect of a gene in the presence of gene-
gene interactions using the garrote kernel framework, that is, testing for Hy: J = 0.
Specifically, we propose a variance component test for Hy: 6 = 0 by using the mixed model
formulation (5) and derive a score statistic. Specifically, the marginal covariance matrix of ¥
under (5) is given by V (0) = 2l + 4K (3, p), where 8 = (9, p, 4, o2). The log-likelihood for &
and f is then given by

L, =-loglV(®)/2 - (Y - XT3 V-e)Y - X"p)/2.
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One can estimate the variance components A and p by maximizing Lyg . However, a major
disadvantage of the maximum likelihood approach is that it does not take into account the
loss of degrees of freedom due to estimation of the fixed effects £, and the resulting

estimators for the variance components are usually biased (Harville, 1977). We therefore
propose to use the restricted maximum likelihood (REML)

Ly =—loglV(8)]/2-1ogl X V(@) X T|/2- (Y - X" vy Y- XTB))2.
Under Hy: 0 =0, we set 8 = (0, p, A, 02) and

Po(6)=V"(t0) - V' @) X" (X V0 X"} XV (8).

The REML based score function of  evaluated at H is
- T K E
Ssa=(Y = X"B) V(60) " {AK 50,00}V (B0)”' (Y =X B)/2—tr{A K, 5(0, p) Po} /2,

where K, 5(d, p) denotes the derivative of Ky(d, p) with respect to d. To test for Hy: 6 =0, we
propose to use the score-based test statistic

T~ -1 —~ — 1 X
T,=(¥ - X"B) V(@) 1K,V @) (¥ - X"B)/2, ©

where 6 = (0, p, /, 6%) and f§ are estimators of 6 and f# constructed under the null
hypothesis Hy: d = 0.

It is important to note that a major advantage of our testing procedure is that one only needs
to estimate the parameters under the null model. Recall that the full model is given in (1).
Under Hy: 6 = 0, the reduced model is

Yi=X] B+h(Zyi, ..., Z,p)+Ei.

Define Z;y = (Z;,..., Zy;)*. The model components for this reduced model can be estimated
following the procedure of Liu et al (2007, Section 4) by fitting the linear mixed model
formulation

Yi=X[B+hi+ei, @

where h; ~ N {0, AKy(p)} and K, is the kernel matrix constructed under H( using the genes
Zy, -+, Zpr. We can estimate f and h(-) using the best linear unbiased predictors (BLUPs),
and estimate the variance components using REML under the null working linear mixed
model (7). The numerical properties of BLUPs and REML estimates are well known in the
mixed model literature, see for example Harville (1977). We refer to Liu et al (2007) for
more details about fitting the null model.
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3.2 The Null distribution of the test statistic

To test for Hy: = 0, we need to derive the distribution of the score-based test statistics T,
under Hy. To start, we first note that the information matrix of @ based on the REML
function is given by

T
I= l 1{5 ] I,:;H“ j .
IJU[] IUU(J“

where

av(g) dVv(B)
Iy 0 =tr{ Py(# Py(#
0,0, =tr{Po(6) 7; 0(6) 50

H2.

Hence the efficient information of § accounting for the fact that £, 62, p are estimated is
given by

T T 7-1 7.
Iss=1s5 — Ir)'ﬂ”I(J"(}U Ion

where all the quantities are evaluated at 6y computed under Hy. Note that we have used the
fact that f and @ are orthogonal in linear mixed models and there is no loss of information
for 0 when estimating /.

Note that our proposed test statistic 7, is a quadratic form in ¥ and follows a mixture of chi-
squared distribution under Hy: 6 = 0. We use the Satterthwaite approximation to

approximate its distribution by a scaled chi-squared distribution mxi,. The parameters m and

d are calculated equating the mean and variance of 7}, to those of "”Xi‘- Specifically, we solve
md = 7 tr{Po(0p)K, 50, p)}/2 and 2m?d = Iy5, which in turn gives us the solution

m=ls/[1tr{V =" (00) K50, P)}:
—_ s 2 =
d=[ A (V ™ (60) K5(0.p)] /(lss).

Now the p-value of the test can be obtained using the tail probabilities of the my :'%
distribution. Note that the degrees of freedom d is estimated from the data and accounts for
the correlation among genes. We will demonstrate in the simulation study section that d is
often much smaller than M and hence the garrote kernel machine test often has considerably
higher power than the M-df F-test.

Note that n7 and d depend on K, 5(-, -), the derivative of the garrote kernel with respect to the
garrote parameter ¢. For many frequently used kernels, this matrix can be easily computed.
For example, in the case of polynomial kernel, the (i, j)-th element of the derivative matrix is

M d-1
K, 5j(0=0,p)=dZ;\ Z}, (.O"'Zkzngkz,jk) ; for Gaussian kernel,
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) M 5
K, ;5ij(0=0,p)={~(Zi — Zj )'fp}exp{—zkzz(sz = Zjx)"/p}, and for product linear kernel,

M
K, ;5:i(6=0)=Z17Z} ;\:2(] +ZiuZ i),

3.3 Principal Component Analysis (PCA) Based Testing Procedure

Recall that the proposed test statistic 7}, given in (6) is a quadratic form and hence follows a
weighted mixture of y2-distribution under Hy. Specifically, let (i,..., {,, be the eigenvalues of
K, 50, p) with corresponding eigenvectors U = [uy...., u,]. Then we can write

T,=Ay" Dy, (8)

where w = UTV (00)" (Y — X"f) and D = diag((3,..., {;,). The Satterthwaite approximation
of the distribution of T}, derived in Section 3.2 inherently assumes that the eigenvalues (j,...,

n 2 0, that is, the derivative matrix Ky (0, p) is positive semi-definite. If this condition is
violated then T,, can potentially take negative values and the chi-squared approximation
becomes invalid.

Note that this problem depends on the choice of the kernel function K(-, -). For many usual
kernel functions, this problem does not arise at all. For example, in the case of the linear
kernel, polynomial kernel, product linear kernel and the two-way interaction kernel, one can
easily show that the matrix K, (0, p) is in fact positive semi-definite and hence the chi-
squared approximation in Section 3.2 is valid and the testing procedure remains valid.

One notable exception is the case where one uses the Gaussian kernel

. M 2
Ky(z1, 2230, p)=exp{—d(z11 —z21)"/p — Zf::(:U = 22j)°/P} 1n this case, we have
K, s=M; © M>,

where M| and M, are matrices such that M ;; = —(Z,-I—Zjl)zlp and

M 5
Afla'FeKP{—Zk:,_,(:ik = 2Zjk)"/p}, and © denotes the element-wise product or Schur product
of two matrices. In this case, the matrix Kgﬁ can be an indefinite matrix and hence the chi-
squared approximation in Section 3.2 may not be valid.

To address this problem, we propose a principal component based solution. Specifically,
utilizing the form of the test statistic in (8), we propose the following modified test statistic

T:=1" D'y,

where D* = diag(|{1|...., |5,) is constructed using the absolute values of the eigenvalues. In
other words, the T, can be written as

T, — —1— = -]
Ty=(Y - X"B) V(6o) (1K50.0)IV () (¥ -X"B)/2, ©)
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where K ;(0.0)=UD *UT is a reconstruction of K, 5(0, p) using absolute eigenvalues. Note
that when K (0, p) is non-negative definite, T,=T.

Another option is to consider

T _—~ =1—~__. — — =1
Ty'=(Y - X'B) V(B) {AK 0.0V (6) (¥ - X"B)/2,

(10)

where KEE(U.@=UD”UT is a reconstruction of K, 50, p) using D™ = diag[{11(S; > 0)....,
¢ 1(g, > 0)], where one replaces the negative eigenvalues with zero.

It is important to note that 7 and T;:* are valid test statistics, and K 5(0,p) and K (0. ), by
construction, are positive semi-definite matrices. Hence we can now apply the Satterthwaite
approximation on 7', or 7" to obtain the null distribution as a scaled chi-squared distribution

as demonstrated in Section 3.2, where one uses K ;(0.9) or K;(0.0) instead of Ky 50, p)
in all the expressions.

It is worth mentioning that in our simulation study, the proportion of time 7}, assumed
negative values for the Gaussian kernel case is negligible (0.5-5%) and hence did not pose
any real problem. However, the PCA based reconstruction approach is practically very
useful when one applies our method to a real data set simply because a negative test statistic
in that case will result in p-value being 1.0 whereas the modified test will produce a valid
and sensible p-value.

Remark 1—It is worth noting that one can derive the exact distribution of an indefinite
quadratic form in multivariate normal variables as in (6), see for example Johnson and Kotz
(1970), Section 7. However, the exact distribution and hence the p-value are numerically
very difficult to compute and require to perform contour integration on a complex plane.
Thus we prefer the PCA based approach for its easy accessibility. If one wants to keep the
original indefinite quadratic form, critical values can be determined using simulations.

4. Multiple Comparison Procedure

The score test proposed in Section 3 is developed to test for a single gene at a time.
However, when testing for genes in a gene set, the p-values from individual tests can be
misleading and may result in false discoveries. Specifically, when comparing M genes in a
pathway/network, we are interested in simultaneously testing M null hypotheses each
corresponding to one gene. Let the individual p-values be given by py,..., py. A typical
approach is that instead of using the individual p-values, one modifies them to obtain
modified p-values adjusted for multiple testing. The simplest example is the Bonferroni

correction where the adjusted p-values are given by pf"”: mM, k=1,..., M. However, this
approach is overly conservative and does not account for the correlation among the genes,
and often leads to a very small number of discoveries. An alternative approach is based on
false discovery rates (Benjamini and Hochberg, 1995). However, FDR requires the
hypotheses are independent or block-independent. This assumption is not appropriate in
many cases, specially if one is interested in testing for genes in a particular pathway where
there are gene-gene interactions present.
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We instead propose a permutation-based procedure for multiple comparisons that can be
used with our proposed score test. We present the procedure for the case where there are no
clinical covariates X, and indicate afterward how the clinical covariates can be handled.

Recall that our model is
Y;‘ZIT(Z;[,...,Zf‘f)+€;, (11)

where we test each of the M genes one by one using our testing procedure. Let the individual
p-values be py,..., pps. The multiple comparison procedure is as follows:

1. Fit the full model (11) and obtain the residual vector ¢.
2. Forany givenm € {1,..., M},

a. Fit the null model Y; = i(Z;1,..., Z; u—1> Zi m+1>---» Zimg) + €;, and estimate
the effect under Hy, that is A, (") = A(Zi1,- .. Zim=1> Zims1+++> Zitd)

b. Permute the residual vector ¢ randomly to obtain ¢* and compute Y* =
B + €

¢.  Perform our proposed score test using Y™ as observations and Z as the
covariates and obtain the p-value p; .

d. Repeat the steps (b) and (c) for a large number, say b = 1,..., B, of times

and obtain p-values for the m™ gene p; |, ..., Doy
3. Repeatstep 2 foreachm=1,..., M.
4. Derive the distribution of p*=min( Plaeees p,,) and compute the adjusted p-value of
the m'h gene as the tail probability of this distribution, that is, the p-value of the m™

gene is

b=1

5- The mth hypothesis is rejected al level a if 2% <q.

Note that in presence of extra variables X, one just needs to include X as a linear predictor
while fitting the full and null models. The estimation procedure will then be same as
described in Section 3.1. The rest of the procedure and computation of the p-values remain
the same as above.

5. Simulation Study

We performed a simulation study to evaluate the finite-sample performance of our garrote
kernel machine (GKM) test and compare its performance with the usual F-test. The data sets
were simulated from the true model

Yi=Xn+h(Zy, ..., Z

g )T E
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where X; = (X;;, X;»)T were generated from a standard bivariate normal distribution and the
true value of # = (0.2, 0.2)T. The random errors ¢;’s were generated from a standard normal
distribution. We generated Zj,..., Zy; from a normal distribution with the compound
symmetry correlation structure with marginal variance 1.0 and correlation . We considered
different values of r = 0, 0.2 and 0.5, and four different settings for sample sizes and number
of genes: (n, M) = (50, 5), (n, M) = (100, 8), (n, M) = (200, 10) and (n, M) = (200, 20). For
each of these settings, we considered four different functions /(-) as follows. First define

M m
8(Zits .. Z,)=1 +Zz,-k,5¢+ZZ,-. ZikVi,

k=1 k=2

where m < M. Here M is the number of genes in a pathway/gene set and m is the number of
genes that are interacting with Z. We test for the effect of Z;. For example, m = M implies
that Z; is interacting with all other variables in the model, and m = 2 refers to the case where
Z| interacts only with Z,. The four different functions of &(-) are

1. m(Zy,..., Ziy) = 8(Zits...., Zipg) With m =2,

2. o (Zigse.os Zisg) = 8(Zits- .., Zipg) Withm = M,

3. 13(Zite- ... Zing) = sign{g()}|g()|"? with m = 2,
4 hy(Zir..... Zig) = sign{g()}g()|"? with m = M.

Note that case (1) and (2) are linear interaction functions and (3) and (4) are nonlinear.

For each of these cases, we applied our testing procedure to test for the effect of Z;. For type
I error and power calculations, we set the true values of f, = ... = )y = 0.7 and S| = ¢/10, y,
=... =y, =c/20, where we varied c =0, 2, 4, 6, 8. Here ¢ = 0 corresponds to the null
hypothesis of no effect of Z; and was used to study for the size of the test.

We generated 2,000 data sets for each case to compute sizes and powers of our test at a
nominal level of 0.05. To test for the effect of Z;, we used the GKM test with the Gaussian

M ,
kernel K(21, zzlzeXp{—ZJ,zl(zu =22/ /P} and the two-way interaction kernel

M

K(z1, 2)=1 +Zk=]z”~'53*‘+Zjd-31f33.f3”:3’*. For the Gaussian kernel, we computed the p-
values based on both the scaled chi-squared approximation using the test statistic in (6) as in
Section 3.2 and also the PCA based modified test statistics (9) and (10) as described in
Section 3.3. Note that for the two-way interaction kernel, the PCA based method and the
scaled chi-squared approximation are identical, because K, s(-) is positive definite. Hence
we only report results for one test. We also compared the power of our GKM test to that of
the usual ANOVA based F-test where one fits a linear model with all main and two-way
interaction effects. For linear cases (/1(-) and h;(-)), we also present the results for the
classical score test assuming the true direction under the alternative (1, y2,..., ym) = ¢(0.10,
0.05,..., 0.05) is known, that is, one only tests for ¢ = 0 against ¢ # 0. This of course is not
possible in real data situations but in our simulation study this test serves as an ideal
benchmark. We do not include the results of the classical score tests for the nonlinear
models (h3(-) and h4(-)) because in our simulations we found that the parametric estimation
of these nonlinear models, even under H, are unstable and practically infeasible, especially
for large p. In fact, this is one of the reasons for adopting a kernel machine based test for
nonlinear models.
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The results are given in Tables 1 — 4. These results show that all the tests have the size close
to the nominal value a = 0.05. The M-df F-test loses power in all the cases, specially when
there is correlation among the covariates ( = 0.2) or (r = 0.5). For the two-way interaction
models A and Ay, when r = 0, the F-test has a similar performance to that of the two-way
interaction kernel but both are outperformed by the Gaussian kernel. When r = 0.2, the two-
way interaction kernel-based test improves the power over the F-test considerably, while
both are outperformed by the Gaussian-kernel based test. Note that when r = 0, although the
covariates (Zy, -+, Z,,) are independent, however, the interaction terms ZZy, -+, Z|Z,, are
correlated. The GKM test is able to take such correlation into account when testing for the
effect of Z; and hence is more powerful. For the nonlinear cases &3 and /4, the Gaussian
kernel-based test performs much better than both the F-test and the two-way interaction
kernel test, as expected.

For the Gaussian kernel, we also compared the power of the GKM test with the PCA based
tests. It is evident that in all the cases considered, the GKM test and the two PCA based tests
perform very similarly. This is simply because the proportion of times the test statistic using
the Gaussian kernel takes a negative value is very small in all the cases, ranging between
0.5% to 5% and hence their impact on the power of the test is negligible. However, we
recommend the PCA based test for practical purposes when one applies the test to a real data
set simply because the original GKM test based on the Satterthwaite approximation may
result in a negative test statistic giving a p-value 1.0. In contrast, the PCA based test will
provide a valid test and produce a valid and sensible p-value.

Comparing the results from the GKM tests with the ideal score test by hypothetically
assuming the true direction of the alternative were known, we see that the GKM test
performs closely to the ideal score test for i, especially for (n, p) = (50, 5), (100, 8) and
(200, 10) with low to moderate correlation (r = 0, 0.2). However, in other cases, the GKM
test loses some power compared to the best power possible. This result is expected because
the ideal score test assumes that the direction of the alternative is known in advance. This is
not feasible in practice. It is also interesting to note that given a known direction of the

alternative (81, ya, . .., ¥m)=c(B}. ¥3, .. ., ¥,,), and the knowledge of the true form of /(-), one

m
can rewrite h(z;, 22, . . ., Zm)=h(Z},22, -+, Zm), Where 3T=ZlﬁT+Zk:2€1ﬂ}’;. In case of linear
functions such as /(-) and h,(-), testing for Z; then amounts to using a linear kernel with the
covariates ZT, Zy,..., Z, and testing for Z’f. However for nonlinear cases, one still needs to
use Gaussian kernel to capture the nonlinearity of the function. Nevertheless, these tests are
still hypothetical as neither the true direction of the alternative or the actual functional form
of h(-) are known in practice.

To gain insight about the improvement in power for the Gaussian kernel and two-way
interaction kernel over F-test, we summarize the degrees of freedom used for tests based on
both kernels. The boxplots of degrees of freedom used in the chi-squared approximation for
the case n =50 and M = 5 with ¢ = 6 in displayed in Figure 1. Note that while the F-test uses
5 degrees of freedom, the Gaussian-kernel based test uses an average 1.5 DF while the two-
way interaction kernel test uses an average 4 DF, implying considerable power gain. The
Gaussian kernel uses much less degrees of freedom than the two-way interaction kernel and
hence performs better than the interaction kernel. As the correlation » among Zy,..., Zys
increases, the degrees of freedom used by the two-way interaction kernel decreases and
hence gaining more power over the F-test. This is also supported by the results in Table 1.
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6. The Prostate Cancer Pathway Data Example

We applied our proposed GKM testing procedure to analyze the prostate cancer genetic
pathway data from the Michigan prostate cancer study (Dhanasekaran, et al, 2001). The data
set contained 59 patients who were clinically diagnosed with local or advanced prostate
cancer. An objective of the study is to evaluate whether a gene of interest in a genetic
pathway has an overall effect on pre-surgery prostate specific antigen (PSA) after adjusting
for covariates and accounting for interactions with other genes in the pathway. For each
patient, cDNA microarray gene expressions were collected. Liu et al (2007) considered this
data set and the cell growth pathway which contains 5 genes. They tested for the joint effect
of the whole pathway and found the effect to be statistically significant. We are interested in
testing for the effects of the individual genes accounting for gene-gene interactions on PSA
level. We took a log transformation of PSA to make the normality assumption more
plausible. We included two covariates: age and Gleason score, a well established
histological grading system for prostate cancer, in our model,

Yi=Xubi+Xpfa+h(Zi, . .., Zis)+&i,

where Y denotes the log-PSA level, X| and X, denote age and Gleason score, and Z;y,..., Z;s
denote the gene expression levels of the 5 genes in the cell growth pathway. The symbols
and description of the five genes in the pathway are provided in Table 5.

We started by fitting a main effects only linear model, that is, setting A(Z;1,..., Z;i5) = 5o +
Ziny + ... + Zjsn5, and tested for each gene separately. For comparison purposes, we fit a
model including all the main effects and two-way interactions, that is, we set

h(Zi, ..., Z*'-‘):’?“"'Z;\: |Zi*‘7‘~'+Z;\=] Zj.,;\.’»'szffzﬁf. In this setting, we performed the usual
F-test for each gene. The individual p-values are reported in Table 5, columns 3 and 4,
respectively. Note that the main-effect-only naive test suggests that the gene FGF7 has a
significant effect on PSA levels. However, when we incorporated all the two-way
interaction, this effect disappears using the 5-df F-test.

We next applied our score testing procedure to test for individual gene effect accounting for
gene-gene interactions (epistasis). We used the Gaussian kernel and the two-way interaction
kernel to model the function A(-). For the Gaussian kernel, we implemented both the original
GKM scaled chi-squared approximation (Section 3.2) and the PCA based modified test

based on 7, (Section 3.3). Note that these two tests are identical when the two-way linear
kernel is used and hence we only report one p-value for the garrote two-way interaction
kernel test. The results are presented in Table 6. The Gaussian kernel based test found the
gene FGF7 was significant. However, the two-way linear kernel did not capture this result.
This seems to imply that the interaction structure between the genes may not be simply
multiplicative and the nonparametric modeling of the covariates is in fact needed. Further as
shown in the simulation study, the Gaussian-kernel based test has more power.

However, individual p-values may be misleading and we need to take into account the
multiple testing issue. We employed the multiple comparison procedure described in Section
4 to obtain adjusted p-values. We used B = 10000 permutations to generate the p-value
distribution. The distribution of p* as described in Section 4, step 4 is displayed in Figure 2.
The adjusted p-values are displayed in columns 5-7 of Table 6. It is evident that FGF7 is
still found to be significant by the Gaussian kernel based tests.
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7. Discussion

We have proposed in this paper a kernel machine framework to test for individual gene
effects on a continuous outcome in the presence of possible gene-gene interactions in a gene
set/pathway using the garrote kernel (GKM) test. We have developed a garrote kernel based
score test by introducing a garrote parameter in the kernel function. This framework does
not require us to explicitly test for all interaction terms and allows for modeling the gene
effects both parametrically and nonparametrically. We have proposed to calculate the p-
value of the GKM test using an easy-to-compute scaled chi-square test, where the degrees of
freedom of the test are estimated from the data and account for correlation among the
covariates. Our approach reduces the dimensionality of the testing problem to testing for one
parameter and provides a significant power gain over the usual F-test by using a
considerably smaller DF than the M DFs used by the F-test, especially when the Gaussian
kernel is used, as shown in our simulation studies.

To correct for multiple comparisons of testing for individual gene effects in a gene set/
pathway in the presence of possible gene-gene interactions, we have proposed a permutation
test, which properly accounts for the correlation among the hypotheses, i.e. the same data
are used for testing for different hypotheses. It would be useful to develop in the future an
analytic test that can effectively accounts for the correlation among the tests. Some
discussions about this issue using FDRs can be found in Schwartzman and Lin (2010).

Our permutation method can be easily extended to the case where a gene belongs to multiple
pathways. Specifically, if a gene belongs to multiple pathways, to test for its significance,
we analyze one pathway at a time by accounting for possible gene-gene interactions under
model (1) and calculate the p-value for the gene. We then apply the same permutation
procedure in Section 4 to calculate the p-value across multiple pathways, where the
minimum of the p-values in step 4 is calculated across all the pathways.

We have mainly focused in this paper on continuous outcomes and a Gaussian regression
model. The fundamental idea of introducing a garrote parameter in the kernel framework to
conduct powerful tests can still be applied to more general models such as logistic
regression or exponential class models. We are currently pursuing the testing problem in this
generalized linear model setting. The results will be reported elsewhere.
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Figure 1.

Results of the simulation study described in Section 5. Presented are the boxplots for the
estimated degrees of freedom of our proposed GKM test for the cases /() (top-left), hy(-)
(top-right), h3(-) (bottom-left) and A4(-) (bottom-right) for n =50 and p =5 and ¢ = 6. In
each boxplot, the three pairs of boxes are for different values of correlation » among the
covariates. In each pair, the degrees of freedom are plotted using the Gaussian (left box) and
two-way interaction kernels (right box).
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Figure 2.

Results from data analysis. Displayed is the distribution of p-values for the multiple
comparison procedure: solid line represents the Gaussian kernel test, dashed line represents
PCA based Gaussian kernel test and dotted line represents the two-way interaction kernel.
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Table 5

Page 27

Results of the data example described in Section 6. Displayed are the F-test based p-values of individual gene
effects using the linear model with only main effects (3rd column) and using the linear model with main and
all the two-way interaction effects (4th column).

Name Description Main effects  F-test
MYBL2  v-myb myeloblastosis viral oncogene homolog 0.059 0.111
FGF2 fibroblast growth factor 2 0.077  0.335
FGF7 fibroblast growth factor 7 (keratinocyte growth factor) 0.006 0.063
IGFBP1  insulin-like growth factor binding protein 1 0.889  0.381
IGFBP2  insulin-like growth factor binding protein 2, 36kDa 0.353  0.298
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