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Abstract

In this paper we propose tests for hypotheses regarding the parameters of the deterministic
trend function of a univariate time series. The tests do not require knowledge of the form of
serial correlation in the data and they are robust to strong serial correlation. The data can
contain a unit root and the tests still have the correct size asymptotically. The tests we analyze
are standard heteroskedasticity autocorrelation (HAC) robust tests based on nonparametric
kernel variance estimators. We analyze these tests using the �xed-b asymptotic framework
recently proposed by Kiefer and Vogelsang (2002). This analysis allows us to analyze the power
properties of the tests with regards to bandwidth and kernel choices. Our analysis shows that
among popular kernels, there are speci�c kernel and bandwidth choices that deliver tests with
maximal power within a speci�c class of tests. Based on the theoretical results, we propose
a data dependent bandwidth rule that maximizes integrated power. Our recommended test is
shown to have power that dominates a related test proposed by Vogelsang (1998). We apply
the recommended test to the logarithm of a net barter terms of trade series and we �nd that
this series has a statistically signi�cant negative slope. This �nding is consistent with the well
known Prebisch-Singer hypothesis.
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1 Introduction

In this paper we propose tests of linear hypotheses on the parameters in a univariate deterministic

trend model. The tests are designed to be size-robust to strong serial correlation in the errors

including the case of a unit root in the errors. Robustness to serial correlation is obtained using

well known nonparametric heteroskedasticity autocorrelation (HAC) robust standard errors. Tests

using the HAC robust standard errors may still have signi�cant size distortion, however. One source

of this distortion is the fact that the �nite sample distributions of HAC robust tests are highly

dependent on the choice of bandwidth and kernel, while the asymptotic distributions of the tests

do not depend on these choices. Using the newly developed �xed bandwidth (�xed-b) asymptotics

of Kiefer and Vogelsang (2002) we develop an asymptotic theory that captures the choice of kernel

and bandwidth. Fixed-b asymptotics can be used to reduce some of the size distortions. The

second source of size distortion is the possibility of strong serial correlation (possibly a unit root) in

the errors. We show that the �xed-b asymptotic distributions are free of serial correlation nuisance

parameters regardless of the bandwidth or kernel used to compute the HAC robust standard errors.

This asymptotic pivotal result holds for stationary errors as well as nearly integrated errors although

the limiting distributions are di¤erent in the two cases. Using this asymptotically pivotal property,

we are able to control the over-rejection problem caused by strong serial correlation by implementing

the scaling correction approach proposed by Vogelsang (1998). Therefore, the tests we propose have

well behaved size even when the errors have strong serial correlation.

For the special case of the simple linear trend model, we use a local asymptotic power analysis to

guide the choice of kernel and bandwidth. Con�ning attention to tests with asymptotically correct

size, we consider a class of well known and popular kernels and we compute asymptotic power en-

velopes that represent maximal power across the kernels and bandwidths within the class. We then

show that tests based on the Daniell kernel have power that e¤ectively attains the power envelope.

We address the traditionally di¢ cult issue of HAC bandwidth choice using �xed-b asymptotics in

conjunction with local to unity asymptotics. For a given value of the local to unity parameter,

we numerically determine the bandwidth that maximizes integrated power. To our knowledge,

this is the �rst detailed HAC bandwidth analysis that focuses on power of tests rather than the

mean square error of the HAC estimate although Hall (2004) does point out a potential link be-

tween bandwidth choice and power of over-identifying restrictions tests in generalized method of

moments models. Our analysis provides a data dependent bandwidth that maximizes integrated

power. Finite sample simulations suggest that a feasible version of this data dependent bandwidth

rule works well in practice. Our asymptotic and �nite sample analysis points to one HAC based

test that we recommend in practice.

We compare our recommended test with the related tests proposed by Vogelsang (1998). One
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of those tests, the t� PSW test, is very similar to the tests analyzed in this paper. We show that

the t � PSW test is dominated in terms of power by the recommended test. Therefore, the tests

analyzed in this paper are an improvement over the tests proposed by Vogelsang (1998).

We use the recommended test to investigate the well known Prebisch (1950) and Singer (1950)

hypothesis that postulates that over time the net barter terms of trade should be declining between

countries that primarily export commodities and countries that primarily export manufactures.

This empirical conjecture has received considerable attention in the international economics lit-

erature. See Ardeni and Wright (1992), Cuddington and Urzua (1989), Grilli and Yang (1988),

Lutz (1999), Powell (1991), Sapsford (1985), Spraos (1980) and Trivedi (1995) among others. The

empirical results in this literature have been mixed. Many authors have interpreted evidence in sup-

port of the Prebisch-Singer hypothesis with caution because of the potential over-rejection problem

caused by strong serial correlation/unit root in the errors. In fact, many authors have focused on,

and in our opinion been distracted by, the question as to whether or not the innovations have a unit

root or are stationary. Because a time series can have a decreasing deterministic trend whether the

innovations are stationary or have a unit root, the unit root issue is simply a nuisance parameter

in the context of the Prebisch-Singer hypothesis. One advantage of our approach is that it allows a

direct test on the slope coe¢ cient of the linear trend that is robust to the unit root question. When

applied to the net barter terms of trade series of Grilli and Yang (1988) as extended by Lutz (1999)

we �nd strong and consistent evidence to support the Prebisch-Singer hypothesis. Our results are

not subject to the usual �over-rejection problem�critique because of the robust properties of the

tests. Further tests indicate that the trend function of this series is stable over time. Our results

con�rm what many authors have been saying for over 20 years: Prebisch and Singer were right!

The rest of the paper is organized as follows. In Section 2 the trend function model is described in

detail, the required assumptions are stated, and some of the basic asymptotic results are presented.

Section 3 describes the scaling procedure that is used to control the over-rejection problem caused by

strong serial correlation. Section 4 brie�y describes the t�PSW test proposed by Vogelsang (1998).

In Section 5 we derive and discuss asymptotic results obtained under the new �xed-b asymptotics.

In Section 6 we examine the asymptotic properties of the test statistics in the simple linear trend

model. We compute asymptotic power envelopes and determine kernels and bandwidths that deliver

tests with power close to the envelopes. Section 7 proposes a feasible data dependent bandwidth

rule that builds on the theoretical results. In Section 8 the results of some �nite sample simulation

experiments are reported. The empirical results on the Prebisch-Singer hypothesis are given in

Section 9. Section 10 concludes and proofs of important results are collected in the appendix.
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2 The Model Setup

We are interested in the following model of a time series with deterministic trends:

yt = f (t)
0 � + ut; t = 1; :::; T; (1)

where f (t) denotes a (k � 1) vector of trend functions, � is a (k � 1) vector of parameters, and
� 0 � denotes the transpose, when used in the context of a vector. This type of model is used

frequently in macroeconomics and �nance to determine the composition of univariate time series.

When performing tests on �; for example to determine whether a given trend should be included, the

presence of serial correlation and heteroskedasticity in the errors must be taken into account. In this

paper, we will concern ourselves with the situation where the exact error structure is not of interest.

In that case, there is no need to model the error structure explicitly, as hypotheses regarding the

coe¢ cients on the trends can be tested without doing so. Such testing is virtually always done

by using HAC estimators to estimate the asymptotic variance of the parameter estimates, and we

follow that approach in this paper.

Throughout the paper we assume that ut is a scalar, mean zero time series. The time series

process futg is allowed to have serial correlation and may be stationary or have a unit root or a
root close to one. For the purpose of studying the impact of these various error speci�cations on

the testing procedures, we make the following �exible assumptions about ut:

Assumption 1

ut = �ut�1 + "t; t = 2; 3; :::; T; u1 = "1;

"t = d (L) et; d (L) =
1X
i=0

diL
i;

1X
i=0

i jdij <1; d(1)2 > 0;

where fetg is a martingale di¤erence sequence with E
�
e2t jet�1; et�2; :::

�
= 1 and suptE

�
e4t
�
< 1:

Under this speci�cation, the errors are stationary when j�j < 1: In this case, � is not modeled as a
function of the sample size. Alternatively, the errors can be modeled as nearly integrated by letting

� =
�
1� �

T

�
where � = 0 corresponds to a pure unit root process.

Under Assumption 1 the following functional central limit theorems follow from well known

results (see Chan and Wei (1988), Phillips (1987) and Phillips and Solo (1992)):

T�1=2
[rT ]X
t=1

ut ) �w(r) if j�j < 1

T�1=2u[rT ] ) d(1)V� (r) if � = 1� �

T
;

where �2 = d(1)2=(1� �)2, w(r) is a standard Wiener process, V� (r) =
R r
0 exp (�� (r � s)) dw (s)

and ) denotes weak convergence.
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At times it will be useful to stack the equations in (1) and rewrite them as

y = f (T )� + u: (2)

Here f (T ) is the (T � k) stacked vector of trend functions. The following assumptions on the trend
are su¢ cient to obtain the main results of the paper:

Assumption 2 f(t) includes a constant, there exists a (k � k) diagonal matrix �T and a vector
of functions F , such that �T f (t) = F

�
t
T

�
+ o (1) ;

R 1
0 Fi (r) dr < 1; i = 1; :::; k; and

det
hR 1
0 F (r)F (r)

0 dr
i
> 0.

Assumption 2 is fairly standard and it is essentially the same as the one used by Vogelsang (1998).

We include the additional assumption that an intercept is included in the model.

Model (1) is estimated using Ordinary Least Squares (OLS) and b� = (f(T )0f(T ))�1 f(T )0y

denotes the OLS estimate of �; while bu = y � f(T )b� denotes the OLS residuals. The limiting
distribution of b� is well known for both stationary and unit root errors:

T 1=2��1T

�b� � ��) �

�Z 1

0
F (r)F (r)0dr

��1 Z 1

0
F (r) dw (r) if j�j < 1;

T�1=2��1T

�b� � ��) d(1)

�Z 1

0
F (r)F (r)0dr

��1 Z 1

0
F (r)V� (r) dr if � = 1� �

T
:

Notice that when the errors are stationary, the only unknown nuisance parameter in the limiting

distribution is �. The fact that a single nuisance parameter appears in the limiting distribution

of the OLS estimates occurs because the regressors are deterministic. In a regression model with

random regressors, the asymptotic variance of the OLS estimates depends on a zero-frequency

spectral density matrix with rank equal to the number of regression parameters. In that case, the

HAC robust standard errors are computed using a vector of time series comprised of products of

the regressors and OLS residuals.

When the errors are nearly integrated, the only unknown nuisance parameters are d(1) and �.

The dependence of the tests on � when the errors are nearly integrated is the reason that HAC

robust tests tend to be over-sized in practice when errors have strong serial correlation. We control

the over-rejection problem using the scaling factor approach proposed by Vogelsang (1998).

To construct the usual HAC robust t or Wald tests, an estimator of �2 is often used. We

consider the case where �2 is estimated nonparametrically using the OLS residuals, but:
b�2 = b0 + 2 T�1X

j=1

k (j=M) bj ; (3)

where bj = T�1PT
t=j+1 butbut�j and k (x) is a kernel function satisfying k (x) = k (�x) ; k (0) = 1;

jk (x)j � 1; k (x) continuous at x = 0 and
R 1
0 k

2 (x) dx < 1: M is called the bandwidth or the
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truncation lag. For b�2 to be consistent, it is necessary to downweight or eliminate the sample
autocovariances for high values of j. Speci�cally, it is necessary that M ! 1 and M=T ! 0

as T ! 1: Most commonly used kernel functions have the property that k (x) = 0 for jxj > 1,

e¤ectively eliminating the sample autocovariances for all values of j greater than M , inspiring the

name truncation lag.

We are interested in testing hypotheses of the form H0 : R� = d where R is a q � k matrix
of known constants, d is a q � 1 vector of known constants and q � k. Typically, R is a matrix

selecting single entries of �; and d is a vector of zeros, but we maintain the hypothesis in its general

form. As a rule, the test statistics used to test this type of hypothesis on the trend function are

either t or Wald statistics of the form:

WT =
�
Rb� � r�0 hb�2R �f (T )0 f (T )��1R0i�1 �Rb� � r�

t =
R1b� � rqb�2R1 �f (T )0 f (T )��1R01 ;

where the subscript in R1 signi�es that the restriction matrix is a vector in the case of the t�test. If
the errors are stationary and b�2 is a consistent estimator, then the t test has a standard normal lim-
iting distribution andW has a limiting chi-square distribution. Unfortunately, when there is strong

serial correlation in the errors, these standard asymptotic approximations are often inaccurate and

the tests su¤er from severe over-rejection problems (see Vogelsang (1998, Table I)). In addition,

the �nite sample behavior of the tests are sensitive to the choice of bandwidth and kernel, yet the

standard asymptotics is the same regardless of the kernel or bandwidth. We address both of these

issues. We control the over-rejection problem using a scaling factor proposed by Vogelsang (1998).

We address the bandwidth and kernel problem by deriving the limiting distributions of the scaled

tests under the �xed-b asymptotic framework proposed by Kiefer and Vogelsang (2002).

3 Scaled Statistics

We now describe the scaling procedure proposed by Vogelsang (1998) and introduce a new variant

of the approach. The basic idea is to multiplicatively scale the t and W tests by a factor that

converges to one when the errors are stationary but converges to a nuisance parameter free random

variable when the errors have a unit root. We consider two scaling factors based on two unit root

tests. Let J denote the unit root test proposed by Park (1990) and Park and Choi (1988). Consider

the regression

yt = f (t)
0 � +

9X
i=p

�it
i + ut; (4)
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where tp�1 is the highest order polynomial of t included in f(t). Then the J statistic is de�ned as

J =
SSR(1) � SSR(4)

SSR(4)
;

where SSR(4) is the sum of squared residuals obtained from the estimation of (4) by OLS, and

SSR(1) be the sum of squared residuals from the OLS estimation of (1). The second unit root test

is the test proposed by Breitung (2002) de�ned as

BG =
T�2

PT
t=1

bS2t
SSR(1)

;

where bSt = Pt
j=1 buj are the partial sums of the OLS residuals from Model (1). Both the J and

BG statistics share the property that they converge to zero when the errors are stationary. When

the errors are nearly integrated, the asymptotic distributions of J and BG are non-degenerate and

depend on � but otherwise do not depend on nuisance parameters such as d(1).

Let UR generically denote either J or BG and let c denote a constant. The scaling factor

exp(�c UR);

converges to a well de�ned random variable when the errors have a unit root but converges to one

when the errors are stationary. Using the scaling factor we now rede�ne the t and W statistics as

t =

0@ R1b� � qqb�2R1 �f (T )0 f (T )��1R01
1A exp (�c UR) ;

WT =

��
Rb� � q�0 hb�2R �f (T )0 f (T )��1R0i�1 �Rb� � q�� exp (�c UR) : (5)

The limiting distributions of t and W are una¤ected by the scaling when the errors are stationary.

When the errors are nearly integrated, the scaling factor a¤ects the limiting distribution. Given �,

for a speci�c percentage point, it is possible to compute the constant c such that the asymptotic

critical values of each statistic are the same for stationary errors and nearly integrated errors. We

follow Vogelsang (1998) and compute c for the case of � = 0. By making the asymptotic critical

values the same for stationary errors and unit root errors, the scaling factors solve the over-rejection

problem caused by strong serial correlation in the errors.

The versions of the statistics given by (5) will be used for the remainder of the paper. Note

that the value of c used in practice depends on the signi�cance level of the test and depends on

the unit root statistic used for the scaling factor. A detailed discussion of the choice of c is given

below for the simple linear trend model.
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4 Comparisons to the PSW Test

The HAC robust tests de�ned by (5) are very closely related to the PSW and t � PSW tests

proposed by Vogelsang (1998). The PSW and t�PSW tests are de�ned in the same manner except

that b�2 is replaced by T�1s2z where s2z is the OLS error variance estimator from the regression

zt = g(t)
0� + St; (6)

where zt =
Pt
j=1 yj , g(t) =

Pt
j=1 f(j) and St =

Pt
j=1 uj , i.e. from the regression obtained by

computing the partial sums of regression (1). Tedious algebra can be used to show that T�1s2z is

closely related to the Bartlett kernel estimator of �2 using residuals eut = yt� f(t)0e� where e� is the
OLS estimate from (6). Therefore, T�1s2z is of the same stochastic order as b�2. In the case of the
simple linear regression model (see Section 6), we compare the asymptotic size and power of the

t � PSW test and show that it is dominated by the Daniel kernel HAC robust test. Details are

given in Section 6.

Vogelsang (1998) also proposed a second test labeled t � PS based on the OLS estimates of
regression (6). We do not provide comparisons to the t�PS test given that the t�PSW test has

higher power than t� PS when the errors are stationary.

5 Limiting Distributions Under Fixed-b Asymptotics

In this section we provide the limiting null distributions of t and W as de�ned in (5) under the

assumption thatM = bT where b 2 (0; 1]. This asymptotic nesting for the bandwidth was proposed
by Kiefer and Vogelsang (2002) and results were obtained for stationary models estimated by

generalized method of moments. The results in Kiefer and Vogelsang (2002) do not apply to

parameters associated with deterministic trends, nor to errors that contain unit roots. Therefore,

the results given here are new.

Before we proceed, some additional notation and de�nitions are required. As is well known,

estimators of coe¢ cients on di¤erent trends will often converge at di¤erent rates. Speci�cally,

the coe¢ cients entering the constraint which converge the slowest will dominate the asymptotic

distribution. In order to formalize this, let �i be the largest non-positive power of time, t, in the

nonzero elements in the i�th row of R�T : Then de�ne the q�q diagonal matrix A in such a way that
Aii = T

�i ; and let R� = limT!1A�1R�T : In the case when q = 1 we use R�1 to denote R
�. Under

�xed-b asymptotics, the limiting distributions depend on the type of kernel used in computing b�2.
The following de�nition describes the types of kernel we analyze.

De�nition 1 A kernel is labelled Type 1 if k (x) is twice continuously di¤erentiable everywhere

and as a Type 2 kernel if k (x) is continuous, k (x) = 0 for jxj � 1 and k (x) is twice continuously
di¤erentiable everywhere except at jxj = 1:

7



In addition to kernels which fall in these two categories, we consider the Bartlett kernel (which is

neither Type 1 or 2) separately.

The limiting distributions are expressed in terms of the following functions and random vari-

ables.

De�nition 2

NF =

( R 1
0 F (s) dw (s) ; if j�j < 1R 1
0 F (s)V� (s) ds; if � = 1� �

T

H (r) =

�
w(r) if j�j < 1R r

0 V�(s)ds if � = 1� �
T

QF (r) = H (r)�
Z r

0
F (s)0 ds

�Z 1

0
F (s)F (s)0 ds

��1
NF

k� (x) = k
�x
b

�
;

k�
0
� is the �rst derivative of k

� from below

�F (b; k) =

8>>>>>>><>>>>>>>:

R 1
0

R 1
0 �k

�00 (r � s)QF (r)QF (s)0 drds if k (x) is Type 1R R
jr�sj<b�k

�00 (r � s)QF (r)QF (s) drds
+2k�0� (b)

R 1�b
0 QF (r + b)QF (r) dr if k (x) is Type 2

2
b

R 1
0 Q

F (r)2 dr � 2
b

R 1�b
0 QF (r + b)QF (r) dr if k (x) is Bartlett

In the case of nearly integrated errors, the limiting distributions of the tests depend on the limiting

distributions of the unit root tests used in the scaling factors. Let bV� (r) denote the residuals from
the projection of V� (r) onto the space spanned by F (r), and let V �� (r) denote the residuals from

the projection of V� (r) onto the space spanned by
�
F (r)0; rp; rp+1; :::; r9

�0. The following lemma
follows directly from Park (1990), Park and Choi (1988) and Breitung (2002).

Lemma 1 Suppose Assumptions 1 and 2 hold. If j�j < 1, then as T ! 1; J ) 0; BG ) 0: If

� = 1� �
T , then as T !1;

J )
R 1
0
bV� (r)2 dr � R 10 V �� (r)2 drR 1

0 V
�
� (r)

2 dr

BG)
R 1
0 Q

F (r)2 drR 1
0
bV� (r)2 dr :

We generically denote these limiting distributions by UR1 in what follows.

We can now state the main theorem.
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Theorem 1 Let M = bT , b 2 (0; 1]. Then under Assumptions 1 and 2 as T !1
a)

b�2 ) �2�F (b; k) if j�j < 1;

T�2b�2 ) d(1)2�F (b; k) if � = 1� �

T
;

b)

WT )
 
R�
�Z 1

0
F (s)F (s)0 ds

��1
NF

!0 "
�F (b; k)R�

�Z 1

0
F (s)F (s)0 ds

��1
R�0

#�1

�
 
R�
�Z 1

0
F (s)F (s)0 ds

��1
NF

!
exp(�cUR1);

c)

t)

0BB@ R�1

�R 1
0 F (s)F (s)

0 ds
��1

NFr
�F (b; k)R�1

�R 1
0 F (s)F (s)

0 ds
��1

R�01

1CCA exp(�cUR1):
Theorem 1 demonstrates that pivotal test statistics are obtained under �xed-b asymptotics regard-

less of kernel or bandwidth, although the limiting distributions of the test statistics depend upon

the choice of kernel and bandwidth. The limiting distributions are clearly di¤erent when the errors

are stationary compared to when the errors are nearly integrated. For each combination of kernel,

bandwidth, scaling factor and percentage point, c can be chosen so that the critical values are the

same for both stationary errors and unit root errors (� = 0). The critical values corresponding

to the asymptotic distributions in Theorem 1 along with the values of c are simple to compute

numerically. A power analysis in the next section indicates speci�c kernels and bandwidth values

that lead to tests with optimal power properties in a model with a simple linear trend. Critical

values and details of their computation are given for the recommended tests in the simple linear

trend model following a discussion of power.

6 Optimal Kernels and Bandwidths in the Simple Linear Trend Model

In this section extensive analysis of local asymptotic size and power of the simple linear trend model

is provided. We focus on tests of the slope parameter and we derive limiting distributions under a

local alternative. This allows us to compute local asymptotic power for a wide range of kernels and

bandwidths. Because size is well controlled, we base the choice of kernel and bandwidth on how

they a¤ect power.

The simple linear trend model is given by

yt = �1 + �2t+ ut; t = 1; :::; T: (7)
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The null hypothesis under consideration is H0 : �2 � �0. The alternative is given by

HA : �2 = �0 + �g(T );

where g(T ) = T�3=2 if j�j < 1 and g(T ) = T�1=2 if � = 1� �
T . The t statistic for this test is given

by

t =

0BB@ T 3=2
�b�2 � �0�rb�2 �T�3PT
t=1(t� t)2

��1
1CCA exp (�cUR) : (8)

The limiting null distribution of t follows from Theorem 1. Note that b�2, J and BG are exactly

invariant (invariant for all T ) to the true value of �2 and are hence exactly invariant to the value

of �. Therefore, only b�2 � �0 depends on the local alternative. The following theorem gives the

limiting distribution of t under the local alternative.

Theorem 2 Let M = bT , b 2 (0; 1]. Suppose Assumptions 1 and 2 hold. Let t be given by (8) and
let F (r) = (1; r)0 and R�1 = (0; 1)

0 : Then under the local alternative, HA, as T !1

t)

0BB@ � +R�1

�R 1
0 F (s)F (s)

0 ds
��1

NFr
�F (b; k)R�1

�R 1
0 F (s)F (s)

0 ds
��1

R�01

1CCA exp(�cUR1);
where � = �=� if j�j < 1 and � = �=d(1) if � = 1� �=T .

Using the results of this theorem, it is easy to simulate asymptotic power of the t statistic

for di¤erent choices of kernels and bandwidths. The �rst step is to simulate asymptotic critical

values under the null hypothesis. This was done using 50,000 replications. For each replication, we

approximated the Wiener processes implicit in the limiting distributions using normalized partial

sums of 1,000 iid N(0,1) random deviates. We focused on �ve well known kernels: Bartlett, Parzen,

Bohman, Daniell and Quadratic Spectral (QS). Formulas for the kernels are given in an appendix.

We considered the grid of bandwidths given by b = 0:02; 0:04; :::; 1: Given a percentage point, for

a given bandwidth and kernel we computed values of c such that the asymptotic critical values are

the same for j�j < 1 and � = 1. These values of c are di¤erent for the J and BG scaling factors.

Given the values of c and the critical values, the second step is to compute rejection probabilities

for a grid of values of � using simulation methods thus producing asymptotic power curves.

To guide the choice of kernel and bandwidth, we computed power for the �ve kernels and the

bandwidth grid for a grid of values of �. These calculations were done for � = 0; 1; 2; :::; 49; 50.

For a given value of � and for each value of �, maximal power across the kernels, bandwidths and

choice of scaling factor was found thus providing power envelopes of the HAC robust tests. We
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label these power envelopes �robust envelopes�. Similar calculations were performed for the case of

stationary errors (note that the choice of scaling factor is irrelevant in this case). Given the robust

envelopes, we then searched for speci�c kernel and bandwidth choices that give tests with power

that is close to the corresponding robust envelope. In a preliminary analysis we found that the

Daniell kernel generally delivers tests with power closest to the robust envelopes and we focus on

the Daniell kernel for the remainder of the paper.

Focusing on the Daniell kernel, for a given value of � we computed bandwidths that maximize

power across the values of �. We found that most of the time no single bandwidth choice maximizes

power for all values of �. A common pattern we found is that a relatively small bandwidth will

maximize power when � is small whereas a relatively big bandwidth will maximize power when

� is large. In other words, power curves using small bandwidths often cross power curves using

large bandwidths. Because no single bandwidth gives a test with uniformly maximal power in this

situation, we used the slightly weaker criterion of integrated power to choose the bandwidth. If we

denote the power function of our one-sided test by p(�;�; b), integrated power is given byZ 1

0
p(�;�; b)d�

which is easily approximated by numerical integration methods. Integrated power is simply a

measure of average power over the alternative space and is similar to other average power criteria

used in the econometrics literature, e.g. Andrews and Ploberger (1994). Unique bandwidths can

be found that are optimal in the sense of maximizing integrated power. Note that if there exists

a bandwidth that gives a uniformly most powerful test, the integrated power criterion delivers the

same bandwidth.

Given a scaling factor, J or BG, for each value of � in our grid we computed integrated power

using simulation methods described above and we determined the bandwidth, bopt, that maximizes

integrated power. We used relatively �ne grids for � and we truncated the integral at large enough

values of � so that, for all bandwidths, power was at least 0.999 for values of � above the truncation.

In Figure 1 we plot bopt for both the J and BG scaling factors. In both cases, bopt is relatively large

when � is close to zero and bopt declines as � increases and the errors become more stationary. The

decline in bopt occurs in somewhat discrete drops and this is likely due to the relative coarseness of

the grid for �. Smoother functions for bopt could be obtained with a �ner grid at a substantially

higher computational cost. Once � is big enough, bopt drops to 0.02 and stays there. Calculations

done for the case of stationary errors con�rm that bopt = 0:02 for stationary errors. In the remainder

of the paper, Dan-J and Dan-BG are always implemented using optimal bandwidths and are labeled

Dan-J and Dan-BG.

To show that Dan-J and Dan-BG have asymptotically correct size (due to the use of the

scaling factors), Table 1 provides asymptotic null rejection probabilities of the Dan-J and Dan-
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BG statistics. The t � PSW statistic is also included for comparison. Results are given for

� = 0; 2; 4; :::; 18; 20 at the 5% signi�cance level. In all cases rejection probabilities are no larger

than 0.05 indicating that the scaling factors deliver tests that have asymptotically correct size.

Our power calculations reduce the number of potential tests in our class of tests from an in�nite

number to two. We are now in a position to address two interesting and practical questions. First,

how does the power of Dan-J and Dan-BG compare with each other and compare with power

of t � PSW? Second, how close is the power of Dan-J , Dan-BG, and t � PSW to the robust

envelopes?

In Figure 2 we plot integrated power of the three tests relative to the integrated power of Dan-J

across the grid for �. Obviously, the integrated power of Dan-J relative to itself is always one.

Two patterns stand out. First, notice that Dan-J dominates t� PSW for all values of � although

power is similar for � � 20. Second, the integrated power of Dan-J and Dan-BG cross once at

� = 10 and it is obvious that the BG scaling factor gives a more powerful test when � is close to

zero and the J scaling factor gives a more powerful test for more stationary errors.

Figures 3-5 plot the asymptotic power (not the integrated power) of the tests along with the

robust envelopes. Stationary errors are depicted in Figure 3 and nearly integrated errors are

depicted in Figures 4 and 5 with � = 0; 10. As an additional benchmark, Figures 4-5 also include

power of a test based on infeasible generalized least squares (GLS). This power curve was easily

computed analytically using theoretical results from Canjels and Watson (1997). In general, tests

based on infeasible GLS dominate OLS based tests for � close to zero whereas GLS and OLS are

asymptotically equivalent for stationary errors as is known from the classic results of Grenander

and Rosenblatt (1957). Figure 3 shows in the case of stationary errors that the Daniell kernel test

using bopt delivers a test with power equal to the robust envelope whereas power of t � PSW lies

below the robust envelope. Figure 4 shows that for � = 0, the Dan-BG test has power equal to

the envelope. Dan-J has less power although both Dan-BG and Dan-J dominate t�PSW . All of
the OLS HAC tests are dominated by infeasible GLS as expected. In Figure 5 we see that when

� = 10 none of the tests attain the envelope. Dan-J slightly dominates Dan-BG and Dan-J and

t� PSW cross each other. These results are not surprising given the results in Figure 2.

The results given in Figures 2-5 should be interpreted with caution because implementation of

infeasible GLS, Dan-J and Dan-BG requires a value of � which is an unknown parameter that

cannot be consistently estimated. Canjels and Watson (1997) propose a feasible version of GLS

based on simple proxy (inconsistent estimate) for �. They deal with the uncertainty generated by

using a proxy for � using Bonferoni bounds. In subsequent sections we propose a straightforward

data dependent bandwidth rule that makes the Dan-J and Dan-BG tests feasible in practice, and

we compare the �nite sample performance of the feasible tests with the t� PSW statistic.
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7 A Feasible Data Dependent Bandwidth Rule

There are two challenges to implementing feasible versions of the Dan-J and Dan-BG tests. The

�rst challenge is �nding a simple function that can approximate the relationship between bopt and

� as depicted in Figure 1. The second challenge is dealing with the fact that � is an unknown

parameter that cannot be consistently estimated.

Let bopt(�) denote the function that gives optimal bandwidths in terms of �. Given a value

of �, it is easy, but computationally intensive, to compute bopt(�). A practical alternative is to

approximate bopt(�) using the step-like functions depicted in Figure 1. Let 1(x�a) denote the

indicator function that takes on the value 1 if x � a and takes on the value 0 otherwise. The step
function approximations for bopt(�), using the same simulations as for Figure 1, are as follows. For

Dan-J

bopt(�) = 0:02 + 0:02 � 1(��21) + 0:02 � 1(��20) + 0:04 � 1(��19) + 0:02 � 1(��18) + 0:12 � 1(��17)
+0:1 � 1(��14) + 0:1 � 1(��12) + 0:06 � 1(��11) + 0:12 � 1(��10) + 0:02 � 1(��7) + 0:2 � 1(��4);

and for Dan-BG

bopt(�) = 0:02 + 0:1 � 1(��29) + 0:02 � 1(��23) + 0:02 � 1(��19) + 0:02 � 1(��17) + 0:02 � 1(��2):

Using the fact that � = T (1��) we can use these step functions to write the optimal bandwidth
in terms of the sample size and an estimate of �. The simplest estimator of � is given by

b� = PT
t=2 butbut�1PT
t=2 bu2t�1

where but are the OLS residuals from (7). Plugging into the formula for � gives b� = T (1� b�) which
can be used to de�ne a data dependent bandwidth rule given by

bbopt = bopt(b�): (9)

The bandwidth, M , used in the formula for (3) is given by

cM = max(bboptT; 2); (10)

where the lower bound of 2 is placed on cM to ensure that cM is not too small when T and bbopt are
both small.

We could follow Canjels and Watson (1997) and attempt to derive Bonferoni bounds when usingbbopt. However, this calculation would be much more di¢ cult than the calculations carried out by
Canjels and Watson (1997). This is true because of the very complicated manner in which � enters

the asymptotic distribution theory. By contrast, in Canjels and Watson (1997) � only entered the
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asymptotic distributions through the variance of a normal random variable thus greatly simplifying

the computation of Bonferoni bounds.

While a theoretical analysis of the impact of using bbopt on the asymptotic distributions of Dan-J
and Dan-BG is well beyond the scope of this paper, we can assess through �nite sample simulations

whether the following naive but simple asymptotic approximation works. Recall that the asymptotic

critical value and the scaling factor, c, depend on the value of b. A simple alternative to Bonferoni

bounds is to use an asymptotic critical value and a value for c treating bbopt as constant. This
approach is similar in spirit to the common practice of treating asymptotic variance estimators

as known when using standard �rst order asymptotics. Although bbopt is clearly not constant nor
even a consistent estimate of bopt, �nite sample simulation results in the next section indicate that

treating it as consistent provides a remarkably accurate asymptotic approximation.

A �nal practical matter that requires discussion is a convenient way of obtaining asymptotic

critical values and the corresponding values of c for a given value of bbopt. To that end, we took
simulated asymptotic critical values and values of c for the grid of b = 0:02; 0:04; :::; 0:98; 1:0 and

estimated the following polynomial functions using OLS:

cv(b) = �0 + �1b+ �2b
2 + �3b

3 + �4b
4 + �5b

5;

c(b) = �0 + �1b+ �2b
2 + �3b

3 + �4b
4 + �5b

5 + �6b
6 + �7b

7:

The estimated coe¢ cients are given in Tables 2 and 3 along with the R2 from the regressions. In

all cases, the �ts are excellent. In practice, given a value of bbopt and given a signi�cance level, the
value of c used for the scaling factor is given by c(bbopt) and the rejection rule is carried out using
the asymptotic critical value given by cv(bbopt). For convenience sake, we also report cv(b) and c(b)
functions for the t-statistic on the intercept parameter in (7).

8 Finite Sample Evidence

In this section, we discuss some �nite sample simulations designed to assess the accuracy of the

asymptotic approximations and to compare the �nite sample performance of the tests. The Dan-J

and Dan-BG tests were implemented using the feasible data dependent bandwidth described in the

previous section.

For the �nite sample simulations, we continue to use model (7). We test the hypothesis that

�2 � 0 against �2 > 0 at the 5% signi�cance level. The errors are generated according to ut =

�ut�1 + et + �et�1; where et is i:i:d: N (0; 1). The �rst set of simulations assesses the accuracy

of asymptotic approximations under the null. Simulations are reported for � = 0:0; 0:7; 0:8; 0:9;

0:95; 1:0; and � = �0:8; �0:4, �0:0, 0:4, 0:8 and for sample sizes 50; 100; and 200: In all cases,
5; 000 replications were used. Table 4 provides empirical null rejection probabilities of the t-tests.

It is clear that unless a large negative MA-term and a unit root are simultaneously present, all of
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these tests have empirical rejection probabilities either close to 0.05 or below. Therefore, the J and

BG scaling factors work well in practice. This contrasts with standard HAC robust tests were it is

well known that strong serial correlation causes over-rejections that can be severe. See Vogelsang

(1998, Table I). The reason the tests over-reject when there is a unit root and a large negative MA

component is because the J and BG statistics are oversized as unit root tests. In other words, J

and BG tend to be too small in �nite samples and they do not scale down the t-statistics enough

to control the over-rejection problem.

The overall performance of Dan-J and Dan-BG in terms of size is similar to t � PWS and is
quite impressive. These results suggest that treating bbopt as constant is a reasonable approach.

We also report some �nite sample power results to show that power in practice is qualitatively

similar to that implied by the local asymptotic analysis. For comparison purposes, we also include

power of a conservative feasible GLS test suggested by Canjels and Watson (1997). We implement

this test in exactly the same manner as in the �nite sample power simulations reported by Vogelsang

(1998). Figures 6-8 plot power for � = 0:7; 0:9; 1:0; � = 0; for T = 100. The results show that

the asymptotic patterns are also re�ected in the �nite sample results. Dan-J dominates t� PSW
in all cases whereas Dan-J dominates Dan-BG except when � = 1. Perhaps as expected, when

� = 1, the feasible GLS test has much higher power than the OLS based tests. However, for � < 1

feasible GLS can have much lower power than the OLS based tests.

Because of the well known downward bias of b� in models with deterministic trends, we experi-
mented using the median unbiased estimator of � proposed by Andrews (1993) in place of b� when
computing bbopt. While size results were similar, power was often lower using the median unbiased
estimator of �. It is an interesting topic for future research to more carefully compare the relative

merits of various methods of estimating � when constructing bbopt.
Based on the results of this section we recommend that the Dan-J test be used in practice. The

power of Dan-J dominates t�PSW and it has much higher power than feasible GLS when � is not

close to one. We do not recommend that Dan-BG be used in practice because in the one situation

where Dan-BG has higher power than Dan-J , feasible GLS has much higher power than both.

9 Evidence on the Prebisch-Singer Hypothesis

In this section we provide empirical evidence on the Prebisch-Singer hypothesis. The time series we

analyze is the logarithm of the net barter terms of trade series constructed by Grilli and Yang (1988)

and extended by Lutz (1999). See Grilli and Yang (1988) and Lutz (1999) for details on the

construction of this time series. The data is annual from 1900-1995. The net barter terms of trade

is the ratio of a non-fuel primary commodities price index to a manufacturing price index. The

Prebisch-Singer hypothesis asserts that the net barter terms of trade should be falling over time.

We plot the data in Figure 9 and it is clear from the plot that the logarithm of net barter terms
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of trade has been decreasing over time. Is this decrease systematic? If we take regression (7) as

a reasonable model of the statistical time series behavior of the logarithm of the net barter terms

of trade, then the Prebisch-Singer hypothesis asserts that the trend slope coe¢ cient is negative.

If we take as the null hypothesis that the Prebisch-Singer hypothesis does not hold against the

alternative that the Prebisch-Singer hypothesis holds, then we can parameterize the hypothesis as

H0 : �2 � 0, H1 : �2 > 0.
Note that the Prebisch-Singer hypothesis is an empirical notion about the long run behavior of

a time series; namely that the time series is steadily decreasing over time. It is important to keep

in mind that this notion has nothing to do with the correlation in the data. More speci�cally, the

Prebisch-Singer hypothesis has nothing to do with whether the error term is stationary or has a

unit root. In our opinion, the empirical literature on the Prebisch-Singer hypothesis has become

distracted by the unit root issue. This is not surprising given the technical di¢ culties the presence

of a unit root brings with it. The advantage of the test proposed in this paper is that it allows a

direct and very simple test of the Prebisch-Singer hypothesis that does not depend on whether or

not a unit root is in the errors.

Using the logarithm of the net barter terms of trade series, we estimated regression (7) by

OLS and obtained b�2 = �0:0645: We computed the Dan-J , the recommended test, using the
data dependent bandwidth. Recall that the value of c used for the scaling factors depends on

the signi�cance level of the tests and we provide results for signi�cance levels 5% and 2.5%. The

results are given in Table 5. Also reported in Table 5 are b� and bbopt. The null hypothesis that
the Prebisch-Singer hypothesis does not hold can be rejected at the 5% level but not at the 2.5%

level. This rejection is robust because the tests do not su¤er from over-rejection problems even if

the errors have a unit root. Our empirical result suggests that there is relatively strong evidence

that the Prebisch-Singer hypothesis holds implying that Prebisch and Singer were right.

As an additional robustness check, we applied the partial sum trend function structural change

tests proposed by Vogelsang (1999). We computed variants of the Vogelsang (1999) tests designed

to jointly detect a shift in intercept and/or slope in the deterministic trend function. The break date

was treated as unknown. The tests also use the J scaling factor to control the over-rejection problem

caused by strong serial correlation. We computed the mean, mean-exponential and supremum

statistics using 1% trimming (see Vogelsang (1999) for details). The results were: mean=0.084,

mean-exponential=0.0103 and supremum=0.0948. The 5% asymptotic critical values for these

tests when using the J scaling factor are 2.0917, 1.3325 and 5.1651 respectively. Therefore, the null

hypothesis that the trend function is stable over time cannot be rejected.

16



10 Conclusion

In this paper we have proposed tests for hypotheses regarding the parameters of the deterministic

trend function of a univariate time series. The tests do not require knowledge of the form of

serial correlation in the data and they are robust to strong serial correlation. The data can even

contain a unit root and the tests still have the correct size asymptotically. The tests we analyze are

standard OLS HAC robust tests based on nonparametric variance estimators. We extend the �xed-

b asymptotic framework for HAC robust tests recently proposed by Kiefer and Vogelsang (2002).

This allows us to analyze the power properties of the tests with regards to bandwidth and kernel

choices. Our analysis shows that among popular kernels, the Daniell kernel delivers tests with

optimal power within a speci�c class of tests that have the correct asymptotic size whether the

errors are stationary or have a unit root. We achieve this size robustness using the J scaling

factor proposed by Vogelsang (1998) and a new scaling factor, BG, based on the unit root test of

Breitung (2002). Based on our asymptotic and �nite sample analysis we recommend that the J

correction be used over the BG correction in practice. Our results also suggest that the Dan-J test

dominates the t� PSW test of Vogelsang (1998) in terms of power and Dan-J is recommended in

practice.

We address the traditionally di¢ cult issue of HAC bandwidth choice using �xed-b asymptotics

in conjunction with local to unity asymptotics. For a given value of the local to unity parameter, we

numerically determining the bandwidth that maximizes integrated power. To our knowledge, this

is the �rst bandwidth analysis that focuses on power of tests rather than the mean square error of

the HAC estimate. Our analysis provides a data dependent bandwidth that maximizes integrated

power. Finite sample simulations suggest that a feasible version of the optimal bandwidth rule

works well in practice.

We applied the Dan-J test to the logarithm of a net barter terms of trade series and the test

suggest that this series has a statistically signi�cant negative slope. This �nding is consistent with

the well known Prebisch-Singer hypothesis. Because our tests are robust to strong serial correlation

or a unit root in the data, our results in support of the Prebisch-Singer hypothesis are robust.
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Appendix
In this appendix we give the proof of Theorem 1. Theorem 2 follows easily from Theorem 1

using simple algebra and details are omitted.

Proof of Theorem 1.

Proof of part a):

Following Kiefer and Vogelsang (2002), we de�ne

�2�ij =

�
k

�
i� j
[bT ]

�
� k

�
i� j � 1
[bT ]

��
�
�
k

�
i� j + 1
[bT ]

�
� k

�
i� j
[bT ]

��
;

and use this expression to rewrite b�2 as
b�2 = �T�1 T�1X

i=1

T�1
T�1X
j=1

T 2�2�ij

�
T�1=2 bSi��T�1=2 bSj� : (11)

For (11) to be valid it must be the case that the residuals sum to zero. So, for the asymptotic results

to hold, a constant must be included in the model. The following lemma provides the distribution

of T�1=2 bSt:
Lemma 2 T�1=2 bS[rT ] ) �QF (r) :

Proof of Lemma 2: Simple matrix manipulations yield:

T�1=2 bS[rT ] = T�1=2 [rT ]X
t=1

ut �

0@T�1 [rT ]X
t=1

f (t)0 �T

1AT 1=2��1T �b� � �� : (12)

where

T 1=2��1T

�b� � �� = �T�1�T f (T )0 f (T ) �T ��1 �T�1=2�T f (T )0 u� : (13)

Clearly the terms consisting only of trend functions will have limiting distributions which do not

depend on whether or not ut is stationary. It is well know that these terms have the following

limits:

T�1�T f (T )
0 f (T ) �T )

Z 1

0
F (s)F (s)0 ds; and (14)

T�1
[rT ]X
t=1

f (t)0 �T )
Z r

0
F (s)0 ds: (15)

18



The last term in (13) and the �rst term in (12) depend on ut and therefore their limiting distributions

will depend on whether or not ut is stationary. Again using standard results, those asymptotic

distributions are:

T�1=2�T f (T )
0 u) �

Z 1

0
F (s) dw (s) if j�j < 1;

T�3=2�T f (T )
0 u) d(1)

Z 1

0
F (s)V� (s) ds if � = 1� �

T
;

T�1=2
[rT ]X
t=1

ut ) �w (r) if j�j < 1;

T�3=2
[rT ]X
t=1

ut ) d(1)

Z r

0
V� (s) ds if � = 1� �

T
:

Using these limits the asymptotic distribution of bS[rT ] is as follows.
T�1=2 bS[rT ] ) �

 
w (r)�

Z r

0
F (s)0 ds

�Z 1

0
F (s)F (s)0 ds

��1 Z 1

0
F (s) dw (s)

!
= �QF (r) if j�j < 1;

T�3=2 bS[rT ] ) d(1)

 Z r

0
V� (s) ds�

Z r

0
F (s)0 ds

�Z 1

0
F (s)F (s)0 ds

��1 Z 1

0
F (s)V� (s) ds

!
= d(1)QF (r) if � = 1� �

T
:

The rest of the proof is split into three cases, corresponding to Type 1, Type 2 and the Bartlett

kernels.

Case 1: k (x) is a Type 1 kernel. By de�nition of the second derivative, T 2�2�ij ! k00; and using

Lemma (2) it follows easily for the case when j�j < 1 that

b�2 = T�1 T�1X
i=1

T�1
T�1X
j=1

�T 2�2�ijT�1=2 bSiT�1=2 bSj
) �2

Z 1

0

Z 1

0
�k00 (r � s)QF (r)QF (s) drds:

When � = 1� �
T we have

T�2b�2 = T�1 T�1X
l=1

T�1
T�1X
i=1

�T 2�2�ilT�3=2 bSiT�3=2 bSl
) d(1)2

Z 1

0

Z 1

0
�k00 (r � s)QF (r)QF (s) drds:
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Case 2: k (x) is a Type 2 kernel. Following Kiefer and Vogelsang (2002), we use simple algebra and

the de�nition of �2�ij to establish that when ji� jj > [bT ] ; �2�ij = 0; and when ji� jj = [bT ] ;
�2�ij = �k

�
[bT ]�1
[bT ]

�
: When ji� jj < [bT ], T 2�2�ij ! k00. First consider the case when j�j < 1:

We split up the expression of b�2 as follows:
b�2 = T�1 T�1X

i=1

T�1
T�1X
j=1

�T 2�2�ijT�1=2 bSiT�1=2 bSj
= T�1

T�1X
i=1

T�1
T�1X
j=1

�1fji�jj<[bT ]gT 2�2�ijT�1=2 bSiT�1=2 bSj
+ 2T�2

T�[bT ]�1X
i=1

T 2k

�
[bT ]� 1
[bT ]

�
T�1=2 bSiT�1=2 bSi+[bT ]

= T�1
T�1X
i=1

T�1
T�1X
j=1

�1fji�jj<[bT ]gT 2�2�ijT�1=2 bSiT�1=2 bSj
+ 2k

�
1� 1

[bT ]

� T�[bT ]�1X
i=1

T�1=2 bSiT�1=2 bSi+[bT ]
) �2

 Z Z
jr�sj<b

�k�00 (r � s)QF (r)QF (s) drds+ 2k�0� (b)
Z 1�b

0
QF (r + b)QF (r) dr

!
;

where the asymptotic distribution follows directly from Lemma (2) and Kiefer and Vogelsang (2002).

The result when � = 1� �
T follows analogously for T

�2b�2 where bSi is normalized by T�3=2 instead
of T�1=2:

Case 3: k (x) is the Bartlett Kernel. Here again using simple algebra following Kiefer and Vogelsang

(2002), it can be veri�ed that when ji� jj = 0; �2�ij =
2
[bT ] ; and when ji� jj = [bT ] ; �2�ij =

� 1
[bT ] : Using these expressions and Lemma (2) in (11), we obtain the following limiting distribution

when j�j < 1:

b�2 = T�1 T�1X
j=1

T�1
T�1X
i=1

T 2�2�ijT
�1=2 bSiT�1=2 bSj

=
2

[bT ]

T�1X
i=1

�
T�1=2 bSi�2 � 2

bT

T�[bT ]�1X
i=1

T�1=2 bSiT�1=2 bSi+[bT ]
) �2

�
2

b

Z 1

0
QF (r)2 dr � 2

b

Z 1�b

0
QF (r + b)QF (r) dr

�
;

The result when � = 1� �
T follows analogously for T

�2b�2 where bSi is normalized by T�3=2 instead
of T�1=2. Comparing the distributions from Cases 1-3 with the de�nition of �F (b; k) completes

the proof of a).
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Proof of part b): First note that WT can be written as

WT =
�
Rb� � q�0 hb�2R �f (T )0 f (T )��1R0i�1 �Rb� � q� exp (�cUR) :

= T
�
Rb� � q�0 "b�2R�T � 1

T
�T f (T )

0 f (T ) �T

��1
�TR

0

#�1 �
Rb� � q� exp (�cUR)

=
h�
A�1R�T

�
��1T T

1=2
�b� � ��i0 "b�2 �A�1R�T �� 1

T
�T f (T )

0 f (T ) �T

��1 �
�TR

0A�1
�#�1

�
h�
A�1R�T

�
��1T T

1=2
�b� � ��i exp (�cUR) ;

By de�nition A�1R�T ! R�: Furthermore we established the asymptotic distribution of b�2 in a).
It therefore directly follows that when j�j < 1

WT )
"
�R�

�Z 1

0
F (s)F (s)0 ds

��1
NF

#0 "
�2�F (b; k)R�

�Z 1

0
F (s)F (s)0 ds

��1
(R�)0

#�1

�
 
�R�

�Z 1

0
F (s)F (s)0 ds

��1
NF

!
exp(�cUR1)

=

"
R�
�Z 1

0
F (s)F (s)0 ds

��1
NF

#0 "
�F (b; k)R�

�Z 1

0
F (s)F (s)0 ds

��1
(R�)0

#�1

�
 
R�
�Z 1

0
F (s)F (s)0 ds

��1
NF

!
exp(�cUR1):

When � = 1 � �
T the desired result follows by normalizing

�b� � �� by T�1=2 and normalizing b�2
by T�2. Part c) of the theorem follows directly from part b). �
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A List of Kernels

The kernels we use:

Bartlett k (x) =

�
1� jxj for jxj � 1

0 otherwise

Parzen (a) k (x) =

8<:
1� 6x2 + 6 jxj3 for jxj � 1

2

2 (1� jxj)3 for 12 � jxj � 1
0 otherwise

Quadratic Spectral (QS) k (x) =
25

12�2x2

�
sin (6�x=5)

6�x=5
� cos (6�x=5)

�
Daniell k (x) =

sin (�x)

�x

Bohman k (x) =

�
(1� jxj) cos (�x) + sin (� jxj) =� for jxj � 1

0 otherwise

The second derivatives of the kernels we use are:

Parzen (a) k00 (x) =

�
�12 + 36 jxj for jxj � 1

2
12 (1� jxj) for 12 � jxj � 1

QS k00 (x) =

8>><>>:
�36�2

125 for x = 0
125

72�3x5

h�
12� 36�2x2

5

�
sin (6�x=5)+�

216�3x3

125 � 72�x
5

�
cos (6�x=5)

i
otherwise

Daniell k00 (x) =

� �1
3�

2 for x = 0
2(sin(�x)��x cos(�x))

�x3
� � sin(�x)

x otherwise

Bohman k00 (x) = � sin (� jxj)� �2 (1� jxj) cos (�x)

Note that in the case of the Bartlett kernel, the asymptotic distribution is not expressed in

terms of k00(x) because k00(0) does not exist for the Bartlett kernel. The fact that k00(0) does not

exist does not pose any technical problems because results for the Bartlett kernel are obtained

through direct calculations.
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Table 1: Asymptotic Null Rejection Probabilities in the Simple Trend Model

Nearly Integrated Errors, 5% Nominal Level, 50,000 Replications

� Dan-J; b = bopt Dan-BG; b = bopt t-PSW-J
0 0.050 0.050 0.050
2 0.028 0.023 0.027
4 0.025 0.018 0.022
6 0.024 0.017 0.022
8 0.026 0.017 0.023
10 0.027 0.017 0.024
12 0.027 0.017 0.025
14 0.026 0.018 0.027
16 0.025 0.018 0.028
18 0.023 0.017 0.029
20 0.025 0.016 0.030

Table 2: Asymptotic Critical Value Function Coe¢ cients of HAC Robust t-tests in

the Simple Linear Trend Model Using the Daniell Kernel

yt = �1 + �2t+ ut:

cv(b) = �0 + �1b+ �2b
2 + �3b

3 + �4b
4 + �5b

5

Intercept �0 �1 �2 �3 �4 �5 R2

90% 1.2768 3.0917 -4.6941 35.2194 -26.1069 7.9022 0.9999
95% 1.6600 3.1416 7.7632 12.4836 11.4220 -8.8793 0.9999
97.5% 1.9402 6.2830 -6.3219 82.6107 -64.6229 22.1838 0.9999
99% 2.4016 0.4538 64.5686 -66.8889 124.2655 -54.7427 0.9999

Slope �0 �1 �2 �3 �4 �5 R2

90% 1.2802 2.4100 1.1323 17.1458 -4.8840 -0.6734 0.9999
95% 1.6383 3.5083 3.1079 31.3777 -16.0674 3.6881 0.9999
97.5% 1.9659 4.0603 11.6626 34.8269 -13.9506 3.2669 0.9999
99% 2.3259 6.5916 8.8314 99.0511 -73.3258 26.2719 0.9999
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Table 3: Asymptotic c(b) Function Coe¢ cients of HAC Robust t-tests in the Simple

Linear Trend Model Using the Daniell Kernel

yt = �1 + �2t+ ut:

c(b) = �0 + �1b+ �2b
2 + �3b

3 + �4b
4 + �5b

5 + �6b
6 + �7b

7

J Scaling Factor
Intercept �0 �1 �2 �3 �4
90% 0.7499 -9.7621 65.796 -247.4533 528.4285
95% 0.9610 -13.1521 90.3259 -343.243 736.7416
97.5% 1.1890 -16.7142 115.2884 -438.3496 940.2971
99% 1.5870 -24.2006 172.7681 -664.5252 1429.5649

Intercept �5 �6 �7 R2

90% -634.3561 398.1199 -101.5139 0.9970
95% -886.1946 556.2731 -141.7148 0.9965
97.5% -1130.4387 709.5573 -180.8483 0.9967
99% -1717.8948 1076.238 -273.5812 0.9957

Slope �0 �1 �2 �3 �4
90% 1.1531 -10.7044 69.5348 -255.9725 540.5918
95% 1.5765 -14.479 95.252 -356.2578 762.0497
97.5% 2.1582 -20.7712 142.0705 -541.8446 1164.2989
99% 2.9487 -27.6477 189.1506 -735.8488 1615.5392

Slope �5 �6 �7 R2

90% -644.6063 402.3978 -102.0847 0.9974
95% -918.8257 579.6667 -148.584 0.9970
97.5% -1400.0856 878.4994 -223.8275 0.9969
99% -1979.9895 1262.2460 -325.801 0.9969
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Table 3: (continued)

BG Scaling Factor
Intercept �0 �1 �2 �3 �4
90% 234.2704 -2868.4772 18811.8039 -69731.2231 147463.4333
95% 286.3570 -3743.1267 25162.8573 -94152.1563 199276.5117
97.5% 352.1194 -4943.2405 34469.1564 -131258.8606 279704.2615
99% 444.8561 -6743.2306 48990.1553 -190438.6854 409721.2544

Intercept �5 �6 �7 R2

90% -175665.7364 109539.4716 -27779.3683 0.9981
95% -236651.833 146849.1402 -37028.7816 0.9980
97.5% -332970.252 206834.2458 -52197.0985 0.9980
99% -489543.7975 304130.5416 -76587.1552 0.9974

Slope �0 �1 �2 �3 �4
90% 354.9211 -3192.5493 20104.5508 -71791.6215 149125.4086
95% 458.5817 -4320.4082 28274.2022 -101854.4156 210053.0637
97.5% 577.7701 -5475.1849 35431.5583 -122293.2595 238753.4663
99% 739.8640 -7189.0036 48398.4732 -172687.4149 347792.5436

Slope �5 �6 �7 R2

90% -176601.0298 110082.5451 -27966.1682 0.9970
95% -245890.3349 151589.8660 -38163.0692 0.9972
97.5% -264497.7570 154988.5891 -37301.4541 0.9978
99% -397333.0643 239910.1386 -59396.9866 0.9970
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TABLE 4: Empirical Null Rejection Probabilities in the Simple Trend Model

5% Nominal Level, 5,000 Replications

yt = �1 + �2t+ ut; ut = �ut�1 + et + �et�1; et; i:i:d:N(0; 1); u0 = 0, H0 : �2 � 0, HA : �2 > 0:
T = 50 T = 100 T = 200

� � Dan-J Dan-BG t-PSW Dan-J Dan-BG t-PSW Dan-J Dan-BG t-PSW
-0.8 0.00 0.000 0.000 0.000 0.000 0.000 0.002 0.001 0.001 0.005

0.70 0.009 0.005 0.017 0.010 0.006 0.027 0.018 0.015 0.037
0.80 0.026 0.014 0.033 0.041 0.026 0.051 0.049 0.038 0.050
0.90 0.066 0.040 0.066 0.128 0.080 0.089 0.129 0.092 0.072
0.95 0.102 0.061 0.092 0.196 0.116 0.125 0.193 0.122 0.102
1.00 0.184 0.112 0.165 0.297 0.185 0.219 0.314 0.185 0.212

-0.4 0.00 0.014 0.008 0.019 0.014 0.011 0.030 0.036 0.033 0.040
0.70 0.034 0.014 0.031 0.071 0.037 0.043 0.064 0.039 0.045
0.80 0.034 0.017 0.034 0.077 0.038 0.043 0.075 0.041 0.043
0.90 0.039 0.023 0.039 0.071 0.036 0.042 0.076 0.038 0.037
0.95 0.050 0.034 0.049 0.070 0.037 0.043 0.058 0.031 0.031
1.00 0.099 0.074 0.099 0.107 0.070 0.093 0.081 0.059 0.071

0.0 0.00 0.027 0.012 0.031 0.034 0.021 0.042 0.043 0.034 0.045
0.70 0.016 0.011 0.018 0.052 0.026 0.032 0.052 0.026 0.039
0.80 0.015 0.010 0.017 0.044 0.022 0.028 0.055 0.024 0.034
0.90 0.015 0.013 0.016 0.031 0.017 0.022 0.044 0.017 0.027
0.95 0.022 0.022 0.021 0.026 0.015 0.021 0.031 0.015 0.019
1.00 0.048 0.051 0.045 0.054 0.051 0.052 0.053 0.047 0.048

0.4 0.00 0.020 0.008 0.027 0.036 0.018 0.040 0.040 0.027 0.043
0.70 0.016 0.012 0.015 0.039 0.019 0.029 0.047 0.022 0.037
0.80 0.016 0.012 0.011 0.031 0.017 0.024 0.046 0.018 0.032
0.90 0.013 0.012 0.011 0.022 0.015 0.019 0.031 0.015 0.024
0.95 0.023 0.019 0.014 0.021 0.015 0.018 0.024 0.014 0.016
1.00 0.040 0.043 0.031 0.047 0.046 0.042 0.046 0.046 0.043

0.8 0.00 0.015 0.009 0.024 0.033 0.016 0.039 0.038 0.024 0.042
0.70 0.020 0.012 0.014 0.033 0.018 0.028 0.046 0.020 0.036
0.80 0.016 0.011 0.011 0.027 0.019 0.024 0.043 0.017 0.031
0.90 0.014 0.012 0.009 0.023 0.014 0.018 0.030 0.014 0.023
0.95 0.021 0.017 0.012 0.020 0.014 0.017 0.022 0.014 0.015
1.00 0.037 0.042 0.028 0.044 0.045 0.041 0.045 0.046 0.042

Note: The feasible optimal bandwidth given by (10) was used for Dan-J and Dan-BG.
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Table 5: Empirical Results for the Logarithm of Net Barter Terms of Trade

Annual Data, 1900-1995, Dan-J Statisticb�2 b� bbopt Dan-J (5% c) Dan-J (2.5% c)
-0.0645 0.702 0.02 -2.445 -1.549

Note: The 5% and 2.5% asymptotic critical values are -1.710 and -2.052.
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